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A Review of the Minimum Maximum Criterion for
Optimal Bit Allocation Among Dependent Quantizers

Guido M. Schuster, Gerry Melnikov, and Aggelos K. Katsaggeleadiow, IEEE

Abstract—n this paper, we review a general framework for the ciently so that the overall scheme is optimal and efficient. In
optimal bit allocation among dependent quantizers based on the the case where the quantizers are independent, the solution
minimum maximum (MINMAX) distortion criterion. Pros and can be found by solving a set of independent problems [3],

cons of this optimization criterion are discussed and compared ) .
to the well-known Lagrange multiplier method for the minimum [31]. In the case of dependent quantizers, these unconstrained

average (MINAVE) distortion criterion. We argue that, in many  Problems can be solved optimally and efficiently by dynamic

applications, the MINMAX criterion is more appropriate than  programming (DP) [20], [23]. Quantizers are called dependent
the more popular MINAVE criterion. We discuss the algorithms  yhen the selection of a particular quantizer depends on the
for solving the optimal bit allocation problem among depen- qjaction of a neighboring (in space and/or time) quantizer.

dent quantizers for both criteria and highlight the similarities : . . . !
and differences. We point out that any problem which can Differential pulse code modulation (DPCM) is a prime exam-

be solved with the MINAVE criterion can also be solved with ple, since a quantizer applied to the current value changes the
the MINMAX criterion, since both approaches are based on prediction value for the next sample. This in turn changes the
the same assumptions. We discuss uniqueness of the MINMAX prediction error which is then quantized by another quantizer.

solution and the way both criteria can be applied simultaneously . : - . .
within the same optimization framework. Furthermore, we show Hence, since the quantizer applied to the prediction error is

how the discussed MINMAX approach can be directly extended n_onlin?ary the quantizer appl_ied to the current sample has a
to result in the lexicographically optimal solution. Finally, we direct influence on the selection of the quantizer used for the

apply the discussed MINMAX solution methods to still image prediction error. We will give more examples of dependent
compression, intermode frame compression of H.263, and shape g antizers later on. The search for the optimal solution consists
coding applications. of first finding the optimal* using, for example, the bisection
Index Terms—Boundary coding, minimum average criterion, method, such that the optimal solution to the unconstrained
mé”'rci‘érgoﬁg’gm;m criterion, optimal bit allocation, shape cod-  hroplem also solves the constrained problem optimally. It is
' ' interesting to notice that with this popular approach, a large
variability among the different source distortions is possible.
|. INTRODUCTION Since in general the sources are consecutive in time and/or

COMPROMISE between the rate and the distortion is afpace. such as, different frames in a sequence, different blocks
inherent feature of every lossy compression scheme. Jfe? frame, or different boundary segments, this variability in
common approach to mathematically formulate this tradedti@lity can be very disturbing and the perceived quality is low
is to minimize the average (or total) distortion for a given bigVen though the average distortion is minimized.
rate, or vice versa, to minimize the bit rate for a given average” different approach to formalize the relationship between
distortion. In other words, the minimum average (MINAVEfhe raté and the distortion is the minimum maximum (MIN-
criterion is employed. The philosophy behind this approach 14AX) distortion approach, where the goal is to minimize the
that if the average distortion is minimized then, in the lonfl@ximum source distortion for a given bit rate, or vice versa,
run, the best quality is obtained. to minimize the bit rate for a given maximum source distortion.
The well-known Lagrangian multiplier method [3], [19], The philosophy behind this approach is that by minimizing the
[20], [23], [31] is well suited for these kinds of constrainednaximum source distortion, no single source distortion will
optimization problems. It converts the “hard” constraineB€ extremely bad, and hence, the overall quality will be quite
problem into a set of “easy” unconstrained problems, paraf@nstant. In fact, the MINMAX criterion is an ideal choice,
eterized by the Lagrange multiplier. These unconstrainedWhen the goal is to achieve an almost constant distortion which
optimization problems need to be solved optimally and effis as small as possible for the available bit rate. It may also
Manuscript received September 1, 1998; revised December 1, 1998 'lbe the criterion of choice when subjective quality is taken into
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Dow Jones index reached a new high. Similarly, in codingriterion and show how the MINAVE can be extended to
applications, it may be meaningless, in certain cases, to rafglude the lexicographic criterion. Furthermore, we generalize
on the global mean squared error (MSE) to judge performantiee concept of a secondary distortion measure first introduced
One example is given in Section V-C for a boundary encodirigr boundary coding. In addition, we show how the boundary
problem. In Fig. 18, the optimal MINAVE solution is foundencoding problem is an application of the general theory
for a rate constrained problem. In this case the optimdiscussed in this paper. Furthermore we present new results of
MINAVE solution did not include the encoding of the aredhe MINMAX criterion for video compression and compatre it
between the leg of the child. Note that otherwise, the boundarypreviously published results using the MINAVE criterion.
approximation is very good (error pixels are in white). This is In Section Il, we introduce the notation and assumptions
the expected result for the MINAVE criterion, since encodingnd formulate the problem mathematically. In Section lll,
this long but rather small object requires many bits (longe review the Lagrangian multiplier method for dependent
boundary) while not encoding it at all results in a relativguantizers and cast the solution in the DP paradigm, and
small error (small area). Therefore, it is the best tradeoff ime also discuss the uniqueness of the solution and show
the MINAVE sense not to encode the object and instead usew the MINMAX approach can be extended to result in a
the saved bits to improve the boundary approximation for thexicographically optimal solution. In Section IV, we review
other objects in the scene. Hence the MINAVE results in &n efficient algorithm for the optimal bit allocation among de-
small global MSE at the expense of a large localized MSRendent quantizers for the MINMAX criterion. In Section V,
A MINAVE solution has an inherent problem with outlierswe apply both algorithms (MINMAX and MINAVE) to the
which, though may be statistically insignificant, can play aimtra- and interframe encoding schemes used in H.263 and
important role as we have shown in the above example. compare the different results with respect to the mean and
with the MINMAX approach, on the other hand, thisvariance of the resulting distortion. There we also present an
problem does not exist, since the local maximum allowab&xample of applying both criteria to the shape coding problem.
distortion is explicitly bounded. This is one motivation forFinally, in Section VI, we compare the MINMAX and the
the recent interest in near-lossless compression techniques PANAVE criterion and summarize the paper.
[17], [22], where quality is maintained at the local level.
Note that the MINMAX approach discussed in this paper can
include the near-lossless technique used in [22], using a proper
definition of distortion. Another strong argument in favor of!l: NOTATION, ASSUMPTIONS, ANDPROBLEM FORMULATION
MINMAX comes from perceptual quality considerations. It In this section we introduce the necessary notation, the
has long been known in the image coding field that the humanderlying assumptions, and the mathematical formulation of
visual system exhibits more tolerance to distortions in regiottse optimal bit allocation problem in a dependent coding
with high spatial activity than to distortions in relatively flatframework.
areas [1], [10]. If the chosen distortion metric is inversely Before we proceed it is important to discuss in more detail
related to a local (mean-removed) SNR, the application tife notion of a source signal (henceforth referred to as source),
the MINMAX criterion has the effect of allowing more er-since the source distortion and the source rate are of critical
rors in high frequency regions and fewer errors in relativelynportance in the development of the paper. In general, we
uniform areas, which is consistent with perceptual qualityonsider as source any signal which is quantized. For example,
considerations. if the quantizers are selected per block (or macroblock in
The MINAVE criterion, however, is much more commonlyH.263 notation) then each block is considered a source. On the
used in the literature than the MINMAX criterion. This isother hand, if the quantizer is selected and fixed on a frame-by-
mostly due to the fact that efficient algorithms have bedrame basis (which is a popular strategy), then the frames are
available for the MINAVE criterion, while such algorithmsconsidered different sources. In speech coding, it is common
have been lacking for the MINMAX criterion. The MINMAX to segment the original waveform into blocks of 10-30 ms
problem for independent quantizers has been studied in [1dhgth. Each of these blocks is then considered a source.
where a simple algorithm has been proposed. The MINMAKor shape coding, the identification of a source becomes
algorithm for the optimal bit allocation among dependentore difficult. Basically the original boundary is considered a
quantizers described in this paper was first published $equence of boundary segments and each boundary segment is
[27] and also in [23, ch. 4]. In [26], the connection beapproximated (quantized) by either a straight line or a higher
tween the MINMAX and the MINAVE algorithm is outlined order curve. Hence the boundary segments are considered
while the first application of the MINMAX algorithm to sources. A complicating factor is that the original boundary is
boundary coding was published in [28]. The first applicationot only segmented into one possible sequence of segments,
of the lexicographic criterion for the optimal bit allocatiorbut into all possible sequences of segments. Therefore, a
among independent quantizers in a continuous framewagken source (boundary segment) will in general consist of
was published in [8]. The basic idea of secondary distorti@everal other sources (smaller boundary segments), and this
measures was introduced for boundary coding in [23]. Thelationship holds until a boundary segment consists simply
main contribution of this review paper is the unification andf two consecutive pixels. Nevertheless, with this view of a
generalization of the previously published results. We estadsurce in mind the boundary encoding is simply an application
lish a common framework for the MINMAX and MINAVE of the more general theory.
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A dependent coding framework implies that the lll. THE MINAVE CRITERION

