
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

INVITED PAPER Special Section on Signal Processing

Fast Local Algorithms for Large Scale Nonnegative Matrix and
Tensor Factorizations

Andrzej CICHOCKI†a), Member and Anh-Huy PHAN††b), Nonmember

SUMMARY Nonnegative matrix factorization (NMF) and its exten-
sions such as Nonnegative Tensor Factorization (NTF) have become promi-
nent techniques for blind sources separation (BSS), analysis of image
databases, data mining and other information retrieval andclustering ap-
plications. In this paper we propose a family of efficient algorithms
for NMF/NTF, as well as sparse nonnegative coding and representation,
that has many potential applications in computational neuroscience, multi-
sensory processing, compressed sensing and multidimensional data anal-
ysis. We have developed a class of optimized local algorithms which are
referred to as Hierarchical Alternating Least Squares (HALS) algorithms.
For these purposes, we have performed sequential constrained minimiza-
tion on a set of squared Euclidean distances. We then extend this approach
to robust cost functions using the Alpha and Beta divergences and derive
flexible update rules. Our algorithms are locally stable andwork well for
NMF-based blind source separation (BSS) not only for the over-determined
case but also for an under-determined (over-complete) case(i.e., for a sys-
tem which has less sensors than sources) if data are sufficiently sparse. The
NMF learning rules are extended and generalized forN-th order nonneg-
ative tensor factorization (NTF). Moreover, these algorithms can be tuned
to different noise statistics by adjusting a single parameter. Extensive ex-
perimental results confirm the accuracy and computational performance of
the developed algorithms, especially, with usage of multi-layer hierarchical
NMF approach [3].
key words: Nonnegative matrix factorization (NMF), nonnegative tensor
factorizations (NTF), nonnegative PARAFAC, model reduction, feature ex-
traction, compression, denoising, multiplicative local learning (adaptive)
algorithms, Alpha and Beta divergences.

1. Introduction

Recent years have seen a surge of interest in nonnegative
and sparse matrix and tensor factorization - decomposi-
tions which provide physically meaningful latent (hidden)
components or features. Nonnegative Matrix Factorization
(NMF) and its extension Nonnegative Tensor Factorization
(NTF) - multidimensional models with nonnegativity con-
straints - have been recently proposed as sparse and efficient
representations of signals, images and in general natural sig-
nals/data. From signal processing point of view and data
analysis, NMF/NTF are very attractive because they take
into account spatial and temporal correlations between vari-
ables and usually provide sparse common factors or hidden

Manuscript received July 30, 2008.
Manuscript revised November 11, 2008.
Final manuscript received December 12, 2008.
†RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351-

0198 Saitama, Japan and Warsaw University of Technology and
Systems Research Institute, Polish Academy of Science, Poland.
††RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351-

0198 Saitama, Japan.
a) E-mail: cia@brain.riken.jp
b) E-mail: phan@brain.riken.jp

Table 1 Basic tensor operations and notations [16]

◦ outer product
⊙ Khatri-Rao product
⊗ Kronecker product
⊛ Hadamard product
⊘ element-wise division
[U] j jth column vector of [U]
U(n) then − th factor
u(n)

j jth column vector ofU(n)
{
u j

} {
u(1)

j , u
(2)
j , . . . , u

(N)
j

}

Y tensor

×n n − mode product of tensor and matrix
×n n − mode product of tensor and vector
Y(n) n − mode matricized version ofY
U⊙ U(N) ⊙ U(N−1) ⊙ · · · ⊙ U(1)

U⊙−n U(N) ⊙ · · · ⊙ U(n+1) ⊙ U(n−1) ⊙ · · · ⊙ U(1)

U⊛ U(N)
⊛ U(N−1)

⊛ · · · ⊛ U(1)

U⊛−n U(N)
⊛ · · · ⊛ U(n+1)

⊛ U(n−1)
⊛ · · · ⊛ U(1)

SIR(a,b)10log10(‖a‖2/‖a − b‖2)
PSNR 20log10(Range of Signal/RMSE)
Fit(Y,̂Y) 100(1− ‖Y − Ŷ‖2F/‖Y − E(Y)‖2F)

(latent) nonnegative components with physical or physio-
logical meaning and interpretations [1]–[5].

In fact, NMF and NTF are emerging techniques for
data mining, dimensionality reduction, pattern recognition,
object detection, classification, gene clustering, sparsenon-
negative representation and coding, and blind source separa-
tion (BSS) [5]–[14]. For example, NMF/NTF have already
found a wide spectrum of applications in positron emission
tomography (PET), spectroscopy, chemometrics and envi-
ronmental science where the matrices have clear physical
meanings and some normalization or constraints are im-
posed on them [12], [13], [15].

This paper introduces several alternative approaches
and improved local learning rules (in the sense that vec-
tors and rows of matrices are processed sequentially one
by one) for solving nonnegative matrix and tensor factor-
izations problems. Generally, tensors (i.e., multi-way ar-
rays) are denoted by underlined capital boldface letter, e.g.,
Y ∈ RI1×I2×···×IN . The order of a tensor is the number of
modes, also known as ways or dimensions. In contrast, ma-
trices are denoted by boldface capital letters, e.g.,Y; vectors
are denoted by boldface lowercase letters, e.g., columns of
the matrix A by a j and scalars are denoted by lowercase
letters, e.g.,ai j. The i-th entry of a vectora is denoted by
ai, and (i, j) element of a matrixA by ai j. Analogously, el-
ement (i, k, q) of a third-order tensorY ∈ RI×K×Q by yikq.
Indices typically range from 1 to their capital version, e.g.,
i = 1, 2, . . . , I; k = 1, 2, . . . ,K; q = 1, 2, . . . ,Q. Throughout
this paper, standard notations and basic tensor operationsare
used as indicated in Table 1.

2. Models and Problem Statements

In this paper, we consider at first a simple NMF model de-
scribed as

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

=
Y E

+ + +

I2

I1

I3

u
(1)

1

u
(2)

1

u
(3)

1 u
(3)

J

u
(2)

J

u
(1)

J

()I I I1 2 3x x ()I I I1 2 3x x

Fig. 1 Illustration of a third-order tensor factorization using standard
NTF; Objective is to estimate nonnegative vectorsu(n)

j for j = 1, 2, . . . , J
andn = 1, 2, 3.

Y = AX + E = ABT + E, (1)

where Y = [yik] ∈ RI×K is a known input data matrix,
A = [a1, a2, . . . , aJ] ∈ RI×J

+ is an unknown basis (mix-
ing) matrix with nonnegative vectorsa j ∈ RI

+, X = BT =

[xT
1 , x

T
2 , . . . , x

T
J]T ∈ RJ×K

+ is a matrix representing unknown
nonnegative componentsx j and E = [eik] ∈ RI×K repre-
sents errors or noise. For simplicity, we use also matrix
B = XT = [b1, b2, . . . , bJ] ∈ RK×J

+ which allows us to use
only column vectors. Our primary objective is to estimate
the vectorsa j of the mixing (basis) matrixA and the sources
x j = bT

j (rows of the matrixX or columns ofB), subject to

nonnegativity constraints†.
The simple NMF model (1) can be naturally extended

to the NTF (or nonnegative PARAFAC) as follows: “For
a givenN-th order tensorY ∈ RI1×I2···×IN perform a non-
negative factorization (decomposition) into a set ofN un-
known matrices:U(n) = [u(n)

1 , u
(n)
2 , . . . , u

(n)
J] ∈ RIn×J

+ , (n =
1, 2, . . . ,N) representing the common (loading) factors”,
i.e., [11], [16]

Y =
J∑

j=1

u(1)
j ◦ u(2)

j ◦ · · · ◦ u(N)
j + E (2)

where ◦ means outer product of vectors†† and Ŷ :=
J∑

j=1
u(1)

j ◦ u(2)
j ◦ · · · ◦ u(N)

j is an estimated or approximated

(actual) tensor (see Fig. 1). For simplicity, we use the fol-
lowing notations for the parameters of the estimated tensor

Ŷ :=
J∑

j=1
~u(1)

j , u
(2)
j , . . . , u

(N)
j � = ~{U}� [16]. A residuum ten-

sor defined asE = Y − Ŷ represents noise or errors depend-
ing on applications. This model can be referred to as non-
negative version of CANDECOMP proposed by Carroll and
Chang or equivalently nonnegative PARAFAC proposed in-
dependently by Harshman and Kruskal. In practice, we usu-
ally need to normalize vectorsu(n)

j ∈ R
J to unit length, i.e.,

†Usually, a sparsity constraint is naturally and intrinsically pro-
vided due to nonlinear projected approach (e.g., half-waverecti-
fier or adaptive nonnegative shrinkage with gradually decreasing
threshold [17]).
††For example, the outer product of two vectorsa ∈ RI , b ∈ RJ

builds up a rank-one matrixA = a ◦ b = abT ∈ RI×J and the outer
product of three vectors:a ∈ RI , b ∈ RK , c ∈ RQ builds up third-
order rank-one tensor:Y = a ◦ b ◦ c ∈ RI×K×Q, with entries defined
asyikq = ai bk cq.

