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Abstract— The relay node placement problem for wireless
sensor networks is concerned with placing a minimum number
of relay nodes into a wireless sensor network to meet certain
connectivity and survivability requirements. In this paper, we
study constrained versions of the relay node placement problem,
where relay nodes can only be placed at a subset of candidate
locations. In the connected relay node placement problem, we
want to place a minimum number of relay nodes to ensure the
connectivity of the sensor nodes and the base stations. In the
survivable relay node placement problem, we want to place a
minimum number of relay nodes to ensure the biconnectivity
of the sensor nodes and the base stations. For each of the two
problems, we discuss its computational complexity, and present
a framework of polynomial time O(1)-approximation algorithms
with small approximation ratios.
Keywords: Relay node placement, wireless sensor networks.

1. Introduction and Motivations

A wireless sensor network (WSN) consists of many low-
cost and low-power sensor nodes (SNs)[1]. Two fundamental
functions of an SN in a WSN are to sense its environment
and to transmit sensed information to the base stations (BSs).
There has been extensive research on energy aware routing
[4, 14, 19, 31], improvement in lifetime [12, 24, 30], and
survivability [23]. To prolong network lifetime while meeting
certain network specifications, researchers have proposed to
deploy in a WSN a small number of relay nodes (RNs) whose
main function is to communicate with the SNs and other RNs
[2, 5, 11, 12, 15, 21, 22, 30]. These problems are studied
under the theme of relay node placement. Recently, this
problem has received a lot of attention from the networking
community, with papers addressing this problem published in
MobiCom [24], MobiHoc [2, 28], and Infocom [10, 15, 32].

Relay node placement problems can be classified into either
single-tiered or two-tiered based on the routing structures [11,
12, 22, 24], and into either connected or survivable based on
the connectivity requirements [2, 11, 15, 32]. In single-tiered
relay node placement, an SN also forwards packets received
from other nodes. In two-tiered relay node placement, an SN
forwards its sensed information to an RN or a BS, but does not
forward packets received from other nodes. In connected relay
node placement, we place a small number of RNs to ensure
that the SNs and BSs are connected. In survivable relay node
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placement, we place a small number of RNs to ensure that the
SNs and BSs are biconnected.

We first review prior works on single-tiered relay node
placement. In our discussions, we will use R and r to denote
the communication ranges of RNs and SNs, respectively. We
will use k = 1 to denote connectivity requirement and use
k ≥ 2 to denote survivability requirement. In 1999, Lin and
Xue [20] studied the problem with R = r and k = 1, proved
its NP-hardness, and presented a minimum spanning tree
(MST) based 5-approximation algorithm. They also designed
a steinerization scheme which has been used by almost all
later works [2, 3, 5, 10, 11, 15, 21, 22, 28, 32]. Chen et
al. [3] proved that the Lin-Xue algorithm is a 4-approximation
algorithm, and presented a 3-approximation algorithm. Cheng
et al. [5] presented a faster 3-approximation algorithm and
a randomized 2.5-approximation algorithm. Bredin et al. [2]
extended the relay node placement problem to the case of
R = r and k ≥ 2, and presented polynomial time O(1)-
approximation algorithms for any fixed k. Kashyap et al. [15]
presented a 10-approximation algorithm for the case of R = r
and k = 2. All of the above works assume that the transmis-
sion range of the RNs is the same as that of the SNs. Lloyd and
Xue [22] studied the problem with R ≥ r and k = 1, proved
its NP-hardness, and presented a 7-approximation algorithm.
Zhang et al. [32] presented a 14-approximation algorithm for
R ≥ r and k = 2.

Motivated by the works [9] and [24] on two-tiered WSNs,
Hao et al. [11] formulated two-tiered relay node placement
problems where each SN has to be within distance r of at
least k RNs and the RNs form a k-connected network. Works
along this line can be found in [10, 21, 22, 28, 32].

All of the above works study unconstrained relay node
placement, in the sense that the RNs can be placed anywhere.
For example, in the works [2, 22, 32], the relay nodes are
stacked on top of other relay nodes or sensor nodes. In
practice, however, there may be a lower bound on the distance
between two network nodes, and also forbidden regions where
relay nodes cannot be placed. As a first step to solving
this challenging problem, we study a constrained relay node
placement where the RNs can only be placed at a subset of
candidate locations.

In this paper, we study single-tiered constrained relay
node placement problems, under both the connectivity
requirement and the survivability requirement. We for-
mulate the problems, discuss their complexities, and present
polynomial time O(1)-approximation algorithms. To our best
knowledge, we are the first to present O(1)-approximation
algorithms for these problems.
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In Section 2, we present basic notations and prove a few
fundamental lemmas. In Section 3, we study connected relay
node placement problem. In Section 4, we study survivable
relay node placement problem. We present numerical results
in Section 5 and conclude the paper in Section 6.

2. Basic Notations and Fundamental Lemmas
We consider a hybrid wireless sensor network (HWSN)

consisting of sensor nodes (SNs), relay nodes (RNs), and base
stations (BSs). We assume that all SNs have communication
range r > 0 and that all RNs have communication range R ≥
r, where r and R are given constants. We also assume that the
BSs are powerful enough so that their communication range is
much greater than R, and that any two BSs can communicate
directly with each other. We note that in practice two BSs
might have to communicate indirectly via other means such
as satellites or the Internet. Since the objective of this paper is
to place the minimum number of RNs to meet connectivity or
survivability requirements, this assumption simplifies notation
without losing any generality. We use d(x, y) to denote the
Euclidean distance between two points x and y in the plane.
We will also use u to denote the location of a node u, if no
confusion arises.

Following the above discussions, two nodes u and v can
communicate directly with each other if and only if d(u, v) is
less than or equal to the smaller of the communication ranges
of the two nodes. In other words, an SN u can communicate
directly with another node v (which could be an SN, an RN or
a BS) if and only if d(u, v) ≤ r. An RN u can communicate
directly with another node v (which could be an RN or a BS)
if and only if d(u, v) ≤ R. Similarly, any pair of BSs can
communicate directly with each other. Following these rules,
the SNs, the RNs, and the BSs, together with the values of
r and R, collectively induce a hybrid communication graph
(HCG) formally defined in the following.

