
Assuring Distributed Trusted MachTodd Fine and Spencer E. MinearSecure Computing Corporation1210 West County Road ESuite 100Arden Hills, Minnesota 55112AbstractThe Distributed Trusted Mach (DTMach) programis developing a design for a high-assurance, secure,distributed system based on Mach. To achieve thisgoal, it is �rst necessary to identify the general threatsagainst which DTMach must protect. The next stepis to identify control mechanisms that are su�cientto protect against each of the threats. The DTMachdesign makes extensive use of type enforcement in ad-dressing the threats. This paper describes the generalthreats and the countermeasures provided by DTMach.Doing so provides more evidence of the usefulness oftype enforcement in general and the high assuranceprovided by the DTMach type enforcement policy.1 IntroductionDistributed Trusted Mach (DTMach) is an operat-ing system currently being designed by Secure Com-puting Corporation. The goal of the project is touse the Mach 3.0 kernel as the base for a secure, dis-tributed system. The DTMach design is an outgrowthof three related e�orts: Mach [12], TMach [1, 2], andLOCKTM [11].As a �rst step in developing the DTMach securitypolicy, a categorization of general security concernswas constructed. Concerns that were not adequatelyaddressed by the Mach 3.0 kernel indicated potentialsecurity vulnerabilities. This paper describes thesegeneral security concerns, the manner in which theMach 3.0 kernel addresses each concern, and the man-ner in which DTMach addresses each concern. Thispaper does not describe other aspects of the DTMachdesign. The interested reader is referred to [8] for adescription of the complete design. Although famil-iarity with the Mach 3.0 kernel and DTMach design ishelpful in reading this paper, Section 2 provides a briefoverview of Mach and DTMach that contains enoughdetail to understand the issues discussed in subsequentsections.DTMach uses type enforcement to address a broadrange of security threats. Type enforcement is a 
ex-ible, general access control mechanism that was ini-tially developed at Secure Computing for use in itsLOCK Trusted Computing Base (TCB)[11, 13]. Sec-tion 3 provides a brief overview of the concept of typeenforcement. On the DTMach project, the existingdesign for the TMach kernel [1] was modi�ed to sup-

port type enforcement and to maintain maximal con-sistency with the Mach 3.0 kernel. Consequently, thereare signi�cant di�erences between TMach and DT-Mach. Although references are made to the TMachdesign, the focus of this paper is on the DTMach secu-rity policy and security mechanisms. Space does notpermit a complete comparison of the solutions pro-vided by each system, nor would it be appropriate tocompare the two systems without further input fromthe TMach developers.Section 4 provides motivation for the importance ofprotecting against more general security threats thanthose addressed by the conventional mandatory anddiscretionary access control policies. Next, in Sec-tion 5 we describe general classes of security threatsand the manner in which DTMach protects againsteach threat. In Section 6 we sketch the DTMach ap-proach to implementing these counter-measures. Fi-nally, in Section 7 we summarize the main points ofthis paper:� DTMach protects against a wide variety ofthreats in a highly assured fashion.� Type enforcement is a powerful control mecha-nism that greatly facilitates the design of highassurance systems.2 System OverviewThis section provides a brief overview of Mach andDTMach. Further details of both systems can befound in [6] and [7]. To highlight the di�erences be-tween Mach and DTmach, we �rst describe Mach andthen separately describe DTMach extensions to Mach.2.1 Mach OverviewThe central concept in Mach is message passing.A Mach process can send a message to another Machprocess by sending a message to a port from which thesecond process receives the message. Sending a mes-sage to a port causes the message to be enqueued in amessage queue associated with the port. Receiving amessage from a port causes a message to be dequeuedfrom the head of the queue. Data in messages can besent either by value (in-line) or by reference (out-of-line). Passing data out-of-line allows large amounts ofdata to be transmitted e�ciently between processes.This is accomplished using copy-on-write semantics.1



In other words, data that is passed out-of-line is notphysically copied unless one of the processes accessingthe data subsequently modi�es the data. As long asprocesses are only observing the data, they can sharea single copy. Once a process modi�es the data, thedata is copied and the modi�cations are only made inthe copy visible to the modifying process. Copy-on-write semantics make it appear that each process hasits own copy of the data while minimizing the amountof copying that actually occurs.Mach supports multi-threaded processes throughtasks and threads. A task consists of a port namespace, an address space, and a set of threads. A threadconsists of things such as machine registers and an in-struction pointer. Threads are the unit of schedulingwhile tasks provide environments in which threads canexecute. Each thread in a given task executes in theenvironment provided by that task. A process in Machis a task together with the threads executing withinthe task. For example, a process reading input froma keyboard and a mouse might be implemented as atask containing a thread handling keyboard input andanother thread handling mouse input.Just as an address space provides access to memory,a port name space provides access to ports. Mach usesport rights to control the access a task has to a port.A task cannot receive a message from a port unless itsport name space contains a receive right for the port.Similarly, a task can only send a message to a port ifits port name space contains a send or send-once rightfor that port.A port is created when a task allocates the port.The allocating task is given rights to the port. Theonly way for other tasks to obtain a right for a portis for the right to be passed in a message sent by atask already holding the right. Mach port rights areanalogous to capabilities[9]. Although many tasks arepermitted to hold a send right to a port, at most onetask holds a receive right for a port at any given time;this task is the port's receiver. Whenever a port's re-ceiver passes its receive right to another task, it forfeitsits ability to receive messages from the port.All entities in Mach are represented by ports. Inother words, ports are used to provide a uniform namespace for services and resources. Except for a smallnumber of requests implemented as traps, all requestsin Mach are implemented as messages sent to ports.For example, each task has an associated task port thatis used to identify the task. Operations on a task areinvoked by sending messages to the task port associ-ated with the task. The Mach kernel is the receiverfor all task ports. Upon receiving a message througha task port, it performs the necessary processing.As a speci�c example, tasks are killed by sending atask terminatemessage to the associated task port.Upon receiving the request, the kernel terminates thetask associated with that port.An interesting consequence of the decision to useports to provide a uniform name space is that it isquite simple to interpose tasks between a task and aservice or resource. For example, kernel requests in-voked on a given task, Target, can be rerouted througha debugger, as shown in Figure 1. The kernel records

