
Power-conscious Joint Scheduling of Periodic Task Graphs and Aperiodic Tasks in
Distributed Real-time Embedded Systems

Jiong Luo and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ, 08544
{jiongluo, jha}@ee.princeton.edu

Abstract
 In this paper , we present a power-conscious algorithm for jointly
scheduling multi-rate periodic task graphs and aperiodic tasks in
distributed real-time embedded systems. While the periodic task
graphs have hard deadlines, the aperiodic tasks can have either hard
or soft deadlines. Periodic task graphs are first scheduled statically.
Slots are created in this static schedule to accommodate hard
aperiodic tasks. Soft aperiodic tasks are scheduled dynamically with
an on-line scheduler. Flexibility is introduced into the static schedule
and optimized to allow the on-line scheduler to make dynamic
modifications to the static schedule. This helps minimize the
response times of soft aperiodic tasks through both resource
reclaiming and slack stealing. Of course, the validity of the static
schedule is maintained. The on-line scheduler also employs dynamic
voltage scaling and power management to obtain a power-efficient
schedule. Experimental results show that the flexibility introduced
into the static schedule helps improve the response times of soft
aperiodic tasks by up to 43%. Dynamic voltage scaling and power
management reduce power by up to 68%. The scheme in which the
static schedule is allowed to be flexible achieves up to 32% more
power saving compared to the scheme in which no flexibility is
allowed, when both schemes are power-conscious. Our work gives
an average architecture price saving of 30% over a previous
approach for embedded system architectures synthesized with
execution slots for hard aperiodic tasks present.

1. Introduction
 High-performance distributed embedded systems [1] are generally
composed of a heterogeneous network of processing elements (PEs),
where a PE can be a general-purpose processor, an application-
specific integrated circuit, or a field-programmable gate array. The
input specification of such a system is typically in the form of task
graphs. A task graph is a directed acyclic graph in which each node
is associated with a task and each edge is associated with the amount
of data that must be transferred between the two connected tasks.
The period associated with a task graph indicates the time interval
after which it executes again. A hard deadline, the time by which the
task associated with the node must complete its execution, exists for
every sink node and some intermediate nodes. An embedded system
may contain multiple task graphs with different periods. Such a
system is called a multi-rate system. Besides periodic task graphs,
the embedded system may also contain aperiodic tasks. An aperiodic
task is invoked for execution at any time and may have a hard
deadline or a soft deadline. All hard deadlines must be met.
However, one only needs to minimize the response times of soft
aperiodic tasks. For hard aperiodic tasks, generally a minimum inter-
instance arrival time is specified.
 Power consumption is a big concern in the design of portable
battery-powered embedded systems. Dynamic voltage scaling and
power management represent two powerful system-level techniques
to reduce power consumption. Dynamic voltage scaling refers to
dynamically varying the speed of a processor by changing the clock
frequency along with the supply voltage. Dynamic power

Acknowledgments: This work was supported in part by Army
CECOM and in part by DARPA under contract no. DAAB07-00-C-
L516

management refers to the use of power-down modes when the
processor is idle to reduce processor power. Many modern embedded
processors support software-controlled sleep modes [20, 21, 22]. The
Crusoe processor [21], which is a new generation embedded
processor targeting mobile computing, allows its clock frequency to
be adjusted on the fly. It also provides the capability for software to
adjust the processor’s voltage on the fly correspondingly.
 The problem of jointly scheduling both periodic task graphs and
aperiodic tasks is an important issue in many real-time embedded
systems. The goal of real-time scheduling algorithms is to guarantee
the deadlines of periodic task graphs and hard aperiodic tasks while
providing good response times for soft aperiodic tasks. Given the
importance of power consumption, the scheduling algorithm should
be power-conscious as well. For example, it should be able to vary
the voltage of PEs and manage power dynamically, while
maintaining the validity of the schedule.

1.1 Previous Work
 There have been extensive studies in the literature on the
scheduling of periodic tasks, aperiodic tasks, and their combinations.
The work in [6, 25] gives several bandwidth-preserving polling
server approaches. The slack stealing algorithm presented in [3]
attempts to make time for servicing aperiodic task by stealing all the
processing time it can from the periodic tasks. The adaptable fixed-
priority algorithm in [4] employs variants of a scheme where tasks
are assigned a fixed priority. All the above approaches target only a
single processor and are applicable to only independent task sets, in
which no precedence is defined among the different tasks. The
method in [2] performs resource reclaiming in shared-memory real-
time multiprocessor systems, where resource reclaiming refers to
exploiting a PE at run-time when the actual execution time of a task
is less than its specified worst-case execution time. The work in [23]
performs joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems. The algorithm in [7]
performs concurrent hardware-software co-synthesis of hard real-
time aperiodic and periodic task graphs. This involves allocating the
required number of PEs and communication links of different types,
assigning tasks and communication events to them and scheduling
these tasks and events to meet real-time constraints while minimizing
overall system price.
 Dynamic voltage scaling has also been studied in the literature.
The work in [14] proposes methods to vary the clock speed
dynamically along with the supply voltage under the control of the
operating system. The work in [9] proposes a synthesis technique for
variable-voltage core-based systems containing a set of independent
tasks with arbitrary arrival times. The work in [15] presents a power-
conscious fixed-priority scheduling algorithm for hard real-time
systems using rate-monotonic scheduling.
 For dynamic power management, a policy is needed to achieve a
good trade-off between latency and savings in system power. The
fixed time-out policy shuts down the processor after a fixed amount
of idle time. The predictive system shutdown methods [8, 10, 12]
predict the upcoming idle period based on previous user behavior.
The stochastic modeling approaches in [11, 13, 24] use a discrete-
time or continuous Markov chain to model the system and workload.

