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Abstract

The Distributed Trusted Mach (DTMach) program
1s developing a design for a high-assurance, secure,
distributed system based on Mach. To achieve this
goal, it 1s first necessary to identify the general threats
against which DTMach must protect. The next step
1s to wdentify control mechanisms that are sufficient
to protect against each of the threats. The DT Mach
destgn makes extensive use of type enforcement in ad-
dressing the threats. This paper describes the general
threats and the countermeasures provided by DT Mach.
Doing so provides more evidence of the usefulness of
type enforcement in general and the high assurance
provided by the DTMach type enforcement policy.

1 Introduction

Distributed Trusted Mach (DTMach) is an operat-
ing system currently being designed by Secure Com-
puting Corporation. The goal of the project 1s to
use the Mach 3.0 kernel as the base for a secure, dis-
tributed system. The DTMach design is an outgrowth
of three related efforts: Mach [12], TMach [1, 2], and
LOCKTM [11].

As a first step in developing the DTMach security
policy, a categorization of general security concerns
was constructed. Concerns that were not adequately
addressed by the Mach 3.0 kernel indicated potential
security vulnerabilities. This paper describes these
general security concerns, the manner in which the
Mach 3.0 kernel addresses each concern, and the man-
ner in which DTMach addresses each concern. This
paper does not describe other aspects of the DTMach
design. The interested reader is referred to [8] for a
description of the complete design. Although famil-
iarity with the Mach 3.0 kernel and DTMach design is
helpful in reading this paper, Section 2 provides a brief
overview of Mach and DTMach that contains enough
detail to understand the issues discussed in subsequent
sections.

DTMach uses type enforcement to address a broad
range of security threats. Type enforcement is a flex-
ible, general access control mechanism that was ini-
tially developed at Secure Computing for use in its
LOCK Trusted Computing Base (TCB)[11, 13]. Sec-
tion 3 provides a brief overview of the concept of type
enforcement. On the DTMach project, the existing
design for the TMach kernel [1] was modified to sup-

port type enforcement and to maintain maximal con-
sistency with the Mach 3.0 kernel. Consequently, there
are significant differences between TMach and DT-
Mach. Although references are made to the TMach
design, the focus of this paper is on the DTMach secu-
rity policy and security mechanisms. Space does not
permit a complete comparison of the solutions pro-
vided by each system, nor would it be appropriate to
compare the two systems without further input from
the TMach developers.

Section 4 provides motivation for the importance of
protecting against more general security threats than
those addressed by the conventional mandatory and
discretionary access control policies. Next, in Sec-
tion 5 we describe general classes of security threats
and the manner in which DTMach protects against
each threat. In Section 6 we sketch the DTMach ap-
proach to implementing these counter-measures. Fi-
nally, in Section 7 we summarize the main points of
this paper:

e DTMach protects against a wide variety of
threats in a highly assured fashion.

e Type enforcement is a powerful control mecha-
nism that greatly facilitates the design of high
assurance systems.

2 System Overview

This section provides a brief overview of Mach and
DTMach. Further details of both systems can be
found in [6] and [7]. To highlight the differences be-
tween Mach and D'Tmach, we first describe Mach and
then separately describe DTMach extensions to Mach.

2.1 Mach Overview

The central concept in Mach is message passing.
A Mach process can send a message to another Mach
process by sending a message to a port from which the
second process receives the message. Sending a mes-
sage to a port causes the message to be enqueued in a
message queue associated with the port. Receiving a
message from a port causes a message to be dequeued
from the head of the queue. Data in messages can be
sent either by value (in-line) or by reference (out-of-
line). Passing data out-of-line allows large amounts of
data to be transmitted efficiently between processes.
This is accomplished using copy-on-write semantics.



In other words, data that is passed out-of-line is not
physically copied unless one of the processes accessing
the data subsequently modifies the data. As long as
processes are only observing the data, they can share
a single copy. Once a process modifies the data, the
data is copied and the modifications are only made in
the copy visible to the modifying process. Copy-on-
write semantics make it appear that each process has
its own copy of the data while minimizing the amount
of copying that actually occurs.

Mach supports multi-threaded processes through
tasks and threads. A task consists of a port name
space, an address space, and a set of threads. A thread
consists of things such as machine registers and an in-
struction pointer. Threads are the unit of scheduling
while tasks provide environments in which threads can
execute. Fach thread in a given task executes in the
environment provided by that task. A process in Mach
is a task together with the threads executing within
the task. For example, a process reading input from
a keyboard and a mouse might be implemented as a
task containing a thread handling keyboard input and
another thread handling mouse input.

Just as an address space provides access to memory,
a port name space provides access to ports. Mach uses
port rights to control the access a task has to a port.
A task cannot receive a message from a port unless its
port name space contains a receive right for the port.
Similarly, a task can only send a message to a port if
its port name space contains a send or send-once right
for that port.

A port is created when a task allocates the port.
The allocating task is given rights to the port. The
only way for other tasks to obtain a right for a port
is for the right to be passed in a message sent by a
task already holding the right. Mach port rights are
analogous to capabilities[9]. Although many tasks are
permitted to hold a send right to a port, at most one
task holds a receive right for a port at any given time;
this task 1s the port’s receiver. Whenever a port’s re-
ceiver passes 1ts recetve right to another task, it forfeits
its ability to receive messages from the port.

All entities in Mach are represented by ports. In
other words, ports are used to provide a uniform name
space for services and resources. Except for a small
number of requests implemented as traps, all requests
in Mach are implemented as messages sent to ports.
For example, each task has an associated task port that
is used to identify the task. Operations on a task are
invoked by sending messages to the task port associ-
ated with the task. The Mach kernel is the receiver
for all task ports. Upon receiving a message through
a task port, it performs the necessary processing.

As a specific example, tasks are killed by sending a
task_terminate message to the associated task port.
Upon receiving the request, the kernel terminates the
task associated with that port.