with ‖u(n)
j ‖2 = 1 for n = 1, 2, . . . ,N − 1,∀ j = 1, 2, . . . , J, or

alternatively apply a Kruskal model:

Y = Ŷ + E =
J∑

j=1

λ j (u(1)
j ◦ u(2)

j ◦ · · · ◦ u(N)
j) + E, (3)

whereλ = [λ1, λ2, . . . , λJ]T ∈ RJ
+ are scaling factors and the

factors matricesU(n) = [u(n)
1 , u

(n)
2 , . . . , u

(n)
J] have all vectors

u(n)
j normalized to unit length columns in the sense‖u(n)

j ‖
2
2 =

u(n)T
j u(n)

j = 1, ∀ j, n. Generally, the scaling vectorλ could be

derived asλ j = ‖u(N)
j ‖2. However, we often assume that the

weight vectorλ can be absorbed the (non-normalized) factor
matrixU(N), and therefore the model can be expressed in the
simplified form (2). The objective is to estimate nonnegative
component matrices:U(n) or equivalently the set of vectors
u(n)

j , (n = 1, 2, . . . ,N, j = 1, 2, . . . , J), assuming that the
number of factorsJ is known or can be estimated.

It is easy to check that forN = 2 and forU(1) = A and
U(2) = B = XT the NTF simplifies to the standard NMF.
However, in order to avoid tedious and quite complex nota-
tions, we will derive most algorithms first for NMF problem
and next attempt to generalize them to the NTF problem,
and present basic concepts in clear and easy understandable
forms.

Most of known algorithms for the NTF/NMF model
are based on alternating least squares (ALS) minimization
of the squared Euclidean distance (Frobenius norm) [13],
[16], [18]. Especially, for NMF we minimize the following
cost function:

DF (Y || Ŷ) =
1
2
‖Y − AX‖2F , Ŷ = AX, (4)

and for the NTF model (2)

DF (Y || Ŷ) =
1
2

∥∥∥∥∥∥Y −
J∑

j=1
(u(1)

j ◦ u(2)
j ◦ · · · ◦ u(N)

j)

∥∥∥∥∥∥
2

F

, (5)

subject to nonnegativity constraints and often additional
constraints such as sparsity or smoothness [10]. Such for-
mulated problems can be considered as a natural exten-
sion of the extensively studied NNLS (Nonnegative Least
Squares) formulated as the following optimization problem:
“Given a matrixA ∈ RI×J and a set of the observed values
given by a vectory ∈ RI , find a nonnegative vectorx ∈ RJ

to minimize the cost functionJ(x) = 1
2 ||y − Ax||22, i.e.,

min
x

J(x) =
1
2
||y − Ax||22, (6)

subject tox ≥ 0” [13].
A basic approach to the above formulated optimization

problems (4-5) is alternating minimization or alternating
projection: The specified cost function is alternately min-
imized with respect to sets of parameters, each time opti-
mizing one set of arguments while keeping the others fixed.
It should be noted that the cost function (4) is convex with
respect to entries ofA or X, but not both. Alternating mini-
mization of the cost function (4) leads to a nonnegative fixed

CICHOCKI and PHAN: ALGORITHMS FOR NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS
3

point ALS algorithm which can be described briefly as fol-
lows:

1. Initialize A randomly or by using the recursive appli-
cation of Perron-Frobenius theory to SVD [13].

2. EstimateX from the matrix equationAT AX = AT Y
by solving

min
X

DF(Y||AX) =
1
2
||Y − AX||2F ,with fixed A.

3. Set all negative elements ofX to zero or a small posi-
tive value.

4. EstimateA from the matrix equationXXT AT = XYT

by solving

min
A

DF(Y||AX) =
1
2
||YT − XT AT ||2F ,with fixedX.

5. Set all negative elements ofA to zero or a small posi-
tive valueε.

The above ALS algorithm can be written in the following
explicit form

X ← max{ε, (AT A)−1AT Y} := [A †Y]+ , (7)

A ← max{ε,YXT (XXT)−1} := [Y X †]+ , (8)

whereA † is the Moore-Penrose inverse ofA, ε is a small
constant (typically, 10−16) to enforce positive entries. Note
thatmax operator is performed component-wise for entries
of matrices. Various additional constraints onA andX can
be imposed [19].

For large scale NMF problem forJ << I andJ << K
the data matrixY is usually low rank and in such cases we
do not need to process all elements of the matrix in order to
estimate factor matricesA andX (see Fig. 2). In fact, in-
stead of performing large scale factorization of (1), we can
consider alternating factorization of much smaller dimen-
sion problems:

Yr = Ar X + Er, for fixed (known) Ar, (9)

Yc = AXc + Ec, for fixed (known) Xc, (10)

whereYr ∈ RR×K
+ andYc ∈ RI×C

+ are matrices constructed
form preselected rows and columns of the data matrixY, re-
spectively. Analogously, we construct reduced dimensions
matrices:Ar ∈ RR×J andXc ∈ RJ×C by using the same in-
dexes for columns and rows which were used for construc-
tion of the matricesYc andYr, respectively. There are sev-
eral strategies to chose columns and rows of the input matrix
data. The simplest scenario is to chose the firstR rows and
the firstC columns of data matrixY. Alternatively, we can
select randomly, e.g., uniformly distributed, i.e. everyN
row and column. Another option is to chose such rows and
columns that provide the largestℓp-norm values. For noisy
data with uncorrelated noise, we can construct new columns
and rows as local average (mean values) of some specific
numbers of columns and rows of the raw data. For exam-
ple, the first selected column is created as average of the
first M columns, the second columns is average of the next

@
I

R

C

Yr

Yc

XcA r

J

J

(I T)´ (I J)´ (J T)´

C

R

T T

Y XA

Fig. 2 Conceptual illustration of processing of data for a large scale
NMF. Instead of processing the whole matrixY ∈ RI×K , we process much
smaller dimensional block matricesYc ∈ RI×C and Yr ∈ RR×K and cor-
responding factor matricesXc ∈ RJ×C and Ar ∈ RR×J with C << K and
R << I. For simplicity, we have assumed that the firstR rows and the first
C columns of the matricesY, A, X are chosen, respectively.

M columns, and so on. The same procedure is applied for
rows. Another approach is to cluster all columns and rows
in C andR cluster and select one column and one row form
each cluster, respectively. In practice, it is sufficient to chose
J < R ≤ 4J andJ < C ≤ 4J. In the special case, for squared
Euclidean distance (Frobenius norm) instead of alternating
minimizing the cost function:

DF (Y || AX) =
1
2
‖Y − AX‖2F ,

we can minimize sequentially two cost functions:

DF (Yr || Ar X) =
1
2
‖Yr − Ar X‖2F , for fixed Ar,

DF (Yc || AXc) =
1
2
‖Yc − AXc‖2F , for fixed Xc.

Minimization of these cost functions with respect toX and
A, subject to nonnegativity constraints leads to simple ALS
update formulas for the large scale NMF:

A ←
[
YcX†c

]
+
=
[
YcXT

c (XcXT
c)−1
]
+
, (11)

X ←
[
A†r Yr

]
+
=
[
(AT

r Ar)
−1AT

r Yr

]
+
. (12)

The nonnegative ALS algorithm can be generalized for
the NTF problem (2) [16]:

U(n) ←
[
Y(n) U⊙−n

(
U⊙−nT U⊙−n

)−1
]

+

,

=

[
Y(n) U⊙−n

({
UT U
}
⊛−n
)−1
]

+

, n = 1, . . . ,N. (13)

whereY(n) ∈ RIn×I1···In−1In+1···IN
+ is n-mode unfolded matrix of

the tensorY ∈ RI1×I2×···×IN
+ and

{
UT U

}
⊛−n
= (U(N)T U(N)) ⊛

· · · ⊛ (U(n+1)T U(n+1)) ⊛ (U(n−1)T U(n−1)) ⊛ · · · ⊛ (U(1)T U(1)).
At present, ALS algorithms for NMF and NTF are con-

sidered as “workhorse” approaches, however they may take
many iterations to converge. Moreover, they are also not
guaranteed to converge to a global minimum or even a sta-
tionary point, but only to a solution where the cost functions
cease to decrease [13], [16]. However, the ALS method can
be considerably improved and the computational complex-
ity reduced as will be shown in this paper.