both a self port and an sself port for each task. Whilethe self port is the actual task port for the task, thesself port can be any port. Whenever a task asks thekernel to provide it the task port for a task Target,the kernel returns Target's sself port rather than Tar-get's self port. This feature allows the debugger tointerpose by allocating a port P and instructing thekernel to set Target's sself port to P . Although tasksmight \believe" they are invoking kernel requests onTarget when they send messages to P , they are actu-ally sending messages to the debugger. By forwardingthe messages received over P to T , Target's self port,the debugger can gather information about kernel re-quests in a transparent manner.
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receiveFigure 1: Task Interposing in Mach. All requests sentto P are received by the debugger and forwarded toT . It is important to understand that Mach is not anoperating system, it is a kernel. In other words, ratherthan providing all of the services typically included inan operating system, Mach provides services that canbe used to implement the traditional operating sys-tem services. For example, Mach provides facilities tomap a �le into an address space even though it doesnot provide a �le system. Some mechanism outsidethe kernel must be used to associate a �le with a port.The receiver of this �le port is a task that acts as thepager for the �le. Then, the port representing the �leis provided as a parameter to the Mach vm map re-quest. This causes the kernel to establish a bindingbetween the �le's pager and a region of memory inthe address space of the task invoking the vm maprequest. When a page fault occurs, the kernel sendsa message requesting data from the pager. When thekernel needs to swap a dirty page from memory, itsends the contents of the page to the pager in a mes-sage.An interesting feature of Mach is that the task serv-ing as a pager does not have to be a system task. Inother words, users are free to implement their ownpagers. Such tasks are called user pagers or exter-nal memory managers. This allows an operating sys-tem emulation or an application to use its own pagingstrategy rather than restricting it to using a singlepaging strategy implemented in the kernel.



2.2 DTMach OverviewThe DTMach extensions to Mach can be catego-rized as those that extend Mach to a TCB and thosethat allow �ner access control. As discussed previ-ously, Mach does not provide all of the traditionaloperating system services. Although things such as�le systems and devices are external to the kernel inboth Mach and DTMach, in DTMach they must beincluded in the TCB if they are to be secure.2.2.1 DTMach ServersAlthough there are other servers in the DTMach TCB,the only TCB servers discussed in this paper arename servers, �le servers, network servers and secu-rity servers. Name servers are used to implement namespaces. To access a service or resource, a task providesthe name of the service or resource to a name server.In response, the name server returns a port represent-ing the service or resource. File servers are similar; toaccess a �le, a task �rst obtains a port representingthat �le from the �le server.Just as the kernel does not provide things such as�le systems, it does not provide any networking capa-bility. The DTMach approach for distributing Mach isbased on the approach described in [10]. Tasks callednetwork servers are implemented that transparentlyextend the Mach message passing mechanism acrossa network. In this approach, each node in a networkmust contain a network server. To access a port on aremote node, a task must obtain access to a port on itsnode that the local and remote network servers bindto the port on the remote node. Figure 2 illustratesthe process of sending a message across a network.1. The sending task sends a message to the localport bound to the remote port.2. The local network server receives the messagefrom the local port and transmits it through thenetwork to the network server for the node con-taining the remote port.3. The remote network server takes the data re-ceived through the network and sends it in a mes-sage to the remote port.4. The receiving task receives the message from theremote port.The fact that the data was transmitted through thenetwork is transparent to the sending and receivingtasks.While �le, name, and network servers are com-mon operating system extensions to Mach, the secu-rity servers are unique to the DTMach design. Thesecurity servers are responsible for making access con-trol decisions; in this sense, they are analogous to theLOCK SIDEARM1[11]. Each task and port is as-signed a security context. When a task attempts toaccess a port, the kernel determines whether the task1The SIDEARM is a security coprocessor that performs allof the access control computations in the LOCK system.
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forwardFigure 2: Network IPC in DTMach. Network serversextend IPC across the network.is permitted to access the port by sending a messagecontaining the relevant security contexts to a securityserver. In response, the security server sends the ker-nel a message indicating the accesses allowed by thesecurity policy. For e�ciency, the kernel may cachedecisions made by a security server. If su�cient in-formation is present in the cache, the kernel does notneed to query a security server to determine whetheran access is permitted.One of the key bene�ts of using a security server tomake security policy decisions is that there are few de-pendencies between the security policy and the kernel.The kernel is responsible for enforcing access decisions,but it relies on the security server to make the accessdecisions. In particular, the security policy can bechanged with minimal or even no changes to the ker-nel. By adopting this approach, DTMach systems canbe used to enforce a rich set of security policies thataddress both con�dentiality and integrity and that canbe tailored to �t the needs of the enterprise supportedby the system.2.2.2 Permission VectorsThe major re�nement DTMach makes to the Machaccess control mechanisms is the separation of portrights and permissions. While Mach allows a task tomake any use of a port right it holds, DTMach requiresa task to have permission in addition to holding theright. For example, a task can send a message to aport only if it both holds a send or send-once right tothe port and a security server indicates that the taskhas send permission to the port. For performance rea-sons, permission vectors are cached in the kernel oncethey have been computed. By separating the opera-tional semantics of Mach port rights from the DTMachsecurity policy, it is possible for Mach and DTMach tohave the same semantics for port rights and to controlthe transfer and revocation of port rights in a securemanner.Send and receive are only two types of permissions;permissions are also used to control what kinds of mes-sages a task may send to a port. As a speci�c example,the DTMach service vector represents a subclass ofpermissions that controls the services that a task may