An interesting consequence of the decision to use
ports to provide a uniform name space is that it is
quite simple to interpose tasks between a task and a
service or resource. For example, kernel requests in-
voked on a given task, Target, can be rerouted through
a debugger, as shown in Figure 1. The kernel records

both a self port and an sself port for each task. While
the self port i1s the actual task port for the task, the
sself port can be any port. Whenever a task asks the
kernel to provide it the task port for a task Target,
the kernel returns Target’s sself port rather than Tar-
get’s self port. This feature allows the debugger to
interpose by allocating a port P and instructing the
kernel to set Target’s sself port to P. Although tasks
might “believe” they are invoking kernel requests on
Target when they send messages to P, they are actu-
ally sending messages to the debugger. By forwarding
the messages received over P to T', Target’s self port,
the debugger can gather information about kernel re-
quests in a transparent manner.

Kernel
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Target self
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Client Debugger

Figure 1: Task Interposing in Mach. All requests sent
to P are received by the debugger and forwarded to
T.

It is important to understand that Mach is not an
operating system, it is a kernel. In other words, rather
than providing all of the services typically included in
an operating system, Mach provides services that can
be used to implement the traditional operating sys-
tem services. For example, Mach provides facilities to
map a file into an address space even though it does
not provide a file system. Some mechanism outside
the kernel must be used to associate a file with a port.
The receiver of this file port is a task that acts as the
pager for the file. Then, the port representing the file
is provided as a parameter to the Mach vm_map re-
quest. This causes the kernel to establish a binding
between the file’s pager and a region of memory in
the address space of the task invoking the vim_map
request. When a page fault occurs, the kernel sends
a message requesting data from the pager. When the
kernel needs to swap a dirty page from memory, it
sends the contents of the page to the pager in a mes-
sage.

An interesting feature of Mach is that the task serv-
ing as a pager does not have to be a system task. In
other words, users are free to implement their own
pagers. Such tasks are called user pagers or exter-
nal memory managers. This allows an operating sys-
tem emulation or an application to use its own paging
strategy rather than restricting it to using a single
paging strategy implemented in the kernel.



2.2 DTMach Overview

The DTMach extensions to Mach can be catego-
rized as those that extend Mach to a TCB and those
that allow finer access control. As discussed previ-
ously, Mach does not provide all of the traditional
operating system services. Although things such as
file systems and devices are external to the kernel in
both Mach and DTMach, in DTMach they must be
included in the TCB if they are to be secure.

2.2.1 DTMach Servers

Although there are other servers in the DTMach TCB,
the only TCB servers discussed in this paper are
name servers, file servers, network servers and secu-
rity servers. Name servers are used to implement name
spaces. To access a service or resource, a task provides
the name of the service or resource to a name server.
In response, the name server returns a port represent-
ing the service or resource. File servers are similar; to
access a file, a task first obtains a port representing
that file from the file server.

Just as the kernel does not provide things such as
file systems, it does not provide any networking capa-
bility. The DTMach approach for distributing Mach is
based on the approach described in [10]. Tasks called
network servers are implemented that transparently
extend the Mach message passing mechanism across
a network. In this approach, each node in a network
must contain a network server. To access a port on a
remote node, a task must obtain access to a port on its
node that the local and remote network servers bind
to the port on the remote node. Figure 2 illustrates
the process of sending a message across a network.

1. The sending task sends a message to the local
port bound to the remote port.

2. The local network server receives the message
from the local port and transmits it through the
network to the network server for the node con-
taining the remote port.

3. The remote network server takes the data re-
ceived through the network and sends it in a mes-
sage to the remote port.

4. The receiving task receives the message from the
remote port.

The fact that the data was transmitted through the
network is transparent to the sending and receiving
tasks.

While file, name, and network servers are com-
mon operating system extensions to Mach, the secu-
rity servers are unique to the DTMach design. The
security servers are responsible for making access con-
trol decisions; in this sense, they are analogous to the
LOCK SIDEARM![11]. Each task and port is as-
signed a security context. When a task attempts to
access a port, the kernel determines whether the task

1The SIDEARM is a security coprocessor that performs all
of the access control computations in the LOCK system.
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Figure 2: Network IPC in DTMach. Network servers
extend IPC across the network.

is permitted to access the port by sending a message
containing the relevant security contexts to a security
server. In response, the security server sends the ker-
nel a message indicating the accesses allowed by the
security policy. For efficiency, the kernel may cache
decisions made by a security server. If sufficient in-
formation is present in the cache, the kernel does not
need to query a security server to determine whether
an access 1s permitted.

One of the key benefits of using a security server to
make security policy decisions is that there are few de-
pendencies between the security policy and the kernel.
The kernel is responsible for enforcing access decisions,
but it relies on the security server to make the access
decisions. In particular, the security policy can be
changed with minimal or even no changes to the ker-
nel. By adopting this approach, DTMach systems can
be used to enforce a rich set of security policies that
address both confidentiality and integrity and that can
be tailored to fit the needs of the enterprise supported
by the system.

2.2.2 Permission Vectors

The major refinement DTMach makes to the Mach
access control mechanisms is the separation of port
rights and permissions. While Mach allows a task to
make any use of a port right it holds, DTMach requires
a task to have permission in addition to holding the
right. For example, a task can send a message to a
port only if it both holds a send or send-once right to
the port and a security server indicates that the task
has send permission to the port. For performance rea-
sons, permission vectors are cached in the kernel once
they have been computed. By separating the opera-
tional semantics of Mach port rights from the DTMach
security policy, it is possible for Mach and DTMach to
have the same semantics for port rights and to control
the transfer and revocation of port rights in a secure
manner.

Send and receive are only two types of permissions;
permissions are also used to control what kinds of mes-
sages a task may send to a port. As a specific example,
the DTMach service vector represents a subclass of
permissions that controls the services that a task may



request through a port. For each service that a task
may request through a port, the task’s service vector
for the port contains a bit indicating whether the ser-
vice is permitted. Since each of the kernel requests
represents a kernel provided service, the service vec-
tor can be used to control which kernel requests can be
issued by each task. For example, suppose that a task
task; needs to terminate tasks, but it does not need to
perform any other operations on tasks. By requiring
that the only bit that is set in task;’s service vector for
tasks’s task port is the bit corresponding to the ker-
nel request task_terminate, task; is prohibited from
performing operations other than task_terminate on
tasky. Similarly, the service vector can be used to con-
trol the services that a task may request from servers.

