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Abstract. In this paper, we present an effective approach for spatiotemporalface
recognition from videos using an Extended set of Volume LBP (Local Binary Pat-
tern features) and a boosting scheme. Among the key properties of ourapproach
are: (1) the use of local Extended Volume LBP based spatiotemporal description
instead of the holistic representations commonly used in previous works; (2) the
selection of only personal specific facial dynamics while discarding the intra-
personal temporal information; and (3) the incorporation of the contribution of
each local spatiotemporal information. To the best of our knowledge, this is the
first work addressing the issue of learning the personal specific facial dynamics
for face recognition.
We experimented with three different publicly available video face databases
(MoBo, CRIM and Honda/UCSD) and considered five benchmark methods (PCA,
LDA, LBP, HMMs and ARMA) for comparison. Our extensive experimental
analysis clearly assessed the excellent performance of the proposedapproach, sig-
nificantly outperforming the comparative methods and thus advancing thestate-
of-the-art

Key words: Facial Dynamics, Local Binary Patterns, Face Recognition, Boost-
ing

1 Introduction

Psychological and neural studies [1] indicate that both fixed facial features and dy-
namic personal characteristics are useful for recognizingfaces. However, despite the
usefulness of facial dynamics, most automatic recognitionsystems use only the static
information as it is unclear how the dynamic cue can be integrated and exploited. Thus,
most research has limited the scope of the problem by applying methods developed for
still images to some selected frames [2]. Only recently haveresearchers started to truly
address the problem of face recognition from video sequences [3–9].

In [3], an approach exploiting spatiotemporal informationis presented. It is based
on modeling face dynamics using identity surfaces. Face recognition is performed by
matching the face trajectory that is constructed from the discriminating features and
pose information of the face with a set of model trajectoriesconstructed on identity
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Fig. 1.Example of an LBP calculation

surfaces. Experimental results using 12 training sequences and the testing sequences of
three subjects were reported with a recognition rate of 93.9%.

In [4], Li and Chellappa used the trajectories of tracked features to identify per-
sons in video sequences. The features are extracted using Gabor attributes on a regular
2D grid. Using a small database of 19 individuals, the authors reported performance
enhancement over the frame to frame matching scheme. In another work, Zhou and
Chellappa proposed a generic framework to track and recognize faces simultaneously
by adding an identification variable to the state vector in the sequential important sam-
pling method [5].

An alternative to model the temporal structures is the use ofthe condensation al-
gorithm. This algorithm has been successfully applied for tracking and recognizing
multiple spatiotemporal features. Recently, it was extended to video based face recogni-
tion problems [6, 5]. More recently, the Auto-Regressive and Moving Average (ARMA)
model [10] was adopted to model a moving face as a linear dynamical system and per-
form recognition [7].

Perhaps, the most popular approach to model temporal and spatial information is
based on the Hidden Markov models (HMM) which have also been applied to face
recognition from videos [8]. The idea is simple: in the training phase, an HMM is
created to learn both the statistics and temporal dynamics of each individual. During
the recognition process, the temporal characteristics of the face sequence are analyzed
over time by the HMM corresponding to each subject. The likelihood scores provided
by the HMMs are compared. The highest score provides the identity of a face in the
video sequence.

Unfortunately, most of the methods described above use spatiotemporal representa-
tions that suffer from at least one of the following drawbacks: (1) the local information
which is shown to be important to facial image analysis [11] is not well exploited with
holistic methods such as HMMs; (2) while only personal specific facial dynamics are
useful for discriminating between different persons, the intra-personal temporal infor-
mation which is related to facial expression and emotions isalso encoded and used;
and (3) equal weights are given to the spatiotemporal features despite the fact that some
of the features contribute to recognition more than others.To overcome these limita-
tions, we propose an effective approach for face recognition from videos that uses local
spatiotemporal features and selects only the useful facialdynamics needed for recog-
nition. The idea consists of looking at a face sequence as a selected set of volumes (or
rectangular prisms) from which we extract local histogramsof Extended Volume Local
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Fig. 2. (a): A face sequence is seen as a rectangular prism and (b): An example of 3D neighbor-
hood of a pixel in Volume LBP

Binary Pattern (EVLBP) code occurrences. Our choice of adopting LBP (Local Binary
Patterns) for spatiotemporal representation is motivatedby the recent results of LBP ap-
proach [12] in facial image analysis [13] and also in dynamictexture recognition [14].