request through a port. For each service that a taskmay request through a port, the task's service vectorfor the port contains a bit indicating whether the ser-vice is permitted. Since each of the kernel requestsrepresents a kernel provided service, the service vec-tor can be used to control which kernel requests can beissued by each task. For example, suppose that a tasktask1 needs to terminate task2, but it does not need toperform any other operations on task2. By requiringthat the only bit that is set in task1's service vector fortask2's task port is the bit corresponding to the ker-nel request task terminate, task1 is prohibited fromperforming operations other than task terminate ontask2. Similarly, the service vector can be used to con-trol the services that a task may request from servers.Other extensions to provide �ner access control in-clude tagging messages with the security context ofthe sender and (optionally) the security context of theintended receiver.2 More detail on permission vectorsis provided in Section 6.2.2.3 The DTMach Security ModelBefore proceeding with the description of the threatsto DTMach and security mechanisms in DTMach,we �rst provide an overview of the DTMach securitymodel. We follow the traditional approach of describ-ing the security model in terms of the subjects andobjects in the system.A subject is an active entity in the system. Tech-nically speaking, the only active entities in Mach arethreads. In other words, only threads execute instruc-tions on the CPU. Since threads always exist withintasks, we view tasks as subjects. We assign a securitycontext to each task and de�ne the security context ofa thread to be the security context of the task in whichit is contained. To reduce the dependencies betweenthe kernel and the security server, the contents of a se-curity context are known only to the security server.In the security server currently being developed, thesecurity context contains:� a level attribute that is used by the MLS (multi-level security) policy� a domain attribute that is used by the type en-forcement policy described in the next section� a subject identi�er that is used by the identitybased access control policyAn object is a passive entity in the system. Thereare three types of objects in DTMach: ports, memoryobjects, and persistent objects. As described earlier,ports are entities that are maintained and protectedby the kernel and that allow unidirectional communi-cation between tasks. Memory objects are also kernelprotected entities. Tasks access them through theirvirtual address spaces. Unlike ports and memory ob-jects, persistent objects are external to the kernel. Al-though persistent objects are not protected by the ker-nel, they are TCB protected. The servers inside the2The tagging of messages with security contexts is a TMachextension that has been retained in DTMach.

TCB that provide access to persistent objects pro-tect them. In this paper, persistent objects may bethought of as �les. Each object has an associated se-curity context. As with subject security contexts, thecontents of object security contexts are known only toservers. In the servers currently being developed, thesecurity context contains:� a level attribute that is used by the MLS policy� a type attribute that is used by the type enforce-ment policy described in the next sectionThe security database for the system contains sub-ject and object security context tables. These are ta-bles, indexed by subjects and objects respectively, thatcontain all the security relevant information aboutsubjects and objects in the system. There are simi-lar tables for other classes of system entities such asusers, groups, devices, etc. This distributed databaseis maintained by the security servers and is consultedwhenever a security server makes an access controldecison related to the system's MLS or type enforce-ment policy. The MLS policy subsumes the traditionalSimple Security Property and ?-Property. This is theprimary con�dentiality policy enforced by the currentDTMach security server. The type enforcement pol-icy, discussed in the next section, is the primary in-tegrity policy enforced by the current DTMach secu-rity server.3 Type EnforcementMany of the solutions DTMach provides to secu-rity problems are based on type enforcement. Typeenforcement is an access control policy that constrainsaccess based on domains and types. Each subject is as-signed a domain attribute and each object is assigneda type attribute. Rather than using an ordered set ofsensitivity levels as an MLS policy does, type enforce-ment uses relations de�ning which access modes arepermitted for each domain-type pair and each domain-domain pair.3 Then, the policy is expressed as this setof type enforcement relations indicating the modes inwhich each subject is permitted to access each entityin the system.While an MLS policy and type enforcement bothare based on subject and object attributes, there aretwo signi�cant di�erences. First, type enforcement isgenerally an intransitive policy. For example, the typeenforcement relation might allow sbj1 to communicatewith sbj2 and sbj2 to modify obj while not allowing sbj1to directly modify obj. Intransitivity is quite useful insupporting integrity. For example, if obj contains crit-ical data and sbj2 is a server responsible for managingobj, it is desirable to have a policy that allows sbj2 tomodify obj while preventing clients sending requests tosbj2 from modifying obj directly. Figure 3 illustratesthis use of type enforcement to protect such a trustedsubsystem from untrusted system components.3On the LOCK project, the relation describing access onthe basis of a domain-type pair is called the Domain De�nitionTable (DDT), and the relation describing access on the basis ofa pair of domains is called the Domain Interaction Table (DIT).
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certain control objectives that are speci�c to the sys-tem. In the case of an MLS system, the primary con-trol objective is that data never be disclosed at an in-appropriate level. For a banking system, the primarycontrol objective might be that balances of accountsare never modi�ed inappropriately. A weapons systemmight have control objectives such as:� The weapon is only �red when requested by anauthorized party.� When an authorized party requests the weaponbe �red, the weapon is �red in a timely fashion.Besides the wide variation in objectives across sys-tems, the control objectives for a particular systemcan evolve over time. They might change between thedesign and the deployment of the system or even asthe deployed system is being used.Consequently, it is unrealistic to expect that a sys-tem can be shown to be \secure" before deploymentand need never be re-examined. On the other hand, itis impractical to perform a complete security analysisevery time a system's control objectives change. TheDTMach solution to this problem is to use type en-forcement to provide general table driven access con-trol within the base TCB. Then, the table can be con-�gured to support and protect higher layers of enforce-ment mechanisms for a wide range of more speci�c,higher level policies.We use the term \trusted subject" to denote a sub-ject that is responsible for ensuring that some controlobjective is satis�ed. The key to the computer secu-rity problem is to simplify the task of assuring thattrusted subjects operate correctly.Ideally, the executable code of a trusted subjectwould be demonstrated to operate correctly. Althoughthere has been some limited success in veri�cation ofmachine code for algorithms, analyzing the executablecode of every trusted subject in a system is currentlyinfeasible. Another possibility is to verify the sourcecode for a trusted subject. Currently, this is on thecutting edge of veri�cation technology. Although itis important to perform research to advance the stateof this technology, it is currently not practical to relysolely on the veri�cation of the source code for trustedsubjects.Thus, common practice is to manually inspect thesource code and provide informal correctness argu-ments. In the case of A1 systems, the arguments aremade more rigorous by providing a mapping betweenthe source code and a formal speci�cation of the sys-tem. The errors inherent in manual inspection caneasily result in a security 
aw in the implementationnot being detected. To reduce the likelihood of this oc-curring, it is important to simplify the proof obligationplaced on the analyst as much as possible. The DT-Mach security policy does so by increasing the num-ber of threats that are addressed by the base TCB.Consequently, the number of threats that must be ad-dressed by each trusted subject is reduced and theproof obligation associated with that trusted subjectis simpli�ed. In addition to simplifying the correctness