Other extensions to provide finer access control in-
clude tagging messages with the security context of
the sender and (optionally) the security context of the

intended receiver.? More detail on permission vectors
is provided in Section 6.

2.2.3 The DTMach Security Model

Before proceeding with the description of the threats
to DTMach and security mechanisms in DTMach,
we first provide an overview of the DTMach security
model. We follow the traditional approach of describ-
ing the security model in terms of the subjects and
objects in the system.

A subject is an active entity in the system. Tech-
nically speaking, the only active entities in Mach are
threads. In other words, only threads execute instruc-
tions on the CPU. Since threads always exist within
tasks, we view tasks as subjects. We assign a security
context to each task and define the security context of
a thread to be the security context of the task in which
it 1s contained. To reduce the dependencies between
the kernel and the security server, the contents of a se-
curity context are known only to the security server.
In the security server currently being developed, the
security context contains:

e a level attribute that is used by the MLS (multi-
level security) policy

e a domain attribute that is used by the type en-
forcement policy described in the next section

e a subject identifier that is used by the identity
based access control policy

An object is a passive entity in the system. There
are three types of objects in DTMach: ports, memory
objects, and persistent objects. As described earlier,
ports are entities that are maintained and protected
by the kernel and that allow unidirectional communi-
cation between tasks. Memory objects are also kernel
protected entities. Tasks access them through their
virtual address spaces. Unlike ports and memory ob-
jects, persistent objects are external to the kernel. Al-
though persistent objects are not protected by the ker-
nel, they are TCB protected. The servers inside the

?The tagging of messages with security contexts is a TMach
extension that has been retained in DTMach.

TCB that provide access to persistent objects pro-
tect them. In this paper, persistent objects may be
thought of as files. Each object has an associated se-
curity context. As with subject security contexts, the
contents of object security contexts are known only to
servers. In the servers currently being developed, the
security context contains:

e a level attribute that is used by the MLS policy

e a type attribute that is used by the type enforce-
ment policy described in the next section

The security database for the system contains sub-
ject and object security context tables. These are ta-
bles, indexed by subjects and objects respectively, that
contain all the security relevant information about
subjects and objects in the system. There are simi-
lar tables for other classes of system entities such as
users, groups, devices, etc. This distributed database
is maintained by the security servers and is consulted
whenever a security server makes an access control
decison related to the system’s MLS or type enforce-
ment policy. The MLS policy subsumes the traditional
Simple Security Property and x-Property. This is the
primary confidentiality policy enforced by the current
DTMach security server. The type enforcement pol-
icy, discussed in the next section, is the primary in-
tegrity policy enforced by the current DTMach secu-
rity server.

3 Type Enforcement

Many of the solutions DTMach provides to secu-
rity problems are based on type enforcement. Type
enforcement is an access control policy that constrains
access based on domains and types. Each subject 1s as-
signed a domain attribute and each object is assigned
a type attribute. Rather than using an ordered set of
sensitivity levels as an MLS policy does, type enforce-
ment uses relations defining which access modes are
permitted for each domain-type pair and each domain-
domain pair.? Then, the policy is expressed as this set
of type enforcement relations indicating the modes in
which each subject is permitted to access each entity
in the system.

While an MLS policy and type enforcement both
are based on subject and object attributes, there are
two significant differences. First, type enforcement is
generally an intransitive policy. For example, the type
enforcement relation might allow sbj; to communicate
with sbjs and sbjs to modify obj while not allowing sbj;
to directly modify obj. Intransitivity is quite useful in
supporting integrity. For example, if 0bj contains crit-
ical data and sbjs is a server responsible for managing
0bj, 1t 1s desirable to have a policy that allows sbjs to
modify obj while preventing clients sending requests to
sbjs from modifying obj directly. Figure 3 illustrates
this use of type enforcement to protect such a trusted
subsystem from untrusted system components.

30n the LOCK project, the relation describing access on
the basis of a domain-type pair is called the Domain Definition
Table (DDT), and the relation describing access on the basis of
a pair of domains is called the Domain Interaction Table (DIT).
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Figure 3: Type Enforcement Protecting a Subsystem.
Type enforcement constrains which clients can send
requests to the server. In addition, type enforcement
prevents clients from bypassing the server and directly
accessing subsystem data.

The second significant difference is that type en-
forcement can provide a finer degree of control. For
the purposes of MLS, there are only two types of ac-
cess modes: observe and modify. There are no such
restrictions on the set of access modes used with type
enforcement. For example, the LOCK type enforce-
ment policy uses access modes such as create, destroy,
read, execute, write, and append. In addition to these
access modes, the DTMach type enforcement policy
uses access modes such as receive and send to control
access to ports. The following sections describe how
DTMach uses the finer granularity access modes to
provide a much higher degree of assurance.

As noted previously, entities in Mach are generally
named and accessed through ports. This Mach design
decision simplifies the incorporation of type enforce-
ment into DTMach since almost all decisions can be
made by the security server on the basis of a task secu-
rity context and a port security context. In particular,
the service vector controls the requests that can be in-
voked on a port in exactly the same manner as reading
or writing a file is controlled.

The only difficulty introduced by the use of ports
to represent all entities is that it is necessary to ensure
consistency between the domain of a task/thread and
the type of the port representing it. This is accom-
plished by associating a unique type with each domain
and requiring this type be used for the task/thread
port.

Now that we have discussed Mach, DTMach, and
type enforcement, we provide motivation for the DT-
Mach approach to providing security.

4 Layered Security Policies and Mech-

anisms

Although much of the prior work in computer secu-
rity has concentrated on MLS systems, there is much
more to computer security than just MLS. In general,
the authorities responsible for a computer system have

certain control objectives that are specific to the sys-
tem. In the case of an MLS system, the primary con-
trol objective is that data never be disclosed at an in-
appropriate level. For a banking system, the primary
control objective might be that balances of accounts
are never modified inappropriately. A weapons system
might have control objectives such as:

e The weapon is only fired when requested by an
authorized party.

e When an authorized party requests the weapon
be fired, the weapon is fired in a timely fashion.

