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Abstract. In this paper, we present an effective approach for spatiotemiaceal
recognition from videos using an Extended set of Volume LBP (LocaBiRat-
tern features) and a boosting scheme. Among the key properties apptoach
are: (1) the use of local Extended Volume LBP based spatiotempaaiipion
instead of the holistic representations commonly used in previous w@kkg
selection of only personal specific facial dynamics while discarding ttra-in
personal temporal information; and (3) the incorporation of the carttdb of
each local spatiotemporal information. To the best of our knowledgeishhe
first work addressing the issue of learning the personal specifid thaiamics
for face recognition.

We experimented with three different publicly available video face databas
(MoBo, CRIM and Honda/UCSD) and considered five benchmark nast(rRRCA,
LDA, LBP, HMMs and ARMA) for comparison. Our extensive experimted
analysis clearly assessed the excellent performance of the praggmedch, sig-
nificantly outperforming the comparative methods and thus advancingdtes
of-the-art

Key words: Facial Dynamics, Local Binary Patterns, Face Recognition, Boost-
ing

1 Introduction

Psychological and neural studies [1] indicate that bothdfifecial features and dy-
namic personal characteristics are useful for recognitaegs. However, despite the
usefulness of facial dynamics, most automatic recogniigsiems use only the static
information as it is unclear how the dynamic cue can be iatiegiand exploited. Thus,
most research has limited the scope of the problem by appiyiethods developed for
still images to some selected frames [2]. Only recently lragearchers started to truly
address the problem of face recognition from video sequei3:®].

In [3], an approach exploiting spatiotemporal informatismpresented. It is based
on modeling face dynamics using identity surfaces. Facegration is performed by
matching the face trajectory that is constructed from theerininating features and
pose information of the face with a set of model trajectodesstructed on identity
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Fig. 1. Example of an LBP calculation

surfaces. Experimental results using 12 training sequseawee the testing sequences of
three subjects were reported with a recognition rate of%3.9

In [4], Li and Chellappa used the trajectories of trackeduess to identify per-
sons in video sequences. The features are extracted usbuy &#ributes on a regular
2D grid. Using a small database of 19 individuals, the agheported performance
enhancement over the frame to frame matching scheme. Ihemabrk, Zhou and
Chellappa proposed a generic framework to track and rezedates simultaneously
by adding an identification variable to the state vector exgbquential important sam-
pling method [5].

An alternative to model the temporal structures is the ush@fcondensation al-
gorithm. This algorithm has been successfully applied facking and recognizing
multiple spatiotemporal features. Recently, it was exéehtod video based face recogni-
tion problems [6, 5]. More recently, the Auto-Regressive Boving Average (ARMA)
model [10] was adopted to model a moving face as a linear digasystem and per-
form recognition [7].

Perhaps, the most popular approach to model temporal anidlspéormation is
based on the Hidden Markov models (HMM) which have also bgmlied to face
recognition from videos [8]. The idea is simple: in the tiagh phase, an HMM is
created to learn both the statistics and temporal dynanfiesch individual. During
the recognition process, the temporal characteristickefdce sequence are analyzed
over time by the HMM corresponding to each subject. Theiliceld scores provided
by the HMMs are compared. The highest score provides theiidarf a face in the
video sequence.

Unfortunately, most of the methods described above us@spaiporal representa-
tions that suffer from at least one of the following drawb&qld) the local information
which is shown to be important to facial image analysis [$1}at well exploited with
holistic methods such as HMMs; (2) while only personal sfieécial dynamics are
useful for discriminating between different persons, titea-personal temporal infor-
mation which is related to facial expression and emotioredde encoded and used;
and (3) equal weights are given to the spatiotemporal featuespite the fact that some
of the features contribute to recognition more than othBssovercome these limita-
tions, we propose an effective approach for face recognitimm videos that uses local
spatiotemporal features and selects only the useful fdgiamics needed for recog-
nition. The idea consists of looking at a face sequence akeetsd set of volumes (or
rectangular prisms) from which we extract local histograriSxtended Volume Local
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(b)

Fig. 2. (a): A face sequence is seen as a rectangular prism and (b): Arpkxafi8BD neighbor-
hood of a pixel in Volume LBP

Binary Pattern (EVLBP) code occurrences. Our choice of edgpBP (Local Binary
Patterns) for spatiotemporal representation is motivayetie recent results of LBP ap-
proach [12] in facial image analysis [13] and also in dynatexture recognition [14].