In this paper, noticing the limitations of volume LBP operator in handling the tem-
poral information, we first extend the operator and derive a rich set of volume LBP
features denoted EVLBP. Then, instead of ignoring the weight of each feature or sim-
ply concatenating the local EVLBP histograms computed at predefined locations, we
propose an effective approach for automatically determining the optimal size and lo-
cations of the local rectangular prisms (volumes) from which EVLBP features should
be computed. More importantly, we select only the most discriminative spatiotemporal
EVLBP features for face recognition while discard the features which may hinder the
recognition process. For this purpose, we use AdaBoost learning technique [15] which
has shown its efficiency in feature selection task. The goal is to classify the EVLBP
based spatiotemporal features into intra and extra classes, and then use only the extra-
class information for recognition. To the best of our knowledge, this is the first work
addressing the issue of learning personal specific facial dynamics for face recognition.

2 Extended Volume LBP Features (EVLBP)

The LBP texture analysis operator, introduced by Ojalaet al. [16, 12], is defined as a
gray-scale invariant texture measure, derived from a general definition of texture in a
local neighborhood. It is a powerful means of texture description and among its prop-
erties in real-world applications are its discriminative power, computational simplicity
and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding the
3 × 3 neighborhood of each pixel with the center value and considering the result as a
binary number. Fig. 1 shows an example of an LBP calculation.The histogram of these
28 = 256 different labels can then be used as a texture descriptor. Each bin (LBP code)
can be regarded as a micro-texton. Local primitives which are codified by these bins
include different types of curved edges, spots, flat areas etc.
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The calculation of the LBP codes can be easily done in a singlescan through the
image. The value of the LBP code of a pixel(xc, yc) is given by:

LBPP,R =

P−1
∑

p=0

s(gp − gc)2
P (1)

wheregc corresponds to the gray value of the center pixel(xc, yc), gp refers to gray
values ofP equally spaced pixels on a cicrle of radiusR, ands defines a thresholding
function as follows:

s(x) =

{

1, if x ≥ 0;
0, otherwise.

(2)

The occurrences of the LBP codes in the image are collected into a histogram. The
classification is then performed by computing histogram similarities. For an efficient
representation, facial images are first divided into several local regions from which
LBP histograms are extracted and concatenated into an enhanced feature histogram.
In such a description, the face is represented in three different levels of locality: the
LBP labels for the histogram contain information about the patterns on a pixel-level,
the labels are summed over a small region to produce information on a regional level
and the regional histograms are concatenated to build a global description of the face.
This locality property, in addition to the computational simplicity and tolerance against
illumination changes, are behind the success of LBP approach for facial image analy-
sis [13].

The original LBP operator (and also its later extension to use neighborhoods of
different sizes [12]) was defined to deal only with the spatial information. For spa-
tiotemporal representation, Volume LBP operator (VLBP) has been recently introduced
in [14]. The idea behind VLBP is very simple. It consists of looking at a face sequence
as rectangular prism (or volume) and defining the neighborhood of each pixel in three
dimensional space. Fig. 2 explains the principle of rectangular prism and shows an ex-
ample of 3D neighborhood for Volume LBP.

There are several ways of defining the neighboring pixels in VLBP. In [14], P
equally spaced pixels on a circle of radiusR in the framet, andP + 1 pixels in the
previous and posterior neighboring frames with time intervalL were used. This yielded
in VLBP operator denoted VLBPL,P,R. Fig. 3 (top) illustrates an example of VLBP
operator withP=4 andR=1.