source rate ri(x;—a; -+, Zits) andlor source distortion | his section we show how the optimal bit allocation
di(%i-q, -, Zi1s) for a given sources; depends not only y opiem can be solved for the MINAVE criterion which is
on the quantizers; applied to that source, but also Oryefined in (2). The solution is based on the Lagrange multiplier
neighboring quantizerse;_q, -+, ;14 in @ neighborhood ehod and DP. Note that for the MINAVE criterion, the total
defined by two nonnegative integessand b. Examples of 416 and the total distortion are of exactly the same form and
such dependent coding _frameworks are all .pred|ct|ve COdlﬂgnce the solution approach for the minimum rate problem is
schemes, such as motion compensated video compressigyiyalent to the solution approach for the minimum distortion
segmentation encoding, image coding, etc. For examplgopiem, Therefore, in this section, we will concentrate on

in _motion compensated video compression, the quantiZfe minimum distortion problem, keeping in mind that by
selected for the previous frame has a direct influence on q%?abeling the function names, i.e() — d(-), d(-) — r(-)

rate-distortion characteristic of the current frame, since the y D(-), and D(-) — R(-), the minimum rate problem
reconstructed previous frame and the motion information iS, pe solvéd using the samé approach.
used to predict the current frame. _ The basic idea behind the Lagrange multiplier method is to
The total rate for encoding all Sources 1s the sum of th@erge the rate and the distortion with a Lagrangian multiplier
source rates, and defined as follows: . This results in the Lagrangian cost function which is of the
N—1 following form:
R(zo, -+, zn—1) = Ti(Tizas o Tivs) (1)
; In(xo, -, an—1) =D(wo, -+, an—1) + A
Depending on the employed distortion criterion, the distortion R(wo, -+, x-1)- (6)
for encoding all sourced(zo, ---, xy—1) is the sum (or The goal of this method is to convert the “hard” constrained
average) of the source distortions (MINAVE) problem of (5) into a set of “easy” unconstrained problems
N—1 parameterized b.
D(zo, -+, &n_1) = Z di(Tiay -+ Tigs) 2) It has been shown in [3] and [31] that if there is\& such
i=0 that
or the maximum of the source distortions (MINMAX) [, -, an_1]=arg min  Jyx(zo, - -, zn_1) (7)
Lo, TN—1
D r = 3 (T, X i
(370, TN 1) zE[O}nr}}}(\r—U{d(aZ * +b)} and R(JIB, Ty xR’—l) = Rma.xu then [3557 T xR’—l] is also

