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The serine-threonine kinase AKT, also known as protein kinase B
(PKB), was identified in 1977 as the proto-oncogene of the v-Akt
oncogenic murine thymoma virus.1 Subsequent research has demon-
strated that genetic events activating Akt occur in most types of cancer.
Activation of Akt promotes many of the processes critical to the
malignant phenotype. Thus, Akt is an attractive therapeutic target for
cancer. However, its critical role in many physiologic processes sug-
gests that achieving an acceptable therapeutic index with Akt inhibi-
tors may be a challenge. In Journal of Clinical Oncology, Yap et al2

report the results of, to our knowledge, the first-in-man phase I clinical
trial of Akt inhibitor MK-2206. In addition to determining the
maximum-tolerated dose of MK-2206, the study included a pharma-
codynamic analysis of hair follicles in the majority of patients, and of
paired tumor biopsies in a maximum-tolerated dose expansion co-
hort. The results provide strong evidence that significant inhibition of
Akt is feasible in patients. However, limited single-agent antitumor
activity was observed. This Understanding the Pathway report will
highlight the current understanding of the role and regulation of Akt
signaling in cancer and the implications for further development of
therapeutic strategies against this critical signaling node.

Akt is a member of the AGC family of protein kinases. Akt has
three isoforms: Akt1 (also known as PKB�), Akt2 (PKB�), and Akt3
(PKB�). Akt1 and Akt2 are expressed in most tissue types; Akt3
expression is generally restricted to neuronal tissue and the testes.3 The
three isoforms share over 80% homology and are characterized by
three conserved functional domains: an amino-terminal pleckstrin
homology (PH) domain that regulates intracellular trafficking of the
protein, a central catalytic domain, and a carboxy-terminal regulatory
domain. Activation of all three Akt isoforms is dependent on phos-
phatidylinositol 3-kinase (PI3K).4 PI3K is stimulated by a variety of
signals, including growth factor and G protein–coupled receptors on
the cell surface. Activation of PI3K results in the generation of 3�-
phosphorylated phosphatidylinositols in the cell membrane, which
recruit Akt and other PH domain–containing proteins to the cell
membrane. At the cell membrane, Akt comes into proximity with
PDK1, another PH domain–containing serine-threonine kinase,
which phosphorylates Akt at the Thr308 residue of its catalytic do-
main. The activated conformation of Akt is further stabilized by phos-
phorylation at the Ser473 residue, either by the mammalian target of
rapamycin complex 2 in response to growth factor stimulation or by
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Fig 1. (A) Akt signaling pathway. Activa-
tion of Akt by growth factor receptors insti-
gated by stimulation of phosphatidylinositol
3-kinase (PI3K) after ligand binding. Acti-
vated PI3K generates phosphatidylinositol
(3,4,5)P3 (PIP3), which recruits inactive Akt
to cell membrane. Akt is phosphorylated
at Thr308 (by pyruvate dehydrogenase
[lipoamide] kinase isozyme 1 [PDK1]) and
Ser473 (by mammalian target of rapamycin
complex 2 [mTORC2]), which activates cat-
alytic activity. Akt phosphorylates multiple
substrates, including endothelial nitric oxide
synthase (eNOS), p21, p27, glycogen syn-
thase kinase 3 alpha (GSK3�)/(GSK3�), fork-
head box O (FoxO) transcription factors,
Bcl-2–associated death promoter (BAD),
caspase 9, inhibitor of nuclear factor kappa-
B kinase alpha (IKK�), proline-rich Akt sub-
strate 40 (PRAS40), and tuberous sclerosis
protein 2 (TSC2). Effects of these and other
substrate phosphorylation events affect in-
dicated cellular processes, often promoting
malignant phenotype of cancer cells. (B)
Known feedback signaling loops within
PI3K-Akt pathway, which may affect conse-
quences of Akt inhibition. PTEN, phospha-
tase and tensin homolog.
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DNA-dependent protein kinase after DNA damage.5,6 Akt activity is
negatively regulated primarily by phosphatases that dephosphorylate
phosphatidylinositols at the cell membrane (phosphatase and tensin
homolog [PTEN], SHP2) or phosphorylation sites on Akt itself
(PP2A, PHLPP1, PHLPP2).