arguments for trusted subjects, the policy enforced bythe base TCB also simpli�es correctness argumentsfor the TCB itself. In other words, the TCB controlmechanisms themselves are used to help ensure thatthe TCB components correctly implement the baseTCB. Figure 4 illustrates this layering of the securityanalysis.
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Application Application...Figure 4: Layering of Security AnalysisThe next section describes general threats thattrusted subjects must protect against and the mecha-nisms that DTMach provides trusted subjects to pro-tect against these threats. In addition to providingguidance to the design of the DTMach security server,this also provides justi�cation for the claim that theDTMach security server addresses a wide range ofthreats.5 Threats and SolutionsThe threats are divided into the following classes:� Violation of Least Privilege� Execution of Incorrect Code� Improper Process Control� Attacks against Interprocess Communication(IPC)� Attacks against DataA separate section is devoted to each of the �rstfour threats. Attacks against data are not discussedsince most of the issues related to it are addressed inthe discussion of attacks against IPC.5.1 Least PrivilegeFirst, we consider the Principle of Least Privilege.Trusted subjects are often given privileges that are notavailable to other subjects. For example, MLS trustedsubjects are privileged to downgrade information. Asanother example, only the security database mainte-nance subjects are privileged to modify the securitydatabase.Part of the analysis of a trusted subject involvesensuring that the trusted subject does not use its priv-ileges inappropriately. For example, an MLS trustedsubject should only downgrade certain information;it should not just downgrade arbitrary information.Similarly, the security database maintenance subjectsshould maintain the security database correctly.

The more privileges a trusted subject has, thegreater the analysis that must be performed to demon-strate that the privileges are not misused. Thus, it isdesirable to limit the privileges granted to each sub-ject to minimize the required analysis.The �rst way that DTMach supports least privi-lege is through the �ne degree of control provided byits access control policy. The DTMach type enforce-ment policy provides very �ne granularity in specify-ing privileges. For example, it is possible to specify adowngrader that is permitted to downgrade the con-tents of certain types of objects while having no accessto other types of objects. The task of demonstratingthat the downgrader only downgrades what is safe todowngrade is much simpler when type enforcement hasbeen used to restrict the accesses of the downgrader.An example of this would be a downgrader thatis intended to downgrade ciphertext prior to exportinto a hostile environment such as an unprotectednetwork or some form of removable media. On DT-Mach, special object types, ciphertext type and cipher-text control data type, could be de�ned. Tasks in theciphertext downgrader domain would only be allowedto read data of these two types, and only tasks inthe encryption domain would be allowed to write intoobjects of ciphertext type. Then, it would only be nec-essary to demonstrate that subjects in the ciphertextdowngrader domain only downgrade data read fromciphertext type objects. This is in sharp contrast tothe assurance obligation on systems that do not pro-vide type enforcement. In such systems, a downgradercan typically downgrade anything at its level.As another example, the security database main-tenance subjects might be granted read and writepermission to the security database while not beinggranted destroy permission. This would allow thesecurity database maintenance subjects to read andwrite the database without having to worry aboutthem accidentally destroying the objects containingthe security database. There are numerous otherexamples of how type enforcement supports leastprivilege[13].The second way that DTMach supports least privi-lege is in the separation of port rights and permissions.Since the only port rights that can be used to nameobjects in Mach are receive, send, and send-once, onlyone task can hold a receive right at any given time, andtasks can only name objects through port rights, it isusually necessary to provide a task a send or send-once right to a port in order for the task to have aname for the object the port represents. This violatesleast privilege since there are many cases in which atask does not actually need to send messages to a porteven though it does need to have a name for the ob-ject the port represents. For example, consider theprocess by which tasks map �les into their addressspace. The task requests the �le from the �le serverand is given a send right to a port representing the ob-ject. The receiver for the port is the object's memorymanager (pager). Messages that the object's pager re-ceives through the port are typically expected to becoming from the kernel. Thus, allowing a client taskto have send permission to the port requires the pager