(3) an optimal solution to the minimum distortion problem of
(5) for the MINAVE criterion. It is well-known that when
with z_q, -+, vy and oy, -+, an1—141 Specifying the \ sweeps from zero to infinity, the solution to problem (7)
boundary conditions. traces out the convex hull of the operational rate distortion
In either case, two optimal bit allocation problems cagyrve, which is a nonincreasing function. Hence bisection [6]
be formulated, the minimum rate problem and the minimu%n be used to f|nd* The main prob'em W|th the Lagrange
distortion problem (which is also called the rate constraingfyitiplier method is that only solutions which belong to the
problem). In the minimum rate problem, we are looking foggnvex hull can be found.
the quantizer sequence which results in the smallest bit rate fOCIearIy, the efficiency of the Lagrange multiplier method
a given maximum distortio®)ax. This can be formulated asdepends on the assumption that the unconstrained problem

follows: of (7) can be solved efficiently. Based on the assumptions
min  R(zo, - -, £n—1), made in Section Il _the source rates anq distortions only
T, TN -1 depend on the quantizers selected in a neighborhood around

st D(xg, -y 2N-1) £ Diax- (4) the current source. Therefore, the Lagrangian cost function

o ] ] ) can be expressed as follows:
In the minimum distortion problem we are looking for the

quantizer sequence which results in the smallest distortion for il
a given maximum bit rateR,,.x. This can be formulated as Azo, -y an—1) = Z(di(xi—av e Tigp) + A
follows: iz0
i(Tieas s Tigs))
min  D(zg, -+, Tn-1), N_1
T, o, N1 ) ‘ ‘ N ‘
StiR(x0, ) ax_1) < R 5) ; ni(Tiar s Tigs)  (8)

The above formulations hold for either of the two distortiowhere jx ,;(-) = d;(-) + A - »;(-). The Lagrangian multiplier
criteria. It should be noted, however, that in some applicatiomagthod is based on the assumption that the above uncon-
N, the number of sources retained for quantization, may bB&ained problem can be solved optimally and efficiently. In
different from the number of sources present in the origintie following section we will closely follow the development
signal. In this case, finding the optim&/ is part of the of the DP recursion formula in [23]. Using it we will then
optimization. show how DP can be used to optimally solve the unconstrained
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problem efficiently, as long as, the size of the neighborhoationg local dependency and hence the DP approach works

(a + b) is reasonably small. well.
A. DP Recursion Formula B. Forward DP Algorithm

Even thOUgh there exists only a finite number of combina- Ha\/ing established the DP recursion formula (]_]_),
tions in which source quantizefso, ---, xy—1) in (8) canbe we apply the Viterbi algorithm [5] to arrive at the
combined, the exhaustive search is too complex. Assuming Eﬂﬁimal solution, which consists of the minimum cost
same cardinality.X;| for all N source quantizers, the complex-lninxw vanoes INo1(TNCas o, yo1p)  and its
ity of exhaustive search i9(|X;|"), where complexity refers associated sequence of source quantizers. The recursion is
to the number of times the cost functioR (zo, - -+, zxy-1) first initialized:

needs to be evaluated. With the use of the proposed DP
algorithm, this complexity can be significantly reduced. . ot
Dropping the subscripk, we denote byj;(-) the minimum Ja—1(0s -5 Vatp—1) = Z Jil®izay = s Tits)
Lagrangian cost up to and including neighborhdpthat is =0
Y]z, -+, Tato—1] (12)

4
9t (@tmart, ooy wgy) = | min > dil@icas s i) and the optimal selection backpointer is introduced:
1=0
©) ta—1(0, -, Tagb—1) = [T_q, "+, To_1]- (13)
From (9), it follows that . . .
Next, the recursion formula is applied fbe= ¢ — 1 up to and
I (Tt —at1s 5 Tiv1e) including! = N — 2, that is
+1
= min Z Ji(%ica, -, Tigw) i1 (Ter1—at1s © 5 Tirigs)
Lo, T —a S ] -
= = min [jl (xl-l-l—av ) -TI-H;)
l Tiil_a
= min [ min <Z Ji(@izas =+ Tigs) + i1 (@i1-a; - Trg140)];
Ti41l—a Lo,y Ti—a i—0
= Y[@ipi—at1s s Tigits]- (14)

+ gt (Trias o xl+1+b)>]' (10) Again the back pointer is assigned, for which the argument
which minimizes the above problem needs to be known:

Since jit1(Zif1—a, -, Zi4145) does not depend on
Tg, -+, Ti—a, it cAN be moved outside the inner minimization Tl1—o(Tig1—at1s s Tig14s)
and the following DP recursion formula results: - argmmin Ui (#ig1a, - Tigs)
I+1—a
el P — 1 el e .
I (Ti1—at1s - Tig14s) min Ul (Tt41—ar -+ Tigt) F it (@ig1mas o Ti1as)],
+i (Tit1—a, - 5 Tiprae)]- VITir1—at1, s Tig140)] (15)
(11) o
which is

Assuming that all source quantizers have the same cardinality
| X;|, this recursive formula requires onlyX;|**+**! com- 4141(Tig1—at1, - > Tig14b)
parisons to findj; , (ziy1—at1, -, Tig14), VT41—at1, = (271 (T4l a1y s Tb146)s Titl atls - Tig),
e iven j¥(xiy1_q, -+, Tigp). Thus, the overall

» L4146 O I (T » T1qb) V[Zis1matt, s Tipits]- (16)

complexity isO(N - | X;|*+**1), which is a significant reduc-
F'On from O(|.X;[™) requwed_ by the exha-usnve search.. It Srhe last backpointer is the argument that minimizes the cost
important to note that the time complexity depends dwectlg .

. . . dt the last source:
on the size of the neighborhood ¢ 4). In other words, if
the dependency among quantizers is well localized, such as irpx* 2]
single predictor DPCM « = 1, b = 0) or a second-order N=ar o N-1 .
B-spline ¢ = 1,b = 1, see Section V-C), the above DP = &8 [W%{r.l.l.flmmdJJ\"*l(xN*“’ craneie). (17)
formulation results in a low time complexity. Clearly, if the
dependency is not well localized as, for example, the vectGbnsequently, the optimal sequence of source quantizers
median-based DPCM for the motion vector predictionin H.263y,_,, - -+, 2}, _,, is found by following the backpointers
(e = 11,5 = 0) [24], [29] the time complexity increasesduring the backtracking stage, i.e.,
exponentially. Furthermore, in cases where the dependency is
global, for example, the current quantizer depends on every;_, = [ii(z]_,41, -~ Z1)]1, I=N-1,---,a (18)
previous quantizer, then the above DP algorithm degenerates
to an exhaustive search. Nevertheless, most problems hawehare[-]; refers to the first element in the vector.
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IV. THE MINMAX C RITERION