In this paper, noticing the limitations of volume LBP operan handling the tem-
poral information, we first extend the operator and derivéch set of volume LBP
features denoted EVLBP. Then, instead of ignoring the weai§leach feature or sim-
ply concatenating the local EVLBP histograms computed etigiined locations, we
propose an effective approach for automatically detemmgirthe optimal size and lo-
cations of the local rectangular prisms (volumes) from WwHi/LBP features should
be computed. More importantly, we select only the most disioative spatiotemporal
EVLBP features for face recognition while discard the feasuwhich may hinder the
recognition process. For this purpose, we use AdaBoostileatechnique [15] which
has shown its efficiency in feature selection task. The go#b iclassify the EVLBP
based spatiotemporal features into intra and extra claaedshen use only the extra-
class information for recognition. To the best of our kna¥ge, this is the first work
addressing the issue of learning personal specific facizuahjcs for face recognition.

2 Extended Volume LBP Features (EVLBP)

The LBP texture analysis operator, introduced by Oglal. [16,12], is defined as a
gray-scale invariant texture measure, derived from a gémfinition of texture in a
local neighborhood. It is a powerful means of texture d@siom and among its prop-
erties in real-world applications are its discriminativayer, computational simplicity
and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixejstiresholding the
3 x 3 neighborhood of each pixel with the center value and conisige¢he result as a
binary number. Fig. 1 shows an example of an LBP calculafitwe. histogram of these
28 = 256 different labels can then be used as a texture descripton Ka (LBP code)
can be regarded as a micro-texton. Local primitives whiehcadified by these bins
include different types of curved edges, spots, flat areas et
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The calculation of the LBP codes can be easily done in a sixge through the
image. The value of the LBP code of a piXel, y..) is given by:

P-1

LBPpr=  s(gp—gc)2" (1)

p=0

whereg,. corresponds to the gray value of the center pixel y.), g, refers to gray
values of P equally spaced pixels on a cicrle of radidsands defines a thresholding

function as follows:
_JLifx >0
s() = {O7 otherwise. (2)

The occurrences of the LBP codes in the image are collectedaithistogram. The
classification is then performed by computing histogramilanities. For an efficient

representation, facial images are first divided into sdveal regions from which

LBP histograms are extracted and concatenated into an eathdeature histogram.
In such a description, the face is represented in threerdiffdevels of locality: the

LBP labels for the histogram contain information about tha¢tgrns on a pixel-level,
the labels are summed over a small region to produce infesman a regional level

and the regional histograms are concatenated to build altEscription of the face.
This locality property, in addition to the computationahsiicity and tolerance against
illumination changes, are behind the success of LBP apprfmadacial image analy-

sis [13].

The original LBP operator (and also its later extension te msighborhoods of
different sizes [12]) was defined to deal only with the spatiformation. For spa-
tiotemporal representation, Volume LBP operator (VLB haen recently introduced
in [14]. The idea behind VLBP is very simple. It consists afking at a face sequence
as rectangular prism (or volume) and defining the neightmahaf each pixel in three
dimensional space. Fig. 2 explains the principle of reattargorism and shows an ex-
ample of 3D neighborhood for Volume LBP.

There are several ways of defining the neighboring pixels WBR. In [14], P
equally spaced pixels on a circle of radiftsin the framet, and P + 1 pixels in the
previous and posterior neighboring frames with time irdéf/were used. This yielded
in VLBP operator denoted VLBPp r. Fig. 3 (top) illustrates an example of VLBP
operator withP=4 andR=1.