Definition 2.1: Let B be a set of BSs, X be a set of SNs, Y
be a set of RNs, and R ≥ r > 0 be the respective communica-
tion ranges of RNs and SNs. The hybrid communication graph
HCG(r,R,B,X ,Y) induced by the 5-tuple (r,R,B,X ,Y) is
an undirected graph with vertex set V = B ∪X ∪Y and edge
set E defined as follows. For any two BSs bi, bj ∈ B, E
contains the undirected edge (bi, bj) = (bj , bi). For an RN
y ∈ Y and a node z ∈ B ∪ Y which could be either an
RN or a BS, E contains the undirected edge (y, z) = (z, y)
if and only if d(y, z) ≤ R. For an SN x ∈ X and a node
z ∈ B ∪ X ∪ Y which is either an SN, an RN, or a BS, E
contains the undirected edge (x, z) = (z, x) if and only if
d(x, z) ≤ r. �

We illustrate the concept of HCG using the example shown
in Fig. 1(a). In this example, the set of SNs is X = {x1, x2},
the set of RNs is Y = {y1, y2}, and the set of BSs is B =
{b1, b2}. Therefore the HCG has six vertices. There is an edge
(x1, y1) in the HCG because d(x1, y1) ≤ r. Similarly, the HCG
also contains the edges (x1, b1), (x2, b2), and (x2, y2). There
is an edge (y1, y2) in the HCG connecting RNs y1 and y2

because d(y1, y2) ≤ R. Similarly, the HCG also contains the
edges (y1, b1) and (y2, b2). There is an edge (b1, b2) in the
HCG connecting BSs b1 and b2 because we assume any pair
of BSs are directly connected.
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(a) Illustration of HCG
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(b) Edge weights in HCG

Fig. 1. (a) shows HCG(r, R, {b1, b2}, {x1, x2}, {y1, y2}), where
d(x1, b1) = d(x1, y1) = d(x2, b2) = d(x2, y2) = r, d(y1, y2) = R.
(b) shows the edge weights, where an edge incident with no relay node has
a weight of 0, an edge incident with exactly one relay node has a weight of
1, and an edge incident with two relay nodes has a weight of 2.

The hybrid communication graph defines all possible pair-
wise communications between pairs of nodes. For the design
and analysis of our schemes, we will need to define two more
concepts related to an HCG, i.e., the edge weights and the relay
size of an HCG. These are formally defined in the following.
We use the following standard graph theoretic notations: for a
graph G, V (G) denotes the vertex set of G and E(G) denotes
the edge set of G.

Definition 2.2: Let G = HCG(r,R,B,X ,Y) be a hybrid
communication graph. For each edge e = (u, v) in the HCG,
we define its weight (denoted by w(e)) as

w(e) = |{u, v} ∩ Y|. (2.1)

The relay size of G, denoted by s(G), is the number of relay
nodes in G, i.e., s(G) = |V (G)∩Y|. Let H be a subgraph of
G. The weight of H (denoted by w(H)) is defined as

w(H) =
∑

e∈E(H)

w(e). (2.2)

The relay-size of H (denoted by s(H)) is defined as
s(H) = |V (H) ∩ Y|. (2.3)

Fig. 1(b) illustrates the edge weights of the HCG shown
in Fig. 1(a). Our definition of the weight and relay size of
a subgraph of an HCG leads to an important relationship
between the weight and the relay size of a certain class of
subgraphs of an HCG, which is stated in the following lemma.

Lemma 2.1: Let H be a subgraph of HCG(r,R,B,X ,Y)
such that every RN in H has degree at least 2 (within H).
Then w(H) ≥ 2 · s(H). �

PROOF. We prove this lemma by shifting the edge weight to its
end nodes. Initially, every node in H has its weight initialized
to 0. We loop over all edges of H to move the edge weights
to their end nodes in the following way.

Let (u, v) be an edge of H which is incident with two RNs.
According to our definition, the weight of this edge is 2. In
this case, we divide the edge weight into two equal pieces,
add a weight of 1 to node u, add a weight of 1 to node v.
Let (u, v) be an edge of H where u is an RN and v is not.
According to our definition, the weight of this edge is 1. In
this case, we add a weight of 1 to node u, add a weight of
0 to node v. Let (u, v) be an edge of H where neither u nor
v is an RN. According to our definition, the weight of this
edge is 0. In this case, we add a weight of 0 to node u, add
a weight of 0 to node v.

After all edges are looped over, we have shifted the edge
weights of H to the RNs in H . Note that a relay node u is
getting a weight of 1 from every edge of H which is incident
with u, resulting in a weight equal to the degree of u. Since
every RN in H is incident with at least two edges in H , it
receives a weight of at least 2. Therefore w(H) ≥ 2 · s(H).
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We use Fig. 1(b) to illustrate Lemma 2.1 and its proof.
Assume that H is the HCG in Fig. 1(b). We have w(H) =
1 + 1 + 2 + 1 + 1 = 6 and s(H) = 2. Clearly we have
w(H) = 6 ≥ 2 · s(H) = 4. Following the weight shifting
scheme used in the proof, RN y1 receives a weight of 1 from
edge (x1, y1), a weight of 1 from edge (b1, y1), and a weight
of 1 from edge (y2, y1), resulting in a total weight of 3 (≥ 2).
Similarly, RN y2 receives a weight of 1 from edge (x2, y2), a
weight of 1 from edge (b2, y2), and a weight of 1 from edge
(y1, y2), resulting in a total weight of 3 (≥ 2). Therefore each
RN receives a weight which is equal to its degree, as stated
in the proof of Lemma 2.1.

We will also need to use the result stated in Lemma 2.3,
which is based on Lemma 2.2.

Lemma 2.2: Let G(V,E) be an undirected biconnected
graph where |V | ≥ 3 and each edge e ∈ E has a unit length
l(e) = 1. Let H(V,E′) be a minimum length biconnected
subgraph of G. Then |E′| ≤ 2|V | − 3. �

PROOF. Since G(V,E) is biconnected, we can find an ear
decomposition of G [29]. Let H be defined by all the ears in
an ear decomposition of G. Then H is a biconnected subgraph
of G spanning all vertices in V . We need to prove that H
contains no more than 2|V | − 3 edges.