We noticed in our experiments on face recognition from videos that VLBPL,P,R

does not encode well enough the temporal information in the face sequences since the
operator considers neighboring points only from three frames and therefore the infor-
mation in the frames with time variance less than L are missedout. In addition, a fixed
number of neighboring points (i.e.P ) are taken from each of the three frames, yielding
in a less flexible operator with large set of neighboring points. To overcome these limi-
tations, we introduce here an extended set of VLBP patterns by consideringP points in
frame t, Q points in theframes t±L andS points in theframes t±2L. This yields
in Extended Volume LBP (EVLBP) operator that we denote by EVLBPL,(P,Q,S),R.

By setting
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{

Q = P + 1
S = 0

(3)

EVLBPL,(P,Q,S),R will be equivalent to VLBPL,P,R. Therefore, VLBPL,P,R can be
seen as a special case of EVLBPL,(P,Q,S),R. Fig. 3 (bottom) illustrates an example
of Extended Volume LBP operator withP=4, Q=S=1 andR=1 (EVLBPL,(4,1,1),1),
while Fig. 3 (top) illustrates an example of VLBPL,4,1 operator which is equivalent to
EVLBPL,(4,5,0),1.

Fig. 3.Top:V LBPL,4,1. Bottom:EV LBPL,(4,1,1),1

Once the neighborhood function is defined, we divide each face sequence into sev-
eral overlapping rectangular prisms of different sizes, from which we extract local his-
tograms of EVLBP code occurrences. Then, instead of simply concatenating the local
histograms into a single histogram, we use AdaBoost learning algorithm for automat-
ically determining the optimal size and locations of the local rectangular prisms, and
more importantly for selecting the most discriminative EVLBP patterns for face recog-
nition while discarding the features which may hinder the recognition process.

3 Learning EVLBP Features for Face Recognition

To tackle the problem of selecting only the spatiotemporal information which is use-
ful for recognition while discarding the information related to facial expressions and
emotions, we adopt AdaBoost learning technique [15] which has shown its efficiency
in feature selection tasks. The idea is to separate the facial information into intra and
extra classes, and then use only the extra-class EVLBP features for recognition.

First, we segment the training face sequences into several overlapping shots of F
frames each in order to increase the number of training data.Then, we consider all
combinations of face sequence pairs for the intra and extra classes. From each pair
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(sequence1i , sequence2i ), we scan both face sequences with rectangular prisms of dif-
ferent sizes. At each stage, we extract the EVLBP histogramsfrom the local rectangular
prisms and compute theχ2 (Chi-square) distances between the two local histograms.
χ2 dissimilarity metric for comparing a target histogramξ to a model histogramψ is
defined by:

χ2(ξ, ψ) =

l−1
∑

j=0

(ξj − ψj)
2

ξj + ψj

, (4)

wherel is the length of feature vector used to represent the local rectangular prisms.
Thus, for each pair of face sequences, we obtain a feature vectorXi whose elements

areχ2 distances. Let us denoteYi ∈ {+1,−1} the class label ofXi whereYi = +1
if the pair (sequence1i , sequence2i ) defines an extra-class pair (i.e. the two sequences
are from different persons) andYi = −1 otherwise. This results in a set of training
samples{(X1, Y1), (X2, Y2), ..., (XN , YN )}. Algorithm 1. summarizes our procedure
of constructing the training data.

Inputs: Given a set of face sequences{Sequence}
forall combinations of pairs (Sequence1i , Sequence

2
i ) do

SetYi = +1 for extra-class pairs;
SetYi = −1 for intra-class pairs;
forall locations and sizes of local prisms do

– Extract local EVLBPL,(P,Q,S),R

histograms with different parameters;
– Computeχ2 distances between

corresponding local histograms in the
given pair of sequences;

– Collect theχ2 distances in a feature
vector X

end
end
Outputs:{(X1, Y1), (X2, Y2), ..., (XN , YN )} ;

Algorithm 1 : The construction of the training samples for feature selection using
AdaBoost

Given the constructed training sets, we then apply the basicAdaBoost learning al-
gorithm [15] in order to(i) select a subset of rectangular prisms from which EVLBP
features should be computed, and(ii) learn and determine the weights of these selected
features.

