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Which Protocol? Mutual Interaction of
Heterogeneous Congestion Controllers
Vinod Ramaswamy, Diganto Choudhury and Srinivas Shakkottai Member, IEEE

Abstract—A large number of congestion control protocols
have been proposed in the last few years, with all having the
same purpose—to divide available bandwidth resources among
different flows in a fair manner. Each protocol operates on the
paradigm of some conception of link price (such as packet losses
or packet delays) that determines source transmission rates.
Recent work on network utility maximization has brought forth
the idea that the fundamental price or Lagrange multiplier for
a link is proportional to the queue length at that link, and
that different congestion metrics (such as delays or drops) are
essentially ways of interpreting such a Lagrange multiplier. We
thus ask the following question: Suppose that each flow has a
number of congestion control protocols to choose from, which one
(or combination) should it choose? We introduce a framework
wherein each flow has a utility that depends on throughput,
and also has a disutility that is some function of the queue
lengths encountered along the route taken. Flows must choose
a combination of protocols that would maximize their payoffs.
We study both the socially optimal, as well as the selfish cases to
determine the loss of system-wide value incurred through selfish
decision making, so characterizing the “price of heterogeneity”.
We also propose tolling schemes that incentivize flows to choose
one of several different virtual networks catering to particular
needs, and show that the total system value is greater, hence
making a case for the adoption of such virtual networks.

Index Terms—Congestion controllers, non-cooperative games,
TCP/IP, PMP.

I. INTRODUCTION

RECENT years have seen the design of a large number
of congestion control protocols for use on the Internet.

Their designs all revolve around the idea that link congestion
is indicated by some notion of “price”, which the source can
respond to. Different congestion price metrics include packet
loss, packet marks, packet delays or some combination thereof.
However, the relative value of one protocol versus another is
not well understood. For example, it might be conjectured that
a delay sensitive application would consider using a protocol
that has a delay-based congestion metric, and a throughput
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maximizing application might favor a loss-based metric. How
should applications choose the protocol to use?

An analytical framework for network resource allocation
was developed in seminal work by Kelly et al. [1]. If the flow
i has a rate xi ≥ 0 and the utility associated with such a flow
is represented by a concave, increasing function Ui(xi), the
objective is

max
∑
i∈N

Ui(xi) (1)

s.t. yl ≤ cl, ∀ l ∈ L (2)

where N is the set of sources, L the set of links, cl the capacity
of link l ∈ L. Also let R be the routing matrix with Rli = 1
if the route associated with source i uses link l. The load on
link l is yl =

∑
r∈N Rlrxr. The problem can be solved using

ideas based on Primal-Dual system dynamics [1]–[5] to yield
a set of controllers. At the source we have

Source: ẋi(t) = κi

(
U ′
i(xi(t))−

∑
l:l∈L

Rlipl(t)

)+

xi

, (3)

where ki > 0,, and the notation (ϕ)+ξ is used to denote the
function

(ϕ)+ξ =

{
ϕ ξ > 0
max{ϕ, 0} ξ = 0.

(4)

(4) ensures that x is non-negative. The controller in (3) has an
attractive interpretation that the source rate of flow i responds
to feedback in the form of link prices pl(t), with the end-to-end
price being calculated as the sum of prices on all links that the
flow traverses—something that is common to all congestion
control protocols. Source rate is always non-negative, which
is enforced by the definition of the function in (4). The price
pl(t) at link l is calculated using

Link: ṗl(t) = ρ(pl(t))

∑
j∈N

Rljxj(t)− cl

+

pl(t)

. (5)

(5) ensures that the price is non-negative. Each link has a
buffer in which packets are queued. If the total load at a link
l given by

∑
j∈N Rljxj(t) is greater than the capacity cl, the

queue length increases, while if it is less than cl, the queue
length decreases as seen in (5). The queue length is always
non-negative, as enforced by the definition in (4). The gain
parameter ρ(pl) is any positive function. Thus, the link-price
pl(t) can be identified with the queue length at link l. It has
been shown [1]–[5] that the above control scheme converges
to the optimal solution to the problem in (1).
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While this framework indicates that the fundamental price
of a link is proportional to queue length, congestion control
protocols use several different congestion metrics. For ex-
ample, TCP Reno [6] uses packet drops (or marks) as its
price metric, while TCP Vegas uses end-to-end delay [2].
Other protocols include Scalable TCP [7] (that uses loss-
feedback, and allows scaling of rate increases/decreases based
on network characteristics), FAST-TCP [8] (that uses delay-
feedback, and is meant for high bandwidth environments), and
TCP-Illinois [9] (that uses loss and delay signals to attain
high throughput). However, drops, marks, and delays are all
functions of the queue length. Thus, a key difference between
protocols is their way of interpreting queue length information.

A fall out of different price-interpretations is that when
flows choose distinct congestion control protocols, they do
not obtain the same throughput on shared links. For example,
studies such as [10]–[13] study inter-protocol as well as intra-
protocol fairness, while [14] considers a game of choosing
between protocols, assuming that a certain throughput would
be guaranteed per combination.

Throughput alone does not fully capture the performance of
an application, since it might also be impacted by queueing
effects such as delay and packet loss. We consider applications
that might have different sensitivities to queueing. Indeed,
a large fraction of Internet traffic consists of file transfers
(less delay sensitive) and buffered video streams (more delay
sensitive) from data centers or content distribution networks.
We model these flows as having (possibly different) utilities
for throughput, and disutilities for the queueing encountered
on their respective paths.

We anticipate for a future Internet architecture where mul-
tiple congestion controlling schemes are available to cater the
needs of different service classes and the flows are allowed
choose the ones according to their service preferences. Hence,
we assume that flows play “fair” in that they choose to follow
the constraints imposed by employing some form of conges-
tion control. Thus, the flows choose from a set of “reasonable”
congestion control mechanisms, for example variants of TCP,
so as to maximize their payoff that is utility minus disutility.

Our objective is similar to the proposal in [15], where a
system design for virtual links tailored for flows that are
rate sensitive (R) and delay sensitive (D) is presented. The
idea is that an R-flow would pick the virtual link where it
is guaranteed higher rate, whereas a D-flow would pick one
where it is guaranteed a lower delay. However, unlike that
work, we have two basic differences. First, we explicitly model
utility (for throughput) and disutility (for queuing) for all
kinds of flows, rather than assume that D-type flows would be
willing to live with smaller rate. This enables us to explore the
space of multiple classes of service with tolling, since it gives
an objective measure on the choice made by the flow. Second,
we allow a choice between TCP flavors (i.e., interpretation
of queue length by congestion controllers) according to the
application in question. However, in [15] the only way to
reduce delay is to have short buffers for the D service class,
which might also result in more losses.

Our finding is that if the number of flows in the system
is large, the optimal strategy of a flow is to choose a price

interpretation from among the space of available ones that is
most similar to its disutility function. Using this finding, we
can characterize the total system value to all flows, and we
show that the ratio of this value to the optimum value can be
arbitrarily small. Finally, we consider the situation in which we
create multiple virtual networks with tolling, with each flow
having a choice between networks and between protocols. We
show that we can fix the tolls such that the overall system
value can be increased significantly, in-spite of the toll. We
next present our model and summarize our main results.

II. MODEL AND MAIN RESULTS

We consider a system in which each flow i ∈ N has a
so-called α−fair utility function [16],

Ui(xi) , wix
1−αi
i /(1− αi), (6)

with αi ≥ 1, and a disutility that depends on the vector of
link prices p as

Ũi(xi, p) ,
∑
l∈L

Rli(pl/τi)
βxi, (7)

where β > 1 is a constant. The overall payoff is the difference
of the two, given by

Fi(xi, p) , Ui(xi)− Ũi(p). (8)

The α−fair utility function was proposed by Mo et. al [16]
as a method of capturing a large class of fairness measures
based on the value of α used. For instance, they showed that
α → 1 results in proportional fairness, while α → ∞ results
in max-min fairness. The form of the disutility function is
such that based on β, the disutility can be (almost) linear in
queue length (which in turn is proportional to delay, weighted
by the parameter T ), to gradually increasing convexity as β
rises, to a sharp cutoff for large β. The threshold parameter
τi in (7) models the flow’s sensitivity to queue length, with
a small value of τi indicating high sensitivity (e.g., delay
sensitive applications need short queue lengths) and a large
value indicating low sensitivity (e.g., loss sensitive applications
are affected only by buffer overflow).