By definition, the first ear is a cycle spanning n1 (≥ 3)
vertices, and contains n1 edges. Each additional ear spans ni

(≥ 1) new vertices using ni + 1 edges. Therefore the total
number of edges in H is at most 2|V | − 3.

Lemma 2.3: Let G(V,E) be an undirected connected
graph where |V | ≥ 3 and each edge e ∈ E has a unit
length l(e) = 1. Let H(V,E′) be a minimum length connected
subgraph of G such that two vertices u and v are in the same
biconnected component of H if and only if they are in the
same biconnected component of G. Then |E′| ≤ 2|V | − 1. �

PROOF. Let H1, . . . , Hk be the biconnected components of
H , where Hi has ni ≥ 3 vertices, i = 1, 2, . . . , k. Note
that two biconnected components Hi and Hj may share one
common vertex, but never two. Assume that the union of
H1, . . . , Hk has p connected components (1 ≤ p ≤ k).
Let V \ (H1 ∪ · · · ∪ Hk) = {v1, v2, . . . , vq}, where q =
|V |−

∑k
i=1 ni+(k−p). Then H can be obtained by connecting

the p connected components of the union of H1, . . . , Hk and
q vertices {v1, v2, . . . , vq} using exactly p+ q−1 edges in G.
Therefore the number of edges in H is

|E′| =
k∑

i=1

|E(Hi)| + (p + q − 1) (2.4)

≤
k∑

i=1

(2ni − 3) + (p + q − 1) (2.5)

= 2|V | − 1 − (k + p + q) ≤ 2|V | − 1, (2.6)

where the second equality follows from p + q − k = |V | −∑k
i=1 ni. This proves the lemma.
Definition 2.3: Let G = HCG(r,R,B,X ,Y) be a hybrid

communication graph. Let H be a subgraph of G. Let u be
a relay node in H . The sensor degree of u in H , denoted by
δs(u,H), is the number of SNs that are neighbors of u in H .
The base station degree of u in H , denoted by δb(u,H), is the
number of BSs that are neighbors of u in H . The maximum

sensor degree of H is defined as ∆s(H) = max{δs(u,H)|u ∈
V (H)∩Y}. The maximum base station degree of H is defined
as ∆b(H) = max{δb(u,H)|u ∈ V (H) ∩ Y}. The maximum
non-relay degree of H is defined as ∆(H) = max{δb(u,H)+
δs(u,H)|u ∈ V (H) ∩ Y}. �

It is clear that ∆(H) ≤ ∆s(H) + ∆b(H). For graph
theoretic terms not defined in this paper, we refer readers
to the standard textbook [29]. We will use (u, v) to denote
the undirected edge in a graph. Therefore (u, v) and (v, u)
denote the same edge. We will use the terms nodes and vertices
interchangeably, as well as links and edges. For concepts in
algorithms and computing theory, such as NP-hard, we refer
readers to the standard textbooks [6, 8].

A polynomial time β-approximation algorithm for a min-
imization problem is an algorithm A that, for any instance
of the problem, computes a solution that is at most β times
the optimal solution of the instance, in time bounded by a
polynomial in the input size of the instance [6]. In this case,
we also say that A has an approximation ratio of β.

3. Relay Node Placement to Ensure Connectivity
Given a set of SNs, a set of BSs, and a set of candidate

locations where RNs can be placed, we are interested in
placing the minimum number of RNs so that the hybrid
communication graph induced by the SNs, the RNs, and the
BSs is connected.

Relay node placement in wireless sensor networks has been
studied by many researchers [2, 3, 5, 10, 11, 15, 20, 21, 22,
28, 32]. The objective here is to shift the load of long distance
transmissions from the SNs to the RNs, therefore achieving
better energy efficiency and extending network lifetime. Most
of previous studies have concentrated on the case where the
RNs can be placed anywhere. In practice, however, there are
certain restrictions on the locations of the RNs with respect to
the SNs, the BSs, and other RNs. This motivated us to study
the constrained relay node placement problem. In this section,
we study the problem of placing the minimum number of RNs
to ensure network connectivity. In the next section, we study
the problem of placing the minimum number of RNs to ensure
network survivability.

A. Problem Definitions and Discussions

Definition 3.1: Let R ≥ r > 0 be the respective commu-
nication ranges for RNs and SNs. Let B be a set of BSs,
X be a set of SNs, and Z be a set of candidate locations
where RNs can be placed. A set of RNs Y ⊆ Z is said to
be a feasible connected relay node placement (denoted by F-
RNPc) for (r,R,B,X ,Z) if the graph HCG(r,R,B,X ,Y)
is connected. The size of the corresponding F-RNPc is |Y|.
An F-RNPc is said to be a minimum connected relay node
placement for (r,R,B,X ,Z) (denoted by M-RNPc) if it has
the minimum size among all F-RNPc for (r,R,B,X ,Z).�

Definition 3.2: Let R ≥ r > 0 be the respective communi-
cation ranges for RNs and SNs. Let B be a set of BSs, X be a
set of SNs, and Z be a set of candidate locations where RNs
can be placed. The connected relay node placement problem
for (r,R,B,X ,Z), denoted by RNPc(r,R,B,X ,Z), seeks
an M-RNPc for (r,R,B,X ,Z). �
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We also study a special case of the RNPc problem where
B = ∅. Many existing works correspond to this special case [3,
5, 20, 22]. For this special case, our algorithm has a faster
running time, and a better approximation ratio.
Computational Complexity:
The RNPc problem is NP-hard, as the authors of [16] have
proved that the problem is NP-hard even for the special case
where all the nodes are on regular triangular grid points.
Therefore we seek efficient algorithms that have provably good
performance guarantees.
Our Contributions:
We present a general framework of efficient approximation
algorithms, based on efficient approximation algorithms for
the graph Steiner tree problem (STP) [13]. In particular, we
show that by using the best-known approximation algorithm
for STP [27], our framework becomes a 5.5-approximation
algorithm for the RNPc problem when B = ∅, and a 6.2-
approximation algorithm for the general RNPc problem. To
the best of our knowledge, we are the first to present O(1)-
approximation algorithms for these constrained relay node
placement problems. The unconstrained version of the RNPc
problem when B = ∅ is the single tiered relay node placement
problem (1tRNP) studied by Lloyd and Xue [22], where
there is no restriction on the locations of the relay nodes.
Considering that the best-known approximation algorithm [22]
for 1tRNP (the unconstrained problem) has an approximation
ratio of 7, our 5.5-approximation algorithm for the constrained
problem is amazingly good. Table I lists the most closely
related results on this topic.