Once the rectangle prisms are selected and their weights aredetermined, we per-
form the recognition of a given probe video sequence by extracting local histograms of
EVLBP patterns from the selected prisms and then applying nearest neighbor classifi-
cation using weightedχ2 distance:

χ2
α(ξ, ψ) =

T−1
∑

t=0

lt−1
∑

i=0

αt

(ξi,t − ψi,t)
2

ξi,t + ψi,t

(5)
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whereT is the number of selected local prisms;αt are the weighting coefficients re-
sulted from AdaBoost learning, andlt the lengths of the feature vectors used to represent
local rectangular prisms.

4 Experimental Analysis

4.1 Benchmark Methods

For comparison, we implemented five different algorithms including Hidden Markov
models (HMMs) [8] and Auto-Regressive and Moving Average (ARMA) models [7] as
benchmark methods for spatiotemporal representations, and PCA, LDA and LBP [13]
for still image based ones. In the following, we briefly describe the implementation of
these benchmark methods.

a) HMMs
The principle of using HMMs to model the facial dynamics and perform video-

based face recognition is quite simple [8, 17]. Let the face database consist of video
sequences ofP persons. We construct a continuous hidden Markov model for each sub-
ject in the database. A continuous HMM, withN states{S1, S1, , ..., SN}, is defined
by a tripletλ = (A,B, π), whereA = {aij} is the transition matrix,B = {bi(O)}
are the state conditional probability density functions (pdf) andπ = {πi} are the initial
distributions. The modelλ is built using a sequence of feature vectors, called observa-
tion sequenceO = {o1, o2, ..., ol}, extracted from the frames of the video sequence (l
is the number of frames). Different features can be extracted and used as observation
vectors (e.g. pixel values, DCT coefficients etc.). In [8], the PCA projections of the face
images were considered. Here in our experiments, we implemented a similar approach
using 30 eigenvectors for dimensionality reduction and 16-state fully connected HMM.

During our training, using the Baum-Welch procedure [17], amodelλp , (p =
1, 2, ..., P ), is built for all the subjects in the gallery. During the testing, given the
gallery models{λ1, λ2, ..., λP } and the sequence of the PCA feature vectorsO =
{o1, o2, ..., ol}, the identity of the test face sequence is given by:

argmax
p

P (O|λp) (6)

In other terms, the likelihood scoresP (O|λp) provided by the HMMs are com-
pared, and the highest score defines the identity of the test video sequence.

b) ARMA
In the ARMA framework, a moving face is represented by a linear dynamical system

and described by Eqs. 7 & 8:

x(t+ 1) = Ax(t) + v(t) v(t) ∼ N(0, R) (7)

I(t) = Cx(t) + w(t) w(t) ∼ N(0, Q) (8)
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where,I(t) is the appearance of the face at the time instantt, x(t) is a state vector that
characterizes the face dynamics,A andC are matrices representing the state and output
transitions,v(t) andw(t) are IID sequences driven from some unknown distributions.

We build an ARMA model for each face video sequence. To describe each model,
we need to estimate the parametersA, C, Q andR. Using the tools from the system
identification literature, the estimation of the ARMA modelparameters is closed-form
and therefore easy to implement [10, 7]. While the state transition A and the output
transitionC are intrinsic characteristics of the model,Q andR are not significant for the
purpose of recognition [10]. Therefore, we need only the matricesA andC to describe
a face video sequence. Once the models are estimated, recognition can be performed by
computing distances between ARMA models corresponding to probe and gallery face
sequences. The gallery model which is closest to the probe model is assigned as the
identity of the probe (nearest neighbor criteria).

