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Abstract

We consider the problem of sampling uniformly at random from the
set of proper k-colorings of a graph with maximum degree ∆. Our main
result is the design of a simple Markov chain that converges in O(nk log n)
time to the desired distribution when k >

11

6
∆.

1 Introduction

A proper k-coloring of a graph G = (V,E) is a labeling σ of the vertices with
colors from the set C = {1, . . . , k} where neighboring vertices have different
colors. We address the problem of sampling uniformly from the set of proper
k-colorings. This problem is interesting as a natural combinatorial problem
and also has applications in Statistical Physics. It corresponds to sampling
configurations of the zero temperature k-state anti-ferromagnetic Potts model
[9].

A natural approach to this sampling problem is to consider a Markov chain
which has a state for each proper k-coloring. We define the transitions of the
chain so that its stationary distribution is uniform over all states. In order to
sample from the desired distribution, we run the following procedure: start at
an arbitrary coloring, simulate the random walk defined by the chain until it
is sufficiently close to the stationary distribution, and output the final coloring
of the walk. The required length of this random walk is traditionally referred
to as the mixing time. The Markov chain is called rapidly mixing if the mixing
time is bounded by a polynomial in n = |V | and thus gives an efficient sampling
algorithm.

The (heat-bath) Glauber dynamics is perhaps the simplest possible Markov
chain with the desired stationary distribution. From a coloring σ, its transitions
σ 7→ σ′ are defined as:

• Choose a vertex v uniformly at random.
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• Let σ′(x) = σ(x) for all x 6= v.

• Let S denote the set of colors that do not appear in the neighborhood of
v. Choose σ′(v) uniformly at random from the set S.

Mark Jerrum [7] proved that the Glauber dynamics is rapidly mixing when the
number of colors is at least twice the maximum degree ∆ of the input graph.

This 2∆ barrier also arose in related work in the Statistical Physics com-
munity. Their focus was studying phase transitions in the zero-temperature
anti-ferromagnetic Potts model. (There appears to be some connection between
rapid mixing and phase transitions, see section 5 for more on this topic.) We
first need to introduce some notation before we can explain the notion of a phase
transition. Consider the d-dimensional square lattice Z

d where edges connect
vertices that differ by 1 in exactly one component. Also, QL denotes the finite
d-dimensional cube of Z

d with side length 2L + 1 centered at the origin, i.e.,
the induced subgraph of Z

d on vertex set V = {−L, . . . , L}d, and its boundary
∂QL refers to those vertices with at least one coordinate equal to ±L. Let τ
denote a coloring of Zd. Consider the probability measure µτ = µτ,L, which is
uniform over the set of proper k-colorings of QL conditional on the boundary
having coloring τ . We are interested in whether the influence of the boundary
on the origin dies out as L → ∞. In particular, we say the system is in the
disordered phase if, for all τ and colors c,

µτ (origin has color c) →
1

k
as L → ∞.

Otherwise, we say the system is in the ordered phase. The system is said to
undergo a phase transition at a transition between the disordered and ordered
phases. Roman Kotecký (cited in [6, pages 148-149,457]) showed that the system
is in the disordered phase when the number of colors is greater than twice the
degree of the lattice (i.e., k > 2∆ = 4d).

In both settings, this 2∆ barrier was broken in specific instances by computer-
assisted proofs which analyzed a huge number of cases. Jesus Salas and Alan
Sokal broke the barrier for several two-dimensional lattices [11]. They proved
that the system is in the disordered phase for seven-colorings of the square lat-
tice, four-colorings of the hexagonal lattice, and six-colorings of the Kagome
lattice. Their proof for the square lattice, for instance, requires the computer
analysis of 78 cases.

Russ Bubley, Catherine Greenhill, and Martin Dyer [3] proved rapid mixing
of the Glauber dynamics with five colors when ∆ is at most three and seven
colors on triangle-free four-regular graphs. Their proof relies on the computer
solution of several hundred linear programs for the ∆ ≤ 3 case, and over 40,000
programs for triangle-free 4-regular graphs.

In this paper, we give a simple direct proof that breaks the 2∆ barrier for
arbitrary graphs. We consider a Markov chain which we call the flip dynamics,
formally defined in section 3. This Markov chain is reminiscent of the Wang-
Swendsen-Kotecký (WSK) algorithm, see section 7 for a discussion about the
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WSK algorithm. The transitions of our chain consist of ‘flipping’ two-colored
clusters. In particular, from a coloring σ, choose a vertex v and color c uniformly
at random. Then consider the maximal cluster of vertices which contain v and
are colored with c or σ(v). With an appropriate probability, ‘flip’ this cluster
by interchanging colors c and σ(v) on it. Our main result is the following.

Theorem 1 The flip dynamics is rapidly mixing, with mixing time O(nk log n),
provided k > 11

6 ∆.

This is the first proof to break the 2∆ barrier that is not computer assisted
and also the first for arbitrary graphs of any given maximum degree ∆ ≥ 6.
Moreover, rapid mixing of the flip dynamics also implies rapid mixing of the
Glauber dynamics.

Theorem 2 The Glauber dynamics is rapidly mixing, with mixing time
O(n2k log n log k), provided k > 11

6 ∆.

When k = 11
6 ∆ our proof implies rapid mixing for constant ∆, see the remark

at the end of section 4. In section 3, we discuss some known connections between
rapid mixing of the flip dynamics and the system lying in the disordered phase.
In particular, these connections together with our result on the mixing time of
the flip dynamics imply the following theorem.

Theorem 3 The k-state zero temperature anti-ferromagnetic Potts model on
Z
d lies in the disordered phase when k > 11

3 d.

This improves upon the previously known bound of k > 4d for general d.
Moreover, the result can easily be extended to other lattices that are commonly
of interest, such as the hexagonal and Kagomé lattice (see [11] for illustrations
of these lattices).

