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Nonlinear Dynamics of Vehicle Traction

B.J. OLSON∗,1, S.W. SHAW∗, AND G. STÉPÁN†

SUMMARY

The purpose of this study is to understand the nonlinear dynamics of longitudinal ground vehicle traction. Specifically, single-wheel models of
rubber-tired automobiles under straight-ahead braking and acceleration conditions are investigated in detail. Customarily, the forward vehicle speed
and the rotational rate of the tire/wheel are taken as dynamic states. This paper motivates an alternative formulation in which wheel slip, a dimen-
sionless measure of the difference between the vehicle speed and the circumferential speed of the tire relative to the wheel center, replaces the
angular velocity of the tire/wheel as a dynamic state. This formulation offers new insight into the dynamic behavior of vehicle traction. The unique
features of the modeling approach allow one to capture the full range of dynamic responses of the single-wheel traction models in a relatively simple
geometric manner. The models developed here may also be useful for developing and implementing anti-lock brake and traction control control
schemes.
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1. INTRODUCTION

In studies of vehicle traction the gross vehicle dynamics and tire/wheel dynamics can be captured by lumped mass
models. Simplified models that are often considered for longitudinal braking and acceleration include the single-wheel
model [1, 2, 3], and a two-dimensional, two-wheel model (front and rear) [1, 2], or full four-wheel models for cornering
[1, 2]. The dynamics of these systems involve interactions between the vehicle, the tire/wheel assemblies, and the road
surface. The force that ultimately slows or accelerates the vehicle is the longitudinal friction force between the road
and tire, which can be empirically described in terms of a slip condition at the interface. Thus, writing the equations of
motion for any rubber-tire vehicle system requires a description of the friction force generated at the tire/road interface,
in addition to the usual laws of motion.

Experimental evidence shows that the longitudinal friction force is proportional to the normal force at the contact
[1, 2, 3], with a coefficient of friction serving as the ”constant” of proportionality. This coefficient can be conveniently
modeled in an empirical manner that depends on the slip [4, 5], which is a dimensionless measure of the difference
between the vehicle speed and the circumferential speed of the tire relative to the wheel center. During braking (resp.
acceleration), this difference is generated by a brake (resp. engine) torque on the wheel, which acts against (resp. with)
the inertia of the vehicle. The slip depends on the dynamics of the vehicle and the tire/wheel, and it also influences
their dynamics through the friction force. This ”feedback” results in a system of coupled equations of motion for
the vehicle and the tire/wheel. These equations of motion are most often formulated in terms of the vehicle’s speed
relative to ground and the absolute rotational rate of the tire/wheel. This is a very natural formulation, wherein the slip
is merely an internal variable defined in terms of the system’s dynamic states, which is used to compute the friction
force that appears in the equations of motion.

In this paper, a formulation is considered in which the slip is taken to be a dynamic state variable, replacing the
absolute rotational rate of the tire/wheel. Liu and Sun [6] have developed the equations of motion for a quarter-car
model in this way, but their investigation focuses on control algorithms based on gain-scheduling, rather than general
dynamic behavior. The formulations herein focus not on control, but the general dynamic characteristics of vehicle
traction. Only single-wheel braking and acceleration models are developed here; two-wheel models are considered in
a companion paper [7]. It will be shown that the equations of motion take on forms that lend themselves to relatively
simple investigation and interpretation using tools from nonlinear dynamics. Specifically, this formulation allows the
dynamics for the entire range of vehicle speeds and slip values to be captured by a scalar function (one for each model)
that is defined in terms of the slip, the brake or engine torque, and the friction/slip relationship. These functions describe
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completely the behavior of a given vehicle during braking (resp. acceleration) and under a constant or slowly varying
brake (resp. engine) torque.

The dynamic models presented here are capable of describing both transient and steady tractive performance.
Most importantly, they clearly demonstrate how a vehicle can undergo stable braking or acceleration and/or lockup,
depending on the brake/engine torque, the friction characteristic, and the vehicle parameters. These models also allow
one to clearly see how transitions between operating states occur as parameters and conditions are varied. In fact, a
single set of phase plane diagrams, drawn at varying brake/engine torque levels, completely captures the entire range
of possible behaviors for a given friction characteristic.

One of the more interesting findings of this study is a stability result related to brake lockup. The standard assump-
tion is that the brake torque can increase until the slip reaches a value that corresponds to the maximum coefficient
of friction, beyond which lockup occurs [1, 2]. Under steady-state braking conditions the corresponding maximum
brake torque is typically assumed to be equal to the peak moment provided by the friction force about the wheel cen-
ter. In this work it is shown that this result is actually an approximation that is only accurate when the inertia of the
tire/wheel is very small compared to that of the vehicle. Since this is generally the case, the approximation works well,
but the present results determine where instability to lockup actually occurs, and also systematically shows how the
approximation is obtained.

It is recognized that slip is notoriously difficult to measure in practice, primarily since it is not a simple matter to
determine the vehicle speed relative to ground. (The speedometer uses the tire circumferential speed, which does not
match the vehicle speed during slip—and this is precisely when both speeds are required to compute the slip [8].)
However, since methods exist for estimating the slip [9, 10, 11], models such as those developed here may be useful
for developing and implementing anti-lock brake systems (ABS) and traction control systems (TCS).