Several distance metrics have been proposed to estimate thedistance between two
ARMA models [18]. Since it has been shown that the different metrics do not alter
the results significantly, we adopted in our experiments theFrobenius distance (d2

F ),
defined by :

d2
F = 2

n
∑

i=1

sin2θi(λj , λk) (9)

where,θi are the subspace angles between the ARMA modelsλj andλk, defined in
[18].

c) PCA, LDA and LBP
For comparison, we also considered still image based methods such as PCA, LDA

and LBP. However, in video-based face recognition schemes both training and test
data (galleries and probes) are video sequences. Therefore, performing still-to-still face
recognition when the data consists of video sequences is an ill-posed problem (i.e.
which frame from the test sequence to compare to which frame in the reference se-
quence?). Here, we adopt a scheme proposed in [19] to performstatic image based
face recognition that exploits the abundance of face views in the videos. The approach
consists of performing unsupervised learning to extract a set of K most representative
samples (or exemplars) from the raw gallery videos (K=3 in our experiments). Once
these exemplars are extracted, we build a view-based systemand use a probabilistic
voting strategy to recognize the individuals in the probe video sequences.

4.2 Experimental Data

For experimental analysis, we considered three different publicly available video face
databases (MoBo [20], Honda/UCSD [9] and CRIM [21]) in orderto ensure an exten-
sive evaluation of our proposed approach and the benchmark methods against changes
caused by different factors including face image resolution, illumination variations,
head movements, facial expressions and the size of the database.

The first database, MoBo (Motion of Body), is the most commonly used in video-
based face recognition research [5, 22, 8], although it was originally collected for the
purpose of human identification from distance. The considered subset from MoBo
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Fig. 4.Examples of cropped facial images from MoBo video database

Fig. 5.Examples of facial images from CRIM video database

database contains 96 face sequences of 24 different subjects walking on a treadmill.
Some example images are shown in Fig. 4. Each sequence consists of 300 frames.
From each video sequence, we automatically detected and rescaled the faces, obtaining
images of 40×40 pixels.

The second database, Honda/UCSD, has been collected and used by Leeet al. in
their work on video-based face recognition [9]. It was also used in the recent study of
Aggarwal et al. [7]. The considered subset from Honda/UCSD database contains 40
video sequences of 20 different individuals (2 videos per person). During the data col-
lection, the individuals were asked to move their face in different combinations (speed,
rotation and expression). From the video sequences, we cropped the face images in the
same way as we did for the MoBo database. The size of the resulted facial images is
20×20 pixels.

In order to experiment with a large amount of facial dynamics, resulted for example
from the movements of the facial features when the individuals are talking, we con-
sidered a third video database called CRIM. This is large setof 591 face sequences
showing 20 persons reading broadcast news for a total of about 5 hours. The database
is originally collected for audio-visual recognition. There are between 23 and 47 video
sequences for each individual. Some cropped images are shown in Fig. 5. The size of
the extracted face images is 130×150 pixels.

4.3 Experimental Results and Analysis

From each of the three video databases (MoBo, USCD/HONDA andCRIM), we ran-
domly selected half of the face sequences of each subject fortraining while the other
half was used for testing. In addition, given the limited number of training samples in
MoBo and Honda/UCSD databases, we also segmented the face sequences into sev-
eral overlapping shots in order to increase the number of training samples. In all our
experiments, we considered the average recognition rates of 100 random permutations.

First, we applied PCA, LDA, LBP, HMMs and ARMA to the test sequences in the
three databases. The performances of these methods are shown in Tables 1-3. From
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the results on MoBo database (Table 1), we notice that all themethods perform quite
well and the spatiotemporal based methods (i.e. HMMs and ARMA) are slightly better
that the static image based methods (PCA, LBP and LDA). The better performance of
the spatiotemporal methods is in agreement with the neuropsychological evidence [1]
stating that facial dynamics are useful for recognition. From these results we can also
see that the benefit of the spatiotemporal approach is not very significant. Perhaps, in
MoBo database, this is due to the few amount of facial dynamics which are mainly
limited to the rigid movements of the head.

However, the results on Honda/UCSD database (Table 2) show that the low-image
resolution (20 × 20 pixels) affects all these five methods and that image based ones are
more affected. This is also in agreement with the neuropsychological findings that indi-
cate that facial movement contributes more to the recognition under degraded viewing
conditions.