R¥(D )
In this section, we propose a general algorithm for the A

optimal bit allocation among dependent quantizers for theR*(Dl
MINMAX criterion [27]. The basic idea behind the proposed R
algorithm is to solve the minimum rate problem optimally — max :
using DP. This is possible since the maximum distortionR*(D>}  )---
constraintD,,,,. applies toeach source and not to the sum ;

of the source distortions. We then prove that the operation@l*(Dm
rate distortion function is nonincreasing. Therefore, we can = max : :
solve the minimum distortion problem, which is a min maxR*®o_ 5 - ------- e
problem, using bisection, where in each bisection iteration the ;

néw brackeet

minimum rate problem is solved using a differeit, . - -
: old b:rackct D
A. The Minimum Rate Problem § § : max
) ) . A 1 m u
In this section, we solve the minimum rate problem which Piax Pmax Pmax

is described in (4) for the MINMAX criterion. The key
observation for the derivation of the optimal solution is that,
the maximum distortionD,,,, constraint applies to each
source, and not, as in the case of the MINAVE criterion, to tHBe combined sources, where each source distortion has to be
sum of the source distortions. We can make use of this fawlow the maximum distortiom...... [see (20)]. We use the

Fig. 1. TheR*(Dmax) function.

by redefining the source rates as follows: following theorem to formulate an iterative procedure to find
the optimal solution for the minimum distortion problem.
7i(Tizas ) Tith) Theorem 1: R*(Dax) IS @ nonincreasing function of
_ ) oo di(xifav Ty $i+b) > Dmax Dmax-
o {7’7;(377;_,,,, o i) i Tieay s Tigd) < Dinax. Proof: Let D2, . > D... ['z§ ---, 2% ;] be
(19) the optimal solution of (4) forDy.. = Di,. and
[2xf, -+, 2x%,_,] the optimal solution of (4) forD,.. =

In words, the rate for a source with a distortion which is largen? . Since D}, < D2, [*z§, ---, 'z%_,] is a possible
then the maximum permissible distortion is set to infinitysolution of (4) for D,,... = D?.., using R*(DL_ ) bits.

This results in the fact that, given that a feasible solutiogince [?zf, ---, 2z%_,] is the optimal solution of (4) for
exists, the quantizer sequence which minimizes the total rafe, .. = D2 __, it follows thatR*(D2 ) < R*(D...). =
as defined in (1), will not result in any source distortion greater The above theorem is intuitively clear since it simply states
than D,,..x. If no feasible solution exists, then the resultinghat if a greater maximum distortion is permissible, then we
minimum total rate is infinite, hence, this situation can easibhould be able to encode the sources with a smaller number of
be detected and,,... can be increased. In other words, theits. Note that even though this seems obvious, this only holds
minimum rate problem, which is a constrained optimizatiofiue because we can solve the minimum rate case optimally.
problem, can be transformed into an unconstrained optimizaHaving shown thatR*(D,,.,) is a nonincreasing func-
tion problem using the above redefinition of the source rategon, we can use bisection to find the optima; .. such

The structure of the total rate formula in (1) is equivalent tthat R*(D;,,.) = Ruax, Which solves the minimum distor-
the structure of the Lagrangian cost function for the MINAVEion problem of (5) or the MINMAX criterion. The bisec-
case in (8). Hence, the optimal solution to the unconstraingdn method starts with two pointgD’ . R*(D* )] and
minimum rate problem can also be solved by DP as shoypy_ = R*(D¥,.)] which bracket the optimal solution (see
in Section I1I-B. Fig. 1). Then, a middle pointD; .., R*(Dm )] is found by

We can now calculate the operational rate distortion functigivoking the minimum rate algorithm for
R*(Dyax) as follows:

Dmax = Dgllax = (Dllnax + Dglax)/2 (21)
R*(Dmax) it min R($0a T, -/L'N—l)a
FO, N The new bracketing points of the optimal solution are then the
s.t.:D(zo, -+, 8-1) < Dmax  (20)  middle point and one of the original points which results in a

bracket which includes the optimal solution. This procedure is
then iterated until the optimal solution is found or the bracket
is small enough for the purpose at hand.

Since this is a discrete optimization problem, the function

The proposed optimal bit allocation algorithm for the min*(D,,,.,) is not continuous and exhibits a staircase charac-
imum distortion problem is based on the fact that we casristic (see Fig. 1). This implies that there might not exist a
optimally solve the minimum rate problem. In other wordsD;, ... such thatR* (D} ..) = Ruax. In that case, the proposed
for every givenD,,., we can find the quantizer sequencalgorithm will still find the optimal solution, which is of the
which results inR* (D), the minimum rate for encoding form R*(D}; < Ruax, but only after an infinite number of

max )

where we assume thd?,,,,.. is a variable.

B. The Minimum Distortion Problem
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iterations. Hence we stop the algorithm after a fixed numbeér,,.. is the largest possible value of the secondary distortion

of iterations. measure. Consequently, aflysatisfying0 < 3 < 6R/Dpax
is capable of discriminating between two solutions based on
C. Breaking the Tie a secondary distortion measure. By selectih@s proposed

Sometimes the solution to the MINMAX distortion problemabove a Sl,JbOPtimal,MlNMAx solution will never b,e selected
is not unique. That is, two or more source quantizer sequen@é the optimal solution, and the secondary distortion measure
result in the same minimum rat&*(Dy..x) for the same wiﬁ only be used to find a winner among the optimal solutions.
max

distortion D,,,... One way out of this problem is to arbitrarily Itis also .p.ossible to incorporate seconQary distortion mea-
select one of the solutions, for example, the one with th!'€S: specifically the MINMAX measure, into a DP algorithm

smallest index. This is, in fact, the way most encoders resolfgerating on the MINAVE crlterlor_m we cannoF |ncl.ude a
this problem. MINMAX measure into the Lagrangian cost function directly.