TABLE I

CLOSELY RELATED RESULTS ON CONNECTED RELAY NODE PLACEMENT

source connectivity R vs r B �= ∅ constraints approx ratio
[20] 1 R = r 5
[3] 1 R = r 3
[5] 1 R = r 3
[22] 1 R ≥ r 7
this 1 R ≥ r

√
5.5

this 1 R ≥ r
√ √

6.2

From a simplicity stand point, we show that by using the
minimum spanning tree (MST) based approximation algo-
rithm for STP, our framework becomes a 7-approximation
algorithm for the RNPc problem when B = ∅, and an 8-
approximation algorithm for the general RNPc problem.

B. A Framework of Efficient Approximation Algorithms

In this section, we present a framework of polynomial
time approximation algorithms for the RNPc problem. For
the general case, we prove that the number of RNs used by
our algorithm is no more than 4β times the number of RNs
required by an optimal solution, where β is the approximation
ratio of the approximation algorithm A for STP. For the
special case where B = ∅, we prove that the number of RNs
used by our algorithm is no more than 3.5β times the number
of RNs required by an optimal solution. Our approximation
algorithm for RNPc is presented as Algorithm 1.

The major steps of the algorithm are as follows. First, we
construct HCG(r,R,B,X ,Z), as if we were placing an RN
at every candidate location in Z . This is accomplished in

Algorithm 1 Approximation for RNPc(r,R,B,X ,Z)
Input: R ≥ r > 0, set of BSs B, set of SNs X , set

of candidate locations of RNs Z , and an approximation
algorithm A for the STP.

Output: An F-RNPc for (r,R,B,X ,Z) given by YA ⊆ Z .
1: Construct HCG(r,R,B,X ,Z).
2: if the nodes in B ∪ X are not in a single connected

component of HCG(r,R,B,X ,Z) then
3: The RNPc problem does not have a feasible solution.

Stop.
4: end if
5: Assign edge weights to the edges in HCG(r,R,B,X ,Z)

as in Definition 2.2.
6: Apply algorithm A to compute a low weight tree subgraph

TA of HCG(r,R,B,X ,Z) which connects all nodes in
B ∪ X .

7: Output YA = Z ∩ V (TA).

Line 1 of the algorithm. It should be noted that the given
instance of the problem has a feasible solution if and only if
all the BSs and SNs are in the same connected component
of HCG(r,R,B,X ,Z). We can compute all of the connected
components of HCG(r,R,B,X ,Z) in linear time using depth
first search [6]. This is accomplished in Lines 2-4 of the
algorithm. Next we assign nonnegative integer weights to the
edges of the HCG as in Definition 2.2, i.e., the weight of an
edge is the number of relay nodes it is incident with. This
is accomplished in Line 5 of the algorithm. Then, we apply
algorithm A to compute a low weight tree subgraph TA of
HCG(r,R,B,X ,Z), spanning all nodes in B ∪ X . This is
accomplished in Line 6 of the algorithm. Finally, in Line 7,
we identify the locations to place the RNs.

The STP problem admits several polynomial time approx-
imation algorithms with small constant approximation ratios.
For example, following the ideas of [18], we can construct an
edge-weighted complete graph C on the vertex set B∪X , where
the weight of an edge connecting two vertices u and v in C
is the length of the shortest u–v path in HCG(r,R,B,X ,Z).
Computing an MST of C, and replacing each edge in the MST
by the corresponding shortest path in HCG(r,R,B,X ,Z)
leads to a connected subgraph of HCG(r,R,B,X ,Z) which
connects all nodes in B ∪ X and has a weight no more than
twice that of the optimal solution. Other more sophisticated
approximation algorithms are also known. For example, with
a longer running time (still a polynomial time algorithm) the
algorithm of [27] has an approximation ratio of 1+ ln 3

2 ≤ 1.55.
We use the example shown in Fig. 2 to illustrate Algo-

rithm 1. Fig. 2(a) shows six SNs (illustrated using small
circles), two BSs (illustrated using small hexagons), and 18
candidate locations for RNs (illustrated using small squares).
These 26 nodes are sitting on unit grid points. Assuming
r = 1 and R = 2, the edges of the corresponding HCG are
also shown, where the 0-weight edges (edges with weight 0)
are shown in dash lines (red color), the 1-weight edges are
shown in dash-dot lines (blue color), and the 2-weight edges
are shown in solid lines (black color). Fig. 2(b) shows the
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(a) HCG of the instance
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(b) complete graph on B ∪X

(c) MST based F-RNPc (d) Optimal solution

Fig. 2. (a) The HCG for two BSs (hexagons), six SNs (circles), and 18
candidate locations for RNs (squares). (b) The edge-weighted complete graph
on B∪X where the edge weight is the shortest path length in the HCG, and
an MST (thick edges). (c) The corresponding F-RNPc, which uses six RNs.
(d) The optimal solution, which uses four RNs.

edge-weighted complete graph on B∪X , where the weight of
an edge in the complete graph is the length of the shortest
path connecting the two end nodes in the HCG. An MST
of the complete graph is shown in thick (red color) edges.
Fig. 2(c) shows the relay node placement corresponding to the
MST, which uses six RNs, shown as filled squares (red color).
Fig. 2(d) shows the optimal relay node placement, which uses
four RNs.