Besides the wide variation in objectives across sys-
tems, the control objectives for a particular system
can evolve over time. They might change between the
design and the deployment of the system or even as
the deployed system is being used.

Consequently, it is unrealistic to expect that a sys-
tem can be shown to be “secure” before deployment
and need never be re-examined. On the other hand, it
is impractical to perform a complete security analysis
every time a system’s control objectives change. The
DTMach solution to this problem is to use type en-
forcement to provide general table driven access con-
trol within the base TCB. Then, the table can be con-
figured to support and protect higher layers of enforce-
ment mechanisms for a wide range of more specific,
higher level policies.

We use the term “trusted subject” to denote a sub-
ject that is responsible for ensuring that some control
objective is satisfied. The key to the computer secu-
rity problem is to simplify the task of assuring that
trusted subjects operate correctly.

Ideally, the executable code of a trusted subject
would be demonstrated to operate correctly. Although
there has been some limited success in verification of
machine code for algorithms, analyzing the executable
code of every trusted subject in a system is currently
infeasible. Another possibility is to verify the source
code for a trusted subject. Currently, this is on the
cutting edge of verification technology. Although it
is important to perform research to advance the state
of this technology, it is currently not practical to rely
solely on the verification of the source code for trusted
subjects.

Thus, common practice is to manually inspect the
source code and provide informal correctness argu-
ments. In the case of Al systems, the arguments are
made more rigorous by providing a mapping between
the source code and a formal specification of the sys-
tem. The errors inherent in manual inspection can
easily result in a security flaw in the implementation
not being detected. To reduce the likelihood of this oc-
curring, it is important to simplify the proof obligation
placed on the analyst as much as possible. The DT-
Mach security policy does so by increasing the num-
ber of threats that are addressed by the base TCB.
Consequently, the number of threats that must be ad-
dressed by each trusted subject is reduced and the
proof obligation associated with that trusted subject
1s simplified. In addition to simplifying the correctness



arguments for trusted subjects, the policy enforced by
the base TCB also simplifies correctness arguments
for the TCB itself. In other words, the TCB control
mechanisms themselves are used to help ensure that
the TCB components correctly implement the base
TCB. Figure 4 illustrates this layering of the security
analysis.

Application Application

Base TCB

TCB Components
Figure 4: Layering of Security Analysis

The next section describes general threats that
trusted subjects must protect against and the mecha-
nisms that DTMach provides trusted subjects to pro-
tect against these threats. In addition to providing
guidance to the design of the DTMach security server,
this also provides justification for the claim that the
DTMach security server addresses a wide range of
threats.

5 Threats and Solutions

The threats are divided into the following classes:

e Violation of Least Privilege

e Execution of Incorrect Code

Improper Process Control

e Attacks against Interprocess Communication

(TPC)
e Attacks against Data

A separate section is devoted to each of the first
four threats. Attacks against data are not discussed
since most of the issues related to it are addressed in
the discussion of attacks against IPC.

5.1 Least Privilege

First, we consider the Principle of Least Privilege.
Trusted subjects are often given privileges that are not
available to other subjects. For example, MLS trusted
subjects are privileged to downgrade information. As
another example, only the security database mainte-
nance subjects are privileged to modify the security
database.

Part of the analysis of a trusted subject involves
ensuring that the trusted subject does not use its priv-
ileges inappropriately. For example, an MLS trusted
subject should only downgrade certain information;
it should not just downgrade arbitrary information.
Similarly, the security database maintenance subjects
should maintain the security database correctly.

The more privileges a trusted subject has, the
greater the analysis that must be performed to demon-
strate that the privileges are not misused. Thus, it is
desirable to limit the privileges granted to each sub-
ject to minimize the required analysis.

The first way that DTMach supports least privi-
lege is through the fine degree of control provided by
its access control policy. The DTMach type enforce-
ment policy provides very fine granularity in specify-
ing privileges. For example, it 1s possible to specify a
downgrader that is permitted to downgrade the con-
tents of certain types of objects while having no access
to other types of objects. The task of demonstrating
that the downgrader only downgrades what is safe to
downgrade is much simpler when type enforcement has
been used to restrict the accesses of the downgrader.

An example of this would be a downgrader that
is intended to downgrade ciphertext prior to export
into a hostile environment such as an unprotected
network or some form of removable media. On DT-
Mach, special object types, ciphertexi_type and cipher-
text_control_data_type, could be defined. Tasks in the
ciphertert_downgrader domain would only be allowed
to read data of these two types, and only tasks in
the encryption domain would be allowed to write into
objects of ciphertext_type. Then, it would only be nec-
essary to demonstrate that subjects in the ciphertext_
downgrader domain only downgrade data read from
ciphertert_type objects. This is in sharp contrast to
the assurance obligation on systems that do not pro-
vide type enforcement. In such systems, a downgrader
can typically downgrade anything at its level.

As another example, the security database main-
tenance subjects might be granted read and write
permission to the security database while not being
granted destroy permission. This would allow the
security database maintenance subjects to read and
write the database without having to worry about
them accidentally destroying the objects containing
the security database. There are numerous other
examples of how type enforcement supports least
privilege[13].

The second way that DTMach supports least privi-
lege 1s in the separation of port rights and permissions.
Since the only port rights that can be used to name
objects in Mach are receive, send, and send-once, only
one task can hold a receive right at any given time, and
tasks can only name objects through port rights, it is
usually necessary to provide a task a send or send-
once right to a port in order for the task to have a
name for the object the port represents. This violates
least privilege since there are many cases in which a
task does not actually need to send messages to a port
even though it does need to have a name for the ob-
ject the port represents. For example, consider the
process by which tasks map files into their address
space. The task requests the file from the file server
and is given a send right to a port representing the ob-
ject. The receiver for the port is the object’s memory
manager (pager). Messages that the object’s pager re-
ceives through the port are typically expected to be
coming from the kernel. Thus, allowing a client task
to have send permission to the port requires the pager



to protect itself against the possibility that a client
masquerades as the kernel by sending messages to the
port. In DTMach, we can provide the client task with
a send right, but only give it permission to use the
port for mapping purposes. Then, the kernel prevents
client tasks from sending messages to the port.