We noticed in our experiments on face recognition from vidéwt VLBP, p
does not encode well enough the temporal information indle Sequences since the
operator considers neighboring points only from three &smnd therefore the infor-
mation in the frames with time variance less than L are missgdin addition, a fixed
number of neighboring points (i.€’) are taken from each of the three frames, yielding
in a less flexible operator with large set of neighboring fmifo overcome these limi-
tations, we introduce here an extended set of VLBP pattgriesisideringP points in
frame ¢, Q points in theframes ;+, andS points in theframes ;+or. This yields
in Extended Volume LBP (EVLBP) operator that we denote by B?L, (p . 5) -

By setting
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EVLBP. (p,q.s),r Will be equivalent to VLBR, p r. Therefore, VLBR, p r can be
seen as a special case of EVLBR o 5),r- Fig. 3 (bottom) illustrates an example
of Extended Volume LBP operator with=4, Q=S=1 andR=1 (EVLBPy, (4,1,1),1),
while Fig. 3 (top) illustrates an example of VLBR ; operator which is equivalent to
EVLBPL (4,501

Fig.3.Top: VLBPr 41. Bottom: EV LBPy, (4,1,1),1

Once the neighborhood function is defined, we divide eaoh $aquence into sev-
eral overlapping rectangular prisms of different sizesifwhich we extract local his-
tograms of EVLBP code occurrences. Then, instead of simphgatenating the local
histograms into a single histogram, we use AdaBoost legraigorithm for automat-
ically determining the optimal size and locations of thealo@ctangular prisms, and
more importantly for selecting the most discriminative BBR_patterns for face recog-
nition while discarding the features which may hinder theogmition process.

3 Learning EVLBP Features for Face Recognition

To tackle the problem of selecting only the spatiotempar&drimation which is use-
ful for recognition while discarding the information reddtto facial expressions and
emotions, we adopt AdaBoost learning technique [15] whiak $hown its efficiency
in feature selection tasks. The idea is to separate thel faéi@mation into intra and
extra classes, and then use only the extra-class EVLBPrésgtor recognition.

First, we segment the training face sequences into seveealapping shots of F
frames each in order to increase the number of training ddtan, we consider all
combinations of face sequence pairs for the intra and eXasses. From each pair
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(sequencel, sequence?), we scan both face sequences with rectangular prisms-of dif
ferent sizes. At each stage, we extract the EVLBP histogfeasnsthe local rectangular
prisms and compute thg? (Chi-square) distances between the two local histograms.
x? dissimilarity metric for comparing a target histogrgmo a model histograny is
defined by:

-1
2 _ (fj — %’)2 4

(69 2230 AT )

wherel is the length of feature vector used to represent the loctmgular prisms.
Thus, for each pair of face sequences, we obtain a featutenEgwhose elements

arex? distances. Let us denot€ € {+1,—1} the class label of; whereY; = +1
if the pair (sequence}, sequence?) defines an extra-class pairg( the two sequences
are from different persons) arid = —1 otherwise. This results in a set of training
samples{(X1, Y1), (X2,Y2), ..., (Xn, Yn)}. Algorithm 1. summarizes our procedure
of constructing the training data.

Inputs: Given a set of face sequenéé&zquence}

forall combinations of pairs (Sequence;, Sequence?) do
SetY; = +1 for extra-class pairs;

SetY; = —1 for intra-class pairs;

forall locations and sizes of local prisms do

— Extractlocal EVLBR (pg,s),r
histograms with different parameters;

— Computey? distances between
corresponding local histograms in the
given pair of sequences;

— Collect they? distances in a feature
vector X

end

end

Outputs{(X1,Y7), (X2, Ya),...,(Xn,YN)};
Algorithm 1: The construction of the training samples for feature selaaising
AdaBoost

Given the constructed training sets, we then apply the didBoost learning al-
gorithm [15] in order to(i) select a subset of rectangular prisms from which EVLBP
features should be computed, gid) learn and determine the weights of these selected
features.