1.2 Our Approach and Contributions
 In this paper, we give an algorithm to jointly schedule multi-rate
periodic task graphs along with hard and soft aperiodic tasks. The

power issue is addressed through both dynamic voltage scaling and
power management. The algorithm allocates resources to
accommodate both periodic and hard aperiodic tasks. It then
generates a feasible schedule based on the maximum supply voltage
of each PE, which satisfies all the timing and communication
constraints and has enough capacity reserved to serve the hard
aperiodic workload, given minimum inter-instance arrival times of
such tasks. Flexibility is introduced into the static schedule and
optimized to allow the on-line scheduler to make local changes to PE
schedules, without interfering with the validity of the global schedule
of the distributed embedded system.
 Our work makes several contributions: (1) We combine resource
reclaiming and slack stealing in a distributed embedded system to
improve the response time of soft aperiodic tasks. Although the
concepts of resource reclaiming and slack stealing have been used in
single-processor systems, there is only limited work in
simultaneously addressing them in distributed systems which execute
tasks with precedence constraints. The work presented in [2] only
targets resource reclaiming in a multi-processor shared-memory
system. The work in [23] exploits unused resources and leeway in
statically scheduled distributed real-time systems. As opposed to the
work in [23], we perform a global optimization to achieve a better
distribution of the flexibility in the static schedule. Moreover, our on-
line scheme is simpler and more powerful in exploiting the slack
time. (2) The combination of resource reclaiming and slack stealing
also facilitates dynamic voltage scaling and power management. (3)
Schedule slot reservation for hard aperiodic tasks is more efficient
than the previous method given in [7], while still guaranteeing that
all deadlines are met. (4) We provide a unified framework in which
the response times of aperiodic tasks and power consumption are
dynamically optimized simultaneously, which has not been done
before.
 This paper is organized as follows: Section 2 presents a
motivational example. Section 3, 4, 5, 6 and 7 elaborate upon several
aspects of our approach in detail. These include static resource
allocation, assignment and scheduling, handling of hard aperiodic
tasks, on-line scheduling for soft aperiodic tasks, dynamic voltage
scaling and power management, as well as global optimization of the
static schedule, respectively. Section 8 presents experimental results.
Section 9 provides the summary.

2. Motivational Example
 In this section, we present an example, which motivates the
various problems we address in this paper. The calculation of clock
period and power consumption in this example is based on Equations
(1) and (2) respectively, which are presented below.
 The processor clock period, T, can be expressed in terms of the
supply voltage, ddV , and threshold voltage, tV , as follows:

2)/(tVddVddkVT −= (1)

where k is a constant. We assume tV = 0.8V. The processor power,
P, can be expressed in terms of the frequency, f, switched
capacitance, N, and supply voltage as:

2
2
1

ddfNVP = (2)

Example 1: Fig. 1 gives an embedded system specification
consisting of two task graphs. Assume for simplicity that both have a
period of 9.5 time units.

Fig.1 : Task Graphs

 Figs. 2 and 3 give two feasible schedules on a distributed system
consisting of PEs PE1 and PE2 connected by a link. These are as-
soon-as-possible (ASAP) and as-late-as-possible (ALAP) schedules,
respectively. The schedules are based on the worst-case execution
times of tasks and communication times given in Tables 1 and 2,
respectively, assuming a supply voltage of 3.3V. Based on the
traditional assumption in distributed computing, we assume intra-PE
communications, e3, e4, e5 and e6, all take zero time. We assume
PE2 does not have a communication buffer. Therefore, the
communication edges also need to be scheduled on it.

Tasks Worst-case
exec. time

Actual
exec. time

Deadline Assignment

t1 2.0 1.5 / PE1
t2 2.5 2.0 / PE1
t3 3.0 / / PE2
t4 2.0 1.5 9.0 PE1
t5 1.5 / / PE2
t6 1.0 / 9.5 PE2
t7 1.5 / 9.5 PE2

Table 1: Execution Times, Deadlines and Task Assignments

Edges Worst-case comm. time Actual comm. time
e1 0.5 0.5
e2 0.5 0.5

Table 2: Communication Times

Fig. 2: An ASAP Schedule
(top: PE1, middle: link, bottom: PE2)

Fig. 3: An ALAP Schedule with the Communication Schedule
Fixed as in Fig. 2 (top: PE1, middle: link, bottom: PE2)

 Fig. 4 shows the post-run schedule with respect to the actual
execution times of tasks on PE1. Two soft aperiodic tasks, a1 and a2,
arrive at the PE at times 1.5 and 5.0, respectively. Their execution
times are 1.0 and 1.5 time units, respectively. Four different schemes
are presented in this Figure. Scheme A (B) incorporates the aperiodic
tasks into the ASAP (ALAP) schedule, and uses the actual execution
times of the periodic tasks. Schemes C and D allow forward and
backward shifting of the static schedule. Scheme D also incorporates
dynamic voltage scaling. PE1 is assumed to be shut off in the shaded
parts of the schedule. Schemes C and D still meet the underlying
real-time and precedence constraints provided that the
communication edges are always scheduled in the fixed slots as in
Fig. 2 or Fig. 3. For simplicity, we assume that the power
consumption in the shut-off state is zero and that there is no
overhead in entering and leaving this state. We also assume that there
is no preemption cost in this example. Note, that our algorithm,
which is presented later, does not need to make the above
assumptions about the preemption cost and shut-off state.
 In Scheme C, t2 is scheduled at time 2.5 in order to service a1,
and t4 is scheduled at time 6.5 to service a2. In Scheme D, when t2 is
scheduled at time 2.5, since its latest finish time is 7.0, the processor

e6e5e1

e2

e3

e4
Period: 9.5

t1

t2

t4

t3

t5

t6 t7

e1

e2e1

t5 t3 t6 t7

t1 t2 t4

e2

0.0 9.50.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

t1 t2 t4

 e1 e2

0.0 9.50.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

t3 t6 e1 e2t5 t7

speed can be scaled down by a ratio of (7.0 – 2.5) / 2.5.
Correspondingly, the supply voltage can be scaled down from 3.3V
to 2.4V, extending the actual running length of t2 from 2.0 to 3.6.
 Using Equations (1) and (2) to compute the schedule length and
power consumption, the performance of the different schemes is
compared in Table 3.