2 Background

Consider a discrete-time Markov chain with transition probability matrix P
defined on a finite state space Ω. A classical theorem of stochastic processes
states that if P has the following properties:

• aperiodicity: for all i ∈ Ω, gcd{t : P t(i, i) > 0} = 1; and

• irreducibility: for all i, j ∈ Ω, there exists a t = tij , such that there is
a positive probability of going from state i to state j after t steps, i.e.,
P t(i, j) > 0,

then the chain has a unique limiting distribution, referred to as the stationary
distribution π, i.e.,

lim
t→∞

P t(i, j) = π(j) for all i, j ∈ Ω.
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In fact, if P is symmetric (P (i, j) = P (j, i) for all i, j) then π is uniform over
all states.

Our goal is to bound the time until the chain is sufficiently close to the
stationary distribution. The standard measure of distance from stationarity is
total variation distance. From an initial state i, the total variation distance from
π is

di(t) = dTV (P t(i, ·), π) =
1

2

∑

j∈Ω

|P t(i, j) − π(j)|.

We are interested in the following quantity,

τ(ǫ) = max
i

min{t : di(t
′) ≤ ǫ for all t′ ≥ t}.

It is sufficient to consider the mixing time, defined as:

τ = τ(1/2e).

The constant 1/2e is arbitrary and only affects later constants that appear. A
bound on the mixing time implies a bound on τ(ǫ) [1]:

τ(ǫ) ≤ (1 − log ǫ)τ.

We use coupling to bound the mixing time. Coupling constructs a stochastic
process (σt, ξt) on Ω × Ω such that:

• separately σt, ξt are copies of the original Markov chain, and

• if σt = ξt, then σt+1 = ξt+1.

The goal is to define a coupling to minimize the expected time till σt = ξt,

Tij = min{t : σt = ξt|σ0 = i, ξ0 = j}.

The following fact illustrates the usefulness of coupling for bounding the mixing
time [1]. For σ0 = i, ξ0 = j,

dTV (σt, ξt) ≤ Pr[σt 6= ξt] = Pr[Tij > t].

Bubley and Dyer’s path coupling [2] is an important tool for helping to design
couplings in complex examples. Using path coupling, we only need to define and
analyze a coupling for a subset of Ω×Ω. For simplicity, we explain the technique
for the case when Ω ⊆ {1, . . . , k}V , such as the set of proper k-colorings.

We need to introduce several definitions before stating the theorem. We
consider a pair of states σ, τ ∈ Ω neighbors if they only differ at a single vertex.
This is denoted by σ ∼ τ . Note that these σ, τ are states of the Markov chain
but the definition of neighbors has nothing to do with the transitions of the
chain. In fact, we could even have that σ ∼ τ but σ and τ are not accessible
from one another by one transition of the chain.

We call η = (η0, . . . , ηk) a simple path if all ηi are distinct and η0 ∼ η1 ∼
· · · ∼ ηk. Define ρ(σ, ξ) = {η : σ = η0, ξ = ηk, η is a simple path}. The path
coupling theorem is more general than stated here, but this is sufficient for our
purposes.
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Theorem 4 (Bubley and Dyer [2]) Let Φ be an integer-valued metric de-
fined on Ω × Ω which takes values in {0, . . . , D} such that, for all σ, ξ ∈ Ω,
there exists a path η ∈ ρ(σ, ξ) with

Φ(σ, ξ) =
∑

i

Φ(ηi, ηi+1).

Suppose there exists a constant β < 1 and a coupling (σt, ξt) of the Markov
chain such that, for all σt ∼ τt,

E[Φ(σt+1, τt+1)] ≤ βΦ(σt, τt). (1)

Then the mixing time is bounded by

τ ≤
log(2eD)

1 − β
.

Moreover, if (1) holds with β = 1 and in addition there exists an α > 0 such
that, for all t and arbitrary σt, ξt ∈ Ω,

Pr[Φ(σt+1, ξt+1) 6= Φ(σt, ξt)] ≥ α,

then the mixing time is bounded by

τ = O

(

D2

α

)

.

3 Markov Chain

The state space Ω of the Markov chain for the flip dynamics is the set of all
proper k-colorings. We need some notation before specifying the transitions of
the chain. For a coloring σ, we will refer to a path v = x0, x1, . . . , xl = w as
an alternating path between vertices v and w using colors c and σ(v) if, for all
i, (xi, xi+1) ∈ E, σ(xi) ∈ {c, σ(v)}, and σ(xi) 6= σ(xi+1). We let Sσ(v, c) denote
the following cluster of vertices.

Sσ(v, c) =

{

w|
there exists an alternating path between
v and w using colors c and σ(v)

}

Let Sσ(v, σ(v)) = ∅. For every vertex x in the cluster Sσ(v, c), notice that
Sσ(x, c) = Sσ(v, c) if σ(x) = σ(v) and otherwise Sσ(x, σ(v)) = Sσ(v, c).

For a coloring σ ∈ Ω, the transitions σ 7→ σ′ are defined as:

• Choose a vertex v and color c uniformly at random from the sets V , C
respectively.

• Let α = |Sσ(v, c)|.
With probability pα

α , ‘flip’ cluster Sσ(v, c) by interchanging colors c and
σ(v) on the cluster.
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The reason for dividing the flip probability by α is that, as observed above,
there are exactly α ways to pick the cluster (one for each of its elements). Thus,
a cluster is actually flipped with weight pα. The parameters pα will be defined
later.

Observe that for every vertex v, the flip of cluster Sσ(v, σ(v)) does not change
σ. Thus, the Markov chain is clearly aperiodic since P (σ, σ) > 0 for all σ ∈ Ω.

As for irreducibility, it is sufficient to assume flips of clusters of size one
have positive weight, i.e., p1 > 0 and k ≥ ∆ + 2. To go between an arbitrary
pair of colorings, consider an arbitrary ordering of the vertices and attempt to
recolor the vertices in that order. When attempting to recolor a vertex v to
color c, suppose that some neighbors of v have the desired color c. For each
such neighbor w, recolor w to an arbitrary color which does not appear in the
neighborhood of w (this requires that k ≥ ∆+2). Then, recolor v to color c and
we are guaranteed that vertex v will not interfere with the recoloring of later
vertices in the ordering.