As another example, consider a name server. In
order for a name server to provide a port to client
tasks, it must hold a right for the port. If there i1s no
distinction between holding a right and being able to
use the right, then the name server is free to access
any object in the name space it manages. In DT-
Mach, we can give the name server’s domain permis-
sion to pass the right to client tasks while preventing
the name server’s domain from using the right itself.
Then, there is no longer any concern that the name
server might maliciously or accidentally access objects
in its name space. When the client task receives the
right, the client’s use of the port is restricted based on
the permissions the client’s domain has to the port.

5.2 Execute Access

Now, we consider the binding between the source
code and the executable code for a trusted subject.
As discussed earlier, common practice is to analyze the
source code for trusted subjects. If there 1s no evidence
that the executable code is consistent with the source
code, then no assurance is gained by analyzing the
source code. Thus, maintaining the proper binding
between a trusted subject, the source code it is trusted
to execute, and the code object actually executed by
the subject is a critical piece of the argument for the
correct operation of the subject.

One threat to this binding is a faulty or subverted
compiler. There is nothing the system can do to pre-
vent a compiler developer from inserting malicious
code in the compiler or to prevent bugs from being
present in the compiler. However, the system can pro-
vide an assured means of installing the compiler and
can protect the compiler from inappropriate modifica-
tion after installation. This can be accomplished using
type enforcement by:

1. Defining a type 7. to represent executable code
for a compiler.

2. Defining a domain D; to represent a subject
trusted to perform the installation of a compiler.

3. Allowing only subjects in domain D; to modify
objects of type T..

Subjects permitted to operate in D; must be as-
sured to properly install the compiler and to not sub-
sequently modify the compiler. Type enforcement pre-
vents any other subjects from subverting the compiler.

A second way in which the binding between the
source code and executable code can be broken is if
the executable object associated with a trusted subject
is incorrect. This could happen if the wrong object
were bound to the subject at create time or if a flaw
in the design of the source code resulted in a jump
occurring to a new executable object. In the worst
case, a user might be able to cause a trusted subject

to execute a program designed by the user instead
of the program that the trusted subject is supposed
to run. This would allow the user to make use of the
trusted subject’s privileges. In 1988 the Internet worm
[12] used these techniques to propagate itself through
a significant portion of the Internet.

DTMach protects against this threat by requiring
execute access to be a distinct access mode in the per-
mision vector. The DTMach type enforcement policy
prevents a subject from executing an object unless the
object 1s of a type that 1s executable from the subject’s
domain. The typical security database configuration
for a trusted subject is to define a domain to repre-
sent the trusted subject and a type to represent the
executable object type for the domain. The domain is
only given execute access to its executable object type,
and the correct code object for the trusted subject is
the only object having the executable object type as
its type. Thus, type enforcement provides assurance
that the trusted subject will only execute the intended
code, even if there is a flaw in the design of the trusted
subject.

Another way in which the binding between the
source code and executable code can be broken is if
modifications are made to the executable object. In
the worst case, an untrusted subject such as a virus
might be able to completely rewrite the executable ob-
ject and cause the trusted subject to execute arbitrary
programs.

The DTMach type enforcement policy can be used
to control such modifications. As a simple example,
the security database might be configured so that no
domains have permission to modify executable objects
for trusted subjects. Another possibility would be to
allow the objects to be modified only by a maintenance
domain. By controlling which users can have subjects
active in the maintenance domain and by placing re-
strictions on the programs that these subjects can run,
the system can control the maintenance of trusted pro-
grams.

In summary, DTMach uses type enforcement to en-
sure that each trusted subject is bound with the cor-
rect code object and to support the binding between
the code object and the source code for the trusted
subject.

5.3 Process Control

Now, we consider the manner in which the progress
of a trusted subject can be controlled by other sub-
jects. Ways in which a subject can directly control
the progress of a second subject include:

e (Creating the subject.

As an example of a threat related to creating sub-
jects, consider a subject that is responsible for
shutting the system down. If a user that is not
authorized to shut the system down can start such
a subject, then the system might be shut down at
inappropriate times.

e Destroying the subject.

As an example of a threat related to destroying
subjects, consider a subject that is responsible for



updating the security database. If the subject is
destroyed while it is in the process of updating
a record in the database, the database might be-
come inconsistent due to the partial update.

e Suspending or resuming the subject.

The threats related to suspending subjects are
similar to those for destroying subjects. There is
a great deal of similarity between a subject that
1s suspended indefinitely and a subject that is de-
stroyed.

There is also a great deal of similarity between
the threats related to creating subjects and the
threats related to resuming subjects. The pri-
mary concern 1s that a subject might perform an
action at the wrong time as the result of being
resumed prematurely.

e Invoking requests in the name of another subject.

The ability in Mach of tasks to invoke requests
in the name of other tasks makes it difficult to
analyze trusted subjects. For example, suppose
that the source code for a trusted task has been
demonstrated to be correct, but some other task
has permission to send requests to the trusted
task’s kernel port. By sending requests to the
kernel port, the second task can cause the trusted
task to perform actions different from those called
for by its executable object. This would invali-
date the analysis of the source code. As a specific
example, suppose that an untrusted task can in-
voke a vin_write request through a trusted task’s
kernel port. This would allow the untrusted task
to arbitrarily modify the trusted task’s virtual
memory space. Consequently, the untrusted task
could cause the trusted task to behave improperly
by corrupting the trusted task’s virtual memory
space.