Surprisingly, the results on CRIM database (Table 3) show that HMM and ARMA
approaches gave worse results than those of PCA, LDA, and LBPbased methods. While
one may not expect worse performances using spatiotemporalrepresentations, the ob-
tained results attest that PCA, LDA and LBP based representations might perform bet-
ter. This means that combining face structure and its dynamics in anad hoc manner
does not systematically enhance the recognition performance.

From the experiments, we also noticed that the basic LBP approach [13] performed
quite well and outperformed PCA and LDA in all our tests. Thisconfirms the validity of
LBP based descriptions in face analysis. A bibliography of LBP-related research can be
found at http : //www.ee.oulu.fi/research/imag/texture/lbp/bibliography/.

Method Recognition rate

PCA 87.1%
LDA 90.8%
LBP [13] 91.3%
HMM [8] 92.3%
ARMA [7] 93.4%

Table 1.Comparative recognition results of 5 benchmark methods on MoBo database

Method Recognition rate

PCA 69.6%
LDA 74.5%
LBP [13] 79.6%
HMM [8] 84.2%
ARMA [7] 84.9%

Table 2.Comparative recognition results of 5 benchmark methods on Honda/UCSD database
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Method Recognition rate

PCA 89.7%
LDA 91.5%
LBP [13] 93.0%
HMM [8] 85.4%
ARMA [7] 80.0%

Table 3.Comparative recognition results of 5 benchmark methods on CRIM database

We also experimented with Volume LBP spatiotemporal approach which has been
successfully applied to dynamic texture analysis in [14]. We divided each face sequence
into several overlapping local rectangular prisms of fixed sizes. Then, we extracted
the VLBP based spatiotemporal representation using different VLBP operator param-
eters. For recognition, we adopted theχ2 distance. Using such an approach, we ob-
tained best recognition rates of 90.3%, 78.3% and 88.7% withVLBP2,4,1, VLBP1,4,1

and VLBP1,4,1 on MoBo, Honda/UCSD and CRIM databases, respectively. Surpris-
ingly, these results are worse than those obtained using still image LBP based approach
which yielded in recognition rates of 91.3% (versus 90.3%),79.6% (versus 78.3%) and
93.0% (versus 88.7%) on MoBo, Honda/UCSD and CRIM databases, respectively. This
supports our earlier conclusion indicating that using spatiotemporal representations do
not systematically enhance the recognition performances.The most significant perfor-
mance degradations of VLBP approach are noticed on CRIM database which contains
the largest amount of facial dynamics. This indicates that some of these facial dynamics
are not useful for recognition. In other terms, this means that some part of the temporal
information is useful for recognition while another part may also hinder the recogni-
tion. Obviously, the useful part is that defining the extra-personal characteristics while
the non-useful part concerns the intra-class information such as facial expressions and
emotions. For recognition, one should then select only the extra-personal characteris-
tics.

To verify this hypothesis, we considered our proposed approach which consists of
using AdaBoost for learning and selecting only the most discriminative spatiotempo-
ral features. First, we tested AdaBoost with VLBP features and obtained recognition
rates of 96.5%, 89.1% and 94.4% on MoBo, Honda/UCSD and CRIM databases, re-
spectively. As shown in Tables 4-6, performing feature selection yields in significant
performance enhancement on all these three databases. Thisvalidates our hypothesis
that only some part of the temporal information is useful forrecognition while another
part may hinder the recognition process.

Then, we experimented with the proposed extended set of VLBPfeatures (EVLBP)
introduced in Section 2 and used AdaBoost for learning the most discriminative spa-
tiotemporal EVLBP features. As expected, this enhanced further the performances,
yielding in excellent recognition rates of 97.9%, 96.0% and98.5% on MoBo, Honda
/UCSD and CRIM databases, respectively. This additional performance enhancement
explains the benefit of enriching the VLBP feature set by deriving EVLBP and shows
the limitations of VLBPL,P,R operator which does not encode well enough the tempo-
ral information in the face sequences since the operator considers neighboring points
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only from three frames and therefore the information in the frames with time variance
less than L are missed out.