A. A combined schedule at 3.3V based on an ASAP schedule

B. A combined schedule at 3.3V based on an ALAP schedule

C. Backward and forward shifing in the schedule at 3.3V

D. Both shifing and dynamic voltage scaling incorporated: t1,
a1, a2 and t4 run at 3.3V, t2 runs at 2.4V
Fig. 4: The Post-run Schedule on PE1

 From Table 3, we observe that the introduction of flexibilty in the
schedule improves the response times of the aperiodic tasks.
Comparing the results for Schemes C and D, we observe that
voltage scaling achieves a better power saving than PE shut-off. The
power reduction is at the cost of extra latency for one of the soft
aperodic tasks.

Scheme A B C D
Response time of a1 3.0 1.0 1.0 1.0
Response time of a2 3.0 4.5 1.5 4.1
Average response time 3.0 2.75 1.25 2.55
Power 1 1 1 0.87

 Table 3: Aperiodic Task Response Time and Power
Consumption for the Different Schemes

3. Static Resource Allocation, Assignment and Scheduling
 The static resource allocation, task/communication assignment and
scheduling algorithm we use is from a system synthesis tool [18]. It
uses a slack-based list scheduling algorithm to generate static PE and
communication link schedules for each task and communication
event along the hyperperiod, which is the least common multiple of
all the task graph periods in a multi-rate system specification. It is
well known that there exists a feasible schedule for the periodic task
graphs if and only if there exists a feasible schedule for the
hyperperiod [19]. Static scheduling makes it possible to guarantee
that hard real-time constraints of periodic task graphs will be met.
The static schedule from [18] is modified with a post-processing
stage, as explained later in Section 7.

4. Handling of Hard Aperiodic Tasks
 One approach to handle hard aperiodic tasks is to reserve execution
slots for them at regular intervals throughout the hyperperiod [7].
The hard aperiodic tasks are always executed at the next available
execution slot.
 Suppose that a hard aperiodic task j, with a deadline jd , is
assigned to PE k, and the execution time of task j on PE k is jµ . We

assume that jj d≤µ . Suppose that the minimum arrival time

between any two consecutive instances of task j is jY . We assume

that jj dY ≥ , or equivalently, in any time frame of length jd , only
one instance of task j is assumed to be present.
 In [7], the length of each reserved execution slot for the aperiodic
task in the hyperperiod is jµ≥ , and the interval between the

reserved execution slots is jjd µ2−≤ . This should be satisfied in a
cyclic way along the hyperperiod. The allocation of execution slots
in this way is illustrated in Example 2.
Example 2: Assume a hard aperiodic task has an execution time of 1
on the PE it is assigned to and a deadline of 5. Suppose the
hyperperiod of the embedded system is 10. Then one feasible
allocation of execution slots following the above condition is given
in Fig. 5. The total allocated schedule length is 3.
 In our approach too, we reserve execution slots for hard aperiodic
tasks throughout the hyperperiod. However, for individual aperiodic
tasks, our approach allows preemption of hard aperiodic task
instances. This results in a smaller schedule and, hence, a less costly
distributed embedded system architecture. Under the assumption that

jj dY ≥ , it is obvious that the optimal condition under which the
deadlines of hard aperiodic task instances can be guaranteed
irrespective of their arrival times is: for any time frame of length jd ,
there is enough capacity to service one instance of the hard aperiodic
task. This optimal condition leads to Theorem 1, which is applied in
our approach.

Fig. 5: Allocation of Execution Slots

Theorem 1: Under the assumption that jj dY ≥ , and that each

reserved execution slot is at least of length jµ , the necessary and
sufficient condition for ensuring that the deadline is met is that the
interval between two reserved execution slots is

)(rpjj ppd ++−≤ µ , where pp (rp) is the worst-case context
switch cost in preempting (resuming) the hard aperiodic task. We
assume rp pp + is always less than jµ .
Proof:
Necessity: Assume that an interval between two reserved execution
slots is greater than)(rpjj ppd ++− µ . Consider a time frame of

length jd which contains this interval. Also, assume the execution
region of this time frame covered by the first execution slot is

δ++ rppp , where δ is a positive value less

than)(rpppj +−µ . Then the region covered by the second

execution slot is less than δµ −j . Assume an instance of the
aperiodic task arrives at the beginning of this time frame. Since
neither of the two execution regions is enough to finish the
execution, the task has to be scheduled using the combination of the
two execution regions. Hence, it has to be preempted once. However,
the total execution length of this time frame is less than

rpppj ++µ . Hence, the finish time of the task will exceed this

time frame, i.e., it cannot meet the deadline.
Sufficiency: Consider any time frame of length jd . If it contains a
complete execution slot, then this time frame has enough capacity to
finish the task. If it does not contain a complete execution slot, then
it must contain only one interval between two execution slots while
not crossing any other intervals. Since the interval is

)(rpppjjd ++−≤ µ , the execution region covered by this time

frame must be rpppjrpppjjdjd ++=++−−≥ µµ))((,
which is enough to serve the task even if preemption occurs, since

0 1 2 3 4 5 6 7 8 9 10

:execution slot :interval
hyperperiod

t1 t2 t4a2 a2a1a1

0.0 9.50.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

0.0 9.50.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
.

t1 t2 t4a1 a2a2

t1 t2 t4a1 a2

0.0 9.50.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

0.0 9.50.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

t1 t2 t4a1 a2 a2

obviously only one preemption can occur in this case.
 In Example 2, assume 05.0== rp pp . One feasible allocation of
execution slots following the condition in Theorem 1 is given in Fig.
6. The total length of execution slots is 2.2, which is a 27%
improvement compared to the scheme in Fig. 5.