Once the rectangle prisms are selected and their weightdeseemined, we per-
form the recognition of a given probe video sequence by etitrglocal histograms of
EVLBP patterns from the selected prisms and then applyirgast neighbor classifi-
cation using weighteg? distance:

T—11,—1
X (&t — Vig)?
Xi(fad’) = Z Z atﬁ %)

t=0 =0
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whereT is the number of selected local prisms; are the weighting coefficients re-
sulted from AdaBoost learning, aidhe lengths of the feature vectors used to represent
local rectangular prisms.

4 Experimental Analysis

4.1 Benchmark Methods

For comparison, we implemented five different algorithmduding Hidden Markov
models (HMMs) [8] and Auto-Regressive and Moving Averag&WA) models [7] as

benchmark methods for spatiotemporal representationsP@#, LDA and LBP [13]

for still image based ones. In the following, we briefly déserthe implementation of
these benchmark methods.

a) HwWs

The principle of using HMMs to model the facial dynamics araifprm video-
based face recognition is quite simple [8,17]. Let the faatldase consist of video
sequences aP persons. We construct a continuous hidden Markov modekfch sub-
ject in the database. A continuous HMM, witt states{.S;, S1,, ..., Sx' }, is defined
by a tripletA = (A, B, w), whereA = {a;;} is the transition matrixB = {b;(O)}
are the state conditional probability density functiondf{and= = {=;} are the initial
distributions. The model is built using a sequence of feature vectors, called observa
tion sequenc® = {o1, 09, ..., 0 }, extracted from the frames of the video sequerice (
is the number of frames). Different features can be extdaatel used as observation
vectors (e.g. pixel values, DCT coefficients etc.). In [Bg PCA projections of the face
images were considered. Here in our experiments, we impitadea similar approach
using 30 eigenvectors for dimensionality reduction andtie fully connected HMM.

During our training, using the Baum-Welch procedure [17madel A, , (p =
1,2,..., P), is built for all the subjects in the gallery. During the tteg, given the
gallery models{\, Ao, ..., Ap} and the sequence of the PCA feature vectors=
{01, 09, ..., 0 }, the identity of the test face sequence is given by:

argmaz P(O|\,) (6)
P

In other terms, the likelihood scord3(O|\,) provided by the HMMs are com-
pared, and the highest score defines the identity of the idsbd wequence.

b) ARMA
In the ARMA framework, a moving face is represented by a liriggmamical system
and described by Egs. 7 & 8:
z(t+1) = Az(t) + v(t) v(t) ~ N(0,R) @)

I(t) = Cu(t) + w(t) w(t) ~ N(0,Q) (8)
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where,I(t) is the appearance of the face at the time instantt) is a state vector that
characterizes the face dynamigsandC' are matrices representing the state and output
transitionsp(t) andw(t) are IID sequences driven from some unknown distributions.

We build an ARMA model for each face video sequence. To des@ach model,
we need to estimate the parametdrsC, @ and R. Using the tools from the system
identification literature, the estimation of the ARMA moghgrameters is closed-form
and therefore easy to implement [10, 7]. While the state iiansA and the output
transitionC' are intrinsic characteristics of the mod@land R are not significant for the
purpose of recognition [10]. Therefore, we need only therited A andC' to describe
a face video sequence. Once the models are estimated, ittmogan be performed by
computing distances between ARMA models correspondingdbepand gallery face
sequences. The gallery model which is closest to the prolehis assigned as the
identity of the probe (nearest neighbor criteria).

Several distance metrics have been proposed to estimatkstaace between two
ARMA models [18]. Since it has been shown that the differeetrios do not alter
the results significantly, we adopted in our experimentsRtbenius distanceit.),
defined by :

di =2 sin®0:(\j, M) 9)
=1
where,§; are the subspace angles between the ARMA moalglsnd \;,, defined in
[18].

c) PCA LDA and LBP

For comparison, we also considered still image based msthach as PCA, LDA
and LBP. However, in video-based face recognition schenoéis training and test
data (galleries and probes) are video sequences. Therpésferming still-to-still face
recognition when the data consists of video sequences ii-posed problem (i.e.
which frame from the test sequence to compare to which framted reference se-
quence?). Here, we adopt a scheme proposed in [19] to pedtatic image based
face recognition that exploits the abundance of face vievibe videos. The approach
consists of performing unsupervised learning to extraatatK most representative
samples (or exemplars) from the raw gallery videos (K=3 in @periments). Once
these exemplars are extracted, we build a view-based syatenuse a probabilistic
voting strategy to recognize the individuals in the prolewi sequences.