Theorem 3.1: Algorithm 1 has a worst case running time
bounded by O(|B ∪ X ∪ Z|2 + T (A)), where T (A) is the
time complexity of the approximation algorithm A used for
approximating the STP problem. Furthermore, we have:

• RNPc(r,R,B,X ,Z) has a feasible solution if and only
if HCG(r,R,B,X ,Z) has a connected component that
contains all nodes in B ∪ X .

• When RNPc(r,R,B,X ,Z) has a feasible solution, Algo-
rithm 1 guarantees computing a feasible solution which
uses no more than β

2 (∆(Topt) + 2) times the number of
RNs required in an optimal solution Yopt, where β is
the approximation ratio of A, and Topt is a minimum
spanning tree of HCG(r,R,B,X ,Yopt). �

PROOF. Line 1 constructs the HCG, which requires O(|B ∪
X ∪ Z|2) time. Lines 2-4 can be accomplished using depth
first search, which also requires O(|B∪X ∪Z|2) time. Line 5
also requires O(|B∪X ∪Z|2) time. Line 6 requires O(T (A))
time. This proves the time complexity of the algorithm.

If not all the nodes in B ∪ X are in the same connected
component of HCG(r,R,B,X ,Z), there must be two nodes
u, v ∈ B ∪ X that are not connected in HCG(r,R,B,X ,Z),
implying that the given instance does not have a feasible
solution. On the other hand, if all the nodes in B∪X are in the
same connected component of HCG(r,R,B,X ,Z), any tree
subgraph of HCG(r,R,B,X ,Z) which spans all the nodes in
B ∪ X corresponds to an F-RNPc of the given instance.

Let Tmin be a minimum weight tree subgraph of
HCG(r,R,B,X ,Z) which connects all nodes in B∪X . Since
Topt is a tree subgraph of HCG(r,R,B,X ,Z) which connects
all nodes in B ∪ X , we have

w(Tmin) ≤ w(Topt). (3.1)

Since A is a β-approximation algorithm, we have

w(TA) ≤ β · w(Tmin) ≤ β · w(Topt). (3.2)

We can write w(Topt) as w(Topt) = w1(Topt) + w2(Topt),
where w1(Topt) is the sum of the 1-weight edges in Topt

and w2(Topt) is the sum of the 2-weight edges in Topt. Since
∆(Topt) ≥ δs(u, Topt) + δb(u, Topt) for each RN u in Yopt,

w1(Topt) ≤ ∆(Topt) · |Yopt|. (3.3)

Since Topt is a tree, it has at most |Yopt| − 1 2-weight edges.
Therefore

w2(Topt) ≤ 2 · (|Yopt| − 1). (3.4)

Therefore

w(Topt) ≤ (2 + ∆(Topt)) · |Yopt| − 2. (3.5)

Combining Lemma 2.1 and inequalities (3.2) and (3.5), we
have

|YA| ≤ 1
2
w(TA) ≤ β

2
w(Topt)

≤ β

2
(2 + ∆(Topt))|Yopt|. (3.6)

This proves the theorem.
There are several choices for the approximation algorithm

A. For example, if we use the algorithm of [18], the cor-
responding approximation ratio is β = 2. If we use the
algorithm of [27], the corresponding approximation ratio is
β = 1+ ln 3

2 ≤ 1.55. Next we will prove a bound on ∆(Topt).
Lemma 3.1: Let Topt be an MST of HCG(r,R,B,X ,Yopt),

where Yopt is an optimal solution to RNPc(r,R,B,X ,Z).
Then ∆s(Topt) ≤ 5 and ∆b(Topt) ≤ 1. �

PROOF. We prove this by contradiction. Assume that in
Topt, an RN u is connected to six SNs v1, v2, v3, v4, v5, v6.
Without loss of generality, assume that ∠v1uv2 ≤ 60o. Since
d(u, v1) ≤ r and d(u, v2) ≤ r, we have d(v1, v2) ≤ r. Since
Topt is a tree, it does not contain edge (v1, v2), as otherwise
there would be a cycle (u, v1, v2, u). Replacing edge (u, v1)
in Topt with edge (v1, v2), we obtain another tree T1 spanning
the nodes B ∪ X ∪ Y . Since w(u, v1) = 1 and w(v1, v2) = 0,
we have w(T1) < w(Topt), contradicting the assumption that
Topt is a minimum spanning tree. Therefore an RN u cannot
be connected to more than five SNs in Topt.

Now assume that a relay node u is connected to two BSs
b1 and b2 in Topt. Since Topt is a tree, it does not contain the
edge (b1, b2). We can replace edge (u, b1) in Topt with edge
(b1, b2) to obtain another lower weight tree T2 spanning the
nodes B ∪ X ∪ Y . This contradiction proves that no RN in
Topt can be connected to more than one BSs.

Corollary 3.1: The general RNPc problem has a polyno-
mial time 6.2-approximation algorithm. The special RNPc
problem with B = ∅ has a polynomial time 5.5-approximation
algorithm. �

PROOF. According to Robins and A. Zelikovsky [27], there is
a polynomial time approximation scheme for the STP whose
approximation ratio can be made arbitrarily close to 1+ ln 3

2 <
1.55. The claims of this corollary follow from Theorem 3.1
with β = 1.55 and the ∆(Topt) bound derived in Lemma 3.1.
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Corollary 3.2: The general RNPc problem has an 8-
approximation algorithm with a running time of O(|B ∪ X ∪
Z|2 log |B ∪ X ∪ Z|). The special RNPc problem (with B =
∅) has a 7-approximation algorithm with a running time of
O(|B ∪ X ∪ Z|2 log |B ∪ X ∪ Z|). �

PROOF. If we take A in Algorithm 1 as the MST based
2-approximation algorithm for STP [18], the running time
of Algorithm 1 is O(|B ∪ X ∪ Z|2 log |B ∪ X ∪ Z|). The
corresponding approximation ratios of Algorithm 1 follows
from Theorem 3.1 and Lemma 3.1.

Note that the 7-approximation for the constrained problem
matches the best-known algorithm for the corresponding un-
constrained problem [22], while the 5.5-approximation for the
constrained problem compares favorably with the best-known
algorithm for the unconstrained problem [22].