Fig. 6: An Improved Allocation of Execution Slots

5. On-line Scheduling Algorithm
 The job of the on-line scheduling algorithm is to dispatch the
periodic tasks according to the static schedule, serve the hard
aperiodic task with the reserved execution slots, and serve the soft
aperiodic tasks with the execution time left unused by the hard tasks.
An on-line scheduling algorithm should be correct, inexpensive and
of bounded complexity [2]. We intend to introduce flexibility into
the static schedule which the on-line scheduling algorithm can take
advantage of. To maintain the simplicity of the on-line scheduling
algorithm, local flexibility is introduced into the static feasible
schedule in the following way:
(1) The schedule of all the communication events is kept fixed. This
helps to make the flexibility introduced in the static schedule local to
each PE. Hence, no global re-scheduling is required. Also, the order
of all the events scheduled on every PE and link is kept fixed. This
helps to maintain the precedence constraint among the tasks assigned
to the same PE.
 (2) A table generated off-line provides the earliest start and latest
finish times (correspondingly the latest start time) for each scheduled
event. This shows how much slack is available for the event. This
can be exploited at run-time.
 Fig. 7 presents Algorithm 1 for computing the earliest start and
latest finish times. In this algorithm, event_list is a list of statically
scheduled events in the order of their start times on each PE for one
hyperperiod. The scheduled event is a periodic task, or a hard
aperiodic task execution slot, or a communication event (comm in the
algorithm). In the static schedule, every event is characterized by a
start time and a finish time. For a task, in-edges (out-edges) refers to
all the inter-PE communication edges entering (coming out of) the
task, where inter-PE communication edges refer to those edges for
which the parent task and child task are assigned to different PEs. A
deadline may be associated with a task. It is ∞ if it is undefined for
the task. A task graph may also have a start time requirement which
is characterized as required_start.
 The statically scheduled events are dispatched following the order
in event_list in a cyclic way. The current event refers to the
scheduled event currently being processed. Soft aperiodic tasks
arrive and leave each PE in a first-in first-out (FIFO) order. The on-
line scheduler works in the following way: whenever there are soft
aperiodic tasks pending, and the latest start time of the current event
has not been reached, the scheduler dispatches the soft aperiodic
task. If there are no soft aperiodic tasks pending, and the earliest start
time of the current event is reached, the scheduler dispatches the
current event. If the current event is running and a soft aperiodic
task has arrived, the scheduler detects if there is enough slack time in
the current event to serve the soft aperiodic task. If so, the current
event gets preempted and the incoming aperiodic task gets
dispatched.
 The capacity of the hard aperiodic task slots can be fully or
partially released based on the previous history and minimum inter-
instance arrival time of the hard aperiodic task. When the schedule
arrives at the reserved execution slot, the slot is used to either serve
the pending hard aperiodic task, or wait for the arrival of the
corresponding hard aperiodic task.
 The dispatch procedure of the on-line scheduler is illustrated

through Example 3.
Example 3: Assume there are five events in the static schedule for a
PE and the hyperperiod is 700. The characteristics of the scheduled
events and arriving events are shown in Tables 4 and 5, respectively.
In Table 4, the column entries Start and Finish indicate the start and
finish time for that event in the static schedule, while the column
entries Earliest-start and Latest-finish indicate the off-line flexibility
of the static schedule. The minimum inter-instance arrival time of
hard aperiodic tasks is 650. The preemption and resumption cost is
10.

Fig. 7: Computation of the Earliest Start and Latest Finish
Times

Event Type Earliest
-start

Latest-
finish

Start Finish Actual
exec.
time

p1 P 0 100 0 100 100
e2 Ap 100 250 100 250 /
p3 P 0 450 250 350 80
p4 P 400 550 400 500 90
e5 Ap 550 700 550 700 /

Table 4: Characteristics of Statically Scheduled Events (P:
periodic task; Ap: hard aperiodic task execution slot)

Task Type Arrival
time

Worst-case
exec. time

Actual
exec. time

a1 Hard 0 150 80
a2 Soft 200 100 100
a3 Soft 360 80 60
a4 Soft 510 100 100

Table 5: Arrival Times and Execution Times of Aperiodic Tasks

 The execution of tasks in the dispatched order is shown in the
following list (each element is of the format: event (start, end)):

{p1(0, 100); a1(100, 180); p3(180, 200); preemption of p3(200,
210); a2(210, 310); resumption of p3(310, 380); a3(380, 440);
p4(440, 530); a4 (530, 630) }

 p1 is dispatched first. Then e2 is used to serve a1. The remaining
capacity of e2 is released and p3 gets dispatched earlier than its
specified start time. Then a2 arrives and preempts p3 since it is
detected that p3 has enough slack time. p3 is resumed later after a2
finishes. Note that the resumption cost is included for p3 at this
stage. After that, a3 gets dispatched and finishes since the latest start
time of p4, which is 550 – 100 = 450, has not been reached. p4 is
then dispatched. Following this, a4 gets executed with the released

}
}

__
}

)(min

min
)(max

max
{

}
_
_

_
{)(

{__ (
 _

{_(__ 1

start;latestistart latest

time;executionworstifinishlatestistartlatest i

start));(jiout_edgesj
start, latestdeadline, (ifinishlatest i

finish));(jiin_edgesj
start, (required start earliest i

 task)type(i) is else if (

start;startlatest i
 finish;finish latest i
 start;start earliest i

 slot) taskaperiodic hard(i) is a || type is commi if (type
finish;i finish

start;i start
)begin;ilisteventlast;i !listeventi for

d;hyperperio start latest
list)eventofflineyflexibilitcompute: Algorithm

→=

→−→=→

→∈

→=→

→∈

=→

=→
=→
=→

→=
→=

−−→=→=
=

0 1 2 3 4 5 6 7 8 9 10

:execution slot :interval
hyperperiod

4.9 5.9 9.8

capacity of e5.