More than 50 substrates of Akt have been identified, some of
which are illustrated in Figure 1.4,7-9 Through these and other effec-
tors, Akt regulates a variety of cellular processes, including prolif-
eration, survival, motility, angiogenesis, and metabolism/glucose
homeostasis. There is strong evidence that at least some of these
activities are specific to different Akt isoforms. For example, targeted
deletion of the AKT2 gene in mice has resulted in impaired glucose
uptake and hyperglycemia, which were not observed with knockout of
either AKT1 or AKT3.10 Knockout of AKT3 has produced specific
developmental defects in brain development.11 Interestingly, al-
though most cancer cell types demonstrate dependence on Akt1 and
Akt2, there is evidence that melanomas, which developmentally arise
from the neural crest, depend on Akt3.12,13 Studies in breast cancer
cells have also identified contradictory effects of Akt1 and Akt2 on
growth factor–induced motility and epithelial-mesenchymal transi-
tion.14 Taken together, the findings suggest that the relative activity of
inhibitors against different Akt isoforms may affect both their efficacy
and toxicity. The development of isoform-specific inhibitors may
allow for further interrogation of the therapeutic potential of the
different Akts.

The successful clinical development of several targeted therapies
(ie, trastuzumab for human epidermal growth factor receptor 2
(HER2)/neu–amplified breast cancer15-17 and vemurafenib for BRAF-
mutant melanoma18) has depended critically on the identification of
somatic genetic alterations that result in dependence on those tar-
gets.19 There are a variety of genetic events occurring in cancer that
activate Akt, including activating point mutations and/or amplifica-
tions of AKT, PIK3CA, Ras family members, and growth factor recep-
tors.20 In addition, loss of expression or catalytic function of PTEN
results in constitutive activation of AKT.21-24 Although all of these
events may activate Akt, the frequent finding of more than one of these
genetic changes in individual tumors suggests that they have nonover-
lapping functions.20 Measurement of phosphorylated (activated) Akt
levels in both tumors and cancer cell lines has confirmed quantitative
differences in Akt activation with different mutations and sensitivity to
Akt inhibition correlated with phospho-Akt levels.25-28 These findings
suggest that tumors with elevated levels of phospho-Akt, particularly
resulting from loss of PTEN, may be most likely to respond to Akt
inhibitors.28 In the present study of MK-2206, pretreatment status of
the PI3K-Akt pathway was only determined in nine patients and
revealed that only two patients harbored alterations predicted to acti-
vate the Akt pathway (one patient, PTEN loss; one patient, PTEN loss
and KRAS mutation).2 One of those two patients seemed to have one
of the best clinical responses in the study, with 23% reduction in target
lesion size and approximately 60% decrease in a serum tumor marker.
Although this correlation of activity with genetic aberration in the
pathway is intriguing, clearly evaluation in additional patients with

such alterations, and with activating PIK3CA or AKT mutations, is
necessary and warranted to test this hypothesis. However, as altera-
tions in the PI3K-Akt pathway are often detected in tumors with
concurrent genetic aberrations in other pathways (ie, activating BRAF
mutation in melanomas with PTEN loss29,30), it is unclear if even these
markers will correlate with single-agent efficacy with Akt inhibitors.

In addition to the presence of concurrent mutations, compensa-
tory signaling after Akt inhibition may necessitate combinatorial ap-
proaches to achieve significant antitumor activity. Investigators have
recently demonstrated that Akt inhibition results in increased expres-
sion and activation of multiple growth factor receptors, particularly
HER3, in a variety of cancer cell lines.31 This induction reduced the
antiproliferative effects of Akt inhibitors in vitro and in vivo, whereas
combined treatment with an Akt inhibitor and HER-family inhibitor
lapatinib produced marked synergy. This finding is similar to those
in previous reports of compensatory activation of PI3K-Akt signal-
ing after inhibition of the mitogen-activated protein kinase path-
way and of Akt after mammalian target of rapamycin complex 1
inhibition.32-37 In the current phase I study of MK-2206, the reported
analysis of paired tumor biopsies was restricted to measurement of
phospho-Akt levels.2 The preclinical findings with Akt inhibitors, and
the clinical experience with other targeted agents, support the critical
need in future studies for evaluation beyond on-target/pharmacody-
namic markers to understand resistance to such treatments and expe-
dite the development of effective combinatorial approaches.

In summary, the results presented by Yap et al2 give reason for
hope that Akt inhibitors may be administered safely at doses that
inhibit Akt activity. Clear hypotheses regarding patient selection for
single-agent treatment and combinatorial approaches are now ready
for testing, but they will depend critically on vigorous concurrent
translational research using both pre- and on-treatment tumor spec-
imens. Although such studies will require the investment of significant
time and resources in the associated clinical trials, the potential benefit
is the rapid, rational, and—it is hoped—more effective development
of therapeutic strategies incorporating Akt inhibitors.
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