The paper is organized as follows. The single-wheel braking model is developed first in a systematic manner,
thus laying the necessary groundwork for the development and analysis of a single-wheel acceleration model. The
equations of motion are presented and the need to quantify the available friction force for braking is specified. This
motivates an investigation of the tire/road interface and leads to the introduction of force coefficient characteristics as
a function of longitudinal wheel slip. The equations of motion are hence cast into a framework that is convenient for
a nonlinear dynamic analysis. Two formulations are considered: one in which the dynamic states are taken to be the
forward vehicle speed and the angular speed of the tire/wheel, and one in which wheel slip replaces the angular speed
as a dynamic state. The latter formulation is pursued in detail. Global features of the braking model are discussed,
including steady-slip conditions, local stability of slip dynamics, hysteresis, and the transition to unstable braking
(lockup). Finally, a single-wheel acceleration model is similarly developed and analyzed. The paper closes with some
conclusions and directions for future work.

2. THE SINGLE-WHEEL BRAKING MODEL

A quarter-car model is developed in this section in order to illustrate the fundamental aspects of vehicle braking. This
single-wheel model is unrealistic by virtue of its simplicity, and it clearly fails to capture some important dynamical
features (e.g., dynamic load transfer). It nevertheless serves to facilitate an understanding of the basic dynamic char-
acteristics of vehicle braking. In fact, the approach taken here lays the necessary groundwork for the formulation and
analysis of two- and four-wheel models. Two-wheel traction models are considered in a companion paper.

As depicted in Figure 1, the quarter-car model consists of a single wheel constrained to move longitudinally in the
x-direction at a speed u and with a rotational rate ω. Denoted by R and J are its effective rolling radius and polar
moment of inertia, respectively. The effect of a braking mechanism on the vehicle wheel is captured by the brake
torque Tb, which opposes the forward motion of the system. The vertical reaction force Z balances the static weight
mg, while the longitudinal force X serves to slow the vehicle in braking. By summing forces in the x- and z-directions
and moments about the mass center C of the vehicle/wheel, the system equations are found to be

mu̇ = −X, (1)

Z = mg, (2)

Jω̇ = RX − Tb, (3)

where m is the mass of the vehicle-wheel combination and g is the acceleration due to gravity. Overdots denote
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Fig. 1. Schematic of the single-wheel braking model and corresponding free body diagram

differentiation with respect to time.
In general, there are a number of forces acting on a vehicle that may give rise to a deceleration. The model consid-

ered here includes only the longitudinal brake force X , which is discussed in detail in the next section. Other sources
of deceleration in braking include driveline drag, grade, rolling resistance, and aerodynamic drag.

2.1. Tractive Properties

The primary force of interest in studies of vehicle traction is the longitudinal force X , which acts on the vehicle
through a tire/road contact patch. Experimental evidence shows that this friction force is proportional to the normal
force Z at the contact and is a consequence of the relative difference between the vehicle speed u and the rolling
speed of the tire ωR. The ”constant” of proportionality is responsible for the friction coupling, and can be empirically
determined by a friction characteristic in terms of road test data and wheel slip, which is a dimensionless measure
of the difference between u and ωR. Since the friction characteristic captures the typifying quantities of a particular
tire/road combination—including slip stiffness at zero slip and peak brake force values—it can be regarded as a tire
model that characterizes the tire behavior on a given road surface. The tractive properties are now discussed in terms
of wheel slip, the tire/road interface and attendant friction law, and a tire model.

Wheel Slip The longitudinal friction force X is a consequence of the relative difference between the vehicle speed u
and the rolling speed of the tire, which is given by ωR. Wheel slip is defined in terms of this difference as1

s ≡
u − ωR

max(u, ωR)
. (4)

It is assumed and taken as convention that u > 0 and 0 ≤ ωR ≤ u in vehicle braking. Thus, s = u−ωR
u

is defined
on the unit interval I = [0, 1], taking on the limiting values of s = 0 for free rolling (u = ωR) and s = 1 for wheel
lockup (ωR = 0). The former case u = ωR implies the absence of a brake torque. The definition of slip, along with
the convention that ωR ≤ u allows for two possibilities for steady-state vehicle braking with nonzero initial speed: (1)
finite rotation of the wheel while the vehicle decelerates and (2) deceleration under lockup conditions. It is noted that
the case of lockup is undesirable since steerability, directional stability, and general control over a vehicle is severely
degraded in such a state [1, 2].

The Tire/Road Interface and Friction Law In a rubber tire, wheel slip results in the deformation and sliding of tread
elements in the tire/road contact patch, which in turn sustains the friction force X in braking. Indeed, it is through
this important interface between the road surface and tire tread that braking is negotiated. In general, the microscopic
physical description of the said phenomenon is complicated and involves more physics than what are needed here.
(See, for instance, [1, 2].) It suffices to capture these interactions by the simple algebraic relationship

X = µ(s)Z, (5)

which is known as the friction law or creep force equation. The longitudinal force coefficient µ : I → I is experimen-
tally determined in terms of road test data and is the subject of the next section.

1The maximum function max(u,ωR) allows the use of Equation (4) to define longitudinal wheel slip for both vehicle braking and acceleration. In
braking u > ωR, while u < ωR for vehicle acceleration.
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Fig. 2. Typical longitudinal friction characteristics: (a) dry asphalt; (b) wet asphalt; (c) gravel; and (d) packed snow.