6. Dynamic Voltage Scaling and Power Management
 The flexibility introduced in a static schedule, as discussed in
Section 5, can also be used to facilitate dynamic voltage scaling and
power management. However, there are energy and delay penalties
involved in shutting a system down. Also, as mentioned before,
reducing the voltage always slows down the currently scheduled
task. There is also extra system overhead involved in adjusting the
system power supply and clock frequency. The delay penalties
mentioned above conflict with the goal of minimizing the response
times of soft aperiodic tasks. Hence, the on-line scheduler needs to
intelligently decide when to enter the sleep mode, which level of
sleep mode to enter, as well as when to reduce the supply voltage to
extend the task schedule, without violating the feasibility of the
guaranteed tasks, and without causing too much increase in the
response times of the soft aperiodic tasks.
 The power-conscious dispatching procedure is similar to the one in
Section 5. The major difference is that the on-line scheduler needs to
predict the next idle period for the PE or predict the actual available
processing time for a scheduled event when there are no soft
aperiodic tasks pending. Periodic and hard aperiodic tasks are
dispatched according to the static schedule and thus have good
predictability. The dynamic nature of the schedule lies in the
unknown arrival times of the soft aperiodic tasks. To manage power
consumption efficiently, it is important to predict when the next soft
aperiodic task will arrive.
 If we assume that aperiodic task arrivals can be modeled as a
Poisson process [25], then the inter-instance arrival times of
aperiodic tasks assume an exponential distribution. In such a case,

the best estimation, '
kI , for the inter-instance arrival time kI should

be λ/1}{' == kk IEI , where λ is the arrival rate of the Poisson
process. In order to capture the possible time-varying dynamics of
the arrival rate, we use the average of previous n values to

approximate the mean: ∑
=

= −

n

i
I

n
I ikk

1

1' . If the predicted inter-

instance arrival time has elapsed, but a new soft aperiodic task has
not arrived, we need to make a new prediction. Based on the property
of an exponential distribution, we need to wait for the same period of

time again before expecting to see a new soft aperiodic task. '
kI can

be used to compute predicted_next_arrival, which is the predicted
arrival time of the next soft aperiodic task.
 To guarantee a prompt response to soft aperiodic tasks, dynamic
voltage scaling and power management are performed only if there
are no soft aperiodic tasks pending. Since dynamic voltage scaling
has more potential in saving power than dynamic power management
[9], the former is always performed first.
 If we are dispatching a statically scheduled event k and there are
no soft aperiodic tasks pending, then the actual available running
time for k is:

timestampfinishlatestkarrivalnextpredicted
timeavailable

−→
=

)_,__min(
_

where timestamp is the current time point. The worst-case remaining
time for executing k is:

executedtimeexecworstremainingworst −= ___
where executed is the amount of execution time that has already been
spent for event k.
 The ratio of available_time to worst_remaining is used to
determine the scale for reducing the clock frequency and supply
voltage, using a scheme similar to the one in [15].
 If there are no soft aperiodic tasks pending and the PE is currently
idle, then the next idle period IP can be predicted as:

timestamparrivalnextpredictedstartearliestkIP −→=)__,_min(
where k refers to the statically scheduled event currently being
processed.
 IP can be used to justify which sleep state to enter such that its
energy consumption in IP is minimized. The energy consumption for

assuming sleep state i in idle period IP is

iPiWiEIP
iWPiW

iEPiEiEC *)(** −−++=

where iE (iW) is the delay overhead and
iEP (

iWP) is the power

consumption in entering (leaving) sleep state i. iP is the power
consumption in this state. We choose the sleep state which
minimizes the energy consumption [12].
 After entering sleep state i, the processor wakes up either when a
soft aperiodic task arrives, or when a hard task is ready to be
scheduled.

7. Global Optimization of the Static Schedule
 The static schedule should be such that it provides the maximum
flexibility to the on-line scheduler. As discussed in Section 5, the
schedule of all the communication events is kept fixed. Therefore,
how the communication events are distributed throughout the static
schedule affects the flexibility that can be exploited on-line. The
original static schedule is generated with an objective that the cost of
the system architecture is optimized (in case of hardware-software
co-synthesis). It is based on a list scheduling algorithm. The
schedule slot is often positioned as early as possible when an event is
ready to be scheduled. Hence, the distribution of communication
events is not optimized.

We add a post-processing stage to the static scheduler which tries
to globally re-position the schedule slots while still meeting the real-
time constraints and precedence relationships of the original
schedule. The basic heuristics in our algorithm is to distribute the
flexibility more evenly along the hyperperiod. As far as voltage
scaling is concerned, intuitively, more evenly distributed flexibility
in the static schedule can lead to more even voltage scaling, and thus
higher power savings. Furthermore, under the assumption that the
arrival times of soft aperiodic tasks are randomly distributed, more
evenly distributed flexibility should also help reduce the average
response time of soft aperiodic tasks. The major part of the schedule
optimization procedure, which tries to shift forward the scheduled
events in the original schedule in order to distribute the slack time
more evenly, is illustrated in Algorithm 2 in Fig. 8.
 In Algorthm 2, pe_sched and link_sched are arrays of event_list
and comm_list for PEs and links, respectively. event_list is defined
in Algorithm 1, and comm_list is the list of statically scheduled
communication events in the order of their start times on each link
for one hyperperiod. In Algorithm 2, we maintain two queues for
processing, i.e., task_queue and comm_queue, which are the
processing queues for the statically scheduled tasks on PEs and
communication events on links, respectively. For a scheduled event,
next_event is the next scheduled event in the same event_list or
comm_list. A task is inserted into the task_queue only if all its out-
edges and its following tasks in the same event_list have finished
shifting. A communication edge is inserted into comm_queue only if
its child task has finished shifting. Both task_queue and comm_queue
are in the reverse order of the start times of the scheduled events in
the queue. The slack time of a task is defined as the difference
between the minimum of its latest finish time and the start time of its
next_event, and its finish time. The average slack ratio for each PE is
calculated as the ratio of the total slack time over total worst-case
execution time for all the tasks on that PE. The sub-function