Another way to break this tie is with the use of seconda ote, however, that the maximum source distortion exhibits

distortion measures first introduced for boundary encoding {A¢ same order of dependency as the sum of the source

[23]. As shown above, DP is used to solve the minimu'qistortions. In other words, knowing the current maximum

rate MINMAX problem directly by redefining the sourceSource distortion makes the future of the maximum source
jstortion independent from the past. We now apply this

rates. Secondary objectives can easily be included in the g ,
framework. We propose to use the MINAVE criterion as §"owledge to the DP recursion formula of (11). If two (or
secondary objective to break the tie between two or mofaOre)Zi+1—. result in the samey,, (), the one resulting in
optimal MINMAX solutions. The source rates are change‘i}j'e smallest maximum source distortion is selected, and the
again, and in fact something very similar to a Lagrangian €W Minimum maximum source distortion is stored together
defined. Recall the source rates were redefined before in (Y8 the backpointer identifying the optimat., .

for the MINMAX case. The following definition changes (19) Yet another way to break the tie between two or more

to include a MINAVE based secondary distortion measur@Ptimal MINMAX solutions is through application of the lexi-

weighted by 3: cographic optimality principle [8], which can be considered an
extension of the MINMAX criterion. If the MINMAX solution
Ji, 8(®icas -, Tigp) is unique, then it is also the lexicographically optimal solution.
S ATia, - Tigs) > Diax This is the reason why we discuss this approach in this section.
{T(.) +8%d(): d(ica s Zigs) < Diax The lexicographical optimality criterion can be explained as

(22) follows. If two or more MINMAX solutions exist, a sorted list
. is created for all candidate optimal solutions. It contains the
where r(-) and d(-) stand for 7(zi—a, -, zits) and source distortions introduced by individual source quantizers.
d(xi—a, -+, Tits), respectively, with the latter one beingThese distortions are sorted in the decreasing order and the lists
the MINAVE criterion-based secondary distortion measutgre then scanned sequentially. When there is a tie between two
and # a positive real number. As shown, the DP algorithmptimal MINMAX solutions the first elements of the respective
finds the sequence of dependent quantizers which minimizegicographically ordered lists must be equal. The lexicograph-
Ef\;_ol Ji. g(@icay -y Tigs)- ically ordered list which has the smallest second largest source
We would like to selecti such that it will identify a winner distortion is then considered to represent the smaller total
among the optimal solutions, but it should be impossible f@istortion, and hence, it identifies the optimal solution. If the
any other solution to outperform the optimal ones. Let usecond largest source distortion still results in a tie, then the
denote byJ; = Ry + - Dy and.J; = Ry + 3 - D3 the costs  third largest source distortion is compared, and so on.
of two solutions to the original MINMAX problem and let us Clearly, we do not want to keep all possibly optimal
assume without loss of generality that solutiénis optimal. solutions until the end of the DP. Ideally, we would like
Clearly, if .J; is also optimal, i.e.R; = R, any positive real to eliminate lexicographically suboptimal solutions as early
£ will cause the solution with the smaller secondary distortiofis possible. This can be achieved easily in the proposed DP
D to be selected. If, on the other hand, is not optimal, framework, since a lexicographically ordered list exhibits the
i.e., Ri < R, then we would like solution/; to be selected same order of dependency as the maximum of the source
regardless of the magnitudes of the secondary distortions. THgstortions. In other words, knowing the current lexicograph-
is, # > 0 must be such that, in this case ically optimal list of source distortions makes the future of
~ ~ ~ ~ the lexicographically optimal list independent from the past.
Botf-Di <Rt - Dz, VDi>0,D2>0. (23 We now apply this knowledge to the DP recursion formula of
If D, < pQ, the J; solution is correctly selected. Hence, we11). If two (or more)r;y; , result in the samegy, , (-), the
assumeD; > D,. Rearranging the variables, the followingone resulting in the smallest lexicographically ordered source

upper bound results: distortion list is selected, and this new list is stored together
SR Ry — Ry with the backpointer identifying the optimal; .
[ < = < = (24) The main difference between the idea of a secondary

Diax  D2— D1 distortion measure and a lexicographically optimal solution is
where 6R is the smallest possible difference between ahat the secondary distortion measure allows for the influence
optimal and a suboptimal solution, which is usually 1 bit, andf a completely different distortion measure. In contrast to



SCHUSTEREet al: REVIEW OF THE MINIMUM MAXIMUM CRITERION 9

(9]
o
T

T

— Fixed Q=10

[N
N 20 J
2]
joX
[
®» 10
1 L 1 I 1 1 1 L 1
0 10 20 30 40 50 60 70 80 90
30F T T T T T 3

T T T T
‘ — Minimum total distortion

n
Q
T

1

step size
o

?

1

0 10 20 30 40 50 60 70 80 90
30 F T T T T T T T T T 3
I——~ Minimum maximum distortion
(4]
HNeaor b
(o
Q
% 10+
1 1 1 1 i i 1 1 1
0 10 20 30 40 50 60 70 80 a0

macro block number

Fig. 2. Macroblock quantizer step sizes. First row: fixed quantizer step sige6f10; second row: step sizes for the minimum total distortion approach;
third row: step sizes for the minimum maximum distortion approach.

this, the lexicographically optimal solution is all based on TABLE |

one type of distortion measure. For example, if there are tw;\EQgHTSEF H:A?MMQER';’?LHC;C&SE%;; %}?QSEEQSSJLII/ISSIEQ F;AHRET';J;ERH'\QLSDESv

MINMAX: optimal solutions for a boundary approximation, FOR THE MINIMUM , MAXIMUM , AND STANDARD DEVI.ATION CoLumN

it makes intuitive sense to select the one which results in

a smaller MSE. This is the nature of a secondary distortion Rate Distortion (MSE)

measure. Clearly, the tie can also be broken using a lexico- mean | min | max | std

graphical criterion, but in this case, the breaking of the tie

is still based on a smallest maximum distortion and not on

something else, like an intuitive MSE. In other words, the

secondary distortion measure is appealing to us since it allows min max || 18293 | 29.9 | 0.6 | 462 | 15.9

to combine MINMAX and MINAVE criteria which are both

well-known concepts for which we inherently have an intuitive |t js important to notice that the presented theory can also

understanding. be used for completely different coding schemes, as long as
the assumptions stated in Section Il are satisfied.