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

In fact, in this paper, we use a different and more so-
phisticated approach. Instead of minimizing one or two cost
functions, we minimize a set of local cost functions with the
same global minima (e.g., squared Euclidean distances and
Alpha or Beta divergences with a single parameter alpha or
beta). The majority of known algorithms for NMF work
only if the following assumptionK >> I ≥ J is satisfied,
whereJ is the number of the nonnegative components. The
NMF algorithms developed in this paper are suitable also
for the under-determined case, i.e., forK > J > I, if sources
are sparse enough. Moreover, the proposed algorithms are
robust with respect to noise and suitable for large scale prob-
lems. Furthermore, in this paper we consider the extension
of our approach to NMF/NTF models with optional sparsity
and smoothness constraints.

3. Derivation of Fast HALS NMF Algorithms

Denoting the columns byA = [a1, a2, . . . , aJ] and B =
[b1, b2, . . . , bJ], we can express the squared Euclidean cost
function as

J(a1, . . . , aJ , b1, . . . , bJ) =
1
2
||Y − ABT ||2F

=
1
2
||Y −

J∑

j=1

a jbT
j ||2F . (14)

The basic idea is to define residues:

Y(j) = Y −
∑

p, j

apbT
p = Y − ABT + a jbT

j ,

= Y − ABT + a j−1bT
j−1 − a j−1bT

j−1 + a jbT
j (15)

for j = 1, 2, . . . , J and minimize alternatively the set of cost
functions (with respect to set of parameters{a j} and{b j}):

D(j)
A (a j) =

1
2
||Y(j) − a jbT

j ||2F , for a fixedb j, (16)

D(j)
B (b j) =

1
2
||Y(j) − a jbT

j ||2F , for a fixeda j, (17)

for j = 1, 2, . . . , J subject toa j ≥ 0 andb j ≥ 0, respectively.
In other words, we minimize alternatively the set of

cost functions

D(j)
F (Y(j)||a j bT

j) =
1
2
||Y(j) − a jbT

j ||
2
F , (18)

for j = 1, 2, . . . , J subject toa j ≥ 0 andb j ≥ 0, respectively.
The gradients of the local cost functions (18) with re-

spect to the unknown vectorsa j andb j (assuming that other
vectors are fixed) are expressed by

∂D(j)
F (Y(j)||a j bT

j)

∂a j
= a j bT

j b j − Y(j) b j, (19)

∂D(j)
F (Y(j)||a j bT

j)

∂b j
= b j aT

j a j − Y(j)T a j. (20)

By equating the gradient components to zero and assuming

Algorithm 1 HALS for NMF: Given Y ∈ RI×K
+ estimate

A ∈ RI×J
+ andX = BT ∈ RJ×K

+

1: Initialize nonnegative matrixA and/or X = BT using ALS
2: Normalize the vectorsa j (or b j) to unit ℓ2-norm length,
3: E = Y − ABT ;
4: repeat
5: for j = 1 to J do
6: Y(j) ⇐ E + a j bT

j ;

7: b j ⇐
[
Y(j)T a j

]
+

8: a j ⇐
[
Y(j) b j

]
+

9: a j ⇐ a j/‖a j‖2;
10: E⇐ Y(j) − a j bT

j ;
11: end for
12: until convergence criterion is reached

that we enforce the nonnegativity constraints with a sim-
ple “half-wave rectifying” nonlinear projection, we obtain a
simple set of sequential learning rules:

b j ← 1
aT

j a j

[
Y(j)T a j

]
+
, a j ←

1

bT
j b j

[
Y(j) b j

]
+
, (21)

for j = 1, 2, . . . , J. We refer to these update rules as the
HALS algorithm which we first introduced in [3]. The same
or similar update rules for the NMF have been proposed
or rediscovered independently in [20]–[23]. However, our
practical implementations of the HALS algorithm are quite
different and allow various extensions to sparse and smooth
NMF, and also for theN-order NTF.

First of all, from the formula (15) it follows that we
do not need to compute explicitly the residue matrixY(j) in
each iteration step but just smartly update it [24].

It is interesting to note that such nonlinear projections
can be imposed individually for each sourcex j and/or vector
a j, so the algorithm can be directly extended to a semi-NMF
or a semi-NTF model in which some parameters are relaxed
to be bipolar (by removing the half-wave rectifying opera-
tor [·]+, if necessary). Furthermore, in practice, it is neces-
sary to normalize in each iteration step the column vectors
a j and/or b j to unit length vectors (in the sense ofℓp-norm
(p = 1, 2, ...,∞)). In the special case ofℓ2-norm, the above
algorithm can be further simplified by ignoring denomina-
tors in (21) and imposing normalization of vectors after each
iteration steps. The standard HALS local updating rules can
be written in a simplified scalar form:

bk j ←


I∑

i=1

ai j y(j)
ik


+

, ai j ←


K∑

k=1

bk j y(j)
ik


+

, (22)

with ai j ← ai j/||a j||2, where y(j)
ik = [Y(j)] ik = yik −∑

p, j aipbkp. Efficient implementation of the HALS algo-
rithm (22) is illustrated by detailed pseudo-code given in
Algorithm 1.

3.1 Extensions and Practical Implementations of Fast
HALS

The above simple algorithm can be further extended or im-
proved (in respect of convergence rate and performance

CICHOCKI and PHAN: ALGORITHMS FOR NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS
5

and by imposing additional constraints such as sparsity and
smoothness). First of all, different cost functions can be
used for estimation of the rows of the matrixX = BT and the
columns of the matrixA (possibly with various additional
regularization terms [19], [25]). Furthermore, the columns
of A can be estimated simultaneously, instead of one by one.
For example, by minimizing the set of cost functions in (4)
with respect tob j, and simultaneously the cost function (18)
with normalization of the columnsa j to unit ℓ2-norm, we
obtain a very efficient NMF learning algorithm in which the
individual vectors ofB are updated locally (column by col-
umn) and the matrixA is updated globally using nonnega-
tive ALS (all columnsa j simultaneously) (see also [19]):

b j ←
[
Y(j) T

r ã j

]
+
/(ãT

j ã j), A←
[
YcXT

c (XcXT
c)−1
]
+
, (23)

whereã j is an j-th vector of a reduced matrixAr ∈ RR×J
+ .

Matrix A needs to be normalized to the unit length column
vectors in theℓ2-norm sense after each iteration.

Alternatively, even more efficient approach is to per-
form factor by factor procedure, instead of updating
column-by column vectors [24]. From (21), we obtain the
following update rule forb j = xT

j

b j ← Y(j)T a j/(aT
j a j) =

(
Y − ABT + a jbT

j

)T
a j/(aT

j a j)

= (YT a j − BAT a j + b jaT
j a j)/(aT

j a j),

=

([
YT A
]

j
− B
[
AT A
]

j
+ b jaT

j a j

)
/(aT

j a j), (24)

with b j ←
[
b j

]
+
. Due to‖a j‖22 = 1, the learning rule forb j

has a simplified form

b j ←
[
b j +
[
YT A
]

j
− B
[
AT A
]

j

]

+

. (25)

Analogously to equation (24), the learning rule fora j is
given by

a j ←
[
a jbT

j b j + [YB] j − A
[
BT B
]

j

]

+

, (26)

a j ← a j/‖a j‖2. (27)

Based on these expressions, we have designed and imple-
mented the improved and modified HALS algorithm given
below in the pseudo-code as Algorithm 2. For large scale
data and block-wise strategy, the fast HALS learning rule
for b j is rewritten from (24) as follows

b j ←
[
b j +
[
YT

r Ar

]
j
/‖ã j‖22 − B

[
AT

r Ar

]
j
/‖ã j‖22

]

+

=

[
b j +
[
YT

r Ar DAr

]
j
− B
[
AT

r Ar DAr

]
j

]

+

(28)

whereDAr = diag(‖ã1‖−2
2 , ‖ã2‖−2

2 , . . . , ‖ãJ‖−2
2) is a diagonal

matrix. The learning rule fora j has a similar form

a j ←
[
a j +
[
YcBc DBc

]
j − A

[
BT

c Bc DBc

]
j

]

+

(29)

whereDBc = diag(‖b̃1‖−2
2 , ‖b̃2‖−2

2 , . . . , ‖b̃J‖−2
2) and b̃ j is the

j-th vector of the reduced matrixBc = XT
c ∈ RC×J

+ .