We define a set of protocols T , with cardinality T =
|T |. Each protocol z ∈ T is associated with a price-
interpretation function mz(pl) , (pl/Tz)

β . Note that these
price-interpretation functions take the same form as disutilities,
and model the way in which a particular protocol z ∈ T
interprets link prices1. Again, a loss-based protocol would have
a high value of Tz, while a dealy-based protocol would have a
low value. This corresponds to the fact that in a protocol that is
modulated by buffer over flows such as TCP Reno, the queue
length has no impact until a maximum threshold (buffer size)
is reached, after which the price is very high (Tz = buffer
size here). Similarly, TCP Vegas (approximately) decides on
whether the achieved throughput is too high or too low as
compared to a threshold, which in turn can be related to a
threshold on the per-packet delay seen by the flow (Tz is less
than the buffer size here). Now, while a flow i cannot change

1We will refer to “price-interpretation functions” and “protocols” inter-
changeably.
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its disutility function parameterized by τi it can choose to use
a combination of protocols as it finds appropriate. A particular
flow i’s choice could take the form

qi(p) ,
∑
z∈T

ϵzi

L∑
l=1

Rlim
z(pl) (9)

where
∑

z∈T ϵzi = 1, and ϵzi ≥ 0. The convex combination
models the idea that a flow sometimes measures price in
one way (e.g., delay-based) and sometimes in another way
(e.g., loss-based). ϵzi can be thought of as the probability with
which flow i uses protocol z. For example, this situation might
correspond to a flow using delay and loss measurements simul-
taneously, and responding to congestion signals (loss or delay)
probabilistically. We refer to the choice [ϵ1i , ϵ

2
i , · · · ϵTi ], made

by flow i as ϵi ∈ Ei , {ϵi :
∑

z∈T ϵzi = 1, ϵzi ≥ 0}. Further,
we denote aggregate choices of all flows by ϵ ∈ E , Πi∈NEi,
and will refer to ϵ ∈ E as a protocol-profile.

We first show in Section III that for a given protocol-profile,
the bandwidth allocations (and hence the payoffs) are unique.
Further, a primal-dual type control will converge to this unique
bandwidth allocation. The result is essentially a consistency
check that allows us to analytically determine the payoffs as
a function of the protocol-profile chosen.

We show in Section IV that all bandwidth allocations
that are attainable by a protocol-profile over T protocols
with m1(p) ≥ m2(p) ≥ · · · ≥ mT (p) are attainable by
a protocol-profile over just the two protocols m1(p) and
mT (p). The result has the appealing interpretation that when
mz(p) = (p/Tz)

β , it is sufficient to only consider the
“strictest” interpretation (smallest Tz , which can be thought of
as delay-based feedback) and the most “lenient” (largest Tz,
associated with loss-based feedback). We next show that with
two protocols with Ts < Tl, the bandwidth allocation received
by a flow i is decreasing in the weight it places on the strict
protocol. Although the proof is involved, the result is intuitive
since a strict protocol would always interpret p as a larger
congestion than the lenient protocol. However, since payoffs
are the sum of utility and disutility, it does not follow that all
flows would choose the protocol with the higher threshold.

We show in Sections V and VI that in many cases, the
total system value is maximized when all flows choose to
use only m1(p) = (p/Ts)

β . On the one hand if flows have
price-insensitive payoffs, the protocol-profile used does not
matter as long as all of them use the same profile. On the
other hand, if there is a mix of flows, some of which have
a large disutility function (price-sensitive) and others which
do not (price-insensitive), using the strict price-interpretation
m1(p) = (p/Ts)

β , ensures that the price does not become too
large for all flows, which maximizes system value.

In Sections V and VI, we also consider the case flows
use selfish optimizations to choose their protocol-profiles and
study the Nash equilibrium. If all flows have price-insensitive
payoffs, then they all choose the lenient price-interpretation
m2(p) = (p/Tl)

β . This case can be mapped to throughput
maximizing flows all choosing TCP Reno. If we have a mix
of flow types sharing a link, it turns out that the price-sensitive
flows with disutility function parametrized by τ ≤ Ts, choose

the strict price-interpretation m1(p) = (p/Ts)
β , regardless

of the choice of others. Similarly, the price-sensitive flows
with disutility threshold τ ≥ Tl, choose the lenient price-
interpretation m2(p) = (p/Tl)

β . While the other flows may
employ mixed strategies. When the number of flows in the
system is large, a flow with disutility threshold τ picks a mixed
strategy that yields an effective price interpretation (p/τ)β .
The result is interesting since it suggests that a delay sensitive
application cannot do any better in terms of overall payoff even
if it chooses a more lenient protocol. We also characterize the
ratio of system value in the game versus the social optimum
for the single-link case to determine an efficiency ratio, which
can be quite high.

Finally, in Section VIII we introduce virtual networks, each
of which is assigned a certain fraction of the capacity, and
chooses a toll. Flows can choose a network and protocols.
The idea is similar to Paris Metro Pricing (PMP) [17]–[19],
and we show that the system value at Nash equilibrium can
be higher overall in spite of tolling. The result suggests that
the Internet might benefit by having separate tiers of service
for delay-sensitive and loss-sensitive flows.

III. PROBLEM FORMULATION

We assume that for each link, there exists at least one flow
that uses only that link. The assumption implies that all links
have a non-zero price. We hypothesize from (3) and (5) that
the payoffs should be determined by the protocol-profile ϵ as

x∗
i (p

∗, ϵi) = (U ′
i)

−1

(
T∑

z=1

ϵzi

L∑
l=1

Rlim
z(p∗l )

)
, (10)

with ϵi ∈ Ei and for all l ∈ L.
N∑
i=1

Rlix
∗
i (p

∗, ϵi) = cl p∗l > 0, (11)

Note that although we have denoted x∗ as depending on both ϵ
and p∗, the prices themselves depend on ϵ through x∗, and the
solution (x∗(ϵ), p∗(ϵ)) (if it exists) is solely a function of ϵ.
We show that the equilibrium exists, and can be reached using
Primal-Dual dynamics. We have the following proposition.

Proposition 1. Given any protocol-profile ϵ, Primal-Dual
dynamics converge to the unique solution (x∗, p∗) of the
conditions (10) and (11).

Proof: For price-interpretation functions of the form
(p/Tz)

β , the source dynamics in (3) can be re-written as

ẋi(t) = κi

(
U ′
i(xi)−

(
T∑

z=1

ϵzi

(
T1

Tz

)β
)

L∑
l=1

Rlim
1(pl)

)+

xi

where m1(pl) = ( pl

T1
)β . Let Ui(xi) = 1

ζi
Ui(xi) where ζi =∑T

z=1 ϵ
z
i (

T1

Tz
)β , and let κi = ζi. Then the above equation can

be modified as

ẋi(t) = ζi

(
U ′
i(xi(t))−

L∑
l=1

Rlim
1(pl(t))

)+

xi

. (12)
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Now, in (5) choose ρ(pl) =
1

m′1(pl)
, where m′1 is derivative

of m1. Then the price-update equation can be re-written as,

ṁ1(pl(t)) =

(
N∑
i=1

Rlixi(t)− cl

)+

pl

. (13)

Equations (12) and (13) correspond to the primal-dual dynam-
ics of the following convex maximization problem

max
x>0

N∑
i=1

Ui(xi)

subject to
N∑
i=1

Rlixi ≤ cl, ∀l ∈ L.

The above is a convex optimization problem with a unique
solution satisfying (10) and (11). Thus, by the usual Lyapunov
argument [2]–[5] Primal-Dual dynamics converge to this so-
lution. Note that our choice of price interpretation makes it a
special case of the result in Appendix A Case-1 of [11].

We are now in a position to ask questions about what the
flows’ payoffs would look like at such an equilibrium, and how
this would impact the choice of the protocol-profile. Recall
that the payoff obtained by a flow when the system state is at
x∗(ϵ), p∗(ϵ) is given by

Fi(ϵ) = Ui(x
∗
i (ϵ))− Ũi(p

∗(ϵ)). (14)

We define a system-value function V , which is equal to the
sum of payoff functions of all flows in the network,

V (ϵ) =
N∑
i=1

Fi(ϵ). (15)

Our first objective is to find an optimal protocol-profile that
maximizes the system-value function.