Q=10 18297 | 27.8 | 0.6 | 66.8 | 17.5
min total || 18431 | 27.1 | 0.6 | 65.0 | 17.3

V. APPLICATIONS

In this section, we present several examples from differefit Still-Frame Compression
areas of data compression to compare the MINAVE and theThe dependent image coding scheme we use for this exam-
MINMAX approaches. They all have in common the theme gdle is the intraframe scheme employed in TMN4 [4], which is
optimal bit allocation among dependent quantizers, for whithe test model four of the H.263 standard.
solution techniques derived in Sections Il and IV are applied. For the example at hand, we encode the first frame of the

In Section V-A, we discuss the optimal block quantizeQCIF color sequence “Mother and Daughter.” We use the
selection for a still-frame compression scheme [23], [27]. MMN4 mechanism for transmitting the quantizer step sizes
Section V-B, we discuss the optimal quantizer, mode, amchich is based on a modified delta modulation scheme. In
motion vector selection for a motion-compensated video comMMN4, the quantizer step size of the current macroblock
pression scheme. Note that the mode and quantizer selectimmst be within+2 of the quantizer step size employed for
scheme for the MINAVE criterion has been reported in [24he previous macroblock. Then the difference between the
and is very similar to the scheme reported in [32]. Theuantizer step sizes is entropy coded. This DPCM scheme
combined selection of motion vector, mode, and quantizer farsults in a first-order dependency between two consecutive
the MINAVE criterion has been reported in [29], while theblocks, since the operational rate distortion curve of the current
selection of optimal motion vectors in a lossless video codblock depends on the quantizer selected for the previous block.
are discussed in [21]. Finally, in Section V-C, we discuss the First, we fix the quantizer step size for all macroblocks to
optimal boundary approximation for a shape-encoding schem@ The resulting rateHo—10 = 18297 bits) and distortion
[11], [30]. are listed in Table I. Note that the mean squared error (MSE)
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Fig. 3. MSE of each macroblock of the luminance channel. First row: MSE for a fixed quantizer step §ize @0; second row: MSE for the minimum
total distortion approach; third row: MSE for the minimum distortion approach.

of the luminance (Y) channel is used as the distortion measuoptimal block-based (1& 16) motion estimation and residual
For both the MINAVE and the MINMAX criterion, we solve error quantization scheme.
the minimum distortion problem, where we set the maximum As in the previous section, we use the QCIF color sequence
rate equal to the rate TMN4 uses for a fixed quantizer of Mother and Daughter” to compare performance of MINAVE
(Rmax = Rg=10). Again, the resulting rate and distortion arg29], MINMAX, as well as a fixed-quantizer scheme.
listed in Table I. The displaced vector field (DVF) encoding scheme used
In Fig. 3, the MSE per macroblock for the three implemerhere differs from TMN4 in two aspects. First, instead of
tations is shown, and in Fig. 2, the corresponding quantizarraster scan, the modified Hilbert scan [23] is employed
selections are displayed. It is interesting to notice in Fig.t® achieve a higher correlation between consecutive motion
that there are quite a few blocks where the quantizers amectors. Second, only a first-order DPCM encoding is used
the same for both optimal schemes. These blocks tendaied not a vector median-based one, which, because of the
coincide with the blocks where the MSE (see Fig. 3) is vemyeighborhood's small sizez(= 1, b = 0 in Section IlI-A),
small, i.e., blocks with no high frequency components. Iresults in a faster optimization procedure. The motion is
Fig. 4, all three approaches are compared to the original imagstimated with a half-pixel accuracy with the maximum range
The compression ratio for the three compressed imagesofs+15.5 pixels.
approximately 11, and, even though in each case the blockNVe use the TMN4 modified delta modulation scheme for
MSE's are quite different, the visual quality of the thregransmitting the quantizer step sizes between the current and
compressed images is similar, which is another argumenttfre previous blocks, with the difference limited #e2. This
favor of the fact that the global MSE does not tell the wholdifference is then entropy coded and sent to the decoder
story. It is clear from Fig. 3 that the minimum maximumtogether with the gquantization index.
distortion scheme results in a more even quality for the entireConceptually, for a given block, we may think of se-
frame than the minimum total distortion approach. In faclgcting a particular motion vector followed by selecting the
discounting the blocks with very low MSE, the distortiorresidual error quantizer as a single quantization operation.
profile is quite flat and very close to the minimum averag8ince the number of these generalized quantizers is finite and
distortion achieved by the MINAVE approach. In other wordshey exhibit a first-order (rate) dependency, the techniques of
the result shows that if the goal is to have almost consta®éctions Il and IV are applicable.
distortion, which is almost as low as the smallest possiblein the following experiments, we apply the scheme men-
average distortion, for a given bit budget, the MINMAXtioned above to encode the “Mother and Daughter” sequence
criterion is an excellent choice. in the intermode at 7.5 frames/s, i.e., every fourth frame. As
with the intramode, the MSE of the luminance (Y) channel is
] used as the distortion measure.
B. Intermode Frame Compression First we fix the quantizer step size for all macroblocks in
An example of applying the MINMAX approach to a depenall frames to 10. In this case, the encoder can only decide in
dent quantizer framework is presented here for the interframtich mode (intra, inter, skip, or prediction) a given block
coding scheme employed in TMN4 [4]. This example is ais encoded, and, in case of inter, which motion vector to
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Fig. 4. Comparison between MINMAX, MINAVE, and fixed quantizer approaches with the same compression ratio.

use. These decisions, however, are made using a heuristic
algorithm. The resulting rates, for each frame, are stored irf’[~ ; : : : » : :
the rate profile to be matched by the MINAVE and MINMAX Lo b e T Mikuax cpmsaten
optimal encoders, which, in addition to the mode, can alsd™[ ~ ry% 0y, LEDD Tedeenw@d
optimally choose both a motion vector and a quantizer for_|
each block. That is, both MINAVE and MINMAX solve the
minimum distortion problem, subject to the rate being equal,,|
(within 25 bits) to that used by TMN4 with the fixed quantizery
step size encoding. The resulting average block MSE evolutiazraz~ P
for the three encoders is shown in Fig. 5 for all coded frame§.
Similarly, Figs. 6 and 7 show the evolutions of the maximum so
and the standard deviation of the block MSE. Clearly, the
MINMAX approach leads to a greater uniformity in the 2
maximum MSE across all frames. It may seem strange that,
within each frame, the MINAVE and MINMAX approaches
exhibit similar degree of variability of the block MSE's, as i : ; : : , ; ; : :
evidenced by Fig. 7. However, a global measure like the © % % 6 & 10 120 140 160 180
standard deviation is inherently incapable of penalizing ﬂﬁ&