Algorithm 2 FAST HALS for NMF: Y ≈ ABT

1: Initialize nonnegative matrixA and/or B using ALS
2: Normalize the vectorsa j (or b j) to unit ℓ2-norm length
3: repeat
4: % UpdateB;
5: W = YT A;
6: V = AT A;
7: for j = 1 to J do
8: b j ⇐

[
b j + w j − B v j

]
+

9: end for
10: % UpdateA;
11: P = YB;
12: Q = BT B;
13: for j = 1 to J do
14: a j ⇐

[
a j q j j + pj − A q j

]
+

15: a j ⇐ a j/‖a j‖2;
16: end for
17: until convergence criterion is reached

3.2 HALS NMF Algorithm with Sparsity and Smoothness
Constraints

In order to impose sparseness and smoothness constraints
for vectorsb j (source signals), we can minimize the follow-
ing set of cost functions:

D(j)
F (Y(j)‖a j bT

j) =
1
2
‖Y(j) − a jbT

j ‖2F +

+αsp ‖b j‖1 + αsm ‖ϕ(L b j)‖1, (30)

for j = 1, 2, . . . , J subject toa j ≥ 0 and b j ≥ 0, where
αsp > 0, αsm > 0 are regularization parameters control-
ling level of sparsity and smoothness, respectively,L is a
suitably designed matrix (the Laplace operator) which mea-
sures the smoothness (by estimating the differences between
neighboring samples ofb j)† andϕ : R → R is an edge-
preserving function applied componentwise. Although this
edge-preserving nonlinear function may take various forms
[26]:

ϕ(t) = |t|α/α, 1 ≤ α ≤ 2, (31)

ϕ(t) =
√
α + t2, (32)

ϕ(t) = 1+ |t|/α − log(1+ |t|/α), α > 0, (33)

we restrict ourself to simple cases, whereϕ(t) = |t|α/α for
α = 1 or 2, andL is the derivative operator of the first or
second order. For example, the first order derivative operator
L with K points can take the form:

L =



1 −1
1 −1
. . .

. . .

1 −1


(34)

and the cost function (30) becomes similar to the total-
variation (TV) regularization (which is often used in sig-
nal and image recovery) but with additional sparsity con-
straints:

†In the special case forL = IK andϕ(t) = |t|, the smoothness
regularization term becomes sparsity term.

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

D(j)
F (Y(j)‖a j bT

j) =
1
2

∥∥∥Y(j) − a jbT
j

∥∥∥2
F
+ αsp ‖b j‖1 +

+αsm

K−1∑

k=1

|bk j − b(k+1) j|. (35)

Another important case assumes thatϕ(t) = 1
2 |t|

2 and L is
the second order derivative operator withK points. In such
a case, we obtain the Tikhonov-like regularization:

D(j)
F (Y(j)‖a j bT

j) =
1
2
‖Y(j) − a jbT

j ‖2F + αsp ‖b j‖1 +

+
1
2
αsm ‖Lb j‖22. (36)

In the such case the update rule fora j is the same as in (21),
whereas the update rule forb j is given by:

b j ← (I + αsm LT L)−1(Y(j) T a j − αsp 1K). (37)

where1K ∈ RK is a vector with all one. This learning rule
is robust to noise, however, it involves a rather high compu-
tational cost due to the calculation of an inverse of a large
matrix in each iteration. To circumvent this problem and
to considerably reduce the complexity of the algorithm we
present a second-order smoothing operatorL in the follow-
ing form:

L =



−2 2
1 −2 1

1 −2 1
. . .

. . .

1 −2 1
2 −2



=



−2
−2

−2
. . .

−2
−2



+



0 2
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
2 0



= −2I + 2S. (38)

However, instead of computing directlyLb j = −2Ib j+2Sb j,
in the second term we replaceb j by its estimationb̂ j ob-
tained from the previous update. Hence, a new smoothing
regularization term withϕ(t) = t2/8 takes a simplified and
computationally more efficient form

Jsm = ‖ϕ(−2b j + 2Sb̂ j)‖1 =
1
2
‖b j − Sb̂ j‖22 . (39)

Finally, the learning rule of the regularized HALS algorithm
takes the following form:

b j ←
[
Y(j)T a j − αsp 1K + αsm S b̂ j

]
+
/(aT

j a j + αsm)

=
[
Y(j)T a j − αsp 1K + αsm S b̂ j

]
+
/(1+ αsm) . (40)

Alternatively, for a relatively small dimension of matrixA,
an efficient solution is based on a combination of a local
learning rule for the vectors ofB and a global one forA,
based on the nonnegative ALS algorithm:

b j ←
[
Y(j)T a j − αsp 1K + αsm Sb̂ j

]
+
/(1+ αsm),

A ←
[
YcXT

c (XcXT
c)−1
]
+
, (41)

with the normalization (scaling) of the columns ofA to the
unit lengthℓ2-norm.

An important open problem is an optimal choice of reg-
ularization parametersαsm. Selection of appropriate regular-
ization parameters plays a key role. Similar to the Tikhonov-
like regularization approach we selected an optimalαsm by
applying the L-curve technique [27] to estimate a corner of
the L-curve. However, in the NMF, since both matricesA
andX are unknown, the procedure is slightly different: first,
we initiateαsm = 0 and perform a preliminary update to ob-
tain A andX; next we setαsm by the L-curve corner based
on the preliminary estimated matrixA; then, we continue
updating until convergence is achieved.

4. Fast HALS NTF Algorithm Using Squared Eu-
clidean Distances

The above approaches can be relatively easily extended to
the NTF problem. Let us consider sequential minimization
of a set of local cost functions:

D(j)
F (Y(j)||Ŷ

(j)
) =

1
2

∥∥∥∥Y(j) − u(1)
j ◦ u(2)

j ◦ · · · ◦ u(N)
j

∥∥∥∥
2

F
(42)

=
1
2

∥∥∥∥Y(j)
(n) − u(n)

j

{
u j

}⊙−nT
∥∥∥∥

2

F
, (43)

for j = 1, 2, . . . , J, subject to the nonnegativity constraints,

wherêY
(j)
= u(1)

j ◦u(2)
j ◦ · · · ◦u(N)

j ,
{
u j

}⊙−nT
= [u(N)

j]T ⊙ · · ·⊙
[u(n+1)

j]T ⊙ [u(n−1)
j]T ⊙ · · · ⊙ [u(1)

j]T and

Y(j) = Y −
∑

p, j

u(1)
p ◦ u(2)

p ◦ · · · ◦ u(N)
p (44)

= Y −
J∑

p=1

(u(1)
p ◦ · · · ◦ u(N)

p) + (u(1)
j ◦ · · · ◦ u(N)

j)

= Y − Ŷ + ~{u j}�. (45)

where~{u j}� = u(1)
j ◦ · · · ◦ u(N)

j is a rank-one tensor. Note
that (43) is then−mode matricized (unfolded) version of
(42). The gradients of (43) with respect to elementsu(n)

j
are given by

∂D(j)
F

∂u(n)
j

= −Y(j)
(n)

{
u j

}⊙−n
+ u(n)

j

{
u j

}⊙−nT {
u j

}⊙−n
(46)

= −Y(j)
(n)

{
u j

}⊙−n
+ u(n)

j γ
(n)
j , (47)

where scaling coefficientsγ(n)
j can be computed as follows:

γ
(n)
j =

{
u j

}⊙−nT {
u j

}⊙−n
=
{
uT

j u j

}
⊛−n

=
{
uT

j u j

}
⊛

/
(
u(n)T

j u(n)
j

)
=
(
u(N)T

j u(N)
j

)
/
(
u(n)T

j u(n)
j

)

=


u(N)T

j u(N)
j , n , N

1, n = N.
(48)

Hence, a new HALS NTF learning rule foru(n)
j , (j =

CICHOCKI and PHAN: ALGORITHMS FOR NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS
7

1, 2, . . . ,N; n = 1, 2, . . . ,N) is obtained by equating the
gradient (47) to zero:

u(n)
j ← Y(j)

(n)

{
u j

}⊙−n
. (49)

Note that the scaling factorsγ(n)
j have been ignored due to

normalization after each iteration stepu(n)
j = u(n)

j /‖u
(n)
j ‖2

for n = 1, 2, . . .N − 1. The learning rule (49) can be written
in an equivalent form expressed byn mode multiplication of
tensor by vectors:

u(n)
j ← Y(j) ×1u(1)

j · · · ×n−1u(n−1)
j ×n+1u(n+1)

j · · · ×Nu(N)
j

:= Y(j) ×−n {u j}, j = 1, . . . , J; n = 1, . . . ,N. (50)

For simplicity, we use here a short notationY(j) ×−n {uT
j } in-

troduced by Kolda and Bader [28] to indicate multiplication
of the tensorY by vectors in all modes, butn-mode. The
above updating formula is elegant and relatively simple but
involves rather high computational cost for large scale prob-
lems. In order to derive a more efficient (faster) algorithm
we exploit basic properties the Khatri-Rao and Kronecker
products of two vectors:
[
U(1) ⊙ U(2)

]
j
=
[
u(1)

1 ⊗ u(2)
1 . . . u(1)

J ⊗ u(2)
J

]
j
= u(1)

j ⊙ u(2)
j

or in more general form:
{
u j

}⊙−n
=
[
U⊙−n
]

j
. (51)

Hence, by replacingY(j)
(n) terms in (49) by those in (45), and

taking into account (51), the update learning rule (49) can
be expressed as

u(n)
j ← Y(n)

[
U⊙−n
]

j
− Ŷ(n)