4. Relay Node Placement to Ensure Survivability
In Section 3, we have studied the relay node placement

problem under the connectivity requirement, i.e., there is a
path connecting every pair of nodes u, v ∈ B ∪ X . In this
section, we consider a relay node placement problem which
meets both the connectivity requirement and the survivability
requirement. In particular, we need to ensure that between each
pair of nodes u, v ∈ B∪X , there exists a pair of node-disjoint
paths connecting u and v.

Survivable relay node placement (also known as fault toler-
ant relay node placement) in wireless sensor networks has been
studied by many researchers [2, 10, 11, 15, 21, 28, 32]. The
objective here is to ensure that the network remains connected
in the presence of up to K ≥ 1 node failures. For a network to
tolerate up to K node failures, it has to be K + 1-connected.
The works [11, 15, 21, 28, 32] study relay node placement that
ensures 2-connectivity, while the works [2, 10] study relay
node placement that ensures higher order connectivity. All
these works can be viewed as unconstrained survivable relay
node placement in the sense that relay nodes can be placed
anywhere. Our current work can be viewed as constrained
survivable relay node placement in the sense that relay nodes
can only be placed at some pre-specified candidate locations.

A. Problem Definitions and Discussions

Given a set of SNs, a set of BSs, as well as the candidate
locations where RNs can be placed, we are interested in
placing the minimum number of relay nodes so that the hybrid
communication graph induced by the SNs, the RNs, and the
BSs is biconnected.

Definition 4.1: Let R ≥ r > 0 be the respective commu-
nication ranges for RNs and SNs. Let B be a set of BSs,
X be a set of SNs, and Z be a set of candidate locations
where RNs can be placed. A set of RNs Y ⊆ Z is said to
be a feasible survivable relay node placement (denoted by F-
RNPs) for (r,R,B,X ,Z) if the graph HCG(r,R,B,X ,Y) is
biconnected. The size of the corresponding F-RNPs is |Y|.
An F-RNPs is said to be a minimum survivable relay node
placement for (r,R,B,X ,Z) (denoted by M-RNPs) if it has
the minimum size among all F-RNPs for (r,R,B,X ,Z). �

Definition 4.2: Let R ≥ r > 0 be the respective communi-
cation ranges for RNs and SNs. Let B be a set of BSs, X be a

set of SNs, and Z be a set of candidate locations where RNs
can be placed. The survivable relay node placement problem
for (r,R,B,X ,Z), denoted by RNPs(r,R,B,X ,Z), seeks
an M-RNPs for (r,R,B,X ,Z). �

The problem we are studying here is closely related to
the {0, 1, 2}-survivable network design problem (SNDP) de-
fined in Definition 4.3. The SNDP is known to be NP-
hard [25, 26], but admits several polynomial time approxi-
mation algorithms [7, 25]. Our approximation algorithms for
RNPs rely on solving instances of the SNDP.

Definition 4.3: Let G = (V,E) be an undirected graph
with nonnegative weights on all edges e ∈ E. For each pair
of vertices u, v ∈ V , there is a connectivity requirement
c(u, v) ∈ {0, 1, 2}. The {0, 1, 2}-survivable network design
problem (SNDP) asks for a minimum weight subgraph H of
G such that for any two vertices u, v ∈ V , H contains at least
c(u, v) vertex-disjoint paths between u and v.
Computational Complexity:
Since the RNPc problem studied in Section 3 (which only re-
quires connectivity, rather than biconnectivity) and the single-
tiered fault tolerant relay node placement problem (1tFTP)
studied in [32] and [15] (which can be viewed as the un-
constrained version of the RNPs problem) are both known
to be NP-hard, we believe that the RNPs problem is NP-
hard. Instead of deriving a hardness proof of the problem,
we concentrate on the design and analysis of polynomial
time approximation algorithms that have small approximation
ratios.
Our Contributions:
We present a general framework of efficient approximation
algorithms, based on approximation algorithms for SNDP. In
particular, we show that by using the best-known approxima-
tion algorithm for SNDP [7], our framework becomes an 8-
approximation algorithm for the general RNPs problem, and
a 7-approximation algorithm for the special RNPs problem
where B = ∅. Table II lists the most closely related results on
this topic.

TABLE II

CLOSELY RELATED RESULTS ON SURVIVABLE RELAY NODE PLACEMENT

source connectivity R vs r B �= ∅ constraints approx ratio
[2] k R = r O(1)
[15] 2 R = r 10
[32] 2 R ≥ r 14
[32] 2 R ≥ r

√
16

this 2 R ≥ r
√

9
this 2 R ≥ r

√ √
10

B. A Framework of Efficient Approximation Algorithms
In this section, we present a framework of polynomial time

approximation algorithms for RNPs. Our framework is based
on polynomial time approximation algorithms for {0, 1, 2}-
SNDP. Our framework for RNPs is presented as Algorithm 2.

The major steps of our scheme are as follows. First, we
construct HCG(r,R,B,X ,Z), as if we were placing an RN
at every candidate location in Z . This is accomplished in Line
1 of the algorithm. The given instance of the problem has a
feasible solution if and only if all of the BSs and SNs are
in the same biconnected component of HCG(r,R,B,X ,Z).
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Algorithm 2 Approximation for RNPs(r,R,B,X ,Z)
Input: R ≥ r > 0, set of SNs X , set of BSs B, set

of candidate locations of RNs Z , and an approximation
algorithm A for the {0, 1, 2}-SNDP.

Output: An F-RNPs for (r,R,B,X ,Z) given by YA ⊆ Z .
1: Construct HCG(r,R,B,X ,Z).
2: if the nodes in B ∪ X are not in a single biconnected

component of HCG(r,R,B,X ,Z) then
3: The RNPs problem does not have a feasible solution.

Stop.
4: end if
5: Assign edge weights to the edges in HCG(r,R,B,X ,Z)

as in Definition 2.2.
6: Assign connectivity requirements between every pair of

vertices in G in the following way. Let u and v be two
vertices. If neither of them is in Z , set c(u, v) = 2.
Otherwise, set c(u, v) = 0.