4.2 Experimental Data

For experimental analysis, we considered three differabtigly available video face
databases (MoBo [20], Honda/UCSD [9] and CRIM [21]) in orteensure an exten-
sive evaluation of our proposed approach and the benchmettkoals against changes
caused by different factors including face image resofytilumination variations,
head movements, facial expressions and the size of theadatab

The first database, MoBo (Motion of Body), is the most commarged in video-
based face recognition research [5, 22, 8], although it wagnally collected for the
purpose of human identification from distance. The considesubset from MoBo
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Fig. 4. Examples of cropped facial images from MoBo video database

Fig. 5. Examples of facial images from CRIM video database

database contains 96 face sequences of 24 different ssivyatiting on a treadmill.
Some example images are shown in Fig. 4. Each sequence tsoosi300 frames.
From each video sequence, we automatically detected acaledshe faces, obtaining
images of 4640 pixels.

The second database, Honda/UCSD, has been collected ahéyteeet al. in
their work on video-based face recognition [9]. It was alsediin the recent study of
Aggarwal et al. [7]. The considered subset from Honda/UC&xlthse contains 40
video sequences of 20 different individuals (2 videos pes@®. During the data col-
lection, the individuals were asked to move their face ifedi#fnt combinations (speed,
rotation and expression). From the video sequences, weedadhe face images in the
same way as we did for the MoBo database. The size of the edsialtial images is
20x 20 pixels.

In order to experiment with a large amount of facial dynamiesulted for example
from the movements of the facial features when the indivlaae talking, we con-
sidered a third video database called CRIM. This is largeo5&91 face sequences
showing 20 persons reading broadcast news for a total oftdbbaurs. The database
is originally collected for audio-visual recognition. Treeare between 23 and 47 video
sequences for each individual. Some cropped images arenshdwg. 5. The size of
the extracted face images is 23050 pixels.

4.3 Experimental Results and Analysis

From each of the three video databases (MoBo, USCD/HONDAGRIM), we ran-
domly selected half of the face sequences of each subjettaioing while the other
half was used for testing. In addition, given the limited fuemnof training samples in
MoBo and Honda/UCSD databases, we also segmented the fgwenses into sev-
eral overlapping shots in order to increase the number ofitiga samples. In all our
experiments, we considered the average recognition rafg0aandom permutations.
First, we applied PCA, LDA, LBP, HMMs and ARMA to the test seqaes in the
three databases. The performances of these methods ara shdables 1-3. From
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the results on MoBo database (Table 1), we notice that aliitbhods perform quite
well and the spatiotemporal based methads HMMs and ARMA) are slightly better
that the static image based methods (PCA, LBP and LDA). Thietgerformance of
the spatiotemporal methods is in agreement with the neychpsogical evidence [1]
stating that facial dynamics are useful for recognitiororfithese results we can also
see that the benefit of the spatiotemporal approach is ngtsignificant. Perhaps, in
MoBo database, this is due to the few amount of facial dynamibich are mainly
limited to the rigid movements of the head.

However, the results on Honda/UCSD database (Table 2) dhatthe low-image
resolution 20 x 20 pixels) affects all these five methods and that image basesl e
more affected. This is also in agreement with the neuropsyggital findings that indi-
cate that facial movement contributes more to the recagnitnder degraded viewing
conditions.