To see that the chain is symmetric and thus the stationary distribution π is
uniform, let σ′ denote the coloring after a flip of cluster Sσ(v, c). Then it should
be clear that a flip of cluster Sσ′(v, σ(v)) recovers σ.

To complete the description of the chain, we specify the parameters pα. They
are p1 = 1, p2 = 13

42 and for α > 2,

pα = max(0,
13

42
−

1

7
[1 +

1

2
+ · · · +

1

α− 2
])

Specifically, p3 = 1
6 , p4 = 2

21 , p5 = 1
21 , p6 = 1

84 ,and pα = 0 for α ≥ 7.
The key properties (which will emerge in the analysis) that determined the

settings for these parameters are

• 2(i− 1)pi + p2i+1 ≤ 2
3 , and

• (j − 1)(pj − pj+1) + i(pi − pi+1) ≤ 5
6 .

This is true because (j − 1)(pj − pj+1) ≤ 1
7 , i(pi − pi+1) ≤ p1 − p2 = 29

42 .

Other useful properties of these parameters that we utilize are that ipi ≤ p1 = 1,
(i− 1)pi ≤ 2p3 = 1

3 , (i− c)pi <
1
4 for c ≥ 2.

4 Analysis

Recall the setting of the path coupling theorem. To use the theorem we need to
define a metric Φ on Ω × Ω such that there exists a path between an arbitrary
pair of states σ, η where the length of the path is exactly Φ(σ, η). We let Φ be the
Hamming distance which is the number of vertices that are colored differently in
the two states. For neighboring states σ, τ , observe that Φ(σ, τ) = 1. Consider a
pair of adjacent vertices v and w, and a pair of colorings σ, η which are identical
except at v and w. Moreover, suppose that σ(v) = η(w), σ(w) = η(v). Thus,
Φ(σ, τ) = 2 but the shortest path in Ω between these states is of length three.
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In order to apply the path coupling theorem, we redefine the state space of
the Markov chain. Let the set Ω = CV , i.e., the set of all (not necessarily proper)
k-colorings. Now there exists a path of length Φ(σ, η) between an arbitrary pair
of states σ and η. The definition of the clusters Sσ(v, c) and the transitions of
the chain are identical for this enlarged state space.

Observe that if we start the chain at a proper coloring, we only visit proper
colorings. Also, if we start at an improper coloring we eventually reach a proper
coloring. (To see this simply reconsider the earlier argument for irreducibility.)
Therefore, the only states with positive weight in the stationary distribution are
proper colorings and the chain is still uniform over these states. Also, a bound
on the mixing time of the chain on this enlarged state space will give the same
bound on the mixing time of the chain restricted to just proper colorings.

To now use the path coupling theorem to get a bound on the mixing time we
must first define a coupling for neighboring states σ, τ . Then we need to show
that the expected change in Φ = Φ(σ, τ) under this coupling is negative. For
the remainder of the analysis, let σ and τ denote a pair of neighboring states
such that they only differ at vertex v.

Recall that for every cluster Sσ(x, c) there is exactly one equivalent cluster
indexed by each vertex y ∈ Sσ(x, c). Also, this cluster is flipped with total
weight pα where α = |Sσ(x, c)|. Thus, when analyzing E[∆Φ] we just have to
consider this cluster being flipped with weight pα as opposed to considering the
cluster being flipped with weight pα/α for each vertex y in the cluster.

Consider when clusters Sσ(x, c), Sτ (x, c) might be different, in the sense
that either Sσ(x, c) 6= Sτ (x, c), or Sσ(x, c) = Sτ (x, c), but σ(y) 6= τ(y), for
some y ∈ Sσ(x, c). In order for either of these cases to occur the cluster must
involve v, either v ∈ Sσ(x, c) and/or v ∈ Sτ (x, c). Recall that if v ∈ Sσ(x, c)
then there is an equivalent way to index the cluster with vertex v. Suppose
v 6∈ Sσ(x, c), v ∈ Sτ (x, c). We then know that the cluster S(x, c) is composed
by colors τ(v) and c′. Furthermore, there exists a neighbor w of v such that: w
has color c′, Sτ (w, τ(v)) = Sτ (x, c) = Sτ (v, c′), and Sσ(w, τ(v)) = Sσ(x, c). We
can conclude that the set D of clusters that might be different in the two chains
are

• Sσ(w, τ(v)), Sτ (w, σ(v)) for any neighbor w of v,

• Sσ(v, c), Sτ (v, c) for any color c.

The moves that attempt to flip a cluster in D turn out to be the only moves
that the analysis needs to consider. In particular, suppose the coupling between
moves in σ and τ is simply the identity, i.e., each chain attempts the same move.
The flip of a cluster S 6∈ D does not change Φ since S is the same in both chains
before and after the move. Our coupling is in fact the identity for moves that
flip clusters not in D. Before stating the coupling for all moves, we partition
the set D as follows. Notice that the clusters in D are composed of colors σ(v)
or τ(v) and at most one other color c. We partition D into sets Dc based on
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the other color c as follows, let

Γc = {w|σ(w) = c, w is a neighbor of v},

Dc = {Sσ(v, c), Sτ (v, c), {{Sσ(w, τ(v)), Sτ (w, σ(v))}w∈Γc
} .

The only sets Dc that might have non-empty intersection are Dσ(v) and
Dτ(v) which both consist of clusters composed of colors σ(v) and τ(v). We
ignore this issue for now, and address this special case (*) in the analysis. Note
that the sets Dσ(v), Dτ(v) are simply a byproduct of redefining the state space
to all (not necessarily proper) colorings.