Notice that the obtained results significantly outperform those of all benchmarks
methods (PCA, LDA, LBP, HMM and ARMA) on the three databases (comparison be-
tween Tables 1-3 and Table 4-6). To our knowledge, this is also the best performance on
these databases. Perhaps, these excellent results can be explained by the followings:(i)
the spatiotemporal representation using extended volume LBP features, in contrast to
the HMM based approach, is very efficient as it codifies the local and global facial dy-
namics and structure; and more importantly(ii) the temporal information extracted by
the extended volume LBP features consisted of both intra andextra personal informa-
tion (facial expression and identity). Therefore, there was need for performing feature
selection. In addition, the selected EVLBP spatiotemporalfeatures were assigned dif-
ferent weights reflecting their contributions to recognition, while this was not the case
in other methods.

Method Recognition rate

VLBP [14] 90.3%
VLBP+AdaBoost 96.5%
EVLBP+AdaBoost 97.9%

Table 4. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
MoBo database

Method Recognition rate

VLBP [14] 78.3%
VLBP+AdaBoost 89.1%
EVLBP+AdaBoost 96.0%

Table 5. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
Honda/UCSD database

Method Recognition rate

VLBP [14] 88.7%
VLBP+AdaBoost 94.4%
EVLBP+AdaBoost 98.5%

Table 6. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
CRIM database
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Fig. 6.Examples of the four first selected rectangular prisms from which EVLBP spatiotemporal
features are extracted on CRIM face sequences

Fig. 7. The recognition rates function of the number of selected regions with AdaBoost from
which EVLBP features are extracted

Analyzing the selected local regions (the rectangular prisms) from which the EVLBP
features were collected, we noticed that the dynamics of thewhole face and the eye
area are more important than that of the mouth region for identity recognition. This
is quite surprising in the sense that one can expect from the mouth region to play the
most important role as it is the most non-rigid region of the face when an individual is
talking. Probably, mouth region does play an important rolebut for facial expression
recognition. Fig. 6 shows examples of the most discriminative spatiotemporal regions
returned by AdaBoost for CRIM face sequences and from which EVLBP spatiotem-
poral features are extracted. Notice that these four first selected features are extracted
from global an local regions. This supports the results of other researchers indicating
that both global and local features are useful for recognition. From how many selected
regions the EVLBP features are computed? Fig. 7 shows the recognition results as a
function of the number of regions selected by AdaBoost. The best results are obtained
with 9, 16 and 6 regions on MoBo, Honda/UCSD and CRIM databases, respectively.
Using additional regions did not enhance the recognition performance.

Table 7 summarizes the obtained results using the differentmethods (PCA, LDA,
LBP, HMM, ARMA, VLBP and EVLBP) on the three databases (MoBo,Honda/UCSD
and CRIM).
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Method Results on MoBoResults on Honda/UCSDResults on CRIM

PCA 87.1% 69.9% 89.7%
LDA 90.8% 74.5% 91.5%
LBP [13] 91.3% 79.6% 93.0%
HMM [8] 92.3% 84.2% 85.4%
ARMA [7] 93.4% 84.9% 80.0%
VLBP [14] 90.3% 78.3% 88.7%
VLBP+AdaBoost 96.5% 89.1% 94.4%
EVLBP+AdaBoost 97.9% 96.0% 98.5%

Table 7.Summary of the obtained results using the different methods on the three databases

5 Conclusion

The few works attempting to use spatiotemporal representations for face recognition
from videos ignore the fact that some of the facial information may also hinder the
recognition process. Indeed, while one may not expect worseresults using spatiotem-
poral representations instead of still image based ones, our results showed that still
image based methods can perform better than spatiotemporalbased ones. This suggests
that the existing spatiotemporal representations have notyet shown their full potential
and need further investigation.

From this observation, we presented a novel approach for spatiotemporal face recog-
nition with excellent results. The efficiency of the proposed approach can be explained
by the local nature of the spatiotemporal EVLBP based description, combined with the
use of boosting for selecting only the personal specific information related to identity
while discarding the information which is related to facialexpression and emotions.
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