Friction Characteristic and Tire Model The friction coupling between a rubber tire and road surface depends on
a number of physical parameters involving tire construction, inflation and wear, the tire/road interface, and vehicle
speed and loading [1, 2, 3]. Since a general theory that can accurately predict the longitudinal brake force in terms of
wheel slip has yet to be developed, friction coupling is necessarily determined experimentally. Various methods exist
to relate the brake and normal forces X and Z in terms of a friction characteristic µ(s). See, for example, [10, 9]. The
resulting data can then be represented by a formula.

Figure 2 shows graphical representations of some typical longitudinal friction characteristics. The initial rate at
which µ(s) increases with increasing slip is dependent on the properties of the tire. For wet and dry asphalt the
characteristics increase until a peak value µp = µ(sp) is attained. This typically occurs between 10 and 20 percent slip,
yielding maximum braking forces of 25-50 and 70-90 percent of the vertical load for wet and dry asphalt, respectively.
The friction characteristics then exhibit a gradual decrease to s = 1 (wheel lockup). For gravel and packed snow, the
behavior of the friction coefficient characteristics are qualitatively different. Peak values occur at wheel lockup (here,
s = sp = 1) and are the consequence of plowing conditions on the deformable surfaces. Ice characteristics (not shown)
are similar to those for wet and dry asphalt, differing mostly in the resulting peak values [1, 2, 3].

An analytical treatment of these friction characteristics is possible by employing the widely used Pacejka tire model
[4, 5]. It is described by the so-called Magic Formula which is given by

y(x) = D sin(C arctan(Bx − E(Bx − arctan(Bx)))), (6)

where the parameters B, C, D, and E are the stiffness, shape, peak, and curvature factors. See reference 4 for typical
values of these coefficients. Horizontal and vertical shifts of a characteristic are attained by the transformations

Y (χ) = y(x) + Sv, x = χ + Sh,

where Sv is the vertical shift and Sh is the horizontal shift. The function Y (χ) can represent all steady-state tire
characteristics—including the brake force X , side force, and self-aligning torque—in a physically meaningful and
straightforward way. The variable χ denotes either slip angle (the angle subtended from the direction of wheel travel
to the direction of wheel heading) or longitudinal wheel slip s. In light of Equation (2) and Equation (5), note that the
Magic Formula can be scaled to represent µ(s) directly on I .

For the purpose of more efficient numerical simulations, a simple friction characteristic was devised for the present
study and is given by

µ(s) = c1

(

1 − e−c2s
)

− c3s, s ∈ I. (7)

This function is unimodal with a peak value of µp = 0.972 at sp = 0.316 and hence behaves similarly to wet and dry
asphalt characteristics. Equation (7), which is shown in Figure 3 for c1 = 1.18, c2 = 10.0, and c3 = 0.5, was employed
for all calculations and numerical simulations involving µ(s) for the vehicle braking model. The characteristic shown
for s ∈ [−1, 0] is employed for vehicle acceleration in Section 3.
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Fig. 3. Friction characteristics employed in numerical simulations

2.2. Equations of Motion

During wheel slip, the single-wheel model possesses two dynamic states and hence requires a set of two coordinates
to describe its motion. By inspection of Equations (1-5), it is clear that two of three possible variables of interest could
be chosen as the independent variables, namely, u, ω, or s. The equations of motion for the single-wheel braking
model are developed first in terms of u and ω as dynamic states, and the qualitative dynamics are captured in the
(u, ωR) phase plane. Though such a description is physically illuminating, it is subsequently shown in Section 2.2
that a formulation of the equations of motion in terms of u and s as dynamics states lends itself to a relatively simple
interpretation. Specifically, it will be shown that the latter formulation allows the dynamics for the entire range of
vehicle speeds and slip values to be captured by a single function that is defined in terms of wheel slip and the brake
torque.

u and ω as Dynamic States The common formulation of the equations of motion makes use of the speed u of the
vehicle relative to ground and the absolute rotational rate ω of the tire/wheel as dynamic states. Then the system
dynamic equations are

u̇ = −µ(u, ω)g

ω̇R = gH(u, ω)

}

, 0 ≤ ωR ≤ u, (8)

where wheel slip is merely an internal variable. The restriction 0 ≤ ωR ≤ u ensures that s ∈ I , according to the
convention of wheel slip in braking. The function

H(u, ω) = νµ(u, ω) − Υb (9)

is dimensionless, where ν = mR2

J
is the dimensionless ratio of vehicle to wheel inertia (typically ν � 1), and Υb =

R
Jg

Tb is the dimensionless brake torque.

The (u, ωR) Phase Plane Figure 4a shows trajectories in the (u, ωR) state space for ν = 15 and Υb = 12. The rolling
speed ωR of the tire is defined along the ordinate while the vehicle speed u is defined along the abscissa. Wheel slip
is implicitly defined in terms of these states by

ωR = (1 − s)u, (10)

which follows from the definition given by Equation (4). Equation (10) shows that radial lines originating from
(u, ωR) = (0, 0) are lines of constant slip for which there is a linear relationship between u and ωR. Since s is
defined on the unit interval for vehicle braking, the dynamics need only be considered in the region

F = {(u, ωR) | u ≥ 0, 0 ≤ ωR ≤ u}. (11)

Thus, trajectories are bounded by the line ωR = u, which corresponds to s = 0 (free rolling), and the line ωR = 0,
or the u-axis, which corresponds to s = 1 (wheel lockup). For a particular brake torque, certain constant-slip radial
lines are invariant under the dynamics. The corresponding constant slip values shall be denoted by s∗. Any such set
that satisfies these conditions and the equations of motion define invariant linear manifolds in the (u, ωR) phase plane,
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Fig. 4. State space descriptions for the single-wheel braking model for ν = 15 and Υb = 12: (a) in u and ωR; (b) in u and s.