[
U⊙−n
]

j
+ ~{u j}�(n)

{
u j

}⊙−n

=
[
Y(n)U⊙−n

]
j − U(n)U⊙−nT [U⊙−n

]
j + u(n)

j

{
u j

}⊙−nT {
u j

}⊙−n

=
[
Y(n)U⊙−n

]
j
− U(n)

[
U⊙−nT U⊙−n

]
j
+ γ

(n)
j u(n)

j

=
[
Y(n)U⊙−n

]
j
− U(n)

[{
UT U

}
⊛−n
]

j
+ γ

(n)
j u(n)

j

=
[
Y(n)U⊙−n

]
j − U(n)

[{
UT U

}
⊛

⊘
(
U(n)T U(n)

)]

j
+ γ

(n)
j u(n)

j , (52)

subject to the normalization of vectorsu(n)
j for n =

1, 2, . . . ,N − 1 to unit length. In combination with a compo-
nentwise nonlinear half-wave rectifying operator, we finally
have a new algorithm referred as the Fast HALS NTF algo-
rithm:

u(n)
j ←

[
γ

(n)
j u(n)

j +
[
Y(n)U⊙−n

]
j − U(n)

[{
UT U

}
⊛

⊘
(
U(n)T U(n)

)]

j

]

+

. (53)

The detailed pseudo-code of this algorithm is given in Al-
gorithm 3. In a special case ofN = 2, FAST-HALS NTF
becomes FAST-HALS NMF algorithm described in the pre-
vious section.

†For 3-way tensor, direct trilinear decomposition could be used
as initialization.
††In practice, vectorsu(n)

j have often fixed sign before rectifying.

Algorithm 3 FAST-HALS NTF
1: Nonnegative random or nonnegative ALS initializationU(n) †

2: Normalize allu(n)
j for n = 1, . . . , N − 1 to unit length

3: T1 = (U(1)T U(1)) ⊛ . . . ⊛ (U(N)T U(N))
4: repeat
5: γ = diag(U(N)T U(N))
6: for n = 1 to N do
7: γ = 1 if n = N
8: T2 = Y(n) {U⊙−n }
9: T3 = T1 ⊘ (U(n)T U(n))

10: for j = 1 to J do
11: u(n)

j ⇐
[
γ j u(n)

j + [T2] j − U(n) [T3] j

]
+

††

12: u(n)
j = u(n)

j /‖u
(n)
j ‖2 if n , N

13: end for
14: T1 = T3 ⊛ U(n)T U(n)

15: end for
16: until convergence criterion is reached

5. Flexible Local Algorithms Using Alpha Divergence

The algorithms derived in previous sections can be extended
to more robust algorithms by applying a family of general-
ized Alpha and Beta divergences.

For the NMF problem (1) we define the Alpha diver-
gence as follows (similar to [14], [18], [25], [29]):

D(j)
α

(
([Y(j)]+) || a jx j

)
=



∑

ik


z(j)

ik

α(α + 1)




z(j)

ik

y(j)
ik



α

− 1

 −
z(j)

ik − y(j)
ik

α + 1

 , α , −1, 0, (54a)

∑

ik

(z
(j)
ik) ln


z(j)

ik

y(j)
ik

 − z(j)
ik + y(j)

ik

 , α=0, (54b)

∑

ik

y
(j)
ik ln


y(j)

ik

z(j)
ik

 + z(j)
ik − y(j)

ik

 , α=-1, (54c)

wherey(j)
ik = [Y] ik −

∑
p, j aipxpk andz(j)

ik = ai jx jk = ai jbk j for
j = 1, 2, . . . , J.

The choice of parameterα ∈ R depends on statistical
distributions of noise and data. In the special cases of the Al-
pha divergence forα = {1,−0.5,−2}, we obtain respectively
the Pearson’s chi squared, Hellinger’s, and Neyman’s chi-
square distances while for the casesα = 0 andα = −1, the
divergence has to be defined by the limits of (54a) asα→ 0
andα → −1, respectively. When these limits are evaluated
for α → 0 we obtain the generalized Kullback-Leibler di-
vergence defined by Eq. (54b) whereas forα→ −1 we have
the dual generalized Kullback-Leibler divergence given in
Eq. (54c) [1], [14], [19], [25].

The gradient of the Alpha divergence (54) forα , −1
with respect toai j andbk j can be expressed in a compact
form as:

∂D(j)
α

∂bk j
=

1
α

∑

i

ai j




z(j)

ik

y(j)
ik


α

− 1

 , (55)

∂D(j)
α

∂ai j
=

1
α

∑

k

bk j




z(j)

ik

y(j)
it


α

− 1

 . (56)

8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

By equating the gradients to zero, we obtain a new multi-
plicative localα-HALS algorithm:

b j ←



[
Y(j) T

] .[α]
+

a j

aT
j a .[α]j



.[1/α]

, a j ←



[
Y(j)
] .[α]
+

b j

bT
j b .[α]j



.[1/α]

, (57)

where the “rise to the power” operationsx .[α] are performed
componentwise. The above algorithm can be generalized to
the following form

b j ← Ψ−1


Ψ
([

Y(j)T
]
+

)
a j

aT
j Ψ(a j)

 , a j ← Ψ−1


Ψ
([

Y(j)
]
+

)
b j

bT
jΨ(b j)

, (58)

whereΨ(x) is suitable chosen function, for example,Ψ(x) =
x .[α] , componentwise†.

In a similar way, novel learning rules for theN-order
NTF problem (2) can be derived. For this purpose, we con-
sider then-mode matricized (unfolded) version of the tensor
Y

Y(n) = U(n) (U⊙−n)T . (59)

Actually, this can be considered as an NMF model withA ≡
U(n) andB ≡ U⊙−n . From (51), we have

b j =
[
U⊙−n
]

j
=
{
u j

}⊙−n
. (60)

Applying directly the learning rule (58) to the model (59)
gives

u(n)
j ← Ψ

−1


Ψ
([

Y(j)
(n)

]
+

)
b j

bT
jΨ(b j)

 , (61)

whereY(j)
(n) is ann-mode matricized version ofY(j) in (45)

Y(j)
(n) = Y(n) − Ŷ(n) + u(n)

j bT
j = Y(n) − Ŷ(n) + u(n)

j

{
u j

}⊙−nT

= Y(n) − Ŷ(n) + ~{u j}�(n). (62)

For a specific nonlinear functionΨ(·) (Ψ(x) = xα)

Ψ(b j) = Ψ({u j}⊙−n)

= Ψ(u(N)
j) · · · ⊙ Ψ(u(n+1)

j) ⊙Ψ(u(n−1)
j) · · · ⊙Ψ(u(1)

j)

= {Ψ(u j)}⊙−n , (63)

and the denominator in (61) can be simplified as

bT
j Ψ(b j) = {u j}⊙−nT {Ψ(u j)}⊙−n = {uT

jΨ(u j)}⊛−n , (64)

this completes the derivation of a flexible Alpha-HALS NTF
update rule, which in the tensor form is given by

u(n)
j ← Ψ

−1


Ψ
(
[Y(j)]+

)
×−n {u j}

{
uT

jΨ(u j)
}
⊛−n


+

, (65)

where all nonlinear operations are componentwise†† .

†Forα = 0 instead ofΦ(x) = xα we usedΦ(x) = ln(x) [18].
††In practice, instead of half-wave rectifying we often use dif-

ferent transformations, e.g., real part ofΨ(x) or adaptive nonneg-
ative shrinkage function with gradually decreasing threshold till
variance of noiseσ2

noise.