to protect itself against the possibility that a clientmasquerades as the kernel by sending messages to theport. In DTMach, we can provide the client task witha send right, but only give it permission to use theport for mapping purposes. Then, the kernel preventsclient tasks from sending messages to the port.As another example, consider a name server. Inorder for a name server to provide a port to clienttasks, it must hold a right for the port. If there is nodistinction between holding a right and being able touse the right, then the name server is free to accessany object in the name space it manages. In DT-Mach, we can give the name server's domain permis-sion to pass the right to client tasks while preventingthe name server's domain from using the right itself.Then, there is no longer any concern that the nameserver might maliciously or accidentally access objectsin its name space. When the client task receives theright, the client's use of the port is restricted based onthe permissions the client's domain has to the port.5.2 Execute AccessNow, we consider the binding between the sourcecode and the executable code for a trusted subject.As discussed earlier, commonpractice is to analyze thesource code for trusted subjects. If there is no evidencethat the executable code is consistent with the sourcecode, then no assurance is gained by analyzing thesource code. Thus, maintaining the proper bindingbetween a trusted subject, the source code it is trustedto execute, and the code object actually executed bythe subject is a critical piece of the argument for thecorrect operation of the subject.One threat to this binding is a faulty or subvertedcompiler. There is nothing the system can do to pre-vent a compiler developer from inserting maliciouscode in the compiler or to prevent bugs from beingpresent in the compiler. However, the system can pro-vide an assured means of installing the compiler andcan protect the compiler from inappropriate modi�ca-tion after installation. This can be accomplished usingtype enforcement by:1. De�ning a type Tc to represent executable codefor a compiler.2. De�ning a domain Di to represent a subjecttrusted to perform the installation of a compiler.3. Allowing only subjects in domain Di to modifyobjects of type Tc.Subjects permitted to operate in Di must be as-sured to properly install the compiler and to not sub-sequently modify the compiler. Type enforcement pre-vents any other subjects from subverting the compiler.A second way in which the binding between thesource code and executable code can be broken is ifthe executable object associated with a trusted subjectis incorrect. This could happen if the wrong objectwere bound to the subject at create time or if a 
awin the design of the source code resulted in a jumpoccurring to a new executable object. In the worstcase, a user might be able to cause a trusted subject

to execute a program designed by the user insteadof the program that the trusted subject is supposedto run. This would allow the user to make use of thetrusted subject's privileges. In 1988 the Internet worm[12] used these techniques to propagate itself througha signi�cant portion of the Internet.DTMach protects against this threat by requiringexecute access to be a distinct access mode in the per-mision vector. The DTMach type enforcement policyprevents a subject from executing an object unless theobject is of a type that is executable from the subject'sdomain. The typical security database con�gurationfor a trusted subject is to de�ne a domain to repre-sent the trusted subject and a type to represent theexecutable object type for the domain. The domain isonly given execute access to its executable object type,and the correct code object for the trusted subject isthe only object having the executable object type asits type. Thus, type enforcement provides assurancethat the trusted subject will only execute the intendedcode, even if there is a 
aw in the design of the trustedsubject.Another way in which the binding between thesource code and executable code can be broken is ifmodi�cations are made to the executable object. Inthe worst case, an untrusted subject such as a virusmight be able to completely rewrite the executable ob-ject and cause the trusted subject to execute arbitraryprograms.The DTMach type enforcement policy can be usedto control such modi�cations. As a simple example,the security database might be con�gured so that nodomains have permission to modify executable objectsfor trusted subjects. Another possibility would be toallow the objects to be modi�ed only by a maintenancedomain. By controlling which users can have subjectsactive in the maintenance domain and by placing re-strictions on the programs that these subjects can run,the system can control the maintenance of trusted pro-grams.In summary, DTMach uses type enforcement to en-sure that each trusted subject is bound with the cor-rect code object and to support the binding betweenthe code object and the source code for the trustedsubject.5.3 Process ControlNow, we consider the manner in which the progressof a trusted subject can be controlled by other sub-jects. Ways in which a subject can directly controlthe progress of a second subject include:� Creating the subject.As an example of a threat related to creating sub-jects, consider a subject that is responsible forshutting the system down. If a user that is notauthorized to shut the system down can start sucha subject, then the system might be shut down atinappropriate times.� Destroying the subject.As an example of a threat related to destroyingsubjects, consider a subject that is responsible for



updating the security database. If the subject isdestroyed while it is in the process of updatinga record in the database, the database might be-come inconsistent due to the partial update.� Suspending or resuming the subject.The threats related to suspending subjects aresimilar to those for destroying subjects. There isa great deal of similarity between a subject thatis suspended inde�nitely and a subject that is de-stroyed.There is also a great deal of similarity betweenthe threats related to creating subjects and thethreats related to resuming subjects. The pri-mary concern is that a subject might perform anaction at the wrong time as the result of beingresumed prematurely.� Invoking requests in the name of another subject.The ability in Mach of tasks to invoke requestsin the name of other tasks makes it di�cult toanalyze trusted subjects. For example, supposethat the source code for a trusted task has beendemonstrated to be correct, but some other taskhas permission to send requests to the trustedtask's kernel port. By sending requests to thekernel port, the second task can cause the trustedtask to perform actions di�erent from those calledfor by its executable object. This would invali-date the analysis of the source code. As a speci�cexample, suppose that an untrusted task can in-voke a vm write request through a trusted task'skernel port. This would allow the untrusted taskto arbitrarily modify the trusted task's virtualmemory space. Consequently, the untrusted taskcould cause the trusted task to behave improperlyby corrupting the trusted task's virtual memoryspace.To destroy, suspend, or resume a task or to invoke arequest in the name of a task, a second task must havesend permission to a kernel port associated with the�rst task. Thus, destroying, suspending, resuming,and invoking can be addressed by controlling accessto task and thread kernel ports. The DTMach servicevectors allow very �ne control to be placed upon theservices that can be requested through a port. In par-ticular, the requests that a task in a given domain canmake through a kernel port of a given type are con-trolled. As a speci�c example, kernel ports for trustedtasks have types that do not allow untrusted tasks toinvoke any services. This is not a particularly inter-esting case, though, since untrusted tasks should nothave permission to send any kind of message to kernelports for trusted tasks. As a more interesting exam-ple, suppose that trusted task t1 spawns trusted taskt2 in a di�erent domain and does not need to controlt2. Then the security database can be con�gured sothat t1's domain has permission to create a task in t2'sdomain, but subjects in t1's domain are not permittedto invoke any services through a kernel port for a taskin t2's domain.