Opt: max
ϵ∈E

V (ϵ). (16)

Let ϵ∗S be an optimal profile vector for the above problem.
Then we refer to VS = V (ϵ∗S) as the value of the social
optimum.

An alternative would be for flows to individually maximize
their own payoffs. However, such a proceeding might not
not lead to an optimal system state that maximizes the value
function (15). We characterize the equilibrium state of such a
selfish behavior by modeling it as a strategic game.

Let G =< N , E ,F > be a strategic game, where N is
the set of flows (players), E is the set of all protocol profiles
(action sets) and F = {F1, F2, · · · , FN}, where Fi : E → R
is the payoff function of user i defined in (14). Define ϵ−i =
[ϵ1, ϵ2, · · · , ϵi−1, ϵi+1, ϵN ], i.e., this represents the choices of
all flows except i. Then ϵ = [ϵi, ϵ−i]. For any fixed ϵ−i, flow
i maximizes its payoff as shown below.

Game: max
ϵi∈Ei

Fi(ϵi, ϵ−i) ∀i ∈ N . (17)

The game is said to be at a Nash equilibrium when flows do
not have any incentive to unilaterally deviate from their current
state. We define ϵ∗G as a Nash equilibrium of the game G if

(ϵG)
∗
i = arg max

ϵi∈Ei

Fi(ϵi, (ϵG)
∗
−i), ∀i ∈ N

We refer to VG = V (ϵ∗G) as the value of the game. Finally,
we define the “Efficiency Ratio (η)” as

η =
VG

VS
. (18)

IV. BASIC RESULTS

We first show that a T -protocol network can be replaced
with an equivalent 2-protocol network. Consider a T -protocol
network with price interpretation functions [m1,m2, · · · ,mT ].
Let ϵ ∈ ET be a profile state in the T -network. Then the
equilibrium rate vector x∗(ϵ) and price vector p∗(ϵ) satisfy
the equilibrium conditions (10) and (11). Now, consider a 2-
protocol network with price interpretation functions m1 and
mT . Note that m1 ≥ mz ≥ mT , z = 2, · · · , T −1. Let µ ∈ E2
be a profile state in the 2-protocol network.

Proposition 2. For any equilibrium (x∗(ϵ), p∗(ϵ)) in a T -
protocol network, ∃ a protocol-profile µ s.t. (x∗(ϵ), p∗(ϵ)) is
also an equilibrium for the 2-protocol network.

Proof: For any given ϵ ∈ ET , let (x∗(ϵ), p∗(ϵ)) be an
equilibrium pair that satisfies the equilibrium conditions (10)
and (11), which are reproduced below for clarity.

x∗
i (ϵ) = (U ′

i)
−1
(∑T

z=1 ϵiq
z∗
i

)
, ∀i ∈ N ,

Rx∗(ϵ) = c, p∗l > 0, ∀l ∈ L.

where qz∗i =
∑L

l=1 Rlim
z(p∗l (ϵ)). The fact that mT ≤ mz ≤

m1, implies, qT∗
i ≤ qz∗i ≤ q1∗i , ∀i ∈ N , Z ∈ T . Since both

m1 and mT are strictly increasing functions, there exists a
unique µi ∈ [0, 1], such that,

T∑
z=1

ϵzi q
z∗
i = µiq

1∗
i + (1− µi)q

T∗
i .

Now, we have

x∗
i (ϵ) = (U ′

i)
−1

(
T∑

z=1

ϵzi q
z∗
i

)
= (U ′

i)
−1
(
µiq

1∗
i + (1− µi)q

T∗
i

)
, ∀i ∈ N ,

Rx∗(ϵ) = c, p∗l > 0, ∀l ∈ L.

The above equations correspond to the equilibrium conditions
of a 2-protocol network with price interpretation functions
m1 and mT . Therefore, there exists a protocol-profile µ =
[µ1, · · · , µN ] such that (x∗(ϵ), p∗(ϵ)) is an equilibrium pair
of 2-protocol network.

The above proposition shows that any equilibrium state of
a T -protocol network can be obtained with an equivalent 2-
protocol network. Therefore we restrict our study to 2-protocol
networks with a “strict” price interpretation ms = ( p

Ts
)β and a

“lenient” price interpretation ml = ( p
Tl
)β , i.e., Ts < Tl. Also,

we redefine the protocol profile of flow i, ϵi, as is ϵi = ϵ1i ,
where ϵ1i is the weight applied on the strict price interpretation.
Finally, the equilibrium rate of flow i can be written in terms
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of ms and ml as follows:

x∗
i (ϵ) = (U ′

i)
−1

(
L∑

l=1

Rli

(
ϵim

s(p∗l ) + (1− ϵi)m
l(p∗l )

))

= (U ′
i)

−1

(
(ϵi + (1− ϵi)(

Ts

Tl
)β)

L∑
l=1

Rlim
s(p∗l )

)
.

(19)

where ϵ = [ϵ1, ϵ2, · · · , ϵN ] is the system protocol-profile. The
above result follows from (10).

We next show that the bandwidth allocation received by a
flow i is decreasing in the weight it places on the strict protocol
ms(p) = (p/Ts)

β .

Proposition 3. Let x∗
i (ϵ) be the equilibrium rate of flow i for

any ϵ ∈ E2. Then,

∂x∗
i

∂ϵi
≤ 0, ∀i ∈ N ,

Proof: From (19), we have

U ′
i(x

∗
i ) =

L∑
l=1

Rlim
s(p∗l )

(
ϵi + (1− ϵi)

(
Ts

Tl

)β
)
.

Then, differentiating above equation with respect to ϵj , we get,

∂x∗
i

∂ϵj
= Aij +

L∑
l=1

∂p∗l
∂ϵj

Bil, (20)

where

Aij =
(1− (Ts

Tl
)β)
(∑L

l=1 Rlim
s(p∗l )

)
U ′′
i (x

∗
i )

δij , and

Bil =
Rli(m

s)′(p∗l )(ϵi + (1− ϵi)(
Ts

Tl
)β)

U ′′
i (x

∗
i )

.

Also, δij = 1 if i = j, and zero otherwise. At equilibrium,∑N
i=1 Rlix

∗
i (ϵ) = cl, ∀l ∈ L. Now, differentiating this equa-

tion with respect to ϵj , we get
N∑
i=1

Rli
∂x∗

i

∂ϵj
= 0, ∀l ∈ L. (21)

Replacing ∂x∗
i

∂ϵj
with (20), we obtain

N∑
i=1

Rli

(ϵi + (1− ϵi)(
Ts

Tl
)β)

U ′′
i (x

∗
i )

L∑
k=1

Rki(m
s)′(p∗k)

∂p∗k
∂ϵj

+ Rlj

(1− (Ts

Tl
)β)
(∑L

k=1 Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

= 0.

Now, rearranging terms in the above expression, we get,
L∑

k=1

(ms)′(p∗k)
∂p∗k
∂ϵj

N∑
i=1

RliRki

(ϵi + (1− ϵi)(
Ts

Tl
)β)

−U ′′
i (x

∗
i )

= Rlj

(1− (Ts

Tl
)β)
(∑L

k=1 Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

.

We can represent the above in a matrix form as

RWRT ζ = r,

where

W = diag
(ϵi + (1− ϵi)(

Ts

Tl
)β)

−U ′′
i (x

∗
i )

ζ =

[
(ms)′(p∗1)

∂p∗1
∂ϵj

(ms)′(p∗2)
∂p∗2
∂ϵj

· · · (ms)′(pL)
∂p∗L
∂ϵj

]T
r =

(1− (Ts

Tl
)β)
(∑L

k=1 Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

[R1j · · · RLj ]
T .

