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Solving inverse problems requires multiple forward calculations of measured signals. We present a fast method
combining graphic processing unit-accelerated Monte Carlo simulations of individual photons and a new pertur-
bation scheme for a 300-fold speedup in comparison to conventional CPU-based approaches. The method allows
rapid calculations of the diffuse reflectance and transmittance signals from a turbid sample of absorption coefficient
μa, scattering coefficient μs, and anisotropy factor g based on the principle of correlated sampling. To demonstrate its
strong utility, we have applied the method for determining the optical parameters of diluted intralipid samples with
satisfactory results. © 2013 Optical Society of America
OCIS codes: (290.3200) Inverse scattering; (120.5820) Scattering measurements.
http://dx.doi.org/10.1364/OL.38.002095

It remains a challenging problem to accurately and rap-
idly determine the absorption coefficient μa, scattering
coefficient μs, and anisotropy factor g of a turbid sam-
ple from the measured signals. Solving such an inverse
problem iteratively requires forward solutions of a
boundary-value problem defined by the radiative trans-
fer equation and Fresnel equations [1,2]. We have pre-
viously used an integrating sphere to measure diffuse
reflectance Rd and transmittance Td. A Monte Carlo
(MC) method was employed as the forward boundary-
value problem solver to inversely determine μs and g

from Rd and Td after obtaining the attenuation coeffi-
cient μt�� μa � μs� from the forward transmittance
signals [2,3].
Despite their accuracy, MC methods are computation-

ally expensive and especially so for solving inverse prob-
lems requiring multiple iterations [4]. With an integrating
sphere one can drastically reduce the time of MC simu-
lations of Rd and Td because they are acquired as hemi-
spherically averaged signals over a solid angle close to
2π (sr). For example, only 7 × 105 photons need to be
tracked in one MC simulation to keep the fluctuation
of the simulated signals less than 2%, which can be com-
pleted in about 1 min on a regular personal computer [3].
The use of an integrating sphere, however, presents a
considerable constraint on implementation because it
increases preparation time, cost, and size of the instru-
ment. In this Letter, we present a fast method that can
significantly reduce the computational cost of tracking
108 or more photons. With this method, only two single
detectors suffice to measure Rd and Td.
Figure 1 shows the considered configuration of a

turbid sample confined in a holder and two detectors
to collect photons injected at an incident angle of θ0
and scattered by the sample. The two detectors are
placed in the horizontal (x–z) plane with sensor surfaces
facing the sample with dR and dT as the distances to the
center of holder surfaces and θR and θT as the orientation
angles. In this case each detector is assumed to have a

round sensor area of 4 mm diameter, and the efficiencies
of photon detection are very low with solid angles of
about 3.5 × 10−3 (sr) for dR � dT � 60 mm. Clearly a fast
method to rapidly calculate Rd and Td is highly desired
for inverse determination of μs and g.

The new method is based on an MC algorithm of
tracking individual photons (iMC) developed in our
group with numerous validations [2,5–8]. Different from
the conventional one [4,9,10], the iMC algorithm inter-
prets light absorption as the termination of tracked pho-
tons instead of distribution along a trajectory. Tracking
individual photons allows the iMC algorithm to treat
complex boundary conditions, such as diverging or con-
verging incident beams and samples with rough surfaces
[7,11]. Briefly, iMC starts by obtaining a total travel dis-
tance La from μa and a random number (RND) uniformly
distributed in [0,1] as given in Eq. (1) before a photon is
launched according to the Fresnel equations at the
sample surface. After launching, the photon undergoes
a random-walk process with a sequence of travel distan-
ces (Lsi; i � 1; 2…; k) determined by μs and directions
by g, assuming the Henyey–Greenstein function as the
scattering phase function. At the end of each segment
Lsj, the fate of photon is determined by comparing the
accumulated path length Ls to La., where

Fig. 1. Schematic of the source-sample-detector configuration
(not to scale) with beam center at �x0; 0; 0�, diameter B, and a
top-hat beam profile.
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La � − ln�RND�
μa

; Lsi �
− ln�RND�

μs
and Ls �

Xj

i�1

Lsi:

�1�

If Ls > La, the photon is terminated as being absorbed;
otherwise it is propagated further. Once a photon
reaches the sample boundary, its incident angle and
the mismatched refractive indices decide whether the
photon returns or exits into the surrounding nonscatter-
ing media according to the Fresnel equations. For exiting
photons, those eventually reaching a detector are regis-
tered as the calculated signals of Rd or Td after normali-
zation by the number of incident photons.
The new method consists of two improvements of ef-

ficiency. The first converts the iMC code from central
processing unit (CPU) into graphic processing unit
(GPU) execution to take advantage of parallel computing
by multiple GPUs based on a code design published
in [12]. In GPU-iMC simulations, different seeds for
obtaining RND sequences are used in different GPUs,
which are provided by the CPU executed portion of
the code to ensure independent sampling. The average
speedup for the iMC simulations executed on a low-cost
graphic board (NVIDIA GT640) is about 20 in comparison
to simulations run on an Intel dual-core CPU of 3.2 GHz.
The speedup could be further improved if another
graphic board is used for display. To track 2.0 × 108

photons for configurations similar to those in Fig. 2, it
takes from 3 to 6 min to complete with fluctuations of
the estimated Rd or Td values kept at 0.5% or less.
For the second improvement, we developed a new

scheme to calculate Rd or Td for a “perturbed” sample
of μa, μs and g from an “unperturbed” or reference sample
of μa0 � 0, μs0, and g0. The new scheme follows the same
assumption made by the previous method [9,13,14] that
two samples sufficiently similar to each other share the
same set of photons contributing to the signals. To arrive
at a procedure applicable to the iMC algorithm, we have
investigated the dependence of Rd and Td on μa, μs and g

in various configurations. In the case of μa, the two
samples are very similar because absorption merely re-
duces the number of registered photons for the perturbed
sample from the reference one without modifying their
trajectories. For scattering parameters, trajectories are
varied, and the ranges of μs and g from their reference
values have to be limited to keep sufficient similarity.

Figure 2 presents typical examples of these relations.
Similar results were obtained for other source–detector
configurations. These data show that variation of g leads
to fairly complex change patterns in the Rd signal. Rule
(ii) below has been devised to calculate Rd and Td from
μs and g varied from a reference sample according to the
relations in Fig. 2. For example, as μs increases from μs0
or positive Δμs, Rd increases while Td decreases, which
yields the definitions of m and m0 in Eqs. (2) and (3).

At the beginning a full GPU-iMC simulation is per-
formed to store Ls0 for each registered photon of Rd

or Td for the reference sample. Note that μa0 � 0, and
consequently no photon is absorbed in the reference
sample. Then the stored data are retrieved to examine
whether each registered photon still contributes to the
Rd or Td signals for a perturbed sample according to
the two rules below:

(i) With μa updated from μa0 � 0 to a finite value, a fi-
nite La can now be obtained from Eq. (1). If the accumu-
lated path length of a registered photon Ls0 ≥ La, it is
eliminated from the detected signals for the perturbed
sample. Otherwise one proceeds to the next rule to
determine whether the photon still can be detected.
(ii) For g0 > 0, the accumulated path length Ls is
obtained from Ls0 according to

Ls �
�
1� �−1�m Δμs

μs0
� �−1�m0 Δg

1 − g0

�
−1
Ls0; (2)

where Δμs � μs − μs0, Δg � g − g0, m and m0 � 0 or 1.
For the Rd signal m � 0 and m0 � 1, while for Td m � 1
and m0 � 0. If g0 ≤ 0, Eq. (2) is replaced by

Ls �
�
1� �−1�m Δμs

μs0
� �−1�m0Δg

�
−1
Ls0; (3)

where the value of m remains the same as before and
m0 � 0 for the Td signal. For the Rd signal, m0 becomes
source–detector dependent, with m0 � 1 for jgj ≤
cos�θ0 � θR� and m0 � 0 otherwise. After Ls is updated
for each registered photon that passes rule (i), those
of Ls ≥ La are eliminated.