Algorithm 4 Alpha-HALS NTF

1: ALS or random initialization for all nonnegative vectorsu(n)
j

2: Normalize allu(n)
j for n = 1, 2, ...,N − 1 to unit length,

3: Compute residue tensorE = Y − ~{U}� = Y − Ŷ
4: repeat
5: for j = 1 to J do
6: ComputeY(j) = E + u(1)

j ◦ u(2)
j ◦ . . . ◦ u(N)

j
7: for n = 1 to N do
8: u(n)

j as in (65)

9: Normalizeu(n)
j to unit length vector ifn , N

10: end for
11: UpdateE = Y(j) − u(1)

j ◦ u(2)
j ◦ . . . ◦ u(N)

j
12: end for
13: until convergence criterion is reached

6. Flexible HALS Algorithms Using Beta Divergence

Beta divergence can be considered as a flexible and com-
plementary cost function to the Alpha divergence. In order
to obtain local NMF algorithms we introduce the following
definition of the Beta divergence (similar to [14], [18], [30]):

D(j)
β

([Y(j)]+ || a jx j) =



∑

ik

([y
(j)
ik]+)

[y(j)
ik]β+ − z(j) β

ik

β
−

[y(j)
ik]β+1
+ − z(j) β+1

ik

β + 1

 , β > 0, (66a)

∑

ik

([y
(j)
ik]+) ln


[y(j)

ik]+

z(j)
ik

 − [y(j)
ik]+ + z(j)

ik

 , β=0, (66b)

∑

ik

ln


z(j)
ik

[y(j)
ik]+

 +
[y(j)

ik]+

z(j)
ik

− 1

 , β=-1, (66c)

wherey(j)
ik = yik −

∑
p, j aipbkp and z(j)

ik = ai jx jk = ai jbk j

for j = 1, 2, . . . , J. The choice of the real-valued parameter
β ≤ −1 depends on the statistical distribution of data and
the Beta divergence corresponds to Tweedie models [14],
[19], [25], [30]. For example, if we consider the Maximum
Likelihood (ML) approach (with no a priori assumptions)
the optimal estimation consists of minimization of the Beta
Divergence measure when noise is Gaussian withβ = 1.
For the Gamma distributionβ = −1, for the Poisson distri-
bution β = 0, and for the compound Poissonβ ∈ (−1, 0).
However, the ML estimation is not optimal in the sense of
a Bayesian approach where a priori information of sources
and mixing matrix (sparsity, nonnegativity) can be imposed.
It is interesting to note that the Beta divergence as special
cases includes the standard squared Euclidean distance (for
β = 1), the Itakura-Saito distance (β = −1), and the general-
ized Kullback-Leibler divergence (β = 0).

In order to derive a local learning algorithm, we com-
pute the gradient of (66), with respect to elements tobk j, ai j:

CICHOCKI and PHAN: ALGORITHMS FOR NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS
9

Algorithm 5 Beta-HALS NTF
1: Initialize randomly all nonnegative factorsU(n)

2: Normalize allul, j for l = 1...N − 1 to unit length,

3: Compute residue tensorE = Y − ~{U}� = Y − Ŷ
4: repeat
5: for j = 1 to J do
6: ComputeY(j) = E + u(1)

j ◦ u(2)
j ◦ . . . ◦ u(N)

j
7: for n = 1 to N − 1 do
8: u(n)

j ⇐
[
Y(j) ×−n {Ψ(u j)}

]
+

9: Normalizeu(n)
j to unit length vector

10: end for

11: u(N)
j ←

[
Y(j) ×−N {Ψ(u j)}
{Ψ(u j)T u j}⊛−n

]

+

12: UpdateE = Y(j) − u(1)
j ◦ u(2)

j ◦ . . . ◦ u(N)
j

13: end for
14: until convergence criterion is reached

∂D(j)
β

∂bk j
=
∑

i

(
z(j) β

ik − ([y(j)
ik]+) z(j) β−1

ik

)
ai j , (67)

∂D(j)
β

∂ai j
=
∑

k

(
z(j) β

ik − ([y(j)
ik]+) z(j) β−1

ik

)
bk j. (68)

By equating the gradient components to zero, we obtain a
set of simple HALS updating rules referred to as the Beta-
HALS algorithm:

bk j ←
1

∑I
i=1 aβ+1

i j

I∑

i=1

aβi j ([y(j)
ik]+) , (69)

ai j ←
1

∑K
k=1 bβ+1

k j

K∑

k=1

bβk j ([y(j)
ik]+). (70)

The above update rules can be written in a generalized com-
pact vector form as

b j ←
([Y(j) T]+)Ψ(a j)

Ψ(aT
j) a j

, a j ←
([Y(j)]+) Ψ(b j)

Ψ(bT
j) b j

, (71)

where Ψ(b) is a suitably chosen convex function (e.g.,
Ψ(b) = b .[β]) and the nonlinear operations are performed
element-wise.

The above learning rules could be generalized for the
N-order NTF problem (2) (using the similar approach as for
the Alpha-HALS NTF):

u(n)
j ←

([Y(j)
(n)]+) Ψ(b j)

Ψ(bT
j) b j

, (72)

whereb j = {u j}⊙−n , andY(j)
(n) are defined in (62) and (45).

By taking into account (63), the learning rule (72) can
be written as follows

u(n)
j ←

([Y(j)
(n)]+) {Ψ(u j)}⊙−n

{Ψ(u j)}⊙−n T {u j}⊙−n
=

[Y(j)]+ ×−n {Ψ(u j)}
{Ψ(u j)T u j}⊛−n

.(73)

Actually, the update rule (73) can be simplified to reduce
computational cost by performing normalization of vectors

u(n)
j for n = 1, . . . ,N − 1 to unit length vectors after each

iteration step:

u(n)
j ←

[
Y(j) ×−n {Ψ(u j)}

]
+
, u(n)

j ← u(n)
j /‖u

(n)
j ‖2.(74)

The detailed pseudo-code of the Beta-HALS NTF algorithm
is given in Algorithm 5. Once again, this algorithm can be
rewritten in the fast form as follows

u(n)
j ←

[
γ

(n)
j u(n)

j +
[
Y(n) {Ψ(U)}⊙−n

]
j − U(n)

[{
Ψ(U)T U

}
⊛−n
]

j

]

+

(75)

whereγ(n)
j = {Ψ(uT

j) u j}⊛−n , n = 1, . . . ,N. The Fast HALS
NTF algorithm is a special case withΨ(x) = x.

In order to avoid local minima we have also developed
a simple heuristic hierarchical Alpha- and Beta- HALS NTF
algorithms combined with multi-start initializations using
the ALS as follows:

1. Perform factorization of a tensor for any value ofα or
β parameters (preferably, set the value of the param-
eters to unity due to simplicity and high speed of the
algorithm for this value).

2. If the algorithm has converged but has not achieved the
desirable fit value (FIT max), restart the factorization
by keeping the previously estimated factors as the ini-
tial matrices for the ALS initialization.

3. If the algorithm does not converge, alter the values of
α or β parameters incrementally; this may help to over-
step local minima.

4. Repeat the procedure until a desirable fit value is
reached or there is a negligible or no change in the fit
value or a negligible or no change in the factor matri-
ces, or the value of the cost function in negligible or
zero.

7. Simulation Results

Extensive simulations were performed for synthetic and
real-world data on a 2.66 GHz Quad-Core Windows 64-bit
PC with 8GB memory. For tensor factorization, the results
were compared with some existing algorithms: the NMWF
[31], the lsNTF [32] and also with two efficient implementa-
tions of general form of PARAFAC ALS algorithm by Kolda
and Bader [16] (denoted as ALSK) and by Andersson and
Bro [33] (denoted as ALSB). To make a fair comparison
we apply the same stopping criteria and conditions: maxi-
mum difference of fit value, and we used three performance
indexes: Peak Signal to Noise Ratio (PSNR) for all frontal
slices, Signal to Interference Ratio (SIR)† for each columns
of factors, and the explained variation ratio (i.e., how well
the approximated tensor fit the input data tensor) for a whole
tensor.

†The signal to interference ratio is defined asS IR(a j, â j) =
10 log(||a j||22/(||a j − â j ||22)) for normalized and matched vectors.

10
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

7.1 Experiments for NMF

In Example 1 we compare our HALS algorithms with
the multiplicative Lee-Seung algorithm [34] and Chih-Lin
Projected Gradient (PG) algorithm [35] for the benchmark
Xspectra [36] (see Fig.3(b)). Ten mixtures were randomly
generated from 5 sources (Fig.3(a)). We selectedα = 1.5
for α-HALS andβ = 2 forβ-HALS in order to show the dif-
ference in performance in comparison to the standard gen-
eralized Kullback-Leibler (K-L) divergence. Monte Carlo
analysis was also performed with 100 trials and the average
values of SIR forX and running time for each trial were
summarized on Fig.3(c). Fast HALS NMF,α-HALS andβ-
HALS achieved higher performance than the two other well-
known NMF algorithms. The simulation results forExam-
ple 2 presented in Fig.4 were performed for the synthetic
benchmark (Fig.4(a)) with 10 sparse (non-overlapping)non-
negative components. The sources were mixed by the ran-
domly generated full column rank matrixA ∈ R2×10

+ , so
only two mixed signals were available. The typical mixed
signals are shown in Fig.4(b). The estimated components
by the newβ-HALS NMF algorithm (69)-(71) withβ =
0.1 are illustrated in Fig.4(c). Moreover, the performance
for different values of the parameterβ are illustrated in
Fig.4(d) and 4(e) with average Signal-to-Interference (SIR)
level greater than 30 [dB]. Since the proposed algorithms
(alternating technique) perform a non-convex optimization,
the estimated components depend on the initial conditions.
To estimate the performance in a statistical sense, we per-
formed a Monte Carlo (MC) analysis. Figures 4(d) and 4(e)
present the histograms of 100 mean-S IR samples for esti-
mations matricesA and X. We also conducted an experi-
ment for the large scale similar problem in which we used
100 very sparse non-overlapped source signals and we mix
them by random generated full column rank mixing ma-
trix A ∈ R2×100

+ (i.e., only two mixtures were used). Us-
ing the same algorithm but with 25 NMF layers, we were
able to recover most of the sources in high probability.
The performance is evaluated through the correlation matrix
RX = X̂ XT which should be a diagonal matrix for a perfect
estimation (given in Fig. 5(a)). Whereas distribution of the
SIR performance is shown in Fig. 5(b). Detailed results are
omitted due to space limits.