Note that Ui is a strictly concave function and hence U ′′
i (x

∗
i ) <

0. Therefore, RWRT is a positive definite matrix. Now, we
have

ζ = (RWRT )−1r. (22)

Let H = (RWRT )−1, where H is an L × L matrix. Let us
represent its elements using hlm. Thus, from (22), we have

∂p∗l
∂ϵj

=

∑L
k=1 Rkjhlk

(ms)′(p∗l )

(1− (Ts

Tl
)β)
(∑L

k=1 Rkjm
s(p∗k)

)
U ′′
j (x

∗
j )

. (23)

Let V = WRT (RWRT )−1R. Then, from (20) and (23), we
get

∂x∗
j

∂ϵj
=

(1−(Ts
Tl

)β)(
∑L

l=1 Rkjm
s(p∗

k))
U ′′

j (x∗
j )

(1− vjj) , (24)

∂x∗
i

∂ϵj
= −

(1−(Ts
Tl

)β)(
∑L

k=1 Rkjm
s(p∗

k))
U ′′

j (x∗
j )

vij , (25)

where vij represent elements of V .
Now, we show that

∂x∗
j

∂ϵj
is negative given the assumption in

the lemma. Note that V is a projection matrix. The diagonal
elements of a projection matrix are positive and less than or
equal to unity. i.e, vjj ≤ 1. Then, from (24), we conclude that
∂x∗

j

∂ϵj
≤ 0 and hence have proved the proposition.

The above proposition is intuitive in that a strict protocol
would force the flow to cut down its rate for the same price
as a lenient protocol.

Corollary 4. In the single link case, the link-price p∗ and the
rate vector x∗ satisfies, ∂p∗

∂ϵj
< 0 and ∂x∗

i

∂ϵj
> 0 if i ̸= j,∀i, j ∈

N .

Proof: From (23), (24) and (25), we have

∂p∗

∂ϵj
=

(1− (Ts

Tl
)β)ms(p∗)

(ms)′(p∗)U ′′
j (x

∗
j )

1∑N
r=1 νr

, (26)

∂x∗
i

∂ϵj
=

(1− (Ts

Tl
)β)ms(p∗)

U ′′
j (x

∗
j )

(
δij −

νj∑N
r=1 νr

)
, (27)

where

νi = −
ϵi + (1− ϵi)(

Ts

Tl
)β

U ′′
i (x

∗
i )

=
x∗
i

αims(p∗)
.

The above result follows from (19) and the fact that U ′′
i (x

∗
i ) =

−αi

x∗
i
U ′
i(x

∗
i ). Note that U ′′

i (x) < 0 since Ui is strictly concave.
Now, the corollary is straightforward from the above results.

Now, we now study different mixes of flow types in order
to understand the system value in each case.
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V. FLOWS WITH PRICE-INSENSITIVE PAYOFF

We associate each flow i ∈ N to a class, based on its
disutility function of the form

∑
l∈L Rli(pl/τi)

βxi. We begin
by considering a system of flows that have a price-insensitive
payoff, i.e., τi = ∞ ∀i ∈ N . This means that payoff is solely
a function of bandwidth, and we have Fi(ϵ) = Ui(x

∗(ϵ)).
However, even in this situation, flows must employ congestion
control, i.e., they must choose a protocol-profile. From Section
(IV), recall that since we only have two protocols, the flow i’s
choice of protocol profile is defined by a scalar value ϵi. Also
note that Tz ̸= ∞ for each protocol z = 1, 2. The system-value
is equal to the sum of user payoffs, V (ϵ) =

∑N
i=1 Ui(x

∗(ϵ)).
We then have the following result.

Proposition 5. The system-value is maximized when the
protocol choices made by all users are the same. Thus, if
ϵ∗S = argmaxϵ∈E V (ϵ), and (ϵ∗S)i is used to denote the
protocol choice made by-profile of user i, then (ϵ∗S)i =
(ϵ∗S)j , ∀i, j ∈ N .

Proof: We first derive an upper bound for system-value
V (ϵ) and then show that the upper bound is achieved when all
sources choose the same protocol. Suppose that X = {x|Rx =
c}. Let x̂ = argmaxRx=c

∑N
i=1 Ui(xi). Note that equilibrium

rate x∗(ϵ) ∈ X , since Rx∗ = c. Then the value of
∑N

i=1 Ui(x)
evaluated at x∗(ϵ) satisfies

V (ϵ) =

N∑
i=1

Ui(x
∗
i (ϵ)) ≤

N∑
i=1

Ui(x̂i).

We showed in Proposition 2 that the equilibrium rate
x∗(ϵ), is the unique maximizer of the convex problem
maxx>0,Rx=c

∑N
i=1

1
ζi
Ui(xi), where ζi = ϵi + (1− ϵi)(

Ts

Tl
)β .

Then, x∗(ϵ) can be made equal to x̂, the optimal point in set
X , by choosing ζi = ζj ∀i, j ∈ N . Such a choice means that

ζi = ζj ⇒ ϵi + (1− ϵi)(
Ts

Tl
)β = ϵj + (1− ϵj)(

Ts

Tl
)β ,

⇒ ϵi = ϵj .

Thus, if ϵ∗S = argmaxϵ∈E V (ϵ) ⇒ (ϵ∗S)i = (ϵ∗S)j , ∀i, j ∈ N .
Therefore, the system value is maximized when the protocol
choices made by all the users are identical. Also, the maximum
value does not depend on the parameters of the selected
protocol.

We next consider the game in which flows are allowed to
choose their protocols selfishly.

Proposition 6. Let G =< N , E ,F > be a strategic game
with payoff function of user i is given as Fi(ϵ) = Ui(x

∗
i (ϵ)).

Then there exists a Nash equilibrium for game G, and the
equilibrium profile for any user i ∈ N is (ϵ∗G)i = 0.

Proof: Differentiating Fi w.r.t ϵi, and using Proposition 3

∂Fi

∂ϵi
= U ′(x∗

i (ϵ))
∂x∗

i (ϵ)

∂ϵi
≤ 0

Hence, Fi(ϵ) is maximized when ϵi = 0. Therefore, (ϵ∗G)i =
0, ∀i ∈ N .

Efficiency Ratio: We showed in Proposition 5 that the value
function is maximized when all flows pick the same protocol-
profile. In Proposition 6 we saw that when each flow selfishly

maximizes its own payoff, there exists a Nash equilibrium
under which every source chooses the lowest priced protocol,
i.e., the protocol with the higher value of T. Such a profile is
a special case of all flows choosing the same protocol-profile.
Thus, value of the social optimum and the value of the game
are identical and Efficiency Ratio (η) is unity.

Example-1: Consider the case in which a single link with
capacity c = 10 is shared by 2 price-insensitive flows.
Users have α-fair utility functions with α = 2, w1 = 100
and w2 = 100. We use price-interpretation functions (p2 )

2

and (p5 )
2. Note that the simulation parameters α, β and

threshold values are chosen arbitrarily. These parameters may
not correspond to any particular protocol used in practice.
Nevertheless, the observations made here hold true for any
values of α ≥ 1, β > 1 and Ts, Tl, τi > 0.
In Figure (1) we show the system value for different choices
of protocol profiles. The plot illustrates that system value is
maximized when both flows choose the same profile. Figure
(2) shows how the payoff function of a flow varies with its
protocol profile. We find that regardless of the value of the
protocol profile chosen by the other flow, the payoff function
is maximized when it picks the lower price protocol.
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Fig. 1. System Value with price-insensitive flows as a function of the
protocol-profile. We observe that the system value is maximized when both
flows choose the same protocol-profile.
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Fig. 2. Payoff of a price-insensitive flow as a function of its protocol-profile.
We observe that payoff is maximized when the flow chooses the more lenient
price interpretation, regardless of the other flow.

VI. MIXED ENVIRONMENT

We now consider the case where a network is shared
by flows with different disutilities. We identify the optimal
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protocol profile that maximizes the system value, and compare
it with and the Nash equilibrium. We first study the case of a
network consisting of a single link.

A. Single Link Case

Consider a single link system with capacity c shared by
N flows. The payoff of user i ∈ N is Fi(ϵ) = Ui(x

∗
i (ϵ)) −(

p∗(ϵ)
τi

)β
x∗
i (ϵ). Then, the system value is V (ϵ) =

∑N
i=1 Fi(ϵ).

Proposition 7. The system- value is maximized when all
users pick the protocol with lowest threshold, i.e., if ϵ∗S =
argmaxϵ∈E V (ϵ), then (ϵ∗S)i = 1, ∀i ∈ N .

Proof: (Sketch) Recall that αi ≥ 1 by our assumption.
Given this assumption, it can be shown through straightfor-
ward differentiation that Ũi(ϵi) is a monotonically decreasing
function of ϵi. Now, the value function V is maximum when
U(ϵ) is maximized and Ũ(ϵ) is minimized. We already know
from Proposition 5 that U(ϵ) is maximized when all flows
choose the same protocol-profile. Coupling this result with the
fact that Ũi(ϵi) is decreasing in ϵi, we see that system value
is maximized when ϵi = 1, ∀i ∈ N .