which are denoted by

W∗
b = {(u, ωR) | ωR = (1 − s∗)u, s∗ ∈ I}. (12)

Under certain conditions (to be determined subsequently), the u axis is also an invariant manifold (where s = 1) and
is denoted by

WL
b = {(u, ωR) | u ≥ 0, ωR = 0}, (13)

where the superscript L indicates lockup. There are, for example, three such invariant manifolds when Υb = 12 (see
Figure 4a) with one corresponding to lockup conditions, that is, WL

b . All trajectories started in F rapidly approach
either W∗

b or WL
b as u decreases (since u̇ < 0) and evolve essentially along the invariant manifold toward zero speed

at (u, ωR) = (0, 0). Trajectories started on, or that approach W ∗
b , represent stable braking, while trajectories that

approach WL
b correspond to unstable braking, or lockup conditions. These invariant manifolds, if they exist, serve

two purposes: they (1) define steady-slip conditions that are invariant under the dynamics and under which the vehicle
decelerates to zero speed, and (2) separate regions of stable and unstable braking. It would be desirable to quantify
these manifolds without having to perform numerical simulations for several initial conditions.

In what follows, an alternative formulation is considered where wheel slip s replaces ωR as a dynamic state.
Figure 4 compares the state space description of the single-wheel braking model in the (u, ωR) phase plane to its
description in the (u, s) phase plane for ν = 15 and Υb = 12. The alternative formulation yields a state space where,
essentially, the point (u, ωR) = (0, 0) is expanded to represent wheel slip on the unit interval at u = 0. In doing so,
a singularity is introduced at u = 0; but, as indicated in Figure 4b, the invariant manifolds W ∗

b and WL
b are easily

identified in the (u, s) phase space as lines of constant s. It will be shown that a formulation of the equations of motion
in terms of u and s allows for the invariant manifolds, and hence steady-slip conditions and various operating regimes,
to be captured by a single function that is defined in terms of wheel slip and the brake torque.

u and s as Dynamic States Although it is very natural to cast the equations of motion in terms of the forward vehicle
speed u and the tire/wheel rate of rotation, it is instructive to replace ω with wheel slip as a state variable. Liu and
Sun [6] have developed the equations of motion for a quarter-car model using u and s as dynamic states, but their
investigation focuses on control algorithms based on gain-scheduling. Here the equations of motion are developed
similarly but with emphasis on a form suitable for a nonlinear dynamic analysis. Evaluating the time rate of change of
wheel slip (for ωR ≤ u)

ṡ =
R

u2
(ωu̇ − uω̇),
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and performing the appropriate substitutions, the equations of motion may be cast in terms of u and s. The result is:

u̇ = −µ(s)g

ṡ = g

u
hb(s)

}

, u > 0, s ∈ I. (14)

Since u > 0 by convention, g > 0, and µ(s) ∈ I , it follows that u̇ < 0, which is expected. The function

hb(s) = (s − 1 − ν)µ(s) + Υb (15)

is nondimensional, where, recall, ν = mR2

J
is the ratio of vehicle inertia to wheel inertia and Υb = R

Jg
Tb is the di-

mensionless brake torque. Note that the brake torque term is additive, so that as Υb is varied, the shape of hb(s) does
not change. It simply shifts up and down. Also, since typically ν � 1 (discussed subsequently), the shape of hb(s) is
close to that of −νµ(s).

The general features of the quarter-car model are best demonstrated by treating Equation (14) as a state-space
representation of the single-wheel system and exploring its behavior in the (u, s) state space. It will be shown that this
interpretation of the single-wheel model yields good insight into its dynamic response during transient and steady-state
braking. The analysis begins by determining the steady-slip conditions and their local stability characteristics. A more
detailed mathematical analysis follows in a discussion of the global features of the single-wheel braking model.

2.3. Steady-Slip Conditions

Equation (14) shows that, for nonzero u and a slip value s∗ for which hb(s
∗) = 0, the time rate of change of slip is

identically equal to zero. Correspondingly, wheel slip remains constant at s = s∗, independent of the vehicle speed.
This in turn ensures that the vehicle acceleration u̇ = −µ(s∗)g is negative and constant. Here, µ(s∗) is the longitu-
dinal force coefficient corresponding to the fixed slip value. Under these conditions the vehicle speed monotonically
decreases to zero according to the equation

u(t) = uo − µ(s∗)gt, u > 0, 0 ≤ t ≤ tf , (16)

where uo > 0 is the initial speed at the instant when s = s∗, that is, when t = 0, and tf corresponds to the time when
u = 0. Wheel lockup also yields steady-slip conditions when s = 1. Under lockup conditions, the dynamics of the
vehicle are described by Equation (16), with the coefficient of sliding friction µL = µ(s = 1) replacing µ(s∗).