Surprisingly, the results on CRIM database (Table 3) shaw MM and ARMA
approaches gave worse results than those of PCA, LDA, ancdlaB&d methods. While
one may not expect worse performances using spatiotempmadsentations, the ob-
tained results attest that PCA, LDA and LBP based represensamight perform bet-
ter. This means that combining face structure and its dycsini anad hoc manner
does not systematically enhance the recognition performan

From the experiments, we also noticed that the basic LBPoagpr[13] performed
quite well and outperformed PCA and LDA in all our tests. Té¢osfirms the validity of
LBP based descriptions in face analysis. A bibliography®PLrelated research can be
found at http : //www.ee.oulu. fi/research/imag/texture/lbp/bibliography/.

[Method  [Recognition rate

PCA 87.1%
LDA 90.8%
LBP [13] 91.3%
HMM [8] 92.3%
ARMA [7] 93.4%

Table 1. Comparative recognition results of 5 benchmark methods on MoBo akstab

[Method  [Recognition rate

PCA 69.6%
LDA 74.5%
LBP [13] 79.6%
HMM [8] 84.2%
ARMA [7] 84.9%

Table 2. Comparative recognition results of 5 benchmark methods on Hond@@@base
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[Method  [Recognition rate

PCA 89.7%
LDA 91.5%
LBP [13] 93.0%
HMM [8] 85.4%
ARMA [7] 80.0%

Table 3. Comparative recognition results of 5 benchmark methods on CRIM as¢ab

We also experimented with Volume LBP spatiotemporal apgraghich has been
successfully applied to dynamic texture analysis in [148.dided each face sequence
into several overlapping local rectangular prisms of fixetts Then, we extracted
the VLBP based spatiotemporal representation using difte¥LBP operator param-
eters. For recognition, we adopted tQé distance. Using such an approach, we ob-
tained best recognition rates of 90.3%, 78.3% and 88.7% WP, 4 1, VLBP; 41
and VLBP, 4 ; on MoBo, Honda/UCSD and CRIM databases, respectively. riudrp
ingly, these results are worse than those obtained usihgretge LBP based approach
which yielded in recognition rates of 91.3% (versus 90.3P8)6% (versus 78.3%) and
93.0% (versus 88.7%) on MoBo, Honda/UCSD and CRIM datahasggsectively. This
supports our earlier conclusion indicating that usingispatporal representations do
not systematically enhance the recognition performantes.most significant perfor-
mance degradations of VLBP approach are noticed on CRINMbdatawhich contains
the largest amount of facial dynamics. This indicates thatesof these facial dynamics
are not useful for recognition. In other terms, this meaas $ome part of the temporal
information is useful for recognition while another partyreso hinder the recogni-
tion. Obviously, the useful part is that defining the exteagonal characteristics while
the non-useful part concerns the intra-class informatimih sas facial expressions and
emotions. For recognition, one should then select only #teagersonal characteris-
tics.

To verify this hypothesis, we considered our proposed aggravhich consists of
using AdaBoost for learning and selecting only the mostridisoative spatiotempo-
ral features. First, we tested AdaBoost with VLBP featuned abtained recognition
rates of 96.5%, 89.1% and 94.4% on MoBo, Honda/UCSD and CRiMlses, re-
spectively. As shown in Tables 4-6, performing feature &t@la yields in significant
performance enhancement on all these three databases/alidstes our hypothesis
that only some part of the temporal information is usefulrfarognition while another
part may hinder the recognition process.

Then, we experimented with the proposed extended set of feBfares (EVLBP)
introduced in Section 2 and used AdaBoost for learning thetrdiscriminative spa-
tiotemporal EVLBP features. As expected, this enhancethdurthe performances,
yielding in excellent recognition rates of 97.9%, 96.0% &8b% on MoBo, Honda
/UCSD and CRIM databases, respectively. This additionebpmance enhancement
explains the benefit of enriching the VLBP feature set bywitlegi EVLBP and shows
the limitations of VLBR, p r operator which does not encode well enough the tempo-
ral information in the face sequences since the operataiders neighboring points
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only from three frames and therefore the information in tiaenfes with time variance
less than L are missed out.