Average block MSE

=T =T

e

200

. . ig. 5. Comparison between the average block PSNR
few outliers possible under MINAVE, and, hence, obscures tigsng = F1>0 * log;o(2552/MSE)] for the MII%MAX, MINAVE,

benefits of MINMAX. As expected, the MINMAX approach isand fixed quantizer approaches with the same compression ratio.
outperformed by both MINAVE and fixed quantizer schemes

in terms of the average block MSE. The optimal quantizém Figs. 8—13 for the fixed quantizer, MINAVE, and MINMAX
selections and the optimal motion vector fields are displayedcodings, respectively. It is interesting to note that in all



12 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 1, MARCH 1999

Maxirnum block MSE 0
120 - R R PR r e PR R

E— MINAVE optimization :
: : : : [ IRl MINMAX optimization . 16
110F . : }s B TR REETS Bl Fixed quantizer (Q=10} 3

Maximum MSE

N T N 10

[ 20 40 60 80 100 120 140 160 180 200 144 ; —
frame 0 16 32 48 64 80 96 112 128 144 160 176

Fig. 6. Comparison between the maximum block PSNR - N : . .
[PSNR = 10 * log,y(255?/MSE)] for the MINMAX, MINAVE, Fig. 8. Quantizers in the fixed quantizer scheme.

and fixed quantizer approaches with the same compression ratio.
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Fig. 9. Motion vectors in the fixed quantizer scheme.
Fig. 7. Comparison between the standard deviation of block MSE for

the MINMAX, MINAVE, and fixed quantizer approaches with the same

compression ratio. modified read (MMR) coder [33], the baseline coder [13],
the vertex-based polynomial coders [9], [18], as well as the
cases, no motion vectors are found in the hand area sirieeently proposed optimal B-spline coders [15], [16], [30]. A
this newly appeared object was not present in the previolgyiew and comparison of shape coding algorithms can be
reference frame. In general, with the MINMAX approach, afound in [11].
almost uniform level of quality is achieved, which, arguably, The problem at hand is the lossy approximation of a given
is more consistent with the subjective assessment of qualifipsed discretized contour by connected segments of a given
than the global MSE. order (lines or higher order curves). In the following discus-
sion, we refer to second-order B-spline segments, with each
C. Shape Coding segment being defined by three consecutive control points.
In this example, we demonstrate the application of MINIhe precise mathematical definition of this parametric curve
MAX and MINAVE approaches to the problem of lossy boundis given in [11]. A continuous spline segment is quantized to
ary encoding. Recently, this problem has attracted consideraltiéhe discreet support grid of the image. Optimal placement of
attention as a result of emerging multimedia applications afite control points, under a chosen differential encoding scheme
the MPEG-4 standardization effort. of their position and a segment distortion measure, constitutes
A number of algorithms have been recently reported, likéhe solution to the contour approximation problem. Although
for example, the context-based CAE coder [2], the modifiexh the surface this problem seems quite different from the
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Fig. 10. Optimal quantizers in the MINAVE scheme. Fig. 12. Optimal quantizers in the MINMAX scheme.
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Fig. 11. Optimal motion vectors in the MINAVE scheme. Fig. 13. Optimal motion vectors in the MINMAX scheme.

other examples presented in this paper, it can be formulaf@égtric used by MPEG-4 to evaluate efficiency of competing
and solved using the same methods. shape coders. A contour distortion is defined as the number of
The definition of a distortion between the original and th&correctly labeled pixels, i.e., all pixels in the interior of the
approximating boundaries is not unique. When the MINMAXriginal object and in the exterior of the approximating object,
criterion is employed, the problem at hand is to minimiz@" Vice versa, normalized by thg tota! number of_lnterlor pixels
the rate while guaranteeing that none of the pixels of tH the original frame. A frame distortiod,,, which is the sum
approximating contour is located farther thBg.... (Euclidean ©Of itS contour distortions, is then defined as
distance) away from the original contour. To aid in the __number of pixels in error
implementation, as well as understanding, of the algorithm, " number of all interior pixels
we define a distortion band, centered around the original| gt Pu_1, Pu, andp,41 be three consecutive control points
boundary, to which a MINMAX approximation must belonggefining a B-spline segment of the approximating boundary.
(In [12], Dynax was allowed to vary.) Fig. 14, in which This segment originates at the midpoipt, (1, p.,) and ter-
the original and the approximating contours are also showfinates at the midpointp(. 1, p..). Let us also associate the
illustrates this concept. We note, however, thit,, is not a beginning and the end of the spline segment vitand n/,
true metric, since there may be pixels on the original contothie two closest points on the original boundary, respectively.
located a distanc® > D,,,., from the approximating contour. Then the segment distortion can be evaluated, as in Fig. 15,
For the MINAVE criterion, we choose to adapt the distortioby counting the number of pixels in error. Clearly, the contour

(25)
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Fig. 14. Distortion band and boundary approximation using the MINMAX criterion.
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Fig. 15. Area between the original boundary segment and its spline approx- V \‘;,l

imation (circles).

(b)

. . Y . i Fig. 16. Encoding of l trol point.
distortion under the MINAVE criterion, in this case, is additive, 9 neoding of & spiine control poin

since it can be defined on a segment-by-segment basis.