2.4. Local Stability of Slip Dynamics

Before specifying a quantitative measure of stability, it is convenient to outline and adopt specific notation. First, recall
that constant slip values s∗ denote invariant points in the slip dynamics. They may be obtained by finding the zeros
of hb(s), that is, by finding the roots of hb(s

∗) = 0. More precisely, the steady-slip values s∗, if they exist, define
invariant sets of the system, since once s = s∗ is attained, s remains at that value for all time, independent of the
values of u (for u > 0). Any such value of s = s∗ may be either stable or unstable and shall be denoted by s+ and s−,
respectively. Local stability criteria of wheel slip follows from considering a small perturbation η(t) = s(t) − s∗ away
from one of these roots. Differentiating with respect to time, invoking Equation (14), and employing hb(s

∗) = 0, the
local slip dynamics near s∗ can be approximated to leading order by the linearized equation

η̇ =
g

u
h′

b(s
∗)η, (17)

where (·)′ = d(·)
ds

denotes differentiation with respect to s. Since g

u
> 0, Equation (17) shows that the perturbation

grows exponentially fast when h′
b(s

∗) > 0 and decays exponentially when h′
b(s

∗) < 0. Thus, the stability of the slip
dynamics near s = s∗ are determined by the slope of hb(s) at s = s∗:

h′
b(s

∗) = µ′(s∗) (s∗ − 1 − ν) + µ(s∗). (18)

Stable and unstable steady-slip values are defined to be

s± =
{

s | hb(s
±) = 0, h′

b(s
±) ≶ 0

}

. (19)
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Table 1. Steady-slip values for the single-wheel braking model

Υb s− scr s+

7 – – 0.050
12 0.782 – 0.117

ΥL

b
=10.199 1 – –

Υcr

b
=15.250 – 0.304 –
18 – – –

The corresponding stable and unstable invariant manifolds of the system in the (u, s) plane are defined by

W±
b =

{

(u, s) | u > 0, s = s±
}

. (20)

For lockup there is a stable manifold,

WL
b = {(u, s) | u > 0, s = 1} ,

defined for parameter conditions under which hb(1) ≥ 0. The notation W∗
b shall refer to either of the invariant mani-

folds W+
b or W−

b (WL
b not included).

2.5. Global Features of the Single-Wheel Braking Model

Equation (17) and Equation (19) hint at the importance of hb(s), since steady-slip conditions and the local stability
of the slip dynamics are completely determined in terms of this dimensionless function. In fact, the entire range of
vehicle speeds and slip values are captured by hb(s) under a constant brake torque or slowly varying brake torque. This
is shown in Figure 5, where the function hb(s) versus slip and the corresponding state space dynamics in u and s are
depicted for ν = 15 and for various values of the nondimensional brake torque. The intersection of the function hb(s)
with the line hb = 0 defines the invariant points s∗ (see Equation 19 and Table 1), and hence the invariant manifolds
W∗

b in the (u,s) space, which are defined by Equation (20).
For Υb = 7, a small brake torque, only one invariant point exists, which is shown in Figure 5a as s+. Since h′

b(s
∗) <

0 the steady-slip value s+ is stable and hence defines the invariant manifold W+
b . All initial conditions (u, s) =

{(u, s) | u > 0, s ∈ I} result in stable braking at this parameter value, hence it is globally stable. This can be seen by
noting that for s ≤ s∗, ṡ = g

u
hb(s) > 0 so that s increases while for s > s∗, ṡ = g

u
hb(s) < 0 and hence s is decreasing.

Therefore all initial conditions lead towards s = s+.
By increasing the brake torque such that hb(1) = 0, another fixed point is introduced at s = 1 for which the slope of

h′
b(s

∗) is negative; hence it is unstable. It is denoted by s = s− and defines the unstable invariant manifold W−
b in the

(u,s) space. Note that the creation of the unstable invariant point s− corresponds to the introduction of lockup at s = 1,
which defines WL

b . This is essentially a saddle-node bifurcation creating the steady-slip values s− and s = 1. Figure 5b
shows this situation, where W−

b and WL
b are coincident at the brake torque level ΥL

b = 10.199. All trajectories lying
below W−

b = WL
b , that is, in {(u, s) | u > 0, s ∈ [0, 1)}, are attracted to the invariant manifold W+

b and result in
stable braking conditions. At this specific parameter value lockup (s = 1) is unstable.

As the brake torque is further increased (shown in Figure 5c for Υb = 12) s− moves away from s = 1, which
stabilizes WL

b and creates a lockup region. All trajectories above W−
b , that is, those with initial conditions in

{(u, s) | u > 0, s ∈ (s−, 1]}, tend to WL
b (indicating wheel lockup). Trajectories lying below W−

b are attracted to
the invariant manifold W+

b and result in stable braking conditions.
Further increasing Υb causes s+ and s− to move toward each other. Eventually a critical brake torque Υcr

b = 15.250
is reached where the stable and unstable invariant points collide and mutually annihilate in a saddle node bifurcation at
the critical slip value s = scr = 0.304. (See Figure 5d.) For brake torques greater than Υcr

b the invariant manifold WL
b

is globally stable and wheel lockup occurs for all initial slip conditions. This situation is shown in Figure 5e where
Υb = 18.

The set of initial conditions for which a trajectory reaches the invariant manifold WL
b is called the domain of

attraction of s = 1 in the (u, s) state space and is denoted by

L =
{

(u, s) | u > 0, s ∈ [s−, 1)
}

.
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Trajectories started with initial conditions in L (denoted by the shaded regions in Figure 5) tend rapidly toward lockup
at s = 1, subsequently move along WL

b , and monotonically approach the point (0, 1) according to Equation (16). This
situation corresponds to braking under lockup conditions which, for wet and dry asphalt characteristics, is always
non-optimum in terms of deceleration since µ(s = 1) = µL < µ(sp). The domain of attraction of s+, that is, the set
of initial conditions for which a trajectory reaches the stable invariant manifold WL

b , is given by

S = {(u, s) | u > 0, s ∈ I \ L} .