As with maintaining the binding between a trustedsubject and its code object, we see that process controlthreats are addressed by including a type enforcementcomponent in the security policy.5.4 IPCSome trusted subjects interact directly with un-trusted subjects. Due to the client-server nature ofthe Mach paradigm, this may be more common in theMach paradigm than in typical secure systems. Forexample, �le servers and name servers must accept re-quests directly from untrusted subjects. The followingissues must be addressed:� Identifying the sender of a message.� Protecting messages from modi�cation while intransit.� Preventing message interception.� Ensuring message delivery.� Misdirection.5.4.1 Identifying the Sender of a MessageFor a trusted subject to implement a policy extension,it must identify the security context of the sender ofrequests it receives. Since many di�erent security con-texts might be permitted to send messages to a givenport, it is not possible to identify the security contextof the sender from the port through which the mes-sage is received. To address this concern, DTMachbinds the sender's security context to the message atsend time. Then, the receiver of a message can iden-tify the security context of the sender by retrievingthe security context bound to the message.Additional requirements are needed to address thisrequirement in a distributed system. While the kernelcan prevent the context bound to a message from be-ing modi�ed while the message is in transit within anode, the network servers must ensure label integritywhen messages are passed across the network. If thecommunication links are physically protected, it suf-�ces to use some form of reliable broadcast protocol[9].If links are not physically protected, it is necessary touse cryptography in conjunction with a reliable broad-cast protocol to protect against malicious agents whohave access to the communication links.It is also important to note that certain DTMachtasks are permitted to specify a sending context to beattached to messages they send. Currently, the onlysuch tasks are network servers. In order for messagesto be transparently forwarded across the network, thesending context for the forwarded message must bethat of the original sender rather than being the con-text of the network server. The ability to explicitlyset a sending context is controlled using permissions;the DTMach type enforcement policy restricts the do-mains that are permitted to specify contexts for mes-sages sent to a port of a given type. Currently, thenetwork server domain has permission to specify con-texts on all of the types of ports that can be sharedacross nodes. No other domains are permitted to spec-ify sending contexts.



5.4.2 Protecting Messages from Modi�cationWhile in TransitIf a message is sent between two trusted subjects andan untrusted subject can modify the contents of themessage, then the untrusted subject might be able totrick the trusted subjects into misusing their privi-leges. For example, consider a subject trusted to sani-tize �les and a subject trusted to downgrade sanitized�les. The sanitization/downgrade process consists ofthe sanitizer removing sensitive data from the �le andthen sending a message to the downgrader indicatingthat the �le has been sanitized. Since the security con-text bound to the message is that of the trusted sani-tizer subject, the receiving downgrader subject mightassume the �le has been sanitized and perform thedowngrade. However, if an untrusted subject modi-�ed the message so that it requested the downgradeof a �le di�erent from the one sanitized, then sensitiveinformation might be downgraded by the downgradersubject.The Mach kernel protects the integrity of messagesthat are in transit within a node. The only potentialconcern is messages containing out-of-line data. Thecontents of such messages are dependent on memoryobjects referenced by the messages. This introducesthe possibility that a subject might modify the con-tents of a message by modifying the contents of a mem-ory object referenced by the message. For the mostpart, the copy-on-write semantics used for out-of-linedata address this concern. If a referenced memoryobject is modi�ed, then a physical copy is performedand the message references the copy rather than themodi�ed object.However, the Mach user pager concept introducesa small hole. If the pager for an object referencedas out-of-line data invalidates the current contents ofthe object and informs the kernel of new contents forthe object, no copy is made of the original object.Informing the kernel of new contents for an objectis viewed as being di�erent from writing the object.Since copy-on-write only requires that a copy be madewhen a write occurs, the object's pager can actuallymodify the contents of the message.To address this \back-door," DTMach restricts thetypes of memory objects that each task can access andwhich tasks can act as a pager for each type of mem-ory object and also makes a physical copy whenever atask receives out-of-line data contained in a memoryobject of an inappropriate type. For example, sup-pose that tasks sends a message to taskr, the messagereferences memory object obj as out-of-line data, andtaskp is a user pager for obj. To protect taskr fromback-door modi�cations made by taskp it su�ces tocon�gure the security database so that whenever typis a memory object type that is appropriate for accessby tasks in taskr 's domain, then no untrusted tasks arepermitted to page that type of memory object. Then,the receipt of the message by taskr causes the contentsof obj to be physically copied to a new object objc thatis inaccessible to taskp 4.4This is similar to the TMach mechanism for addressing this

As with label integrity, the network servers are re-sponsible for ensuring the integrity of the contents ofa message while it is in transit between nodes.5.4.3 Preventing Message InterceptionTrusted subjects often rely on the system to preventmessages they send from being received by subjectsother than the subject \intended" to receive the mes-sage. In some cases, this is a con�dentiality issue; thetrusted subject has determined that the intended re-ceiver is permitted to see information and relies onthe system to prevent the message from being inter-cepted by other subjects. In other cases, there are in-tegrity issues to consider. For example, suppose that atrusted subject in DTMach determines that a certaintask should be allowed to have a port right and passesthe port right in a message to the task. If another taskintercepts the message, then it might receive the righteven though the trusted subject's policy prohibits it.In DTMach, this is addressed by allowing a receiv-ing context to be bound to each message. Any mes-sage that does not have such a context bound to itcan be received by any task that has permission toreceive from the port to which it is sent. When a re-ceiving context is bound to the message, then the in-tent is that only a task with that context can receivethe message. As with specifying a sending context,the DTMach type enforcement policy is used to re-strict the tasks that are permitted to receive messageswhen they are not the speci�ed intended receivers ofthe messages. It is also the case that the kernel isresponsible for protecting the context associated withmessages in transit within a node while the networkservers are responsible for protecting the context as-sociated with messages in transit between nodes.5.4.4 Ensuring Message DeliveryIf a subject is trusted to provide service to other sub-jects, then it is necessary to ensure that clients of theservice can always communicate their requests to thesubject providing the service. For example, if an un-trusted task can prevent other tasks from accessinga �le server, then the �le server cannot provide theservice that it is supposed to provide. Similarly, if asubject is trusted to provide information to a clientsubject, then it is necessary to ensure that the subjectproviding the information can send the information tothe client.In Mach the only way for a task to prevent a mes-sage from being delivered to a port is by 
ooding theport with messages. Each message queue has a limiton the number of messages that it can contain. Whenthis limit is reached, then subsequent messages cannotbe enqueued. The DTMach type enforcement policyaddresses the 
ooding issue by controlling which taskscan send messages to which ports. In particular, givena port that is intended for communicationbetween twotrusted subjects, the type enforcement policy can beused to prevent untrusted subjects from 
ooding thethreat.