In Example 3 we used five noisy mixtures of three
smooth sources (benchmark signalsX 5smooth [36]).
Mixed signals were corrupted by additive Gaussian noise
with SNR = 15 [dB] (Fig.6(a)). Fig.6 (c) illustrates effi-
ciency of the HALS NMF algorithm with smoothness con-
straints using updates rules (41), including the Laplace op-
erator L of the second order. The estimated components
by the smooth HALS NMF using 3 layers [14] are depicted
in Fig.6(b), whereas the results of the same algorithm with
the smoothness constraint achievedS IR A = 29.22 [dB] and
S IR X = 15.53 [dB] are shown in Fig.6(c).

7.2 Experiments for NTF

In Example 4, we applied the NTF to a simple denois-
ing of images. At first, a third-order tensorY ∈ R51×51×40

+

whose each layer was generated by the L-shaped membrane
function (which creates the MATLAB logo)Y[:, :, k] =
k∗membrane(1, 25), k = 1, . . . , 40 has been corrupted by ad-
ditive Gaussian noise with SNR 10 [dB] (Fig. 7(a)). Next,
the noisy tensor data has been approximated by NTF model
using ourα-HALS andβ-HALS algorithms with fit value
96.1%. Fig.7(a), 7(b) and 7(c) are surface visualizations of
the 40-th noisy slice, and its reconstructed slices byα− and
β-HALS NTF (α = 2,β = 2), whereas Fig.7(d), 7(e) and 7(f)
are their iso-surface visualizations, respectively. In addition,
the performance for different values of parametersα andβ
are illustrated in Fig. 7(g) and 7(h) with PSNR in the left
(blue) axis and number of iterations in the right (red) axis.

In Example 5, we constructed a large scale tensor
with size of 500× 500× 500 corrupted by additive Gaus-
sian noise with SNR= 0 [dB] by using three benchmarks
X spectra sparse, ACPos24sparse10 and X spectra
[36] (see Fig.8(a)) and successfully reconstructed original
sparse and smooth components usingα- andβ-HALS NTF
algorithms. The performance is illustrated via volume, iso-
surface and factor visualizations as shown in Fig. 8(b), 8(c)
and 8(f); while running time and distributions of SIR and
PSNR performance factors are depicted in Fig. 8(g). Slice
10 and its reconstructed slice are displayed in Fig.8(d) and
8(e). In comparison to the known NTF algorithms the Fast
HALS NTF algorithm provides a higher accuracy for fac-
tor estimation based on SIR index, and the higher explained
variation with the faster running time.

In Example 6, we tested the Fast HALS NTF algo-
rithm for real-world data: Decomposition of amino acids
fluorescence data (Fig.9(a)) from five samples containing
tryptophan, phenylalanine, and tyrosine (claus.mat) [33],
[37]. The data tensor was additionally corrupted by Gaus-
sian noise with SNR= 0 dB (Fig.9(b)) , and the factors were
estimated withJ = 3. Theβ-HALS NTF was selected with
β = 1.2, where forα-HALS NTF we selectα = 0.9. All
algorithms were set to process the data with the same num-
ber of iterations (100 times). The performances and running
times are compared in Fig. 10, and also in Table 3. In this
example, we applied a smoothness constraint for Fast NTF,
α- andβ- HALS NTF. Based on fit ratio and PSNR index
we see that, HALS algorithms usually exhibited better per-
formance than standard NTF algorithms. For example, the
first recovered slice (Fig.9(c)) is almost identical to the slice
of the clean original tensor (99.51% Fit value). In compar-
ison, the NMWF, lsNTF, ALSK, ALS B produced some
artifacts as illustrated in Fig.9(d). Fig.9(e) and Fig.9(f).

In Example 7 we used real EEG data:tutorial-
dataset2.zip [38] which was pre-processed by complex
Morlet wavelet. The tensor is represented by the inter-trial
phase coherence (ITPC) for 14 subjects during a proprio-
ceptive pull of left and right hand (28 files) with size 64

CICHOCKI and PHAN: ALGORITHMS FOR NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS
11

0
2
4y1

0
5

10

0

5y3

0
5

10

0
5

10

0

5y6

0
2
4y7

0
5

10

0
5

10

100 200 300 400 500 600 700 800 900 1000
0
5

10

(a) 10 mixtures of datasetXspectra

0

10

20

0

20

40

0

10

20

0

10

20

100 200 300 400 500 600 700 800 900 1000
0

20

40

(b) β-HALS (β = 2)

5

10

15

20

25

30

35

SI
R

in
 [

dB
]

0

0.5

1

1.5

2

2.5

3

Ti
me

 i
n

se
co

nd

FastHALS α-HALS β-HALS Lee-Seung PG

(c) SIR forX and running time

Fig. 3 Comparison of the Fast HALS NMF,α-HALS, β-HALS, Lee-
Seung and PG algorithms inExample 1 with the data setXspectra. (a)
observed mixed signals, (b) reconstructed original spectra (sources) using
theβ-HALS algorithm, (c) SIRs for the matrixX and computation time for
different NMF algorithms.

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
500

1000

0
200
400

0
200
400

100 200 300 400
0

200
400

(a) 10 sources

0

2

4

6

8

10

12

100 200 300 400
0

5

10

15

20

(b) 2 mixtures

0
10
20

0
10
20

0
20
40

0
20
40

0
20
40

0
20
40

0
10
20

0
20
40

0
10
20

100 200 300 400
0

10
20

(c) β-HALS, β = 0.1

0.1 0.5 0.8 1 1.3

40

60

80

100

120

140

S
IR

 [
d

B
]

beta

Mean SIR for A

(d) SIR for A

0.1 0.5 0.8 1 1.3

50

100

150

200

250

S
IR

 [
d

B
]

Mean SIR for X

beta

(e) SIR forX
Fig. 4 Illustration of performance of theβ-HALS NMF algorithm (a) 10
sparse sources assumed to be unknown, (b) two mixtures, (c) 10 estimated
sources forβ = 0.1. (d) & (e) SIR values for matrixA and sourcesX
(respectively) obtained by theβ-HALS NMF for β = 0.1, 0.5, 0.8, 1, 1.3 in
the MC analysis of 100 trials.

× 4392× 28. Exemplary results are shown in Fig.11 with
scalp topographic maps and their corresponding IPTC time-
frequency measurements and performance comparisons are

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

X

X̂

(a) correlation matrixR = X̂ XT

0 50 100 150 200
0

10

20

30

40

50

60

SIR (dB)

N
o
.

so
u
rc

es

(b) SIR distribution

Fig. 5 Visualization of performance of extraction 100 sparse sources
from only two linear mixtures forExample 2.

−5

0

5
y1

−5

0

5
y2

−5

0

5
y3

−5

0

5
y4

200 400 600 800 1000
−5

0

5
y5

(a) Noisy mixtures, 10
dB Gaussian noise

0

5

x1

0

5

x2

200 400 600 800 1000
0

5

x3

(b) Noisy estimated com-
ponents

0

5

x1

0

2

4

x2

200 400 600 800 1000
0

2

4

x3

(c) Smoothed compo-
nents

Fig. 6 Illustration of performance of the regularized HALS NMF algo-
rithm for Example 3.

given in Table 3. The components of the first factorU(1) are
relative to location of electrodes, and they are used to illus-
trate the scalp topographic maps (the first row in Fig.11);
whereas the 2-nd factorU(2) represents the frequency-time
spectral maps which were vectorized, presented in the sec-
ond row. Each component of these factors corresponds to a
specific stimulus (left, right and both hands actions).

In Example 8 we performed feature extraction for the
CBCL face data set. The tensor was formed using the first
100 images of dimension 19× 19 and then factorized by
using 49 components and 100 components. Theβ-HALS
NTF was selected withβ = 1 to compare the HALS NTF
algorithms with the NMWF and the lsNTF algorithm. For
the case of 100 components, the reconstruction tensors ex-
plained 98.24 %, 97.83 % and 74.47% of the variation of the
original tensor, for theβ-HALS NTF, NMWF and lsNTF,
respectively (Table 3). Note that the estimated components
by usingβ-HALS NTF (Fig.12(b)) are relatively sparse and
their reconstruction images are very similar to the original
sources (Fig.12(a)).