Before defining the coupling, observe that we can think of it as a function f
from a move in σ to a move in τ , i.e., we choose a move in σ and f defines the
coupled move in τ . From a move in σ that flips a cluster S, the coupling f is

• For S 6∈ D, f(S) = S, i.e., moves that flip clusters not in the set D have
the identity coupling.

• For S ∈ Dc, f(S) ∈ Dc. Moves in the set Dc for σ are coupled with moves
in the same set for τ .

The specific coupling for flips of clusters in the set Dc will be defined later
in the analysis. Since flips of clusters in Dc are coupled together for the chains,
we can denote the effect of these moves by

E[∆Dc
] = E[∆Φ|σ and τ flip clusters in Dc].

Recall that for clusters S 6∈ D, moves that flip these clusters do not change Φ.
We then have that

nkE[∆Φ] =
∑

c

E[∆Dc
Φ]

The key component of the analysis is the following lemma. Let δc = |Γc|.

Lemma 5 For each color c ∈ C,

(a) If δc = 0, then E[∆Dc
Φ] ≤ −1.

(b) If δc > 0, then E[∆Dc
Φ] ≤ 11

6 δc − 1.

Based on this lemma, we get our main result.

Proof of Theorem 1:
Let δ = δ(v) denote the degree of vertex v. Observe that the number of

colors c with δc = 0, i.e., that do not appear in the neighborhood of v, is exactly
k − δ +

∑

c′:δc′>0(δc′ − 1). Together with the lemma this implies that

nkE[∆Φ] ≤ −k +
11

6
δ.

Recall from the path coupling theorem that we need to bound β such that
E[Φ(σt+1, τt+1)] ≤ βΦ(σt, τt) for all σt ∼ τt. Letting σ = σt, τ = τt, we have a
bound on E[∆Φ(σt, τt)]. Since E[Φ(σt+1, τt+1)] = Φ(σt, τt) +E[∆Φ(σt, τt)] and

Φ(σt, τt) = 1, thus, β ≤ 1 −
k− 11

6 ∆

nk . Applying the path coupling theorem stated
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earlier we get the following bound when k > 11
6 ∆,

τ ≤
nk

k − 11
6 ∆

log(2en).

Proof of Lemma 5:
(a) Observe that Dc = {Sσ(v, c), Sτ (v, c)} and furthermore, Sσ(v, c) =

Sτ (v, c) = {v}. Since each chain has only one cluster in Dc, the coupling for
the move that flips the cluster in Dc is obviously just the identity. This move
might only change v and after the move we know that σ(v) = τ(v) = c. Thus,
E[∆Dc

Φ] = −1.
(b) Let w1, . . . , wδc

denote the set Γc of neighbors of v with color c. All of
the clusters in the set Dc are composed of colors c and σ(v) or c and τ(v). In
fact, the clusters in the set Dc have the the following relationship:
For c 6= σ(v),

Sσ(v, c) = {∪iSτ (wi, σ(v))} ∪ {v}

For c 6= τ(v),

Sτ (v, c) = {∪jSσ(wj , τ(v))} ∪ {v}

Note that in the case when c = σ(v), we have Sσ(v, c) = Sτ (wi, σ(v)) = ∅.
Similarly, c = τ(v) implies that Sτ (v, c) = Sσ(wj , τ(v)) = ∅. As mentioned
earlier it may also occur that Dσ(v) ∩Dτ(v) 6= ∅. We ignore this special case (*)
until the end of the proof.

Let ai = ai(c) = |Sτ (wi, σ(v))|, A = A(c) = |Sσ(v, c)| ≤ 1 +
∑

i ai. In fact,
A = 1+

∑

i ai for c 6∈ {σ(v), τ(v)}. Similarly, let bj = bj(c) = |Sσ(wj , τ(v))|, B =
B(c) = |Sτ (v, c)| ≤ 1 +

∑

j bj .
For a color c, all of the clusters in the set Dc might not be distinct. It may

occur that Sτ (wi, σ(v)) = Sτ (wi′ , σ(v)) or similarly for Sσ(wj , τ(v)). We do
the following to insure that we consider the flip of each cluster exactly once.
If Sτ (wi1 , σ(v)) = Sτ (wi2 , σ(v)) = · · · = Sτ (wil , σ(v)), redefine ail′ = 0, for all
1 < l′ ≤ l. Similarly for Sσ(wj , τ(v)) with bj .

To define our coupling, we need to distinguish the largest of the clusters
Sτ (wi, σ(v)) and also of the clusters Sσ(wj , τ(v)). Let amax = maxi ai and imax

is the corresponding index for amax (similarly for bmax and jmax). For colors
c 6= σ(v), note that amax > 0, while for c 6= τ(v), bmax > 0. In the case when
c = σ(v) we have A = amax = 0 and for c = τ(v), B = bmax = 0.

We can now state the coupling for moves in Mc. The idea is to cou-
ple the big flips, Sσ(v, c) and Sτ (v, c), with the largest of the other flips,
Sτ (wimax , σ(v)), Sσ(wjmax , τ(v)). Then for each wi, couple together (as much
as possible) the remaining weights of the flips Sσ(wi, τ(v)), Sτ (wi, σ(v)). More
precisely, the coupling is the following:

I with weight pA, flip Sσ(v, c) and Sτ (wimax , σ(v)).
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II with weight pB , flip Sτ (v, c) and Sσ(wjmax , τ(v)).

III For each wl,

Let ql (q′
l) denote the remaining weight of the flip of Sτ (wl, σ(v)) (Sσ(wl, τ(v))

respectively). Specifically, let

ql =

{

pal
− pA if l = imax

pal
otherwise

q′
l =

{

pbl
− pB if l = jmax

pbl
otherwise

IIIa with weight min(ql, q
′
l),

flip Sτ (wl, σ(v)), Sσ(wl, τ(v))

IIIb with weight ql − min(ql, q
′
l),

flip Sτ (wl, σ(v))

IIIc with weight q′
l − min(ql, q

′
l),

flip Sσ(wl, τ(v))

Let us analyze the effect of each of these coupled moves. After coupled
move (I), the colorings are still identical on the cluster which before the move
was Sτ (wimax , σ(v)). Thus, their Hamming distance has increased by at most
A− amax − 1. Similarly, coupled move (II) increases the Hamming distance by
at most B − bmax − 1.