Trajectories started with initial conditions in S rapidly converge toward the stable invariant manifold and evolve
essentially along W+

b , according to Equation (16) toward the point (u, s) = (0, s+), where the vehicle has stopped.
The rate at which the vehicle decelerates under steady-slip depends only on µ(s∗), that is, the particular friction
characteristic and the value of s∗. Finally, trajectories started on the unstable invariant manifold remain on W−

b and
monotonically evolve toward the point (0, s−). This situation is physically unattainable, however, since any small
perturbation in the system would cause a trajectory to leave W−

b and move into either S or L.
Note that, since ṡ ∼ 1

u
, the rate at which a trajectory tends toward either WL

b or W+
b increases dramatically as u

tends toward zero. In fact, from Equation (14), the time rate of change of wheel slip becomes infinite as u → 0 with
s 6= 1, s∗. Hence, the vehicle must come to rest under steady-slip conditions for which s = 1 or s = s∗. There are only
two such physical possibilities: the vehicle decelerates to zero speed (1) at the rate µLg with the wheels locked or
(2) with steady-slip at the absolute rate µ(s+)g. Peak steady-braking performance would entail steady slip at s = sp

for which the maximum deceleration is obtained and is equal in magnitude to µpg. However, is will be shown in
Section 2.7 that the transition to lockup occurs before s∗ can reach sp. Thus, since sp cannot be reached under stable
braking conditions, optimum braking would entail steady-slip at s = scr. The corresponding deceleration is equal in
magnitude to µcrg = µ(s = scr)g < µpg. But since scr is a saddle node in the slip dynamics, any perturbation in
the system could send the braking conditions into wheel lockup. The critical brake torque needed to sustain optimum
braking, and the corresponding lockup instability at that brake torque value, are discussed in Section 2.7.

It is again stressed that the function hb(s) completely determines the nonlinear dynamic behavior of the single-
wheel system in braking over the entire range of vehicle speeds and slip values. Given the dimensionless brake torque
Υb, one need only calculate the zeros of hb(s) to quantify steady-slip values and the corresponding invariant sets.
The slope of hb(s) at these steady-slip values indicates the stability of the corresponding invariant manifolds. With
this knowledge, a complete state space description of the vehicle dynamics can be constructed for the brake torque of
interest from which information on regions of stable and unstable braking can be easily extracted.

2.6. Hysteresis in the Single-Wheel Braking Model

The dimensionless function hb(s) and the (u, s) dynamics reveal certain features of the system that may otherwise be
difficult to extract. Referring again to Figure 5, consider the case when the saddle-node bifurcation has already occurred
and that the current state of the system is that of wheel lockup (Figure 5e). One may intuitively guess that the brake
torque need only be reduced to a value slightly less than Υcr

b = 15.250 in order for stable braking to again be restored.
This, however, is not the case. Although the stable invariant point s+ reappears, the state of the system remains at
(u, 1), or wheel lockup since that point remains stable as well. In fact, Υb must be more drastically reduced below the
value ΥL

b such that hb(1) < 0, that is, lockup must be destabilized in order to restore stable braking conditions. Once
this occurs, the system state jumps from wheel lockup to stable braking conditions. This ”jump phenomenon” may be
conveniently captured by a bifurcation diagram.

Figure 6 shows a plot of the invariant points s∗ versus the brake torque. The upper- and lower-branch solid lines
correspond to the stable steady-slip values s = 1 (denoted by lockup) and s+ (denoted by stable braking), respectively,
while the dashed line corresponds to the values s− (denoted by unstable). The nonlinearity in s of the friction coeffi-
cient forms a region where the slip is multivalued. It is this multiplicity of steady-slip values that is responsible for the
jump phenomenon and hysteresis behavior. As Υb is increased from zero, the state of the system is governed by the
stable lower branch. Eventually slip destabilizes at a value corresponding to point a (where Υb = Υcr

b and s = scr)
and jumps to the upper branch at wheel lockup. In order to restore stable braking conditions, the brake torque must
be reduced to a value corresponding to the point b (where Υb < ΥL

b such that hb(1) < 0) where lockup destabilizes
causing slip to jump back to the stable lower branch.
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2.7. The Transition to Unstable Braking

When a brake torque is applied to a rubber tire a tractive force is generated at the tire/road interface, as described in
Section 2.1. The standard thinking is that the brake torque can increase until wheel slip reaches the value sp, beyond
which lockup occurs [1, 2]. Under steady-state braking conditions, the corresponding maximum brake torque is thus
typically taken to be

T p
b = mgRµ(sp), (21)

which is the maximum moment that can be provided by the friction force X = µ(sp)Z = µ(sp)mg about the wheel
center. Thus, it is traditionally assumed that the critical brake torque at which the lockup instability is impending and
the peak brake torque are the same, and that the transition to wheel lockup occurs at s = sp = scr. In what follows, it is
shown that the lockup instability does not occur at the peak value sp corresponding to the maximum of the µ(s) curve,
but at a condition that is typically nearby. It is subsequently shown that Equation (21) is actually only an approximation
that is accurate when the vehicle to tire/wheel inertia ratio ν is large.