port by preventing the untrusted subjects from send-ing messages to the port.5.4.5 MisdirectionIn some cases, an untrusted subject can cause atrusted subject to send a message. In these cases,the trusted subject must prevent the untrusted sub-ject from tricking it into misusing its privileges.As a simple example, consider an untrusted clientrequesting a service from an MLS server. It is quitecommon for the client to include a reply port in theservice request, with the intent that the server respondto the requested operation through the reply port.Suppose the MLS server may operate at UNCLAS-SIFIED and SECRET and a given client has level SE-CRET. Suppose the client speci�es a reply port havinglevel UNCLASSIFIED. Since the MLS server may op-erate at UNCLASSIFIED, it is permitted to send thereply to the speci�ed port. Consequently, the clientcan signal information to subjects at level UNCLAS-SIFIED by sending requests to the MLS server. Theclient has tricked the MLS server into using its privi-leges to inappropriately downgrade information.To address this problem, the MLS server must en-sure that the level of the reply port is at least as highas the level of the client. The DTMach approach foraddressing this problem is to require that the clienthave permission to send messages to the reply port.Then, there is no problem with the server sending thereply to the port since the client itself could forwardthe reply to that port after receiving it.5.5 SummaryThe type enforcement component of the basic DT-Mach security policy provides a uniform approach foraddressing a wide variety of security threats. Manyof these threats, such as the violation of least privi-lege, control of execute access, and process control arepresent in most secure systems. The threats relatedto IPC are more speci�c to DTMach in particular orto distributed systems in general.The type enforcement policy can be enforced in astraightforward manner by separating the operationalnotion of Mach port rights from the access control de-cisions required by the security policy. The DTMachkernel utilizes permission vectors to record these ac-cess control decisions. In previous sections we havediscussed the abstract notion of permission vectorsand the threats addressed by incorporating type en-forcement and permission vectors into DTMach. Inthe next section we discuss related implementation is-sues.6 ImplementationIn this section we sketch the plans for implementingthe permission vector concept in DTMach. First, wedescribe the structure of the permission vector. Then,we discuss the computation of permission vectors. Fi-nally, we describe the extensions to the Mach kernelinterface that are required for DTMach.

6.1 Permission Vector StructureConceptually there is a DTMach permission vectorfor each pair of security contexts. We call these thesubject security context and the object security con-text of the permission vector. The permission vector isdivided into two distinct components, correspondingto the notions of permission vector and service vec-tor that were introduced earlier in Section 2.2.2. SeeFigure 5.
send
receive
transfer_send
transfer_receive
supply_sender
ignore_recipient

map
read
write
execute
create
destroy

kernel task ops
kernel thread ops
host ops
generic server specific ops

N. . .

Label

Queue

RightsAV Ptr Port

Access Vector
Cache

Actual AV

Task Space

Kernel Space

Port Right Names

Port

Permissions Allowed Ops

0 1 2

Figure 5: Permission Vector StructureThe �rst component of the permission vector con-trols the basic port accesses of tasks in the subjectsecurity context to ports with the object security con-text. The permission vector includes �elds that pro-vide:� Control of the IPC delivery facility: send and re-ceive.� Control of transfer of port rights: transfer sendand transfer receive.� Control of memory access to objects representedby the port: read, write, execute, create, and de-stroy� Control over message identi�cation information:supply sending context and ignore speci�ed re-ceiving contextThe second component de�nes the services that atask in the subject security context is allowed to re-quest in messages to ports with the object securitycontext. Thus, a security policy can specify on a persecurity context basis exactly which services the kernelshould allow for each type of service port. The ker-nel's role in making this facility available to the TCBis to assure that the policy speci�c logic is executedusing the correct security attribute information andthat the data is correctly provided to the server taskalong with the service request message.6.2 Permission Computation and Revoc-tionSince any major application built on an IPC basedkernel such as Mach is likely to access ports frequently,performance considerations dictate that permission



computations not be required on every operation in-volving a message exchange. Another performancemotivated consideration is that the Mach IPC facil-ities encourage the frequent creation and deletion ofport rights. These considerations lead to the followingdesign decisions.� Permission vectors are associated with a portright the �rst time the port right is accessed by atask.� Permissions are cached by the kernel based on thesecurity attributes of the relevant task{port pairs.� Permissions are computed only the �rst time theyare required.The general view of security decision processing isthen similar to page fault processing. When a taskattempts to utilize a port right the kernel �rst deter-mines that the port right allows the requested IPC op-eration. This is precisely what the Mach kernel does.Then the DTMach kernel checks to see if the requestedaccess is allowed by a valid permission vector associ-ated with the task and port. If there is none, thekernel will search its cache to see if it has a previouslycomputed valid permission vector for the security at-tributes represented in the task{port pair. If no entryis found in the cache, the kernel initiates the requiredsecurity check by providing the relevant security con-text information to a security server. The securityserver might not be necessary for a very simple secu-rity policy such as the conventional Mandatory AccessControl Policy. The kernel might execute such simpledecision logic more e�ciently than it can maintain acache. However, for more complicated and 
exible se-curity policies such as the DTMach type enforcementpolicy, it is more e�cient to move the actual compu-tation of permission vectors outside the kernel. Useof a security server task for computing the permissionvectors places all the security critical logic in a singleplace in the TCB. This makes it very easy to analyzeand evaluate the mapping of a speci�c security policyto the security critical decisions within the TCB.The permission vector cache in the kernel makesresolution of the permission revocation problem rela-tively simple. The kernel provides a \revoke access"service which speci�c TCB tasks are allowed, by theservice vector component, to request. Upon receiptof this request, the kernel invalidates all permissionvectors in the cache. When a task makes a subse-quent request to utilize a port right, the kernel reactsas if there were no permission vector present and ini-tiates a recomputation based on the current state ofthe system. In most cases an application will be com-pletely unaware of the new permissions. In some casesa request may be returned with an \insu�cient per-mission" error. In this case the application will takewhatever action is required.6.3 Interface Extensions for DTMachAn explicit objective of the DTMach design e�orthas been to preserve the existing Mach kernel inter-face and to minimize the number of extensions that are