For coupled move (IIIa), since both flips effect wl this move increases the
Hamming distance by exactly al + bl − 1. Whereas, moves (IIIb) and (IIIc)
increase the distance by al and bl respectively. Let us use a function f(wl) to
denote the effect of moves (IIIa), (IIIb), and (IIIc).

f(wl) = alql + blq
′
l − min(ql, q

′
l)

We now have that

E[∆Dc
Φ] ≤ (A− amax − 1)pA + (B − bmax − 1)pB

+
∑

l

f(wl) (2)

We divide the remainder of the analysis into three different cases depending
on the value of δc.

• Suppose that δc = 1.
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The situation is fairly simple: A ≤ a1 + 1, B ≤ b1 + 1, q1 = pa1 − pA, q
′
1 =

pb1 − pB . Without loss of generality, assume that q1 ≥ q′
1. From (2), we get the

following bound

E[∆Dc
Φ] ≤ a1(pa1 − pA) + (b1 − 1)(pb1 − pB)

≤ a1(pa1 − pa1+1) + (b1 − 1)(pb1 − pb1+1)

The second key property of the parameters pα gives us the intended bound

E[∆Dc
Φ] ≤

5

6
.

• Suppose δc = 2.
The following claim dramatically simplifies the situation.

Claim 6 When δc = 2, E[∆Dc
Φ] is maximized for a1 = a2 = a ≤ 3 and

b1 = b2 = b = 1.

We can now calculate f(w1), f(w2), and E[∆Dc
Φ] for the settings a1 = a2 =

a ≤ 3 and b1 = b2 = b = 1.

f(w1) = (a− 1)pa + bpb

f(w2) = (a− 1)(pa − pA) + b(pb − pB)

E[∆Dc
Φ] ≤ (A− 2a)pA + (B − 2b− 1)pB + 2(a− 1)pa + 2bpb

= 2(a− 1)pa + p2a+1 + 2

From the first key property of the parameters pl, we have our intended bound
on E[∆Dc

Φ],

E[∆Dc
Φ] ≤

2

3
+ 2 =

11

6
δc − 1.

• Suppose that δc > 2.
Consider the following definition

g(wl) = alpal
+ blpbl

− min(pal
, pbl

)

Notice that g(wl) = f(wl) for l 6= imax, l 6= jmax. Let us look at f(wimax), f(wjmax).
Suppose l = imax = jmax.

f(wl) = amax(pamax − pA) + bmax(pbmax − pB) − min(pamax − pA, pbmax − pB)

≤ amax(pamax − pA) + bmax(pbmax − pB) − min(pamax , pbmax) + pA + pB

= g(wl) + pA(−amax + 1) + pB(−bmax + 1)

Similarly when imax 6= jmax, we get that

f(wimax) + f(wjmax) ≤ g(wimax) + g(wjmax) + pA(−amax + 1) + pB(−bmax + 1).
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Thus, we can bound the sum of f(wl) in terms of the sum of g(wl),
∑

l

f(wl) ≤
∑

l

g(wl) + pA(−amax + 1) + pB(−bmax + 1).

Plugging in this bound on the sum of f(wl) into (2) we get the following bound

E[∆Dc
Φ] ≤ (A− 2amax)pA + (B − 2bmax)pB +

∑

l

g(wl). (3)

We observed earlier that for our settings of pi, (i − c)pi <
1
4 for c ≥ 2 (or

of course when i = 0). Thus, (A− 2amax)pA, (B − 2bmax)pB < 1
4 . We can also

easily bound g(wl). Assume al ≤ bl and thus pal
≥ pbl

. We then have

g(wl) = alpal
+ (bl − 1)pbl

≤ p1 + 2p3 =
4

3
.

Combining these bounds with (3) we can complete the case δc > 2,

E[∆Dc
Φ] ≤

1

2
+

4

3
δc

≤
11

6
δc − 1 for δc > 2.

This completes the proof except for the special case (*) when Dσ(v)∩Dτ(v) 6=
∅. Let x1, . . . , xδσ(v)

and y1, . . . , yδτ(v)
denote the respective sets Γσ(v) and Γτ(v).

If Dσ(v) ∩Dτ(v) 6= ∅ then, there exists an 1 ≤ i ≤ δσ(v), 1 ≤ j ≤ δτ(v), such that

Sσ(xi, τ(v)) = Sσ(v, τ(v)), Sτ (yj , σ(v)) = Sτ (v, σ(v)).

In order for this to occur there must exist an alternating path between xi and
yj using colors σ(v) and τ(v). In such a case, instead of A(τ(v)) = |Sσ(v, τ(v))|
and aj(τ(v)) = |Sτ (yj , σ(v))|, we redefine them as A(τ(v)) = aj(τ(v)) = 0.
This insures we consider the flip of each cluster exactly once. Notice that
the set Dσ(v) is still unchanged and in fact, it is the same as previously an-
alyzed (with A(σ(v) = ai(σv) = amax(σv) = 0) except that we now have
B(σ(v)) =

∑

j bj(σ(v)) < 1+
∑

j bj(σ(v)). The previous proof still holds in this
case. For the set Dτ(v), we now have that A(τ(v)) = aj(τ(v)) = 0, B(τ(v)) =
bmax(τ(v)) = 0; while, for l 6= j, 1 ≤ l ≤ δτ(v), we have al(τ(v)) ≥ 0 (note that
as before, if Sτ (yl, σ(v)) = Sτ (yl′ , σ(v)), then we redefine al′(τ(v)) = 0). For
al = al(τ(v)), we can complete the proof as follows

E[∆Dτ(v)
Φ] ≤

∑

1≤l≤δτ(v),l 6=j

alpal
≤ (δc − 1)p1 <

11

6
δc − 1.