Notice that the obtained results significantly outperfohrase of all benchmarks
methods (PCA, LDA, LBP, HMM and ARMA) on the three databasesr(parison be-
tween Tables 1-3 and Table 4-6). To our knowledge, this tsthis best performance on
these databases. Perhaps, these excellent results capldieen by the followings(:)
the spatiotemporal representation using extended voluBte features, in contrast to
the HMM based approach, is very efficient as it codifies thallaad global facial dy-
namics and structure; and more importariily) the temporal information extracted by
the extended volume LBP features consisted of both intraeatrd personal informa-
tion (facial expression and identity). Therefore, theresweed for performing feature
selection. In addition, the selected EVLBP spatiotempfaalures were assigned dif-
ferent weights reflecting their contributions to recogmitiwhile this was not the case
in other methods.

[Method [Recognition rate
VLBP [14] 90.3%
VLBP+AdaBoost 96.5%
EVLBP+AdaBoost 97.9%

Table 4. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBbos
MoBo database

[Method [Recognition rate
VLBP [14] 78.3%
VLBP+AdaBoost 89.1%
EVLBP+AdaBoost 96.0%

Table 5. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBbos
Honda/UCSD database

[Method [Recognition rate
VLBP [14] 88.7%
VLBP+AdaBoost 94.4%
EVLBP+AdaBoost 98.5%

Table 6. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBbos
CRIM database
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Fig. 6. Examples of the four first selected rectangular prisms from which B¥EBatiotemporal
features are extracted on CRIM face sequences
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Fig. 7. The recognition rates function of the number of selected regions with dalstBfrom
which EVLBP features are extracted

Analyzing the selected local regions (the rectangulanpg)from which the EVLBP
features were collected, we noticed that the dynamics ofuhele face and the eye
area are more important than that of the mouth region fortigerecognition. This
is quite surprising in the sense that one can expect from th&mregion to play the
most important role as it is the most non-rigid region of thesfwhen an individual is
talking. Probably, mouth region does play an important tlefor facial expression
recognition. Fig. 6 shows examples of the most discrinmeasipatiotemporal regions
returned by AdaBoost for CRIM face sequences and from whi¢hBP spatiotem-
poral features are extracted. Notice that these four fitetse features are extracted
from global an local regions. This supports the results béotesearchers indicating
that both global and local features are useful for recogmitFrom how many selected
regions the EVLBP features are computed? Fig. 7 shows tlognén results as a
function of the number of regions selected by AdaBoost. Tés besults are obtained
with 9, 16 and 6 regions on MoBo, Honda/UCSD and CRIM datahasspectively.
Using additional regions did not enhance the recognitiofopmance.

Table 7 summarizes the obtained results using the differehods (PCA, LDA,
LBP, HMM, ARMA, VLBP and EVLBP) on the three databases (MoBlmnda/UCSD
and CRIM).
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[Method [Results on MoB{Results on Honda/UCSResults on CRINI
PCA 87.1% 69.9% 89.7%
LDA 90.8% 74.5% 91.5%
LBP [13] 91.3% 79.6% 93.0%
HMM [8] 92.3% 84.2% 85.4%
ARMA [7] 93.4% 84.9% 80.0%
VLBP [14] 90.3% 78.3% 88.7%
VLBP+AdaBoost 96.5% 89.1% 94.4%
EVLBP+AdaBoost 97.9% 96.0% 98.5%

Table 7. Summary of the obtained results using the different methods on the thtaeades

5 Conclusion

The few works attempting to use spatiotemporal representafor face recognition
from videos ignore the fact that some of the facial informatmay also hinder the
recognition process. Indeed, while one may not expect wasdts using spatiotem-
poral representations instead of still image based onesresults showed that still
image based methods can perform better than spatiotenimsatl ones. This suggests
that the existing spatiotemporal representations havgetahown their full potential
and need further investigation.

From this observation, we presented a novel approach ftiogpaporal face recog-
nition with excellent results. The efficiency of the propdsgproach can be explained
by the local nature of the spatiotemporal EVLBP based detson, combined with the
use of boosting for selecting only the personal specificrmftdion related to identity
while discarding the information which is related to fa@apression and emotions.
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