To destroy, suspend, or resume a task or to invoke a
request in the name of a task, a second task must have
send permission to a kernel port associated with the
first task. Thus, destroying, suspending, resuming,
and invoking can be addressed by controlling access
to task and thread kernel ports. The DTMach service
vectors allow very fine control to be placed upon the
services that can be requested through a port. In par-
ticular, the requests that a task in a given domain can
make through a kernel port of a given type are con-
trolled. As a specific example, kernel ports for trusted
tasks have types that do not allow untrusted tasks to
invoke any services. This 1s not a particularly inter-
esting case, though, since untrusted tasks should not
have permission to send any kind of message to kernel
ports for trusted tasks. As a more interesting exam-
ple, suppose that trusted task t; spawns trusted task
{5 1n a different domain and does not need to control
ts. Then the security database can be configured so
that #1’s domain has permission to create a task in ¢5’s
domain, but subjects in ¢1’s domain are not permitted
to invoke any services through a kernel port for a task
in ¢5’s domain.

As with maintaining the binding between a trusted
subject and its code object, we see that process control
threats are addressed by including a type enforcement
component in the security policy.

5.4 IPC

Some trusted subjects interact directly with un-
trusted subjects. Due to the client-server nature of
the Mach paradigm, this may be more common in the
Mach paradigm than in typical secure systems. For
example, file servers and name servers must accept re-
quests directly from untrusted subjects. The following
issues must be addressed:

o Identifying the sender of a message.

Protecting messages from modification while in
transit.

Preventing message interception.
e Ensuring message delivery.

Misdirection.

5.4.1 Identifying the Sender of a Message

For a trusted subject to implement a policy extension,
it must identify the security context of the sender of
requests it receives. Since many different security con-
texts might be permitted to send messages to a given
port, it is not possible to identify the security context
of the sender from the port through which the mes-
sage is received. To address this concern, DTMach
binds the sender’s security context to the message at
send time. Then, the receiver of a message can iden-
tify the security context of the sender by retrieving
the security context bound to the message.

Additional requirements are needed to address this
requirement in a distributed system. While the kernel
can prevent the context bound to a message from be-
ing modified while the message is in transit within a
node, the network servers must ensure label integrity
when messages are passed across the network. If the
communication links are physically protected, it suf-
fices to use some form of reliable broadcast protocol[9].
If links are not physically protected, it is necessary to
use cryptography in conjunction with a reliable broad-
cast protocol to protect against malicious agents who
have access to the communication links.

It 1s also important to note that certain DTMach
tasks are permitted to specify a sending context to be
attached to messages they send. Currently, the only
such tasks are network servers. In order for messages
to be transparently forwarded across the network, the
sending context for the forwarded message must be
that of the original sender rather than being the con-
text of the network server. The ability to explicitly
set a sending context is controlled using permissions;
the DTMach type enforcement policy restricts the do-
mains that are permitted to specify contexts for mes-
sages sent to a port of a given type. Currently, the
network server domain has permission to specify con-
texts on all of the types of ports that can be shared
across nodes. No other domains are permitted to spec-
ify sending contexts.



5.4.2 Protecting Messages from Modification
While in Transit

If a message is sent between two trusted subjects and
an untrusted subject can modify the contents of the
message, then the untrusted subject might be able to
trick the trusted subjects into misusing their privi-
leges. For example, consider a subject trusted to sani-
tize files and a subject trusted to downgrade sanitized
files. The sanitization/downgrade process consists of
the sanitizer removing sensitive data from the file and
then sending a message to the downgrader indicating
that the file has been sanitized. Since the security con-
text bound to the message is that of the trusted sani-
tizer subject, the receiving downgrader subject might
assume the file has been sanitized and perform the
downgrade. However, if an untrusted subject modi-
fied the message so that it requested the downgrade
of a file different from the one sanitized, then sensitive
information might be downgraded by the downgrader
subject.

The Mach kernel protects the integrity of messages
that are in transit within a node. The only potential
concern is messages containing out-of-line data. The
contents of such messages are dependent on memory
objects referenced by the messages. This introduces
the possibility that a subject might modify the con-
tents of a message by modifying the contents of a mem-
ory object referenced by the message. For the most
part, the copy-on-write semantics used for out-of-line
data address this concern. If a referenced memory
object 1s modified, then a physical copy is performed
and the message references the copy rather than the
modified object.

However, the Mach user pager concept introduces
a small hole. If the pager for an object referenced
as out-of-line data invalidates the current contents of
the object and informs the kernel of new contents for
the object, no copy is made of the original object.
Informing the kernel of new contents for an object
is viewed as being different from writing the object.
Since copy-on-write only requires that a copy be made
when a write occurs, the object’s pager can actually
modify the contents of the message.

To address this “back-door,” DTMach restricts the
types of memory objects that each task can access and
which tasks can act as a pager for each type of mem-
ory object and also makes a physical copy whenever a
task receives out-of-line data contained in a memory
object of an inappropriate type. For example, sup-
pose that tasks; sends a message to task,, the message
references memory object 0bj as out-of-line data, and
task, is a user pager for obj. To protect tfask. from
back-door modifications made by task, it suffices to
configure the security database so that whenever typ
is a memory object type that is appropriate for access
by tasks in task,’s domain, then no untrusted tasks are
permitted to page that type of memory object. Then,
the receipt of the message by task, causes the contents
of 0bj to be physically copied to a new object 0bj. that
is inaccessible to task, *.

4This is similar to the TMach mechanism for addressing this

As with label integrity, the network servers are re-
sponsible for ensuring the integrity of the contents of
a message while 1t is in transit between nodes.

5.4.3 Preventing Message Interception

Trusted subjects often rely on the system to prevent
messages they send from being received by subjects
other than the subject “intended” to receive the mes-
sage. In some cases, this is a confidentiality issue; the
trusted subject has determined that the intended re-
ceiver 1s permitted to see information and relies on
the system to prevent the message from being inter-
cepted by other subjects. In other cases, there are in-
tegrity issues to consider. For example, suppose that a
trusted subject in DTMach determines that a certain
task should be allowed to have a port right and passes
the port right in a message to the task. If another task
intercepts the message, then it might receive the right
even though the trusted subject’s policy prohibits it.
In DTMach, this is addressed by allowing a receiv-
ing context to be bound to each message. Any mes-
sage that does not have such a context bound to it
can be received by any task that has permission to
receive from the port to which it is sent. When a re-
ceiving context is bound to the message, then the in-
tent is that only a task with that context can receive
the message. As with specifying a sending context,
the DTMach type enforcement policy is used to re-
strict the tasks that are permitted to receive messages
when they are not the specified intended receivers of
the messages. It i1s also the case that the kernel is
responsible for protecting the context associated with
messages in transit within a node while the network
servers are responsible for protecting the context as-
sociated with messages in transit between nodes.