Proof of Claim 6:
Without loss of generality, assume that pamax − pA ≤ pbmax − pB and a1 =

amax. Considering f(w1),

f(w1) =

{

(a1 − 1)(pa1 − pA) + b1(pb1 − pB) if b1 = bmax

(a1 − 1)(pa1 − pA) + b1pb1 otherwise

12



Similarly, the other important quantities are

f(w2) =

{

a2pa2 + b2(pb2 − pB) − min(pa2 , pb2 − pB) if b2 = bmax

a2pa2 + b2pb2 − min(pa2 , pb2) otherwise

E[∆Dc
Φ] ≤ (A− a1 − 1)pA + (B − bmax − 1)pB + f(w1) + f(w2)

Suppose that b1 = x, b2 = y and we swap these values, i.e., let b1 = y and
b2 = x. Then E[∆Dc

] might change only from the min(, ) in f(w2). Thus,
E[∆Dc

Φ] is maximized when b2 = max(x, y), b1 = min(x, y). We assume from
now on that b2 ≥ b1 which implies the following simplified situation:

f(w1) = (a1 − 1)(pa1 − pA) + b1pb1 ,

f(w2) = a2pa2 + b2(pb2 − pB) − min(pa2 , pb2 − pB),

E[∆Dc
Φ] ≤ (A− 2a1)pA + (B − 2b2 − 1)pB + (a1 − 1)pa1 + a2pa2

+b1pb1 + b2pb2 − min(pa2 , pb2 − pB).

We can complete the proof by considering the two cases for min(pa2 , pb2−pB).
• pa2 ≤ pb2 − pB : We then have

E[∆Dc
Φ] ≤ (a1 − 1)pa1 + (a2 − 1)pa2 + (A− 2a1)pA

+b1pb1 + b2pb2 + (B − 2b2 − 1)pB .

Observe that (a1 − 1)pa1 is maximized for a1 = 3, while (A − 2a1)pA > 0 ↔
a1 = a2 < 3. Thus, the terms involving a1 and a2 are maximized for a1 =
a2 ≤ 3. Similarly, the terms b1pb1 , b2pb2 are maximized for b1 = b2 = 1, while
(B−2b2−1) < 0 if b1 6= b2 and (B−2b2−1) = 0 if b1 = b2. Thus, the maximum
of E[∆Dc

] is when b1 = b2 = 1 and a1 = a2 ≤ 3 which completes the proof of
the claim in this case.

Before considering the next case, note that when a1 = a2 = 3, b1 = b2 = 1,

E[∆Dc
Φ(3, 1, 3, 1)] ≤ 2p1 + 4p3.

• pa2 > pb2 − pB : In this case,

E[∆Dc
Φ] ≤ (a1 − 1)pa1 + a2pa2 + (A− 2a1)pA

+b1pb1 + (b2 − 1)pb2 + (B − 2b2)pB .

The equation is symmetric in the pair (a1, a2) and (b2, b1). Considering the
terms involving a1, a2 we complete the proof as follows:

(a1 − 1)pa1 + a2pa2 + (A− 2a1)pA ≤

{

2p3 + p1 if a1 6= a2

0p1 + p1 + p3 if a1 = a2

≤
1

2
E[∆Dc

Φ(3, 1, 3, 1)].

13



Remark

The proof showed that E[∆Φ] ≤ 0 when k = 11
6 ∆. To show rapid mixing in

this case, we need to bound α = Pr[∆Φ 6= 0]. The difficulty arises when a pair
of states σ, η are far apart in terms of Φ, say Φ(σ, η) = n. Each vertex v may
have 2δ(v) colors in its neighborhood and thus no moves that decrease Φ. By
some recoloring of at most 1

6δ(v) neighbors of vertex v, we can guarantee v has

some color available. Thus, α ≥
(

1
nk

)

δ(v)
6 +1

which implies the chain is rapidly
mixing when the maximum degree ∆ is a constant and k = 11

6 ∆.

5 Connections to Phase Transitions

The author’s thesis [14] gives a more comprehensive introduction to phase tran-
sitions along with pointers to appropriate references. For completeness, we
prove the following lemma which implies theorem 3. A sketch of this argument
was explained to us by J. van den Berg. Much stronger results are contained
in the work of Frigessi, Martinelli, Stander [5] and Stroock, Zegarlinski [13].
The following lemma refers to the flip dynamics defined on the set of proper
colorings.

Lemma 7 For k ≥ 2d + 1, a mixing time of O(n log n), where n = (2L)d,
of the flip dynamics on QL for all fixed boundary configurations implies that
the k-state zero temperature anti-ferromagnetic Potts model on Z

d lies in the
disordered phase.

This lemma implies theorem 3 from the following observation.

Proof of Theorem 3:
Our proof of theorem 1 holds for a graph with a fixed configuration on a

subset of vertices. Thus the conditions of lemma 7 hold when k > 11
3 d.

Proof of Lemma 7:
For QL = (V,E), fix a pair of colorings τ, τ ′ of the boundary ∂QL. The idea

is to compare µτ and µτ ′ by considering a pair of Markov chains (σt), (ηt) with
the flip dynamics having the respective fixed boundary colorings τ, τ ′ and thus
stationary distributions µτ and µτ ′ . We run these chains until they are close to
their stationary distributions; meanwhile, the chains are coupled to maintain (if
possible) the same color at the origin. Observe that under the stated condition
k ≥ 2d + 1 there exists a pair of colorings σ0, η0, with respective boundary
colorings τ, τ ′, such that σ0(x) = η0(x) for all x 6∈ ∂QL; these are the initial
states of the chains.