7: Apply the polynomial time β-approximation algorithm A
to compute a low weight biconnected subgraph HA of
HCG(r,R,B,X ,Z) which meets the connectivity require-
ment specified in the previous step of this algorithm.

8: Output YA = Z ∩ V (HA).

We can compute all of the biconnected components of
HCG(r,R,B,X ,Z) in linear time using depth first search [6].
This is accomplished in Lines 2-4 of the algorithm. Next we
assign nonnegative integer weights to the edges of the HCG
as in Definition 2.2. This is accomplished in Line 5 of the
algorithm. In Line 6, we construct an instance of the {0, 1, 2}-
SNDP problem. Then, we apply algorithm A to compute a
low weight biconnected subgraph HA of HCG(r,R,B,X ,Z),
spanning all nodes in B ∪ X . This is accomplished in Line 7
of the algorithm. Finally, in Line 8, we identify the locations
to place the RNs.

Theorem 4.1: Algorithm 2 has a worst case running time
bounded by O(|B ∪ X ∪ Z|2 + T (A)), where T (A) is the
time complexity of the approximation algorithm A used for
approximating {0, 1, 2}-SNDP. Furthermore, we have:

• RNPs(r,R,B,X ,Z) has a feasible solution if and only
if HCG(r,R,B,X ,Z) has a biconnected component that
contains all nodes in B ∪ X .

• When RNPs(r,R,B,X ,Z) has a feasible solution, Algo-
rithm 2 guarantees computing a feasible solution which
uses no more than β

2 (∆(Hopt) + 4) times the number
of RNs required in an optimal solution Yopt, where
Hopt is a minimum weight biconnected subgraph of
HCG(r,R,B,X ,Yopt) which spans all nodes in B∪X ∪
Yopt, and β is the approximation ratio of A. �

PROOF: Let Hmin be an optimal solution of the {0, 1, 2}-
SNDP instance. Since Hopt is a feasible solution to {0, 1, 2}-
SNDP, and A is a β-approximation algorithm for {0, 1, 2}-
SNDP, we have

w(HA) ≤ β · w(Hmin) ≤ β · w(Hopt). (4.1)

We need to find an upper bound on w(Hopt) using a function
of |Yopt|. Let w2(Hopt) denote the total weights of the 2-
weight edges in Hopt, and let w1(Hopt) denote the total

weights of the 1-weight edges in Hopt. We have w(Hopt) =
w2(Hopt)+w1(Hopt). Since each RN in Hopt is incident with
at most ∆(Hopt) 1-weight edges in Hopt, we have

w1(Hopt) ≤ |Yopt| · ∆(Hopt). (4.2)

Applying Lemma 2.3 to each of the connected components of
the subgraph of Hopt induced by all the 2-weight edges, we
have

w2(Hopt) ≤ 2 · (2|Yopt| − 1). (4.3)

It follows from Lemma 2.1 that

s(HA) ≤ 1
2
w(HA) ≤ β

2
w(Hmin) (4.4)

≤ β

2
w(Hopt) ≤

β

2
(4 + ∆(Hopt))|Yopt|. (4.5)

This proves the theorem.
There are several choices for the approximation algorithm

A. For example, if we use the algorithm of [7], the corre-
sponding approximation ratio is β = 2. If we use the algorithm
of [25], the corresponding approximation ratio is β = 3. Next
we will find a bound for ∆(Hopt).

Lemma 4.1: Let Yopt be an optimal solution to
RNPs(r,R,B,X ,Yopt). Let Hopt be a minimum weight
biconnected subgraph of HCG(r,R,B,X ,Yopt) spanning all
nodes in the graph. Then ∆s(Hopt) ≤ 5, ∆b(Hopt) ≤ 1. �

PROOF. We prove this by contradiction. Assume that RN
u is connected to six sensor nodes x1, x2, . . . , x6 in Hopt.
Without loss of generality, assume that ∠x1ux2 ≤ 60o.
Since d(u, x1) ≤ r, d(u, x2) ≤ r and ∠x1ux2 ≤ 60o,
we have d(x1, x2) ≤ r. Therefore (x1, x2) is an edge in
HCG(r,R,B,X ,Yopt). Since the weight of (x1, x2) is 0, we
can assume that (x1, x2) ∈ Hopt.

0

π

1

��

��

� ��

(a) delete edge (x1, u)

0

π

1

��

��

� ��

(b) delete edge (x2, u)

Fig. 3. Proof of Lemma 4.1: ∆s(Hopt) ≤ 5

Since Hopt is biconnected, it contains an x1–x3 path π
which does not go through u. If path π does not go through
node x2 (as shown in Fig. 3(a)), Hopt contains a cycle (the
edges (x1, x2), (x2, u), (u, x3) concatenated with the path π)
and one of its chords (x1, u). Deleting the chord (x1, u) from
Hopt will reduce its weight without destroying its biconnec-
tivity [29]. This contradicts the minimum weight property of
Hopt. If path π goes through node x2 (as shown in Fig. 3(b)),
Hopt contains a cycle (the edge (x1, u) concatenated with
the path π) and one of its chords (x2, u). Deleting the chord
(x2, u) from Hopt will reduce its weight without destroying
its biconnectivity [29]. This again contradicts the minimum
weight property of Hopt.

Now assume that RN u is connected to two BSs b1 and b2

in Hopt. Since Yopt is an optimal solution, u is connected to
an SN or another RN v in Hopt. Since the weight of (b1, b2)
is 0, we can assume that (b1, b2) ∈ Hopt.Since Hopt is biconnected, it contains a b1–v path π which
does not go through u. If path π does not go through node b2
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(a) delete edge (b1, u)

0
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(b) delete edge (b2, u)

Fig. 4. Proof of Lemma 4.1: ∆b(Hopt) ≤ 1

(as shown in Fig. 4(a)), H contains a cycle (the edges (b1, b2),
(b2, u), (u, v) concatenated with the path π) and one of its
chords (b1, u) which has a weight of 1. Deleting the chord
(x1, u) from Hopt will reduce its weight without destroying
its biconnectivity [29]. This contradicts the minimum weight
property of Hopt. If path π goes through node b2 (as shown in
Fig. 4(b)), H contains a cycle (the edge (b1, u) concatenated
with the path π) and one of its chords (b2, u). This again
contradicts the minimum weight property of Hopt.