Lockup Instability Differentiating Equation (15) with respect to s and evaluating the resulting expression at critical
slip yields

h′
b(scr) = µ′(scr)(scr − 1 − ν) + µ(scr) = 0. (22)

Recall that scr is the saddle node value in the slip dynamics, where, necessarily, the slope of hb(s) is zero. Since in
Equation (22), µ(scr) > 0 and (scr − 1 − ν) < 0, it follows that

µ′(scr) =
−µ(scr)

scr − 1− ν
> 0. (23)

Equation (23) shows that the slope of the friction characteristic µ(s) at the critical value s = scr is positive, rather than
zero, whereas µ′(sp) = 0. This means that, for wet or dry asphalt characteristics, scr is actually smaller than the peak
value sp. Hence, the lockup instability, or the transition to unstable braking, corresponds not to sp, the peak of µ(s),
but to the critical value scr, which is the minimum of hb(s).

These results are consistent with numerical evidence. Recall that the peak value µp = µ(sp) of Equation (7) occurs
at sp = 0.316, whereas scr = 0.304, which is approximately 4 percent less than sp. The corresponding critical brake
torque is outlined next, from which Equation (21) can be obtained by invoking a series of approximations.

The Critical Brake Torque Recall from Section 2.5 that the vehicle must come to rest under steady-slip conditions
for which s = 1 (wheel lockup) or s = s∗. The brake torque corresponding to a steady-slip value s = s∗ follows from
Equation (15) and is given by

Υb = − (s∗ − 1 − ν) µ(s∗), (24)
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which is obtained by invoking the condition hb(s
∗) = 0. The critical brake torque Υcr

b corresponding to steady-slip
conditions is obtained by maximizing Equation (24) with respect to s. The result is

∂Υb

∂s

∣

∣

∣

∣

s=s∗

= µ′(s∗)(s∗ − 1 − ν) + µ(s∗) = 0. (25)

Equation (25) is of the same form as Equation (22), which is the expression that minimizes hb(s). Thus, it must be true
that the critical brake torque is given by Equation (24) with the steady-slip value s∗ = scr satisfying Equation (22).
Recalling that Υb = R

Jg
Tb and ν = mR2

J
, the critical brake torque can be written in the dimensional form

T cr
b = mgRµ(scr)

(

1 +
1

ν
(1 − scr)

)

. (26)

Equation (26) indicates that the typically assumed maximum brake torque given by Equation (21) follows from two
fundamental assumptions: (1) the inertia ratio ν of the vehicle is large relative to unity, and (2) the peak slip value
sp can be attained. These assumptions are generally acceptable so that, for many applications, the true critical brake
torque can be reasonably approximated by the assumed brake torque given by Equation (21). This is shown next.

Idealizing the wheel as a thin uniform disk of mass mwheel, it follows that

ν =
mR2

J
= 2

m

mwheel

, (27)

where, recall, m is the mass of the vehicle/wheel combination. In most applications m � mwheel so that ν � 1.
Moreover, the peak value sp and scr are typically close. Referring again to Equation (7) and noting that µ(scr) =
µ(0.304) = 0.972, it follows that Υp

b = 14.574 for ν = 15. Numerical simulations show that Υp
b = 15.250 (see Fig-

ure 5), rendering the approximation given by Equation (21) in error by less than five percent.

3. THE SINGLE-WHEEL ACCELERATION MODEL

This section describes a single-wheel vehicle acceleration model. Here, the term acceleration refers to the positive rate
of change of velocity in the longitudinal direction due to an engine torque. Longitudinal acceleration is fundamentally
dependent on two main limitations: engine power and traction [1]. However, the ensuing investigation assumes that
sufficient engine power is available at any given instant to maintain a constant torque on the wheel. Thus, focus is
shifted to understanding tractive properties, their dynamic characteristics, and how to maximize them.

The single-wheel vehicle acceleration model is physically identical to that of the single-wheel braking model,
consisting of a tire/wheel disk with radius R and polar moment of inertia J . As depicted in Figure 7, it is constrained
to move longitudinally in the x-direction with its speed denoted as u. The available engine torque, acting in the
positive sense on the wheel, is denoted by Te. The vertical reaction force Z balances the static weight mg, while the
longitudinal force X serves to accelerate the vehicle.

The forward vehicle speed u and longitudinal wheel slip s are chosen as dynamic states. In vehicle acceleration it is
assumed and taken as convention that ωR > 0 and 0 ≤ u ≤ ωR. Thus, wheel slip s = u−ωR

max(u,ωR) = u−ωR
ωR

is defined
on the interval −I = [−1, 0], taking on the limiting values s = −1 for pure slip (u = 0) and s = 0 for free rolling
without slip (u = ωR > 0). The former case when u = 0 indicates finite rotation of the wheel while maintaining zero
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vehicle speed. This is possible only in the presence of an externally applied force on the vehicle, which is not present
in our model, to maintain u = 0. The case when u = ωR implies the absence of an engine torque.

The Pacejka tire model could be employed in vehicle acceleration studies by letting s → −s in the Magic Formula
(Equation [6]). For the present study of acceleration, we use the slip characteristic

µ(s) = c1 (1 − ec2s) + c3s, (28)

with c1 = 1.18, c2 = 10.0, and c3 = 0.5, which is similar to Equation (7). As indicated in Figure 3, it is simply the
reflection of µ(s) used for braking about the vertical axis through s = 0, and thus has a peak value µp = 0.972 at
sp = −0.316.