After elimination, the survival photons will be regis-
tered for Rd and Td, respectively, for the perturbed
sample. To examine the accuracy, we have compared
the signals obtained by the new scheme to those calcu-
lated by the full GPU-iMC simulations for the same sets of
reference and perturbed samples. Two examples of the
relative differences are shown in Figs. 3 and 4, each of
which was calculated on 49 sets of μs and g with fixed
μa. The relative changes of μs and g for the perturbed
sample were kept within �10% of those of the reference
sample.

From the above results one can see that the new
scheme allows rapid calculations of Rd and Td with both
μs and g perturbed from the reference sample and μa set
to arbitrary values from μa0 � 0. The calculated signals
exhibit quite different sensitivities to the change of
μs and g with errors of Rd less than �4% and those of
Td less than �6%. These errors are tolerable in inverse
determination of the optical parameters, since they are

Fig. 2. Rd and Td versus μs and g with μa� 0.1 mm−1,
dR � dT � 60 mm, x0 � 0 mm, B � 6.35 mm, θ0 � 45°; d �
1 mm, w � 25 mm, sample height along the y axis is 25 mm,
W � 1 mm, D � 3 mm, refractive index n � 1.349 for the
sample, and n0 � 1.519 for the holder. Symbols are simulation
results, and solid curves are guides for the eye.
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often less or much less than the errors of measured
signals.
To demonstrate the utility of the fast method we have

applied it to the determination of μs and g from the mea-
sured signals of Rd and Td from 0.8% intralipid solution
samples diluted from 30% intralipid with distilled water
as functions of wavelength from 510 to 690 nm. The mea-
surements were performed in a configuration similar to
Fig. 1 with the forward transmittance Tf acquired at
three values of sample thickness d � 1, 2, and 3 mm.
From the Tf versus d data, μt was determined by using
the Beer–Lambert law [3]. Afterward μs and g were de-
termined using a gradient based algorithm [3] to search
for optimized values so that the calculated Rd and
Td matched the measured values within 5% for the
sample of different d, θ0 � 7°, dR � 63 mm, θR � 29°,
dT � 82 mm, and θT � −27°. The results shown in Fig. 5
are consistent with our previous ones, while the values
of μa are higher than those obtained by other groups,
possibly due to the existence of a detection floor [3].
The relative difference of the inversely determined
parameters between the new method and full MC simu-
lations are mostly negligible except in the cases of longer
wavelengths, where μa is very small and errors of inverse
solutions are large. The total time for obtaining the
parameters at the 10 wavelengths was 7.35 min to run
3 full GPU-iMC simulations of 1.1 × 108 photons and
112 min without the perturbation method, which took
57 full simulations. Together, a 300-fold speedup was

achieved in comparison to the conventional CPU-based
approaches [2,3].

In summary, we have developed a fast perturbation
method for GPU-MC simulations to inversely determine
optical parameters from measured signals. The new
method requires minimal data storage and communica-
tion, which is particularly advantageous for GPU execu-
tion over the previous methods [13,14]. Much improved
efficiency is expected for the fast method if multiple sets
of the μa, μs, and g parameters are to be determined from,
for example, the reflectance image data from a hetero-
geneous turbid sample [8].

Y. Feng acknowledges support by the NSFC (grants
81171342 and 81201148).
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Fig. 3. Dependence of ΔRd∕Rd, and ΔTd∕Td on μs and g with
μa � 0.05 mm−1, μs0 � 10.0 mm−1, g0 � 0.5, and θR � θT � 70°;
all other parameters are the same as those in Fig. 2.

Fig. 4. Dependence of ΔRd∕Rd and ΔTd∕Td on μs and g with
μa � 0.1 mm−1, μs0 � 10.0 mm−1, g0 � −0.5, and θR � θT � 70°;
all other parameters are the same as those in Fig. 2.

Fig. 5. Wavelength dependence of optical parameters
inversely determined from three samples of d � 1; 2; 3 mmwith
symbols representing the mean values and error bars the stan-
dard deviations. Inset, the relative difference Δ between the
parameters determined by the new method and those with full
GPU-iMC simulations for the sample with d � 2 mm. The solid
curves are guides for the eye.
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