Corollary 4.1: The general RNPs problem has a 10-
approximation algorithm with a polynomial running time. The
special RNPs problem where B = ∅ has a 9-approximation
algorithm with a polynomial running time. �

PROOF. This is achieved by choosing A as the 2-
approximation algorithm of Fleischer [7].

Corollary 4.2: The general RNPs problem has a 15-
approximation algorithm with a running time of O(|V |3 +
|E| · |V | · α(|V |)), where V and E are the vertex set and
edge set of HCG(r,R,B,X ,Z), and α(·) is the inverse Ack-
ermann function [6]. The special case of RNPs where B = ∅
has a 13.5-approximation algorithm with a running time of
O(|V |3 + |E| · |V | · α(|V |)). �

PROOF. This is achieved by choosing A as the 3-
approximation algorithm of Ravi and Williamson for the
{0, 1, 2}-SNDP problem [25, 26].

Note that the 9-approximation for the constrained problem
compares favorably with the best-known 10-approximation
algorithm for the unconstrained problem [15].

5. Numerical Results
To verify the effectiveness of the frameworks presented in

this paper, we implemented Algorithm 1 with A being the
MST based 2-approximation in [18] for STP (simpler than the
algorithm in [27]), Algorithm 2 with A being the sequential
maximum flow based 3-approximation in [25] for {0, 1, 2}-
SNDP (simpler than the algorithm in [7]). Our implemented
approximations algorithms for RNPc and RNPs are denoted
by ARNPc and ARNPs, respectively.

Since there is no previous algorithm for solving these
problems, and that optimal solutions are difficult to obtain,
we used simulated annealing [17] to obtain putative optimal
solutions for comparison. For simulated annealing, the initial
temperature was set to 100, the number of iterations at a
temperature was set to 4000, and the temperature reduction
factor was set to 0.8. We kept a bit-vector of length |Z|, where
1 means an RN is placed at the corresponding location and
0 means no RN is placed at the corresponding location. The
perturbations were performed by randomly choosing a quarter
of the bit-vector and randomly deciding the values of those
bits. We used the solutions obtained by our approximation

algorithms as the initial solutions for simulated annealing.
With these settings, simulated annealing took about 10 times
as long as our approximation algorithms. We use SRNPc and
SRNPs to denote simulated annealing for RNPc and RNPs,
respectively. The tests were run on a 2.4 GHz Linux PC.

As in [15] and [32], the SNs X were randomly distributed
in a square playing field. Two base stations were randomly
deployed in the square. We used both regular grid points as
the candidate locations for the relay nodes, and randomly
generated candidate locations for the relay nodes, and obtained
similar results. For brevity, we present the results with regular
grid points only. In this setting, the playing field consists of
K ×K small squares each of side 10, with the (K +1)2 grid
points as Z . We set r = 15 and R = 30.

We studied two separate settings: the case where the density
of the SNs in the field increases and the case where the density
is constant. We define the density as the ratio between the
number of SNs in the field to the area of the field. For the
increasing density case, we chose a constant field size of 100×
100 sq. units. For the constant density case, we let the size of
the playing field increase with the number of SNs.

In the case with increasing density, the number of candidate
RN locations was 121. The number of SNs was varied from
10 to 130. For each setting the results were averaged over
10 test cases. Fig. 5(a) shows the running time of ARNPs
and ARNPc. The X-axis is the sum of the average number
of edges and vertices in the HCG (as the running time of
the algorithm depends on both |E| and |V |) and the Y -axis
is the running time in seconds. The solid (blue) line shows
the running time of ARNPc, which is less than 1 second in
all cases. The dashed (red) line shows the running time of
ARNPs. The running time increases with the increase of the
number of SNs, and decreases after a certain threshold, as
shown in the figure. This is expected, because the {0, 1, 2}-
SNDP algorithm requires computation of the maximum flows
for every pair of SNs in the network that are not biconnected
yet. If the number of SNs increases beyond the threshold, the
biconnectivity among the SNs also increases correspondingly.
This increased biconnectivity reduces the number of maximum
flow computations required, resulting in a decrease in the
running time. Figs. 5(b) and 5(c) show the average number
of RNs required by ARNPc and ARNPs respectively and
that required by SRNPc and SRNPs respectively. Simulated
annealing had much longer running times, but only found
slightly better solutions in a few cases. This indicates that
our approximation algorithms perform well.

For the case of constant density, we studied two sub-cases:
one with density d1 = 0.005 and the other with d2 = 0.01.
For each density value, we used 7 different numbers of SNs.
The field sizes were chosen to be 40×40, . . . , 100×100, with
the number of SNs ranging from 8 to 50 for d1, and 16 to
100 for d2. The result of each configuration was averaged over
10 test cases. Fig. 6(a) shows the running times of ARNPc
and ARNPs. For both densities, ARNPc has running time less
than 1 second. On the other hand, the running time of ARNPs
is dependent on both the density and the number of SNs in the
network. The running time for d2 = 0.01 is lesser than that
of d1 = 0.005. This is expected, because with the increase in
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Fig. 5. Results with increasing density: 100 × 100 playing field; |Z| = 121; |B ∪ X | = 10, 20, 40, 60, 80, 100, 110, 120, 130.
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Fig. 6. Results with constant density: seven different playing fields, from 40 × 40 to 100 × 100; two density values, d1 = 0.005 and d2 = 0.01.

density, more pairs of SNs are already biconnected. Hence our
algorithm runs faster. Figs. 6(b) and 6(c) show the number of
RNs required by various algorithms. Our algorithms perform
almost as well as simulated annealing.

6. Conclusions
We have studied the single-tiered constrained relay node

placement problem in a hybrid wireless sensor network to
meet connectivity and survivability requirements. For each of
the two problems, we have presented a framework of polyno-
mial time approximation algorithms with O(1) approximation
ratios. To our best knowledge, we are the first to present
O(1) approximation algorithms for the constrained relay node
placement problems.
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