) (ck_amountraint, sla ,i, constevent_listard_task shift_forw shifts
forward the scheduled task i in event_list, while maintaining a slack
time of task i no greater than slack_amount and a finish time of i not
exceeding constraint. The sub-function

)(k_amountaint, slac,e ,constrcomm_list ard_edgeshift_forw
simultaneously shifts forward the communication event e in
comm_list, as well as all the corresponding communication events on
any non-buffered PE the parent task or the child task is assigned to,
in a manner similar to

) (ck_amountraint, sla ,i, constevent_listard_task shift_forw .
 The shifting procedure presented in Algorithm 2 is illustrated
through Example 4.

Example 4: Fig. 9 shows an embedded system specification
consisting of two task graphs. Fig. 10 gives a feasible static schedule

on a distributed system consisting of PEs PE1 and PE2 connected by
a link. The worst-case execution times of t1 and t3 on PE1 are both 1
time unit. The worst-case execution times of t2 and t4 on PE2, and t5
on PE1 are all 2 time units. The communication times of inter-PE
communication edges e1 and e3 are both 1 time unit. We assume
both PEs are buffered. Fig. 11 gives the optimized static schedule
after shifting.

}

_ _min

__
, min

) __

{) _, _ __
}

}

_
}

0,],[_ __

; _
 . _

_

{)_
}

 . _

 _
) __*][__

,][_(__
; _

_min

min
 (. _

_
{ _

{ _||_
_

 _

}
/][__

}

_

 _ ,_min

)_(_
{;][][

0__

{; __ 0
){ _ _ __ 2

)timeexecutionworsteventstart next
amount, slackslackactualstart(event start event

amount) slackslack actual if(
finish;eventstart) nextconstraint(slack actual

start;eventnext (eventstart next

amount slackconstraintt, list, eveneventtask(forwardshift

queue;taskinto tasksavailable newlyinsert

);start, child) (e elinksched(linkedgeforwardshift

assignmentlink e link
delete(e);queuecomm

head;queue comme

 emptyqueue !while(comm

);jinsert(queuecomm

i)edges(inj all for
;timeexecutionworstiperatioslackaverage

 constraint, i,peschedpetaskforward shift
assignmentpei pe

start));(jedges(i)outj

deadline,(iaint constr
);ideletequeuetask

head;queue task i
 empty)queue !while(task

 empty)queue! comm empty queue !while(task
queue; taskinitialize

empty;queue as comminitialize

 execution;totalslack total peratioslack average

time;executionworst iexecution total
 slack;slack total

;finishistart) nextfinishlatest(i slack

start;eventnextistart next
)iendpepe_schedbegin; i !pe pe_sched for(i

; execution totalslacktotal

) pepesofnum ; pe pe for(
schedlink,schedpesched(staticshift:Algorithm

→−
−+→=→

>
→−=

→→=

→→

→=

→=

=

∈
→

→=

→∈

→=

→=
=

==

=

→=+
=+

→−→=

→→=
−−→=→=

==

++<=

 Fig. 8: Static Schedule Optimization

 In Fig. 10, For the tasks assigned to PE1, the slack times are 0, 1
and 3 for t1, t3 and t5, respectively. The average slack ratio for PE1
is (0+1+3)/(1+1+2) = 1. For the tasks assigned to PE2, the slack
times are 0 and 4 for t4 and t2, respectively. The average slack ratio
for PE2 is (0+4)/(2+2) = 1. We notice the slack times in Fig. 10 are
concentrated in the latter part of the schedule. Fig. 11 presents the
new static schedule after shifting. In the shifting procedure, t5 is first
shifted forward by 1 time unit, in order to keep a slack time no
greater than average slack ratio * worst-case execution time, which
is 1 * 2 time units for t5. Then t2 is shifted forward 2 time units in a

similar way. Now e1 and e3 are ready for shifting. They are both
shifted forward 1 time unit such that their finish times do not exceed
the start times of their child tasks t2 and t5, respectively. After e1
and e3 finish shifting, the distribution of flexibility in the schedule is
determined. We observe the slack times are distributed more evenly
along the hyperperiod in Fig. 11.

Fig. 9: Task Graphs for Example 4

Fig. 10: Original Static Schedule(top: PE1, middle: link, bottom:
PE2)

Fig. 11: The Static Schedule after Shifting(top: PE1, middle: link,
bottom: PE2)

8. Experimental Results
 In this section, we present the experimental results. The task
graphs in our example are generated with the aid of TGFF [5], a
randomized task graph generator.
 The first experiment set compares the cost of the embedded
system architecture synthesized with execution slots for hard
aperiodic tasks present. In Table 6, our approach is compared with
Dave’s approach from [7]. The system-on-a-chip synthesis tool
discussed in [18] is used for this purpose. Our approach gives an
average of 30% architecture price saving over Dave’s approach.
 The second experiment set deals with the response times of soft
aperiodic tasks and system power consumption. For simplicity, we
assume that all the processors in the distributed system are
PowerPc603e processors [22]. Note that our scheduling algorithm is
applicable to heterogeneous distributed systems as well.
PowerPC603e provides four power modes [17]: full-power mode,
doze mode, nap mode and sleep mode. The power consumption in
the doze mode, nap mode and sleep mode with the phase locked loop
(PLL) disabled are 16%, 6% and 0.2% of the full-power mode power
consumption, respectively. The transition time from the doze mode
or nap mode to the full-power mode only takes a few clock cycles,
while the transition from the sleep mode with PLL disabled takes
several thousand cycles (up to 200 secµ) [17]. The voltage can be
varied from 3.3V to 1.6V. We assume that changing the clock
frequency and supply voltage takes a worst-case delay of 10 sµ [16].
We assume the computation itself can continue during the voltage
and frequency change [15].
 The static schedule is generated using the tool in [18]. The
synthesized system architecture has six PEs with an average
utilization factor of 51% with respect to the worst-case execution
time of tasks. The actual execution of hard periodic tasks is
uniformly distributed in the range of 60% to 100% of their worst-
case execution times. The total number of tasks in the periodic task