We now study the strategic game in which users individually
maximize their payoff as in (17). We show that there exists a
Nash equilibrium and characterize the protocol-profile.

Proposition 8. Let G =< N , E ,F > be a strategic game
with payoff of user i is Fi(ϵ) = Ui(x

∗
i (ϵ)) − (p

∗(ϵ)
τi

)βx∗
i (ϵ).

Then there exists a Nash equilibrium (NE) for Game G. At
NE, flows with greatest sensitivity to price choose the strict
protocol, i.e., if τi = Ts, then ϵi = 1.

Proof: We will show that Fi(ϵ) is quasi-concave, and use
the Theorem of Nash to show existence of a NE. Differenti-
ating Fi w.r.t ϵi,

∂Fi

∂ϵi
= (U ′

i(x
∗
i )− di(p

∗))
∂x∗

i

∂ϵi
− d′i(p

∗)x∗
i

∂p∗

∂ϵi
, (28)

where di(p
∗) = (p

∗

τi
)β and d′i(p

∗) is its derivative. Now,
substituting the results from (26) and (27), in the above
equation, we get

∂Fi

∂ϵi
= B(U ′

i(x
∗
i )− di(p

∗))
(
1− νj∑N

r=1 νr

)
(29)

−B
d′
i(p

∗)x∗
i

(ms)′(p∗)
∑N

r=1 νr
, (30)

where B =
(1−(Ts

Tl
)βms(p∗)

U ′′
i (x∗

i )
and νi =

x∗
i

αims(p∗) . Note that
B < 0 since U ′′

i is a negative function.
From (19) along with the definitions of νi and di(p

∗), the
above expression can be simplified as follows:

∂Fi

∂ϵi
=

Bms(p∗)
∑N

r=1,r ̸=i

x∗
r

αr∑N
r=1

x∗
r

αr

(
ϵi + (1− ϵi)

(
Ts

Tl

)β

−
(
Ts

τi

)β
)

−Bms(p∗)∑N
r=1

x∗
r

αr

(
Ts

τi

)β

x∗
i . (31)

We show that if the above expression has a root, then it is
unique. The roots are characterized by

ϵi + (1− ϵi)(
Ts

Tl
)β = (

Ts

τi
)β

(
1 +

x∗
i∑N

r=1,r ̸=i
x∗
r

αr

)
. (32)

First observe that the left side of the above expression is
strictly increasing in ϵi (since Ts < Tl). Since ∂x∗

i

∂ϵi
< 0

and ∂x∗
r

∂ϵi
> 0 if r ̸= i (from Proposition 3 and Corollary 4),

the right side of the above expression is strictly decreasing.
Therefore, the set of roots of the equation, ∂Fi

∂ϵi
(x) = 0 is a

singleton or null set. Thus, Fi is unimodal or monotonic in ϵi
for any fixed ϵ−i and hence quasi concave.

Since ϵi ∈ [0, 1] is a non-empty compact convex set, by the
theorem of Nash, the quasi concavity of Fi(ϵi, ϵ−i) guarantees
that there exists a ϵ∗G, such that for all i = 1, · · · , N ,

(ϵ∗G)i = arg max
ϵi∈[0,1]

Fi(ϵi, (ϵ
∗
G)−i).

Hence, the first part of the proof is complete.
Now, consider a flow with disutility (per unit rate) ( p

τi
)β ,

where τ = Ts. Replacing τi with Ts in (31), we observe that
∂Fi

∂ϵi
> 0 (Note that B < 0). Therefore, payoff is maximized

when ϵi = 1.
In the next section, we study the characteristics of the NE

and show that it is unique.

B. Nash equilibrium characteristics

We have established the existence of NE of the strate-
gic game (17) in the previous section. We conduct further
studies on the properties of NE in this section. First, we
derive conditions for the NE system protocol profile. Then,
in Proposition 9, we show that the game has a unique NE.
Finally, in Proposition 10, we derive the NE strategies of flows
when there are large number of flows in the system.

Let ϵ̂ be a Nash equilibrium system protocol profile (action
profile). Then, by definition, it must satisfy the condition that

ϵ̂i = arg max
ϵi∈[0,1]

Fi(ϵi, (ϵ̂i)−i),∀i ∈ N .

Then, from the first order optimality condition, we have

∂Fi(ϵ̂)

∂ϵi
(ϵi − ϵ̂i) ≤ 0.

Consequently, from (31), we get that, ∀i ∈ N ,

γ(ϵ̂i) =

(
1

T β
s

∧ 1

T β
i

(
1 +

x∗
i (ϵ̂)∑N

r=1,r ̸=i
x∗
r(ϵ̂)
αr

))
∨ 1

T β
l

. (33)

where a ∧ b = min{a, b}, a ∨ b = max{a, b} and γ(ϵi) =
ϵi(

1
Ts
)β + (1 − ϵi)(

1
Tl
)β . In addition, the Nash equilibrium

profile must also satisfy,

x∗
i (ϵ̂) =

(
wi

γ(ϵ̂i)(p∗)β

) 1
αi

, (34)

N∑
i=1

x∗
i (ϵ̂) = c . (35)

Here, (34) follows from (19) and the definition of Ui(x). Also,
(35) follows from the assumption that every link has one flow



8

using that link alone. Now, we show that the set of Nash
equilibria, characterized by (33)-(35), is singleton.

Proposition 9. The strategic game, G =< N , E ,F >, has a
unique Nash equilibrium.

Proof: To prove by contradiction, assume multiple Nash
equilibria exist. Let two distinct NE system protocol profiles
be ϵ̂1 and ϵ̂2. Also, let x1

i = x∗
i (ϵ̂

1), x2
i = x∗

i (ϵ̂
2), p1 = p∗(ϵ̂1),

p2 = p∗(ϵ̂2), γ1
i = γ(ϵ̂1) and γ2

i = γ(ϵ̂2). Then, by reordering
the flow indices, we get that, for some k ∈ {0, 1, · · · , N},

γ1
i > γ2

i for i = 1, 2, · · · , k, (36)

γ1
i ≤ γ2

i for i = k + 1, · · · , N. (37)

Also, if k = 0, there exist a flow i ∈ N such that γ1
i < γ2

i .
We show that the above condition are infeasible for all values
of k, under the NE conditions given by (33-34).

Initially, consider the case when k = N . Then, from (33),
for i = 1, 2, · · · , N , we have

x1
i∑N

r=1,r ̸=i
x1
r

αr

>
x2
i∑N

r=1,r ̸=i
x2
r

αr

⇒ x1
i∑N

r=1
x1
r

αr

>
x2
i∑N

r=1
x2
r

αr

(38)

⇒
∑N

r=1
x1
r

αr∑N
r=1

x1
r

αr

>

∑N
r=1

x2
r

αr∑N
r=1

x2
r

αr

(39)

which is a contradiction. Hence, this case is not feasible.
Similarly, we can show that the case when k = 0 is also
not feasible.

Now, consider the case when 1 ≤ k < N . Also, suppose
that p1 ≥ p2. Then, from (34), we have

x1
i < x2

i , for i = 1, 2, · · · , k.

Let

i∗ = argmax
i

x1
i

x2
i

.

Note that i∗ > k and hence, γ1
i∗ ≤ γ2

i∗ . Also, from (35), note
that x1

i∗ > x2
i∗ .

Observe that,

x1
i

x1
i∗

=
x1
i

x2
i

x2
i∗

x1
i∗

x2
i

x2
i∗

≤ x2
i

x2
i∗
,

and strict inequality holds if i ≤ k. It follows from the above
result that,

x1
i∗∑N

r=1
x1
r

αr

>
x2
i∗∑N

r=1
x2
r

αr

⇒ x1
i∗∑N

r=1,r ̸=i∗
x1
r

αr

>
x2
i∗∑N

r=1,r ̸=i∗
x2
r

αr

.

Finally, from (33) and the above result, we get γ1
i∗ ≥ γ2

i∗ . But,
from the definition of i∗, we know that γ1

i∗ ̸> γ2
i∗ . In case

γ1
i∗ = γ2

i∗ , then, from (34) and the assumption that p1 ≥ p2,
we get x1

i∗ ≤ x2
i∗ , which also raises a contradiction. Hence,

this case is also not feasible. In similar fashion, we can show
that the case in which p1 < p2 is also not feasible.