In order to decorrelate consecutive control point locationselection of control points under either MINMAX or MINAVE
a second-order prediction model is used [11]. Every controfiterion in the framework of resource allocation among de-
point is encoded in terms of the relative angland the length pendent quantizers or states, so that the tools developed in
S (in pixels), as depicted in Fig. 16(a) and (b). Control poirsections Il and IV can be applied to find the optimal solution.
locations are not restricted to belong to the original boundaiMe note that when the MINMAX criterion is employed,
since the problem at hand is that of approximation anfip, 1, pu, put1) iS two-valued: zero when the segment falls
not interpolation. For reasons of computational complexitwithin the distortion band andco otherwise. Let us define
however, a fixed width admissible control point band ia state as a grouping of two consecutive control points. A
defined around the original contour, similar to the distortiotransition between two state€®,,_1, p.) and (pu, put1) IS
band of Fig. 14, to which control points must belong. Wéhen labeled with a Lagrangian cosf{p,_1, pu, Put+1) =
sequentially number all original boundary pixels and associaté.,,—1, pu, Put1) + A - d(pu—_1, Pu, Put1), FEPresenting one
every control point band pixel with the boundary pixel close®-spline segment. Thus, we can associate a “quantizer” with
to it. Implementation details, including specification of thevery pair of consecutive states, since it has both the rate and
VLC tables fora and 3, can be found in [11] and [16]. the distortion characteristics. Thus, an ordered set of control

Having defined the segment rat€p, 1, p., p.+1) @nd points corresponding to the sequence of dependent quantizers
the segment distortiod(p,,—1, pu, pu+1), the problem is the with the least total cost constitutes the optimal solution to
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Shape Coding: R-D curves for 100 frames of the "Kids" sequence
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Fig. 17. Rate-distortion performance of MINAVE and MINMAX algo-
rithms.

Fig. 19. Frame 5, kid 1 encoded with 343 bits using the MINMAX approach.

using the MINAVE and MINMAX criteria with 343 and 347
bits, respectively. With the areas in error shown in white, it
can be seen in Fig. 18 that the object representing the area
between the legs of the kid was deemed unimportant based
on the global rate distortion tradeoff. With the MINMAX
approach, the encoder must approximate every object with a
given maximum distortiorD,,,.. which prevents such objects
from being skipped.

VI. CONCLUSIONS

We conclude this paper by comparing the two optimal
bit allocation algorithms for the MINAVE and the MIN-
MAX criterion. The MINAVE approach is based on the
Lagrange multiplier method. This method is used to trans-
form the constrained optimization problem into a set of
unconstrained optimization problems parameterized by the
Lagrangian multiplier\. These unconstrained problems are
then solved optimally using DP. The optimei, which results
9 the solution of the original constrained problem, is then
found using an iterative approach, such as bisection, where
for each iteration the unconstrained problem needs to be
the contour approximation problem. The optimal solution isolved. For the MINAVE approach, the minimum rate and
obtained by applying the DP recursion formula, described the minimum distortion problem are both solved by the same
Section IlI-A. algorithm. This is one of the main differences between the

We conduct experiments on the 100 frames of the “Kid$INAVE and the MINMAX approach.
sequence in the intra mode, i.e., without taking into accountFor the MINMAX approach, the minimum rate problem,
the temporal correlation between frames. We compare tivbhich is a constrained optimization problem, can be trans-
MINAVE and the MINMAX algorithms in terms of their rate formed into an unconstrained problem using the redefinition
versus distortion characteristics in Fig. 17, where both tloé the source rates. Then this unconstrained problem can
rate and the distortion were averaged over 100 frames. Bs solved directly using DP. In other wordwp iteration is
expected, MINAVE outperforms MINMAX with respect to thenecessary to solve the minimum rate problem. The minimum
global distortion measure used for its optimization. When wdistortion problem is then solved using the fact that we can
consider the visual quality, however, the MINMAX result mayind the optimal solution to the minimum rate problem, which
be preferred. Figs. 18 and 19 show the same object encodesults in a nonincreasing operational rate distortion function.

Fig. 18. Frame 5, kid 1 encoded with 347 bits using the MINAVE approa
(white: pixels in error; grey: error-free pixels; black: background).
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The solution to the minimum rate problem is also found by ane] C. F. Gerald and P. O. Wheatleppplied Numerical Analysisith ed.

iterative search for the optima);:

max

using bisection. For each

. . s ; U7
iteration, the minimum rate problem (i.e., the unconstralne&]

problem) is solved using DP.

While these algorithms have many similarities, they ardS]

quite different with respect to finding all optimal solutions

This cannot be guaranteed for the Lagrangian approach, sinisg

only solutions belonging to the convex hull can be found.
Furthermore, while the Lagrangian multiplier method needs g
iterative search for both the minimum rate and the minimum
distortion problem, the MINMAX approach only needs arﬂn]
iteration for the minimum distortion problem. Hence, the
minimum rate problem can be solved much faster for the

MINMAX approach. Ultimately, showing that the MINMAX

[12]

approach has several algorithmic advantages over the MI-

NAVE approach does not help somebody who needs to sol

f8]

a MINAVE problem. We do believe however that many
real-world problems are better served by using a MINMAX14]
approach than a MINAVE approach and that the MINAVE
approach has only been so popular since its optimal solution
has been known. We have argued that the MINMAX approacts]
based on maintaining a minimum level of local SNR is highly
correlated with perceptual quality measures. Now that trﬂf-e]

optimal solution to the MINMAX criterion is known, we

believe many problems should be solved using this approai:lh7
0

This is especially true, since both approaches are based

the same underlying assumptions. Hence, every DP algorithm
which can solve the MINAVE problem can easily be changed®!

to solve the MINMAX problem.

Both algorithms discussed in this paper (MINAVE and19]
MINMAX) were applied to the intraframe encoding scheme
used in H.263 [23], [27], interframe mode of the same stagpy)
dard, as well as shape coding [11], [30]. The results obtained
were compared in terms of the global MSE-like measures
and visually. It was clear from these experiments that they
MINMAX approach resulted in a more even quality for the

entire source than the MINAVE approach. In the shape codi

example, the MINMAX approach avoided the problem of skip-
ping perceptually important features and objects. The sacrifices

in the average distortion in the MINMAX approach in th
conducted experiments were not significant. In conclusion,

d23]

if

the goal is to have almost constant distortion, which is almol3#!
as low as the smallest possible average distortion, for a given

bit budget, the MINMAX criterion is an excellent choice.
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