e1 e2

t1

t2 t3

Period: 8

Deadline:8

Period: 8

t5

e3

t4

Deadline:8Deadline:8

t1 t3 t5

e1 e3

t4 t2

0 1 2 3 4 5 6 7 8

t1 t3 t5

e1 e3

t4 t2

0 1 2 3 4 5 6 7 8

graphs is 183, and the total number of communication edges is 296.
 The soft aperiodic task arrivals are modeled as a mixed Poisson
process. The soft aperiodic task workload is characterized by the
average arrival rate of such tasks. In the experiment, we compare
results for four different arrival rates. They are 0.02, 0.04, 0.06 and
0.08 arrivals/ms, respectively. We also compute the results for power
assumption for the case when there are no soft aperiodic tasks
present, which is characterized as zero arrival rate in the curves. We
use the average response time of soft aperiodic tasks to characterize
the performance with respect to response times. The number of soft
aperiodic tasks we average over for the different arrival rates is
shown in Table 7. The average execution time of soft aperiodic tasks
is approximately 2.04 ms. The power consumption of the schemes
considered ahead is normalized over the power consumption of the
corresponding non-power-conscious scheme with the same arrival
rate of soft aperiodic tasks.

Dave’s approach Our approachNo. of
task

graphs

No.
of

tasks No.
PEs

No.
links

Price No.
PEs

No.
links

Price

6 61 4 6 395 2 1 216
6 62 3 0 273 2 1 246
6 63 6 8 907 4 6 440
7 69 4 6 459 2 1 277
7 69 4 6 542 4 6 456
8 76 4 6 666 5 8 629

Table 6: Comparison of System Architecture Cost

 Average arrival rate
 (No. of arrivals/ms)

0.02 0.04 0.06 0.08

No. of soft aperiodic tasks 2088 4344 6480 8802

Table 7: Characteristics of Soft Aperiodic Tasks

 We compare four different schemes. In the first three schemes, the
static schedule used is generated by a list scheduling algorithm and
not globally optimized for flexibility, while in the last scheme, the
static schedule is globally optimized. These four schemes are: (i)
completely static schedule without flexibility, (ii) partially flexible
static schedule which incorporates resource reclaiming but not slack
stealing, (iii) fully flexible static schedule that incorporates both
resource reclaiming and slack stealing, and (iv) fully flexible static
schedule as in (iii), but the static schedule is globally optimized. We
present results for both the power-conscious case and the non power-
conscious case. For the power-conscious full flexibility case with
global optimization, we compare the results with and without
prediction of future soft aperiodic task arrival times. Recall that this
prediction helps determine whether or not to slow down or shut off
the processor. When no prediction is done, the processor is slowed
down or shut off whenever there is no soft aperiodic task pending,
without any consideration for future soft aperiodic task arrivals.
Curves for the average response time of soft aperiodic tasks and
power consumption vs. average arrival rate of soft aperiodic tasks are
plotted.
 Fig. 12 presents the results for the non-power-conscious case. We
can see that the full flexibility scheme with global optimization (no
flexibility scheme) performs the best (worst) in terms of the response
times of soft aperiodic tasks. The full flexibility scheme with global
optimization performs better than the scheme without optimization.
The full flexibility + global optimization scheme achieves as high as
43% improvement in the average response time compared to the no
flexibility scheme, and as high as 23% improvement compared to the
full flexibility scheme without global optimization.
 Fig. 13 shows the results for power-conscious scheduling. The
prediction scheme estimates the arrival time of soft aperiodic tasks.
Again, we see that the full flexibility + global optimization scheme
outperforms other schemes in both the power consumption and the
response times of soft aperiodic tasks. As the soft aperiodic task

workload increases, the power reduction decreases as shown in Fig.
13(b). Power consumption is computed based on Equation (2). We
also observe that there is a tradeoff between power reduction and
improvement of response times of soft aperiodic tasks. The highest
power saving is achieved when the workload of the soft aperiodic
tasks is the lowest, while the highest response time improvement is
achieved when the workload is the highest. The full flexibility
scheme with global optimization achieves 32% power saving
compared to the no flexibility case, when the workload of the soft
aperiodic tasks is zero, while it achieves a 38% improvement in the
average response time of soft aperiodic tasks compared to the no
flexibility case, when the workload of soft aperiodic tasks is the
highest. The full flexibility scheme with global optimization
achieves as high as 17% improvement in the average response time
of soft aperiodic tasks, and 14% power saving, compared to the full
flexibility scheme without global optimization.

 Fig. 13: Power-conscious Schemes (prediction incorporated)

Fig. 12: Non-power-conscious Scheme

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

0 0.02 0.04 0.06 0.08

average arrival rate

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

full flexibility+global optimization
full flexibility
partial flexibility
no flexibility

(b)

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08

average arrival rateno
rm

al
iz

ed
 p

ow
er

 c
on

su
m

pt
io

n

full flexibility+global optimization

full flexibility

partial flexibility
no flexibility

(a)

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

0 0.02 0.04 0.06 0.08

average arrival rate

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)
full flexibility+global optimization
full flexibility
partial flexibility
no flexibility

 Fig. 14 explicitly shows the tradeoff between the response time of
soft aperiodic tasks and power consumption. Three different cases
for the full-flexibility scheme with global optimization are compared.
These include the non-power-conscious scheme, power-conscious
prediction scheme, and power-conscious non-prediction scheme. We
observe that the non-power-conscious (non-prediction) scheme
achieves the best (worst) aperiodic task response time and the worst
(best) power consumption. The prediction scheme performs in
between. The prediction scheme achieves a very close performance
on power consumption and as high as 30% improvement in the
average response time of soft aperiodic tasks compared to the non-
prediction scheme. We also observe that the power-conscious
prediction scheme reduces power consumption from 40% to 68%
compared to the non-power-conscious scheme.