Hence, our assumption that multiple NE exist is not true.
Therefore, NE is unique.

Next, we characterize the NE in the asymptotic regime.

Proposition 10. When the number of flows in the system, N ,
is large, the protocol profile of flow i at NE, ϵ̂i, satisfies

ϵ̂i

(
1

Ts

)β

+(1−ϵ̂i)

(
1

Tl

)β

=

((
1

Ts

)β

∧
(
1

τi

)β
)
∨
(

1

Tl

)β

.

Proof: Recall from (33) that, the NE protocol profile of
flow i, satisfies,

γ(ϵ̂i) =

(
1

T β
s

∧
(
1

τi

)β
(
1 +

x∗
i (ϵ̂)∑N

r=1,r ̸=i
x∗
r(ϵ̂)
αr

))
∨ 1

Tl

β

.

In order to prove the proposition, we claim that,

lim
N→∞

x∗
i (ϵ̂i)∑N

r=1,r ̸=i
x∗
r(ϵ̂i)
αr

= 0, (40)

holds true. Before proving the above result, we introduce a few
notations: Let αmax = maxi αi, αmin = mini αi, wmax =
maxi wi and wmin = mini wi.

Now, the proof of the claim (40) is as follows: From (35),
we can show that,

x∗
i (ϵ̂)∑N

r=1,r ̸=i
x∗
r(ϵ̂)
αr

≤ αmax
c

x∗
i (ϵ̂)

− 1
.

Also, from (34), we have,

x∗
i (ϵ̂) =

(
wi

γ(ϵ̂i)(p∗(ϵ̂))β

) 1
αi

≤

(
wmaxT

β
l

(p∗(ϵ̂))β

) 1
αmin

. (41)

The above result follows from the fact that γ(ϵ̂i) ≥ ( 1
Tl
)β .

From Corollary 4, we observe that the link-price is a
decreasing function of protocol profile of each flow and hence,
the system protocol profile ϵ. Therefore, the link price achieves
the lowest value, when every flow adopts the strict protocol.
Then, from (34) and (35), it is easy to show that

(p∗(ϵ̂)))β ≥ wmin

(
Nαmin

cαmax

)
T β
s . (42)

Finally, from (41) and (42), we have

x∗
i∑N

r=1,r ̸=i
x∗
r

αr

≤ αmax
c
x∗
i
− 1

≤ αmax

NK − 1

where K is a constant. The upper bound in the above expres-
sion goes to zero for large values of N . Therefore, the claim
in (40) holds true and hence, the proof is completed.

Example-2: We consider a link with capacity c = 10 shared
by two flows with disutilities (p2 )

2 and (p5 )
2, respectively, and

w1 = w2 = 1. The other parameters are unchanged from
Example-1. We show the system value for different choices of
protocol-profiles in Figure 3. The value is maximized when
both flows choose the strict protocol. Figure (4) shows how the
payoff of each flow varies with its choice of protocol profile,
given other’s is fixed. We find that for the first (sensitive)
flow, the payoff function is maximized when it chooses the
strict protocol, regardless of the other flow. But the payoff
of the second (less-sensitive) flow is maximized for some
combination of protocols. The results validate our findings.

Example-3: We consider a link with capacity c = 1000.
There are 40 flows sharing the link. The strict and lenient
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Fig. 3. System value against protocol choices (ϵi): Two flows sharing a link.
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Fig. 4. Payoff against protocol choice (ϵi): Two flows sharing a link.

thresholds are Ts = 2 and Tl = 7 respectively. In our
simulations, we have set β = 2, α = 2 for half of users and
α = 3 for the other half. There are 10 classes of flows, with
each class containing 4 flows. The disutility threshold of a
Class i flow, given by τi, is chosen according to the following
relation: ( 1

τi
)β = ( 1

Tl
)β + (( 1

Ts
)β − ( 1

Tl
)β)(i/10).

We choose a candidate flow that belongs to Class 4. We
assume that every other flow has chosen their NE protocol
profile. That means, the effective price interpretation of a flow
belonging to Class i is ( p

τi
)β . Figure (5) plots the payoff of

the candidate flow as a function of its effective protocol choice
γ(ϵ4) = ϵ4(1/Ts)

β +(1− ϵ4)(1/Tl)
β , where ϵ4 is its protocol

profile. As claimed by Proposition 10, the payoff is maximized
when γ(ϵ4) = ( 1

τ4
)β = 0.17.

C. Network Case

We consider a system of flows with log utility functions,
which is a special class of an α-fair utility function with
α → 1. The payoff of flow i ∈ N is Fi(ϵ) = wi log(x

∗
i (ϵ))−∑L

l=1 Rli(
p∗
l (ϵ)
τi

)βx∗
i (ϵ). Then the system-value is V (ϵ) =∑N

i=1 Fi(ϵ).

Proposition 11. The System-Value function is maximized when
all flows pick the higher priced protocol, namely m1 =(

p
Ts

)β
. Let ϵ∗S = argmaxϵ V (ϵ), then (ϵ∗S)i = 1, ∀i =

1, · · · , N ,

Proof: We can show through straightforward differenti-
ation that, the disutility function, Ũi(ϵi), is a monotonically
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Fig. 5. Payoff of a Class 4 flow is maximized when γ(ϵ4) = ( 1
T4

)β = 0.17.

decreasing function of ϵi. The rest of the proof is similar to
that of Proposition 7.

We now consider a game with two types of flows: price-
insensitive flows with zero disutilities, and price-sensitive
flows with disutility (per unit rate) (

p∗
l

Ts
)β . In this special

case, there exists a unique Nash equilibrium. In Proposition 6
we saw that price-insensitive flows pick the lenient protocol
at Nash equilibrium irrespective of the choices of the other
players. We will now show that price-sensitive flows pick the
strict protocol at Nash equilibrium.

Proposition 12. At the unique Nash equilibrium, any flow i
with disutility (per rate) (p/Ts)

β (i.e. τi = Ts) picks ϵi = 1.

Proof: It can be shown through straightforward differ-
entiation that ∂Fi

∂ϵi
> 0 for any flow i ∈ N with disutility (per

rate) (p/Ts)
β , which completes the proof.

VII. EFFICIENCY RATIO

We now characterize the loss of system value at Nash
equilibrium, as compared to the value of the social optimum.
We focus on the case of a single link with capacity c.

Proposition 13. Assume αi > 1, ∀i ∈ N . When the number
of flows in the system is large,

η =
VG

VS
< α̂(

Tl

Ts
)β .

where α̂ = maxi αi.

Proof: Let ϵ∗ = [ϵ∗1, ϵ
∗
2, · · · , ϵ∗N ] be the system protocol

profile at social optimum. From Proposition 7, every user
chooses the strict protocol at social optimum, i.e ϵ∗i = 1,∀i.
Hence, from (19), and the definition of Ui, we have

x∗
i (ϵ

∗) =

(
wi

(
Ts

p∗(ϵ∗)

)β
) 1

αi

,
∑
i

x∗
i (ϵ

∗) = c. (43)

Interpreting
(

p∗(ϵ∗)
Ts

)β
as the dual variable, the above equa-

tions can be identified as the KKT conditions of the optimiza-
tion problem given below:

max
x

∑
i

wix
1−αi
i

1− αi
, subject to

∑
i

xi = c.
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And, x∗(ϵ∗) is the unique maximizer of the above problem.
The payoff of a flow at social optimum, from (8) and the above
results, is given by

Fi(ϵ
∗) = Ui(x

∗
i (ϵ̂

∗))
(
1 + 1i(αi − 1)(Ts

τi
)β
)
. (44)

where 1i = 1 if flow i is a price sensitive flow and zero other-
wise. The system value at social optimum is VS =

∑
i Fi(ϵ

∗).
Now, let ϵ̂ = [ϵ̂1, ϵ̂2, · · · , ϵ̂N ] be the system protocol profile

at Nash equilibrium. From Proposition 10, equation (19) and
the definition of Ui, we have

x∗
i (ϵ̂) =

(
wi

(
Tl ∧ (τi ∨ Ts)

p∗(ϵ̂)

)β
) 1

αi

,
∑
i

x∗
i (ϵ̂) = c.