3.1. Equations of Motion

Assuming that the friction law given by Equation (5) holds and making the appropriate substitutions, the equations of
motion can be cast in the form

u̇ = µ(s)g
ṡ = g

u
ha(s)

}

, u > 0, s ∈ (−1, 0]. (29)

The nondimensional function ha(s) is given by

ha(s) = (s + 1)2
[

(s + 1)−1µ(s) + νµ(s) − Υe

]

, (30)

where, again, ν = mR2

J
is the vehicle/wheel inertia ratio and Υe = R

Jg
Te is the dimensionless engine torque.

3.2. Steady-Slip Conditions and Local Stability

For nonzero u and a constant slip value s∗ for which ha(s∗) = 0, Equation (29) shows that wheel slip remains invariant,
independent of the vehicle speed. Correspondingly, the forward vehicle acceleration is positive and constant, and its
speed monotonically increases according to the equation

u(t) = uo + µ(s∗)gt, t ≥ 0, (31)

where uo > 0 is the initial speed when s = s∗, that is, when t = 0. Clearly the vehicle cannot continue to accelerate
indefinitely. Due to aerodynamic drag, saturation of engine power, etc., generation of the prescribed engine torque
eventually becomes impossible. In order to quantify this limiting case one must include other factors in the dynamic
model, which will not be considered here.

Local stability of the invariant points s∗ follows in the same manner as discussed for the single-wheel braking
model. (See Section 2.4.) Stable and unstable fixed points are defined to be

s± =
{

s | ha(s±) = 0, h′
a(s±) ≶ 0

}

,

and the corresponding invariant manifolds are given by

W±
a =

{

(u, s) | u > 0, s = s±
}

.

Note that the set {(u, s) | u > 0, s = −1} does not define an invariant manifold, since ṡ is singular when u = 0.

3.3. Global Features of the Single-Wheel Vehicle Acceleration Model

The dynamic equations describing the single-wheel acceleration model are of the same structure as their braking model
counterparts, with the only significant differences appearing in ha(s). Whereas the brake torque appears simply as an
additive term in the function hb(s) of the single-wheel braking model (Equation [15]), the engine torque is scaled by
the nonlinear term (s + 1)2 in the function ha(s) of the single-wheel acceleration model (Equation [30]). It is this
nonlinearity that yields slightly more complicated dynamics as the engine torque parameter Υe is varied.

Depicted in Figure 8 is an example plot of the function ha(s) versus slip and the corresponding state space dynamics
in u and s for ν = 15 and Υe = 15.65. At this parameter value there are two stable invariant points s+, which define
two invariant manifolds W+

a , and a single unstable steady-slip value s− that defines the invariant manifold W−
a . As

with the single-wheel braking model of Section 2, a single function ha(s) describes completely the nonlinear dynamic
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Fig. 9. Bifurcation diagram for the single-wheel acceleration model

behavior of the single-wheel acceleration model. The full range of dynamic possibilities is captured by the bifurcation
diagram shown in Figure 9, which shows a plot of the invariant points s∗ versus the engine torque. The upper- and
lower-branch solid lines correspond to the stable steady-slip values s+ (denoted by stable acceleration and break-
loose, respectively) while the dashed line corresponds to the values s− (denoted unstable.) As the engine torque is
increased from zero, the state of the system is governed by the stable upper branch. Eventually slip destabilizes at
value corresponding to point a and jumps to the lower branch, on which the slip is quite large, implying that there is
significant wheel spin with relatively little forward acceleration. Physically, this corresponds to a very sudden increase
in wheel spin, known in the colloquial as ”burning out” or ”peeling out,” and labeled as ”break-loose.” By further
increasing the engine torque s approaches, but never reaches, pure slip at s = −1. In order to reestablish low-spin
stable acceleration, the engine torque must be decreased to a level corresponding to point b, where slip jumps back to
the stable upper branch.

4. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

The results presented here offer new insight into the behavior of vehicles during longitudinal braking and accelera-
tion. In each case considered, the unique features of the modeling approach allow one to capture the full range of
dynamic behavior of single-wheel models in a simple geometrical manner. By choosing the forward vehicle speed and
longitudinal wheel slip as dynamics states, the dynamic equations of motion lend themselves to a relatively simple
investigation and interpretation using the tools from nonlinear dynamics. This choice of dynamic states, where wheel
slip plays a central role, allows the dynamics for the entire range of vehicle speeds and slip values to be captured by
a single function (one each for braking and acceleration). These functions completely describe the tractive behavior
of a given vehicle on a given road surface in terms of slip and the brake or engine torque. The relative simplicity of
the analyses described herein is a consequence of the choice of dynamic states and the interpretation of the resulting
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equations of motion.
Perhaps the most important conclusion from this work is the fact that the lockup instability in the single-wheel

model does not occur when the brake torque leads to the maximum point on the slip curve, but at a lower brake torque.
The traditional assumption—that attaining the maximum coefficient of friction leads to lockup—is shown to be an
approximation that is accurate only when the tire/wheel inertia is small compared to the vehicle inertia. Since this ratio
is typically small, the approximation is quite good. However, when considering a light vehicle with relatively large
tire/wheel inertia, the approximation becomes less accurate. In either case, it is of interest to note that the commonly
held view of lockup for the single-wheel model is only an approximation.

This analysis is the first step in a new direction for the modeling of braking dynamics, and much remains to be done.
Two-wheel traction models are considered in a companion paper [7], although the two-wheel acceleration model has
not been studied in detail. Some other lines of future work include more detailed parameter studies for specific vehicles
under various road conditions, and the incorporation of these models into ABS/TCS development, where slip also plays
a central role.
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