necessary. If this objective is achieved, code writtento operate on a Mach kernel will also operate on theDTMach kernel. The code will be able to make all thesame requests and will �nd the same general seman-tics for all those requests. To address security issues,variants of a small set of kernel entry points have beenproposed. In this paper we discuss the general issuesassociated with the proposed changes. The interestedreader can consult [8] for detailed descriptions of thechanges.There are four general concerns that lead to exten-sions of the existing Mach kernel interface.1. De�nition and management of security contexts.2. Association of security contexts with basic DT-Mach entities.3. Access to security context information.4. Required extensions to the semantics of task cre-ation.Since the kernel's role in the system has been care-fully de�ned as the enforcer of decisions and not themaker of policy speci�c decisions, it is not required tointerpret the content of the security attributes of en-tities. Its role is one of simply associating and storingthe information with the relevant entity, passing it onto the security decision logic as required, and provid-ing the information to other client tasks as requested.It is also desirable for the kernel to have the abilityto determine when two security contexts are identi-cal. There are points in the kernel processing logicthat are used for both inter and intra security contextoperations. Allowing the kernel to quickly identifythe usage as an intra context operation decreases thenumber of times that complicated security checks mustbe made. To allow applications to associate securitycontexts with ports, memory regions and tasks, vari-ants of the mach port allocate, vm allocate andtask create requests are speci�ed. Each allows thecaller to designate the security context to be associ-ated with the speci�c entity that is created.To implement a client server model in a TCB, theTCB servers must have access to the security iden-tity of the client. The initial Mach IPC mechanismdoes not provide any kernel assured mechanism forreceiving this information. This problem is solved byproviding a variant of the standard Mach message ser-vice request. The variant allows a receiving task to tellthe kernel to provide the security relevant informationfor the message sender along with the actual message.The information provided includes both the sender'ssecurity context and the permission vector de�ningthe sender's actual permissions to the port used forthe communication. This provides two distinct ben-e�ts to the TCB server. First, it has the identi�ca-tion information it requires to carry out any securityrelevant responsibilities that it might have. Second,it need not duplicate any previous security decision.This means that the most critical security decisionlogic can be centralized to a single system module, the



security server. Such centralization is a distinct ben-e�t to the assurance process for any secure system.Finally, as described in Section 5.4, DTMach providesa variant of the Mach message service request so thatthe security contexts of the original sender and/or theintended receiver can be bound to the messageThe relationship between a parent task and its childis more complex in DTMach than it is in Mach 3.0where there is an implicit assumption that the parenttask always has full control over the child task. Thisis acceptable in a security environment where trustcan be viewed as a non-increasing function when ap-plied to the task creation processing, e.g. a Biba in-tegrity model. However, in a more general case, whereuntrusted applications request services of trusted ap-plications, e.g. the LOCK TCB [13], it is necessaryto allow parent tasks to create higher integrity childtasks. This presents a more di�cult problem becausethe transition from low integrity to higher integritycannot rely on the parent to do anything for the childexcept specify its security attributes, tell it what toattempt to execute, and tell it when to start.In DTMach this problem is solved by incorporatingseveral existing task operations into a single new vari-ant of the task create request. In Mach there arethree distinct operations that a creating task mustperform to start a new task. It must indicate whatpart of its address space is to be made visible to thechild task. It must then enter the task create re-quest. Upon completion of the task create requestthe parent receives a send right to the child's taskport, which allows the parent to enter any and allkernel requests in the name of the child. To com-plete the process of making a useful child task, theparent must use this right to enter requests in thename of the child to create a thread, set the con-text for the thread, and tell the newly created threadto resume processing. The DTMach variant of thetask create request incorporates the multiple kernelrequests into a single request. Thus the DTMach ker-nel cross security context task create is a twostep process for the parent task. The parent task stillidenti�es the parts of its address space that it wouldlike to share.5 Then the parent task enters the vari-ant task create request which provides for not only thecreation of the task, but the creation and initiation ofan initial thread within the task.7 ConclusionThe preceding discussion has described threats thatmust be addressed in secure systems and providedan overview of how the DTMach security policy ad-dresses each of the threats. By addressing the identi-�ed threats rather than simply addressing MLS secu-rity, a wider range of policies can be supported. Highassurance is obtained by incorporating the type en-forcement policy in the TCB. Rather than repeatedlyassuring complex application level policies, assuranceis provided for the DTMach type enforcement policyand simple arguments are provided for how the DT-5The actual sharing of information via memory regions isrestricted by the kernel enforced security policy decisions.

Mach type enforcement policy supports the applica-tion level policy. By using type enforcement to con-struct protected subsystems, the analysis can be mod-ularized and consequently made much more feasible.As described throughout this paper, type enforce-ment is the key component of the DTMach secu-rity policy. As described in [11], type enforcementwas also found to be invaluable in the design of theLOCK TCB. The ease with which type enforcementwas \ported" from LOCK to DTMach provides sup-port for the claim that it is a generally applicable secu-rity policy. The �ne granularity of control it providesis essential to the development of high assurance sys-tems.AcknowledgmentsThanks to Tom Haigh, George Jelatis, and CarolMuehrcke for providing many helpful suggestions.This paper was derived from work performed undercontract number F30602-91-C-0136 under the spon-sorship of Rome Laboratory, C3AB.
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