(45)

Recall that a∧b = min{a, b}, a∨b = max{a, b}. Interpreting(
p∗(ϵ̂)
Ts

)β
as the dual variable, the above equations can be

identified as the KKT conditions of the optimization problem
given below:

max
x

∑
i

wi(
Tl∧(τi∨Ts)

Ts
)βx1−αi

i

1− αi
, subject to

∑
i

xi = c.

Also, x∗(ϵ̂) is the unique maximizer of the above problem.
Finally, the payoff of a flow is

Fi(ϵ̂) = Ui(x
∗
i (ϵ̂))

(
1 + 1i(αi − 1)

(
Tl∧(τi∨Ts)

τi

)β)
. (46)

The system value at NE is VG =
∑

i Fi(ϵ̂).
Now, from the above results and the fact that Ui’s are

negative, since αi > 1 by the assumption of this proposition,
we can show that

VG ≥ α̂
∑
i

(
T̃

Ts

)β

Ui(x
∗
i (ϵ̂)) ≥ α̂

∑
i

(
T̃

Ts

)β

Ui(x
∗
i (ϵ

∗
i ))

> α̂

(
Tl

Ts

)β∑
i

Ui(x
∗
i (ϵ

∗
i ))

(
1 + 1i(αi − 1)(

Ts

Ti
)β
)

(47)

= α̂(
Tl

Ts
)βVS ,

where α̂ = maxi αi and T̃ = Tl ∧ (τi ∨Ts). Since VG and VS

are negative, the efficiency ratio η, can be bounded as

η =
VG

VS
< α̂

(
Tl

Ts

)β

,

which completes the proof.
Example-4: The exact expression for efficiency ratio is

derived for the following special case: We assume that every
flow has the same utility function, i.e, in (6), wi = w and
αi = α, ∀i ∈ N . We associate the flows, having disutility
functions of the form ( p

τj
)βx with Class-j. Assume that there

are J − 1 such classes with τ1 < τ2 < .. < τJ−1 and
τj ∈ [Tl, Ts],∀j. The flows having zero disutility function
is classified as Class J . For algebraic convenience, we define
τj = ∞. Let Ni be the number of flows belonging to Class i

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

Fraction of Class−1 Users

E
ffi

ci
en

cy
 R

at
io

Efficiency Ratio − Mix of Class−1 and Class−2 Users

 

 
T

l
 /T

s
 =4

T
l
 /T

s
 = 6

T
l
 /T

s
 =8

Fig. 6. Efficiency Ratio (η) in the single link case, plotted against the fraction
of Class-1 flows for different ratios of Tl/Ts. Since VS and VG were negative
in this example, a higher ratio is worse.

and ni = Ni/N . Then, the Value of social optimum (VS) and
value of game equilibrium (VG) are given by

VS =
N

1− α

( c

N

)1−α J∑
j=1

nj(1 + 1j(α− 1)

(
Ts

τj

)β

), (48)

and

VG =
N( c

N )1−αS1

(1− α)S2
, (49)

respectively, where

S1 =

α

J−1∑
j=1

ni

(
τj
Ts

)( β
α )(1−α)

+ nJ

(
Tl

Ts

)( β
α )(1−α)


and

S2 =

J−1∑
j=1

nj

(
τj
Ts

) β
α

+ nJ

(
Tl

Ts

) β
α

1−α

.

Also, 1j = 0 when j = J and one otherwise. The efficiency
ratio, η, is given by

η =
S1

S2

∑J
j=1 nj(1 + 1j(α− 1)(Ts

τj
)β)

. (50)

Now, we plot the efficiency ratio for the following case. Let
two classes of flows, namely Class 1 and Class 2, are sharing
a link. Also, let their disutility thresholds be τ1 = Ts and
τ2 = Tl respectively. Letting α = 2 and β = 3, we plot the
efficiency ratio (η), given by (50), in Figure 6. The Figure 6
shows that η increases with ( Tl

Ts
). Note that a higher ratio is

worse. Hence, the performance deteriorates with ( Tl

Ts
).

VIII. PARIS METRO PRICING

We have shown in the previous section that when the flows
selfishly choose protocols to maximize their own payoff, the
system performance at the resulting equilibrium, compared to
the socially optimal case, can be much worse. This is due to the
fact that, as shown by Proposition 10, the flows with relatively
lower disutility functions choose relatively lenient protocols,
and hence capture a larger fraction of channel bandwidth
leaving not enough for the ones with larger disutility functions
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who choose stricter protocols. As a solution to the aforemen-
tioned problem, we propose a scheme in which the network
is partitioned into virtual subnetworks each having its own
queuing buffer, independent price (queue-length) dynamics
and fixed entrance toll. A flow is free to choose a protocol
along with a subnetwork so as to maximize his own payoff.
This scheme is similar to Paris Metro Pricing (PMP) [17].
We show that the efficiency of this scheme is superior to the
conventional, untolled, single network scheme.

We characterize the performance of the proposed scheme in
a single link case. The single link, with capacity c (bits/sec), is
partitioned into J virtual subnetworks. Let Sj represent the jth

sub-network. The bandwidth and toll associated with Sj are
denoted by cj and λj respectively. Also, let c = [c1, · · · , cJ ]
and λ = [λ1, · · · , λJ ]. We refer to c and λ as bandwidth vector
and toll vector respectively.

We assume that every flow has the same utility function,
i.e, in (6), wi = w and αi = α,∀i ∈ N . We associate the
flows having disutility functions of the form ( p

τj
)βx to Class-

j. We assume that there are J −1 such classes and τ1 < τ2 <
.. < τJ−1 with τj ∈ [Ts, Tl]. The price insensitive flows are
classified as Class-J . For algebraic convenience, we define
τJ = ∞. We also assume that there are a large number of
flows in each class. Let Nj represent the number of flows in
Class-j.

A flow that seeks to maximize its payoff picks a subnetwork
that yields the maximum payoff. Thus, if k̂ is the subnetwork
chosen by flow i,

k̂ = arg max
k∈{1,··· ,J}

Fjk j = 1 · · · , J

where Fjk is the payoff of a Class-j flow in Sk. A Nash
equilibrium (NE) here is a state from which none of the
flows has an incentive to deviate from its current choice of
subnetwork. Note that we already know the flow’s choices of
protocols in each network so no deviations in protocol are
possible. The desired NE is one in which all Class-j flows
select Sj , i.e

Fjj ≥ Fjk, ∀j, ∀k. (51)

Note that the payoffs received are uniquely determined by the
PMP system parameters c and λ. Now, we derive sufficient
conditions on the pair, c and τ , so that (51) holds true.

Assume that the system is at the desired equilibrium, i.e,
every Class-j flow is sending its traffic over Sj . Let p∗k be
the equilibrium price (per unit rate) in Sk. The throughput
received by a Class j flow (or anticipated by a Class j flow
if it shifted to Sk) is given by,

x∗
jk =

(
τj
p∗k

) β
α

and x∗
Jk =

(
Tl

p∗k

) β
α

, ∀k. (52)

The above results are due to the fact that the entry of a Class-i
flow into Sk may not significantly change its price, p∗k, since
there are large number of flows in Sk. In (52), the first result
follows from Proposition 10, (34) and the assumption that
Tj ∈ [Ts, Tl] when j < J , while the second one follows from
Proposition 6. The link price p∗k in Sk, follows from the above

results and the fact that rates of flows sharing a sub-network
add up to its bandwidth allocation, is given by

p∗k =

(
Nk

ck

)α
β

τk, if k < J, and p∗J =

(
NJ

cJ

)α
β

Tl (53)

The payoff of Class j flow in Sk, from (8), is given by

Fjk(c, λ) =
(x∗

jk)
1−α

1−α −
(

p∗
k

τj

)β
x∗
jk − λk,

= Aik

(
ci
Ni

)1−α

− λi, ∀k, (54)

where Aik = α
1−α (

τi
τk
)(

β
α )(1−α) for i, k < J , AiJ =

α
1−α (

τi
Tl
)(

β
α )(1−α),∀i, AJk = 1

1−α (
Tl

τk
)(

β
α )(1−α), k < J and

AJJ = 1
1−α . Also, (54) follows from (52) and (53).