5.4.4 Ensuring Message Delivery

If a subject is trusted to provide service to other sub-
jects, then 1t is necessary to ensure that clients of the
service can always communicate their requests to the
subject providing the service. For example, if an un-
trusted task can prevent other tasks from accessing
a file server, then the file server cannot provide the
service that it is supposed to provide. Similarly, if a
subject is trusted to provide information to a client
subject, then it is necessary to ensure that the subject
providing the information can send the information to
the client.

In Mach the only way for a task to prevent a mes-
sage from being delivered to a port is by flooding the
port with messages. Each message queue has a limit
on the number of messages that it can contain. When
this limit is reached, then subsequent messages cannot
be enqueued. The DTMach type enforcement policy
addresses the flooding i1ssue by controlling which tasks
can send messages to which ports. In particular, given
a port that is intended for communication between two
trusted subjects, the type enforcement policy can be
used to prevent untrusted subjects from flooding the

threat.



port by preventing the untrusted subjects from send-
ing messages to the port.

5.4.5 Misdirection

In some cases, an untrusted subject can cause a
trusted subject to send a message. In these cases,
the trusted subject must prevent the untrusted sub-
ject from tricking it into misusing its privileges.

As a simple example, consider an untrusted client
requesting a service from an MLS server. It is quite
common for the client to include a reply port in the
service request, with the intent that the server respond
to the requested operation through the reply port.
Suppose the MLS server may operate at UNCLAS-
SIFIED and SECRET and a given client has level SE-
CRET. Suppose the client specifies a reply port having
level UNCLASSIFIED. Since the MLS server may op-
erate at UNCLASSIFIED, it is permitted to send the
reply to the specified port. Consequently, the client
can signal information to subjects at level UNCLAS-
SIFIED by sending requests to the MLS server. The
client has tricked the MLS server into using its privi-
leges to inappropriately downgrade information.

To address this problem, the MLS server must en-
sure that the level of the reply port is at least as high
as the level of the client. The DTMach approach for
addressing this problem is to require that the client
have permission to send messages to the reply port.
Then, there is no problem with the server sending the
reply to the port since the client itself could forward
the reply to that port after receiving it.

5.5 Summary

The type enforcement component of the basic DT-
Mach security policy provides a uniform approach for
addressing a wide variety of security threats. Many
of these threats, such as the violation of least privi-
lege, control of execute access, and process control are
present in most secure systems. The threats related
to IPC are more specific to DTMach in particular or
to distributed systems in general.

The type enforcement policy can be enforced in a
straightforward manner by separating the operational
notion of Mach port rights from the access control de-
cisions required by the security policy. The DTMach
kernel utilizes permission vectors to record these ac-
cess control decisions. In previous sections we have
discussed the abstract notion of permission vectors
and the threats addressed by incorporating type en-
forcement and permission vectors into DTMach. In
the next section we discuss related implementation is-
sues.

6 Implementation

In this section we sketch the plans for implementing
the permission vector concept in DTMach. First, we
describe the structure of the permission vector. Then,
we discuss the computation of permission vectors. Fi-
nally, we describe the extensions to the Mach kernel
interface that are required for DTMach.

6.1 Permission Vector Structure

Conceptually there 1s a DTMach permission vector
for each pair of security contexts. We call these the
subject security context and the object security con-
text of the permission vector. The permission vector is
divided into two distinct components, corresponding
to the notions of permission vector and service vec-
tor that were introduced earlier in Section 2.2.2. See
Figure 5.
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Figure 5: Permission Vector Structure

The first component of the permission vector con-
trols the basic port accesses of tasks in the subject
security context to ports with the object security con-
text. The permission vector includes fields that pro-
vide:

e Control of the IPC delivery facility: send and re-
ceive.

e Control of transfer of port rights: transfer send
and transfer receive.

e Control of memory access to objects represented
by the port: read, write, execute, create, and de-
stroy

e Control over message identification information:
supply sending context and ignore specified re-
ceiving context

The second component defines the services that a
task in the subject security context is allowed to re-
quest in messages to ports with the object security
context. Thus, a security policy can specify on a per
security context basis exactly which services the kernel
should allow for each type of service port. The ker-
nel’s role in making this facility available to the TCB
is to assure that the policy specific logic is executed
using the correct security attribute information and
that the data is correctly provided to the server task
along with the service request message.

6.2 Permission Computation and Revoc-
tion

Since any major application built on an IPC based
kernel such as Mach is likely to access ports frequently,
performance considerations dictate that permission



computations not be required on every operation in-
volving a message exchange. Another performance
motivated consideration is that the Mach TPC facil-
ities encourage the frequent creation and deletion of
port rights. These considerations lead to the following
design decisions.

e Permission vectors are associated with a port
right the first time the port right is accessed by a
task.

e Permissions are cached by the kernel based on the
security attributes of the relevant task—port pairs.

e Permissions are computed only the first time they
are required.

The general view of security decision processing is
then similar to page fault processing. When a task
attempts to utilize a port right the kernel first deter-
mines that the port right allows the requested IPC op-
eration. This is precisely what the Mach kernel does.
Then the DTMach kernel checks to see if the requested
access 1s allowed by a valid permission vector associ-
ated with the task and port. If there i1s none, the
kernel will search its cache to see if it has a previously
computed valid permission vector for the security at-
tributes represented in the task—port pair. If no entry
is found in the cache, the kernel initiates the required
security check by providing the relevant security con-
text information to a security server. The security
server might not be necessary for a very simple secu-
rity policy such as the conventional Mandatory Access
Control Policy. The kernel might execute such simple
decision logic more efficiently than it can maintain a
cache. However, for more complicated and flexible se-
curity policies such as the DTMach type enforcement
policy, it 1s more efficient to move the actual compu-
tation of permission vectors outside the kernel. Use
of a security server task for computing the permission
vectors places all the security critical logic in a single
place in the TCB. This makes it very easy to analyze
and evaluate the mapping of a specific security policy
to the security critical decisions within the TCB.