Let µτ (O), µτ ′(O) denote the marginal distribution of the color at the origin
O in stationarity, and let

pt = Pr[σt(O) 6= ηt(O)].
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We run the chains for T steps, a time sufficient for both to get within variation
distance 1/L of the stationary distribution. We can then bound the variation
distance between µτ (O) and µτ ′(O) as follows:

dTV {µτ (O), µτ ′(O)}

≤ dTV {µτ (O), σT (O)} + pT + dTV {ηT (O), µτ ′(O)}

≤ 1/L+ pT + 1/L,

where the second line follows from the triangle inequality. Therefore, in order
to show that the system is in the disordered phase, it is sufficient to show that
pT ↓ 0 as L → ∞.

From a pair of colorings σ, η, the coupled transitions for the two chains are

[F1] Choose a vertex v and color c uniformly at random.

[F2] If the clusters Sσ(v, c) = Sη(v, c), then flip both (or neither) with the
appropriate probability; otherwise the clusters flip independently.

Let v ∼ w denote a pair of vertices within a distance at most 12 of each
other in QL, where distance refers to the number of edges in the shortest path.
Consider the vertex v chosen in step [F1] and suppose that σt−1(v) = ηt−1(v)
but σt(v) 6= ηt(v). In order for this to occur, there must exist a vertex w ∼ v
such that σt−1(w) 6= ηt−1(w). Since initially the only vertices that differ are on
the boundary, there must exist a “path of disagreement” from the boundary to
v. More formally, let P denote a path (w0 ∼ w1 ∼ · · · ∼ wi = O) such that
w0 ∈ ∂QL and similarly, let A denote a set of times (t1 < · · · < ti). We say the
event E(P,A) occurs if, for all 0 < j ≤ i,

• σtj−1(wj) = ηtj−1(wj), and σtj (wj) 6= ηtj (wj);

• the vertex wj is chosen in step [F1] at time tj .

In order for a specific event E(P,A) to occur, at each time tj , the vertex
wj must be chosen by the flip dynamics in step [F1]. The probability of this
occurring is at most (1/2L)d, and thus Pr[E(P,A)] ≤ (1/2L)id. Let E(P ) denote
the event that E(P,A) occurs for some set of times A. Since the number of such
sets A is at most

(

T
i

)

, we get the following bound:

Pr(E(P )) ≤

(

T

i

) (

1

2L

)id

≤

(

Te

i(2L)d

)i

.

Finally, let E denote the event that E(P ) occurs for some path P . The
number of such paths of length i is bounded by the number of walks (with
neighbors defined by ∼) of length i that start at the origin, which is exactly
(2d− 1)12i. The minimum length of a path from the origin to the boundary is
L/12, and thus

Pr(E) ≤
∑

i≥L/12

(

Te(2d− 1)12

i(2L)d

)i

.
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From our assumption about the mixing time of the flip dynamics we have
T = O(d(2L)d log2 L), which implies the following bound:

Pr(E) ≤
∑

i≥L/12

(

e(2d− 1)12 log2 L

i

)i

.

Since this sum tends to 0 as L → ∞, the proof is complete.

6 Comparison with Glauber dynamics

In this section, we prove theorem 2 by bounding the mixing time τGD of the
Glauber dynamics in terms of the mixing time τflip of the flip dynamics. The
proof relies on the comparison theorem of Diaconis and Saloff-Coste [4] (see
Randall and Tetali [10] for other examples that use this theorem).

We present the comparison theorem in our specific setting where both chains
have the same state space Ω, the set of proper colorings, and uniform stationary
distribution. The theorem relates the underlying graphs associated with the
transition matrices Pflip, PGD of the flip and Glauber dynamics respectively.
For a reversible Markov chain with transition matrix P , the underlying graph
is G = (Ω, E(P )) where

E(P ) = {(σ, τ) : P (σ, τ) > 0}.

Note that reversibility implies that G is undirected. For each move (σ, τ) ∈
E(Pflip), we define an associated path of moves in E(PGD). Instead of defining
a canonical path γστ , we define a set of fractional paths, called a flow (see
Sinclair [12] for an analogous use of flows). Let γ denote a path (η0, η1, . . . , ηk),
where each (ηi, ηi+1) ∈ E(PGD), with length |γ| = k. For (σ, τ) ∈ E(Pflip), let
Γστ denote the set of paths from σ to τ ,

Γστ = {γ : η0 = σ, ηk = τ}.

A flow is a set of functions f = fστ : Γστ → R
+ where

∑

γ∈Γστ

f(γ) = 1.

The idea is to define flows to minimize the (fractional) number of paths that
traverse any particular edge. In particular, for (η, ξ) ∈ E(PGD), we aim to
minimize

Aηξ =
1

PGD(η, ξ)

∑

γ∈Γστ :
(η,ξ)∈γ

|γ|f(γ)Pflip(σ, τ).

In our setting, observe that PGD(η, ξ) ≥ 1
nk , while Pflip(σ, τ) ≤ 1

nk . In
addition, we will define flows such that if f(γ) > 0 then |γ| < K1 for a positive
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constant K1. This will follow from the fact that the flip dynamics only flips
clusters of size at most 6. We can simplify the quantity Aηξ as

Aηξ ≤ K1

∑

γ∈Γστ :
(η,ξ)∈γ

f(γ). (4)

We are interested in the maximum over all edges,

A = max
(η,ξ)∈E(PGD)

Aηξ.

We use the following theorem of Diaconis and Saloff-Coste [4] (see [10] for the
details of adapting the original theorem into the form we present below).