The following lemma derives conditions on the pair (c, λ)
for (51) to hold true. Before stating the lemma, we introduce
some notation. Let

lik(c) = Aki(
ci
Ni

)1−α −Akk(
ck
Nk

)1−α. (55)

uik(c) = Aii(
ci
Ni

)1−α −Aik(
ck
Nk

)1−α, (56)

Lemma 14. Suppose the pair (c, λ) satisfy the following
conditions: if 1 ≤ k < J ,

ck+1

ck
≤ Nk+1

Nk

(
τk+1

τk

) β
α

, (57)

cJ
cJ−1

≤ NJ

NJ−1

(
τl

τJ−1

) β
α

,
∑J

j=1 cj = c, (58)

lk(k+1)(c) ≤ λk − λ(k+1) ≤ uk(k+1)(c), (59)

Then, (51) hold true and the state where all the Class-j flows
choosing Sj , ∀j, is a Nash equilibrium.

Proof: See Appendix
The system-value is sum of payoffs of all the flows, which

is given by,

VT (c, λ) =
J∑
i

NiFii =
J∑

i=0

Ni

(
Aii

(
ci
Ni

)1−α

− λi

)
. (60)

We must choose c and λ that maximize (60) satisfying the
NE conditions, (57) -(59). Let (ĉ, λ̂) be one such optimal pair.
Note that (60) is a decreasing function of toll vector, λ. Hence,
from (58) and (64), we get

λ̂J = 0, and λ̂k =
J∑

i=k

li(i+1). (61)

Substituting the optimal toll values in (60), we get

VT (c) =
N̄J

1− α

(
cJ
NJ

)1−α

+

N̄J−1α

1− α

(
cJ−1

NJ−1

)1−α
(
1− 1

α

(
Tl

τJ−1

) β
α (1−α)

)
+

J−2∑
k=1

αN̄k

1− α

(
ck
Nk

)1−α
(
1−

(
τk+1

τk

) β
α (1−α)

)
, (62)

where N̄k =
∑k

i=1 Ni. Then, define,

VT = max
c

VT (c) subject to (57) − (58). (63)
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We refer to VT as System value with tolling. Now, we have
the following proposition, which asserts that the system value
achieved by the tolled multi-tier regime is superior to that of
the untolled single tier regime.

Proposition 15. The system value with tolling is no less than
the value of single tier network game. i.e, VT ≥ VG. Also, the
strict inequality holds if there exists a k < J such that

(
N̄JNk

NJN̄k
)

1
α ≤ (

Tl

τk
)

β
α

(
1−

(
τk+1

τk

) β
α (1−α)

)
, (64)

Proof: Suppose c attains equality in (57)-(58), i.e a corner
point of the constraint set. Note that the elements of c, the
bandwidths allocated to each subnetwork, that means to each
flow class, is equal to the total bandwidth received by the
corresponding flow class at the NE of the un-tolled single
network game. Also, from (61) and (55), the optimal entrance
toll in each subnetwork drops to zero. Then, VT (c) = VG.
Hence, we conclude that VT ≥ VG.

Note that VT (c) is strictly concave and hence, (63) has a
unique maximizer. When (64) holds true, the unique maxi-
mizer lies in the interior of the constraint set of (63). Then,
VT > VG which completes the proof.

Next, we derive a bound on the efficiency of the multi-tier
tolling scheme. Let

η̄ = 1 + α
J−1∑
k=1

k∑
i=1

ni. (65)

where ni =
Ni

N . Then, we claim that

ηT =
VT

VS
≤ min{ηG, η̄}. (66)

where ηG is the efficiency of single tier scheme without tolling.
The claim can be proved as follows: Let c̄j = Nj

c
N for all

1 ≤ j ≤ J . Then, c̄ = [c̄1, · · · , c̄J ] lies in the feasible set of
the optimization problem, (63). Then, VT (c̄) ≤ VT . It can be
shown that VT (c̄)

VS
< η̄ where VS is given by (48). Therefore,

ηT < η̄. Also, from Proposition 15, we get that ηT ≤ ηG.
Together, we get the claim.

Note that, η̄, does not depend on the ratio, Ts

Tl
; but it scales

up with the number of classes in the system. Nevertheless,
ηT is no more than the efficiency of the single tier networks
without tolling. Therefore, we conclude that when the number
of classes in the system is not arbitrarily large, the efficiency
of multi-tier tolling schemes are superior to the single tier
networks and, it does not scale up with the ratio, Ts

Tl
. Note

that there might be Nash equilibria other than the one stated by
Lemma 14. Therefore, (66) may be better than the efficiency
of the worst Nash equilibrium. Now, we present a numerical
example to validate our analytical observations.
Example-6: Let two flow classes, namely Class 1 and Class 2,
with disutility thresholds τ1 = Ts and τ2 = Tl are sharing a
link with capacity c units. The link is partitioned into two
subnetworks, namely S1 and S2. Let Ni be the number of
flows in Class i and define ni = Ni/(N1 + N2), for i =
1, 2. The optimal bandwidth allocation to subnetwork S1, that
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Fig. 7. Comparison of Efficiency Ratio (η) between PMP scheme and Game
in a network with price-insensitive flows and delay sensitive flows. Since VS

and VG were negative in this example, a higher ratio is worse.

maximizes the system value with tolling, is given by

ĉ1 =
c

1 + n2

n1n
1
α
2

(
1−

(
Tl

Ts

)( β
α )(1−α)

)− 1
α

∨ c

1 + n2

n1
( Tl

Ts
)

β
α

.

Also, the optimal toll in S1 is given by λ̂1 =[(
N2

c−ĉ1

)α−1

−
(

N1

ĉ1
(Ts

Tl
)

β
α

)α−1
]

α
α−1 . Note that S2 has no

entrance toll and the optimal allocation to S2 is ĉ2 = c− ĉ1.
We define Efficiency Ratio (ηT ) here as the ratio of System-
Value with tolling (VT ) to Social optimum (VS). From (60)
and VS ,(from (48)), we can show that

ηT =
VT

VS
=

α

(
(n1 + n2)

(
ĉ1
cn1

)1−α

+ n1

(
ĉ1
cn1

)1−α

K

)
(
1 + (α− 1)(n1 + n2(

Ts

Tl
)β)
) ,

where K =

(
1−

(
Tl

Ts

)( β
α )(1−α)

)
.

In Figure (7), we have compared η attained using the PMP
scheme versus that of a single-tier. We have used α = 2,
β = 3 and ( Tl

Ts
) = 4 in our simulation. We observe that in-

spite of tolling, the PMP scheme always performs better than
the single-tier scheme. Also, note that, unlike the single tier
scheme, the efficiency of the PMP scheme does not scale with
Tl

Ts
.

IX. CONCLUSION

In this paper we examined the consequences of the idea that
a protocol is simply a way of interpreting Lagrange multipliers.
We showed that flows could choose the interpretations, based
on criteria such as delay or loss sensitivity. We determined
the socially optimal protocol, as well as the choice that would
result by flows taking their own selfish decisions. We showed
that the social good is maximized by using the strictest possi-
ble price interpretation. However, based on different mixes
of flow types a mix of interpretations could be the Nash
equilibrium state. We characterized the loss of efficiency for
some specific cases, and showed that a multi-tier network
with tolling is capable of achieving superior system value.
The result suggests the consideration of multiple tolled virtual
networks, each geared towards a particular kind of flow. In
the future we propose to explore the idea of virtual, tolled
subnetworks further.
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X. APPENDIX-1

Proof of Lemma 13: The Nash equilibrium conditions,
(51), are equivalent to

lik(c) ≤ λi − λk ≤ uik(c), k > i, ∀i, (67)

which follows from the definition of Fik given by (54). Recall
the definitions of, lik and uik from (55) and (56) respectively.
Therefore, we prove the lemma by showing that (67) hold true
when (57)-(59) are satisfied.

Suppose (57)-(59) are true. Then, it is easy to observe that
lik ≤ uik,∀k > i. Also, we have

m−1∑
t=k

lt(t+1) ≤ λk − λm, ∀m > k,∀k. (68)

From the definitions of lik’s and the fact that τi < τk if i < k,
it is easy to show that

lk(k+j) − lk(k+j−1) ≤ l(k+j−1)(k+j), (69)

for k < J and 1 < j ≤ J − k. Then, we have,

lkm = lk(k+1) + (lk(k+2) − lk(k+1)) + · · ·+ (lkm − lk(m−1))

≤
m−1∑
t=k

lt(t+1) ≤ λk − λm. (70)

In similar fashion, we can show that ukm ≥ λk − λm. Then,
(67) is proved and hence the lemma.
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