The permission vector cache in the kernel makes
resolution of the permission revocation problem rela—
tively simple. The kernel provides a “revoke access”
service which specific TCB tasks are allowed, by the
service vector component, to request. Upon receipt
of this request, the kernel invalidates all permission
vectors in the cache. When a task makes a subse-
quent request to utilize a port right, the kernel reacts
as if there were no permission vector present and ini-
tiates a recomputation based on the current state of
the system. In most cases an application will be com-
pletely unaware of the new permlssmns In some cases
a request may be returned with an “insufficient per-
mission” error. In this case the application will take
whatever action is required.

6.3 Interface Extensions for DTMach

An explicit objective of the DTMach design effort
has been to preserve the existing Mach kernel inter-
face and to minimize the number of extensions that are

necessary. If this objective is achieved, code written
to operate on a Mach kernel will also operate on the
DTMach kernel. The code will be able to make all the
same requests and will find the same general seman-
tics for all those requests. To address security issues,
variants of a small set of kernel entry points have been
proposed. In this paper we discuss the general issues
associated with the proposed changes. The interested
reader can consult [8] for detailed descriptions of the
changes.

There are four general concerns that lead to exten-
sions of the existing Mach kernel interface.

1. Definition and management of security contexts.

2. Association of security contexts with basic DT-
Mach entities.

3. Access to security context information.

4. Required extensions to the semantics of task cre-
ation.

Since the kernel’s role in the system has been care-
fully defined as the enforcer of decisions and not the
maker of policy specific decisions, it is not required to
interpret the content of the security attributes of en-
tities. Its role is one of simply associating and storing
the information with the relevant entity, passing it on
to the security decision logic as required, and provid-
ing the information to other client tasks as requested.
It is also desirable for the kernel to have the ability
to determine when two security contexts are identi-
cal. There are points in the kernel processing logic
that are used for both inter and intra security context
operations. Allowing the kernel to quickly identify
the usage as an intra context operation decreases the
number of times that complicated security checks must
be made. To allow applications to associate security
contexts with ports, memory regions and tasks, vari-
ants of the mach_port_allocate, vin_allocate and
task_create requests are specified. Each allows the
caller to designate the security context to be associ-
ated with the specific entity that is created.

To implement a client server model in a TCB, the
TCB servers must have access to the security iden-
tity of the client. The initial Mach TPC mechanism
does not provide any kernel assured mechanism for
receiving this information. This problem is solved by
providing a variant of the standard Mach message ser-
vice request. The variant allows a receiving task to tell
the kernel to provide the security relevant information
for the message sender along with the actual message.
The information provided includes both the sender’s
security context and the permission vector defining
the sender’s actual permissions to the port used for
the communication. This provides two distinct ben-
efits to the TCB server. First, it has the identifica-
tion information it requires to carry out any security
relevant responsibilities that it might have. Second,
it need not duplicate any previous security decision.
This means that the most critical security decision
logic can be centralized to a single system module, the



security server. Such centralization is a distinct ben-
efit to the assurance process for any secure system.
Finally, as described in Section 5.4, DTMach provides
a variant of the Mach message service request so that
the security contexts of the original sender and/or the
intended receiver can be bound to the message

The relationship between a parent task and its child
is more complex in DTMach than it is in Mach 3.0
where there is an implicit assumption that the parent
task always has full control over the child task. This
is acceptable in a security environment where trust
can be viewed as a non-increasing function when ap-
plied to the task creation processing, e.g. a Biba in-
tegrity model. However, in a more general case, where
untrusted applications request services of trusted ap-
plications, e.g. the LOCK TCB [13], it is necessary
to allow parent tasks to create higher integrity child
tasks. This presents a more difficult problem because
the transition from low integrity to higher integrity
cannot rely on the parent to do anything for the child
except specify its security attributes, tell it what to
attempt to execute, and tell it when to start.

In DTMach this problem is solved by incorporating
several existing task operations into a single new vari-
ant of the task_create request. In Mach there are
three distinct operations that a creating task must
perform to start a new task. It must indicate what
part of 1ts address space is to be made visible to the
child task. It must then enter the task_create re-
quest. Upon completion of the task_create request
the parent receives a send right to the child’s task
port, which allows the parent to enter any and all
kernel requests in the name of the child. To com-
plete the process of making a useful child task, the
parent must use this right to enter requests in the
name of the child to create a thread, set the con-
text for the thread, and tell the newly created thread
to resume processing. The DTMach variant of the
task_create request incorporates the multiple kernel
requests into a single request. Thus the DTMach ker-
nel_cross_security_context_task_create is a two
step process for the parent task. The parent task still
identifies the parts of its address space that it would
like to share.> Then the parent task enters the vari-
ant task create request which provides for not only the
creation of the task, but the creation and initiation of
an initial thread within the task.

7 Conclusion

The preceding discussion has described threats that
must be addressed in secure systems and provided
an overview of how the DTMach security policy ad-
dresses each of the threats. By addressing the identi-
fied threats rather than simply addressing MLS secu-
rity, a wider range of policies can be supported. High
assurance is obtained by incorporating the type en-
forcement policy in the TCB. Rather than repeatedly
assuring complex application level policies, assurance
is provided for the DTMach type enforcement policy
and simple arguments are provided for how the DT-

5The actual sharing of information via memory regions is
restricted by the kernel enforced security policy decisions.

Mach type enforcement policy supports the applica-
tion level policy. By using type enforcement to con-
struct protected subsystems, the analysis can be mod-
ularized and consequently made much more feasible.

As described throughout this paper, type enforce-
ment 1s the key component of the DTMach secu-
rity policy. As described in [11], type enforcement
was also found to be invaluable in the design of the
LOCK TCB. The ease with which type enforcement
was “ported” from LOCK to DTMach provides sup-
port for the claim that it is a generally applicable secu-
rity policy. The fine granularity of control it provides
is essential to the development of high assurance sys-
tems.
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