Theorem 8 (Diaconis and Saloff-Coste [4])

τGD ≤ O(Aτflip log |Ω|)

Proof of Theorem 2:
Since |Ω| ≤ kn, in order to prove theorem 2 it is sufficient to define a set of

flows such that A = O(1).
Recall that a move σ 7→ τ of the flip dynamics interchanges colors c = cστ

and c′ = c′στ on a maximal two-colored cluster S = T ∪ T ′ = Tστ ∪ T ′
στ , where

σ(v) = c for all v ∈ T and σ(v) = c′ for all v′ ∈ T ′. A natural idea for a path
γστ consisting of moves in the Glauber dynamics is as follows: recolor each
v ∈ T to an arbitrary color, then recolor each v′ ∈ T ′ to color c, and finally
recolor each v ∈ T to color c′. The problem with such paths is that by choosing
an arbitrary color in the first stage, we have unnecessarily increased the ‘load’
through particular edges. For instance, suppose that we always try to choose
color ‘yellow’ as the arbitrary color; meanwhile we never choose ‘red’, if possible.
An edge e of the Glauber dynamics that recolors a vertex to color yellow will
have a large ‘load’ (i.e., large Ae); while an edge e′ that recolors a vertex to
color red might have no paths that traverse it (i.e., Ae′ = 0).

We instead divide the flow evenly among all such paths. In particular, denote
the set of available colors for vertex v as

Fσ(v) = C \ {σ(v) ∪
⋃

w∈Γ(v)

σ(w)}.

Let ψ denote a set of colors for the set T where ψ(vi) ∈ Fσ(vi) for each vi ∈ T ;
the set of all such sets ψ is denoted by Ψστ . Each ψ ∈ Ψ defines a canonical
path γψ as follows. (Fix an arbitrary ordering on the vertices V .)

Stage i: Consider each vi ∈ T (in order), recolor vi to color ψ(vi).

Stage ii: For each vertex v′ ∈ T ′ (in order), recolor v′ to color c.

Stage iii: Finally, for each vertex vi ∈ T (in order), recolor vi to color c′.
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For each ψ ∈ Ψστ , we define the flow along the path γψ as

f(γψ) = 1/|Ψστ |.

Notice that the paths are of length |T | + |T ′| + |T |. By the setting of the
parameters for the flip dynamics, we know that |T |+ |T ′| ≤ 6 and thus all paths
with positive flow are of constant length.

In order to bound the flows f(), observe that |Fσ(v)| ≥ k − ∆, where ∆ is
the maximum degree of the graph. Since k ≥ 11

6 ∆, we have |Ψστ | = Ω(k|T |)
and hence

f(γψ) = O(k−|T |). (5)

For an edge (η, ξ) ∈ E(PGD), we can simplify the quantity Aηξ by using the
upper bound on f(γ). We partition the paths that traverse the edge based on
the size of the associated set T . Let

Ri(η, ξ) = {γψ : (η, ξ) ∈ γψ, ψ ∈ Ψστ , |Tστ | = i}.

Combining (4) and (5) we get the following bound. There exists a positive
constant K2 such that

Aηξ ≤ K2

∑

i

|Ri(η, ξ)|/k
i. (6)

It remains to bound the number of paths that traverse an edge (η, ξ) ∈
E(PGD) (i.e., |Ri(η, ξ)|). Notice that a specific path γ is defined by the sets of
vertices T, T ′, colors c, c′, set of colors ψ, as well as the colors σ(x) for all x 6∈ S
(where S = T ∪T ′). From the coloring η, we know σ(x) = η(x) for all x 6∈ S. We
need to bound the number of sets T, T ′, ψ and colors c, c′ whose corresponding
path traverses the edge (η, ξ). It turns out that many of these sets or colors are
fixed. In particular, suppose the move η 7→ ξ recolors vertex v ∈ V . For a path
γ, consider the stage during which we traverse this edge (η, ξ):

Stage ii: In this case, notice that c = ξ(v), c′ = η(v). In addition, we know
that v ∈ T ′. Recall that the cluster S = T ∪ T ′ is a maximal two-colored
connected component with |S| ≤ 6. The number of such clusters which
contains v is at most ∆5. Since all the vertices of T ′ have color c or c′

in η, given a candidate set T the corresponding set T ′ is fixed. There
are at most O(∆i) candidate sets T where |T | = i. For a specific such
set T , the associated colors ψ are fixed (as well as T ′). In particular, for
each wi ∈ T , ψ(wi) = η(wi). Therefore, assuming that the edge (η, ξ) is
traversed during stage (ii) of the path, then |Ri(σ, η)| = O(∆i).

Stage i: Observe that c = η(v), v ∈ T , and ψ(v) = ξ(v). There are at most k
possible choices for the color c′. Let T \ {v} = T1 ∪ T2 where the vertices
in T1 have already been recolored according to ψ, while the vertices in
T2 have not yet been recolored. There are at most O(∆|T1|) choices for
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the vertices in T1. For each wi ∈ T1, we know ψ(wi) = η(wi). Each of
the vertices in the set T2 (and T ′) still have color c (and c′, respectively)
in η. Thus, for a specific set T1, we can determine the sets T2 and T ′.
For the set T2, there are O(k|T2|) choices for the associated colors ψ.
Combining the number of choices for the color c′ and sets T1, ψ, we have
|Ri(σ, η)| = O(k1+|T1|∆|T2|) = O(ki).

Stage iii: The situation is symmetrical with stage (i).

In general, we have |Ri| = O(ki). Combining this with (6) implies A = O(1),
which completes the proof of theorem 2.

7 Conclusions

Consider the example of the flip dynamics in which the parameters pα are set to
pα = α, for all α > 0, i.e., the cluster selected in the transition is always flipped.
This Markov chain is known as the Wang-Swendsen-Kotecký (WSK) algorithm
[15]. The WSK algorithm is particularly appealing since it is ergodic on any
bipartite graph with any number of colors k ≥ 3. We can then study the critical
value kc = kc(∆) which we define as the minimum over k′, such that, for every
bipartite graph G and every k > k′, the WSK algorithm on G is rapidly mixing
with k colors. Our results imply that kc ≤ 11

6 ∆ (this is straightforward using
the approach in section 6); while, in joint work with Thomas  Luczak, we prove
that kc >

log ∆
20∆ [8]. It is interesting to determine whether, in fact, kc < ∆.
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