Fig. 14: Comparison of Non-Power-Conscious, Prediction and
Non-prediction Schemes

9. Conclusions
 We presented a combined static and dynamic approach to facilitate
power-conscious joint scheduling of periodic and aperiodic tasks.
The deadlines of hard aperiodic tasks are guaranteed through
execution slot reservation in the static schedule. Flexibility is
introduced into the static schedule and is exploited by the on-line
scheduler to improve the response times of the soft aperiodic tasks.
Dynamic voltage scaling and power management are also
incorporated into the on-line scheduler. Power savings are balanced
against the response times of the soft aperiodic tasks, while
maintaining a valid static schedule.

References
[1] W. H. Wolf, “Hardware-software co-design of embedded
systems,” Proc. IEEE, vol. 82, pp. 967-989, July 1994.
 [2] C. Shen and K. Ramamritham, “Resource reclaiming in
multiprocessor real-time systems,” IEEE Trans. Parallel &
Distributed Systems, vol. 4, no. 4, pp. 382-397, Apr. 1993.
[3] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive
systems,” in Proc. Real-time Systems Symp., pp. 110-123, Dec. 1992.
[4] J. Lee, S. Lee, and H. Kim, “Scheduling soft aperiodic tasks in
adaptable fixed-priority systems,” Operating Systems Review, pp. 17-
28, Oct. 1996.
[5] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for
free,” in Proc. Int. Workshop Hardware/Software Codesign, pp. 97-
101, Mar. 1998.
[6] J. P. Lehoczyky, L. Sha, and J. K. Strosnider, “Enhanced
aperiodic responsiveness in hard real-time environments,” in Proc.
Real-time Systems Symp., pp. 261-270, Dec. 1987.
[7] B. P. Dave and N. K. Jha, “CASPER: Concurrent hardware-
software co-synthesis of hard real-time aperiodic and periodic
specifications of distributed embedded systems,” in Proc. Design
Automation & Test in Europe Conf., pp. 118-124, Feb. 1998.
[8] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen,
“Predictive system shutdown and other architectural techniques for
energy efficient programmable computation,” IEEE Trans. VLSI
Systems, vol. 4, no. 1, pp. 42-55, Mar. 1996.
[9] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava, “Power optimization of variable-voltage core-based
systems,” IEEE Trans. Computer-Aided Design, vol. 18, no. 12, pp.
1702-1714, Dec. 1999.
[10] C.-H. Hwang and A. C. Wu, “A predictive system shutdown
method for energy saving of event-driven computation,” in Proc. Int.
Conf. Computer-Aided Design, pp. 28-32, Nov. 1997.
[11] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli,
“Policy optimization for dynamic power management,” IEEE Trans.
Computer-Aided Design, vol. 18, no. 6, pp. 813-833, June 1999.
[12] E. Y. Chung, L. Benini, and G. De Micheli, “Dynamic power
management using adaptive learning tree,” in Proc. Int. Conf.
Computer-Aided Design, pp. 274-279, Nov. 1999.
[13] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes,” in Proc. Design
Automation Conf., pp. 555-561, June 1999.
[14] W. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling
for reduced CPU energy,” in Proc. USENIX Symp. Operating
Systems Design & Implementation, pp. 13-23, Nov. 1994.
[15] Y. Shin and K. Choi, “Power conscious fixed priority
scheduling for hard real-time systems,” in Proc. Design Automation
Conf., pp. 134-139, June 1999.
[16] T. Pering, T. Burd, and R. Brodersen, “The simulation and
evaluation of dynamic voltage scaling algorithms,” in Proc. Int.
Symp. Low Power Electronics and Design, pp. 76-81, Aug. 1998.
[17] T. Burd and R. Brodersen, “Processor design for portable
systems,” J. VLSI Signal Processing, vol. 13, pp. 203-222, Aug.
1996.
[18] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-
based single-chip system synthesis,” in Proc. Design Automation &
Test in Europe Conf., pp. 263-270, Mar. 1999.
[19] E. L. Lawler and C. U. Martel, “Scheduling periodically
occurring tasks on multiple processors,” Information Processing
Letters, vol. 7, pp. 9-12, Feb. 1981.
[20] http://www.arm.com/Pro+Peripherals/
[21] http://www.transmeta.com/
[22]http://www.chips.ibm.com:80/products/powerp
c/chips/
[23] G. Fohler, “Joint scheduling of distributed complex periodic and
hard aperiodic Tasks in statically scheduled systems,” in Proc. Real-
time Systems Symp., pp. 152-161, Dec. 1995.
[24] E. Y. Chung, L. Benini, A. Bogliolo, and G. De Micheli,
“Dynamic power management for non-stationary service requests,”
in Proc. Design Automation & Test in Europe Conf., pp. 77-81,
Mar. 1999.
[25] J. K. Strosnider, J. P. Lehoczky, and L. Sha, "The deferrable
server algorithm for enhanced aperiodic responsiveness in hard real-
time environments," IEEE Trans. Computers, vol. 44, no. 1, pp. 73-
91, Jan. 1995.

(b)

0.0

0.3

0.5

0.8

1.0

0 0.02 0.04 0.06 0.08

average arrival rateno
rm

al
iz

ed
 p

ow
er

 c
on

su
m

pt
io

n

prediction
non-power-conscious
non-prediction

(a)

3.5

4.5

5.5

6.5

7.5

8.5

9.5

0 0.02 0.04 0.06 0.08

average arrival rate

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

prediction

non-power-conscious

non-prediction