Computer simulation for the above illustrated exam-
ples confirmed that the proposed algorithms give consistent
and similar results to that obtained using the known “state of
the arts” NMF/NTF algorithms, but our algorithms seem to
be faster and more efficient. In other words, through exten-
sive simulations we have confirmed that the FAST HALS
NTF, α-HALS NTF andβ-HALS NTF algorithms are ro-
bust to noise and produce generally better performance and
provide faster convergence speed than existing recently de-

12
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

(a) The 40th noisy slice (b) α = 2,
PSNR= 24.17[dB]

(c) β = 2,
PSNR= 27.19[dB]

(d) Noisy tensor (e) α = 2 (f) β = 2

10

15

20

25

30

35

P
S

N
R

 (
d

B
)

0.6
 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4
 2.6
 2.8
 3.0

10

15

20

25

30

35

It
e

ra
ti
o

n
 (

ti
m

e
s
)

PSNR Number of iterations

(g) α-NTF

10

15

20

25

30

35

P
S

N
R

 (
d

B
)

0.6
 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4
 2.6
 2.8
 3.0

0

5

10

15

20

25

It
e

ra
ti
o

n
 (

ti
m

e
s
)

PSNR Number of iterations

(h) β-NTF

Fig. 7 Illustration of data reconstruction for noisy tensorY ∈ R51×51×40
+

for Example 4: (a), (b) & (c) surface visualizations of the 40th noisy slice
and its reconstructed slices byα- and β-HALS NTF algorithms (α = 2,
β = 2), respectively; (d)-(f) iso-surface visualizations of noisy tensor and
its reconstructed tensors byα- and β-HALS-NTF algorithms; (g) & (h)
Performance of the HALS NTF algorithms for different values ofα andβ
but for the same desired fit value 96.1%.

(a) Noisy data (b) Volume 99.9% (c) Iso-surface 99.99%

100 200 300 400 500

100

200

300

400

500

−0.1

0

0.1

0.2

(d) Slice 10

100 200 300 400 500

100

200

300

400

500 0

0.05

0.1

(e) Reconstructed slice
U

(1)U
(2)

U
(3)

(f) Factors

34

36

38

40

42

44

SI
R

in
dB

10
0

10
1

10
2

10
3

10
4

Ti
m

e
in

se
co

nd

FastNTF NMWF lsNTF ALS_B ALS_K

32

40

50

60

70

PS
NR

 in
 d

B

(g) Performance comparison

Fig. 8 Illustration of tensor reconstruction by Fast HALS NTF forEx-
ample 5 with tensorY ∈ R500×500×500

+ degraded by Gaussian noise with
SNR= 0[dB].

(a) Slice of amino
acid tensor

(b) Gaussian noise
SNR= 0 [dB]

(c) HALS NTF
99.51%

(d) NMWF
98.76%

U
(1)

U
(2)

U
(3)

(e) Smoothed factors by HALS NTF

U
(1)

U
(2)

U
(3)

(f) Factors by NMWF

Fig. 9 Illustration of estimated factors by the FAST-HALS NTF in com-
parison to the NMWF algorithm for three-way decomposition of amino
acid data in Example 6. (a) The first slice of original tensor,(b) The same
slice with huge Gaussian noise, (c)-(d) the reconstructed slices using HALS
NTF and NMWF, (e)-(f) three estimated factors using HALS andNMWF
algorithms (The estimated factors should be as smooth as possible).

FastNTFAlphaNTFBetaNTF NMWF lsNTF ALS_b ALS_k
15

20

25

30

35

40

PS
NR

 in
 db

0

1

2

3

4

5

6

7

Tim
e i

n s
ec

on
d

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

Va
ria

nc
e E

xp
lai

ne
d (

%
)

 Runnning time Variance Explained

Fig. 10 Comparison of performance and running time for amino acid
data with tensorY ∈ R5×201×61

+ corrupted by Gaussian noise with SNR=
0[dB].

ms

H
z

0 50 100 150 200 250 300

20

30

40

50

60

70

(a) Left hand stimuli

ms

H
z

0 50 100 150 200 250 300

20

30

40

50

60

70

(b) Gamma activity of
both stimuli

ms

H
z

0 50 100 150 200 250 300

20

30

40

50

60

70

(c) Right hand stimuli

Fig. 11 EEG analysis using the FAST HALS NTF forExample 7 with
factor matrices forU(1) for a scalp topographic map (first row), factorU(2)

for spectral (time-frequency) map (second row) (see [38] for details). Re-
sults are consistent with previous analysis [38] but run time is almost 8
times shorter and fit is slightly better.

CICHOCKI and PHAN: ALGORITHMS FOR NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS
13

(a) 6 original CBCL images (top) and their reconstructions by 49 compo-
nents (94.81%) (center) and 100 components (98.24%) (bottom).

(b) 49 basis components estimated byβ-HALS NTF, 94.95 % (Fit).

Fig. 12 Illustration of factorization of 100 CBCL face images into 49
and 100 basis components by using theβ-HALS NTF algorithm.

veloped NMF/NTF algorithms.

8. Conclusions and Discussion

The main objective and motivations of this paper is to derive
fast and efficient algorithms for NMF/NTF problems. The
extended algorithms are verified for many different bench-
marks. The developed algorithms are robust to noisy data
and have many potential applications. These algorithms are
also suitable to large scale dataset due to their local learning
rules, and fast processing speed. The algorithms can be ex-
tended to semi-NTF and to sparse PARAFAC using suitable
nonlinear projections and regularization terms [17]. These
are the unique extensions of the standard NMF HALS al-
gorithm, and to the authors’ best knowledge, the first time
such algorithms have been applied and practically imple-
mented to multi-way NTF models. We have implemented
the proposed algorithms in MATLAB in our toolboxes NM-
FLAB/NTFLAB and they will be available soon free for re-
searchers [5]. The performance of the developed algorithms
are compared with some of the existing NMF and NTF algo-
rithms. The proposed algorithms are shown to be superior in
terms of performance, speed and convergence properties. Of

Table 2 Description of data sets and notation of Examples

No. Data set Size J

4
L-shaped membrane function, MATLAB
logo

51× 51× 40 4

5
X spectra sparse,
ACPos24sparse10 andX spectra [36]

500× 500× 500 4

6
Amino acids fluorescence data,
claus.mat [37]

5× 201× 61 5

7

ITPC of 14 subjects during a propriocep-
tive pull of left and right hand (28 datasets),
64channels × (61f requency − 72time) ×
28sub jects, tutorialdataset2.set[38]

64× 4392× 28 3

8 MIT CBCL face images 190× 19× 100 49
100

Table 3 Comparison of Performance of NTF Algorithms for Ex-
amples 5-9

Fit (%) Time (seconds)

Example No. 5 6 7 8 5 6 7
FastNTF 99.9955 99.51 52.41 51.73 0.93 7.08
α-NTF 98.77 6.33
β-NTF 99.9947 99.39 98.24 470.53 1.85
NMWF † 99.9918 98.76 52.38 97.83 513.37 3.16 58.19
lsNTF †† ✗ 98.06 51.33 74.47 ✗ 3.30 4029.84
ALS B 99.9953 98.53 53.17 145.73 2.52 67.24
ALS K 99.9953 98.53 53.13 965.76 1.78 66.39

course, there are still many open theoretical problems like
global convergence of the algorithms and optimal choice of
α andβ parameters.

Acknowledgment
The authors would like to thank the associate editor Pro-
fessor Kazushi Ikeda and anonymous reviewers for their
valuable comments and helpful suggestions that greatly im-
proves this paper’s quality.

References

[1] S. Amari, Differential-Geometrical Methods in Statistics, Springer
Verlag, 1985.

[2] D.D. Lee and H.S. Seung, “Learning the parts of objects bynon-
negative matrix factorization,” Nature, vol.401, pp.788–791, 1999.

[3] A. Cichocki, R. Zdunek, and S.I. Amari, “Hierarchical ALS algo-
rithms for nonnegative matrix and 3D tensor factorization,” Springer
LNCS, vol.4666, pp.169–176, 2007.

[4] A. Cichocki, R. Zdunek, and S. Amari, “Csiszar’s divergences
for non-negative matrix factorization: Family of new algorithms,”
Springer LNCS, vol.3889, pp.32–39, 2006.

[5] A. Cichocki, R. Zdunek, A.H. Phan, and S. Amari, Nonnegative Ma-
trix and Tensor Facorizarions and Beyond, Wiely, Chichester, 2009.

[6] M. Mørup, L.K. Hansen, C.S. Herrmann, J. Parnas, and S.M.Arn-
fred, “Parallel factor analysis as an exploratory tool for wavelet
transformed event-related EEG,” NeuroImage, vol.29, no.3, pp.938–
947, 2006.

[7] F. Miwakeichi, E. Martnez-Montes, P. Valds-Sosa, N. Nishiyama,
H. Mizuhara, and Y. Yamaguchi, “Decomposing EEG data into

†In fact, the NMWF failed for very noisy data due to large
negative entries. We enforced the estimated components to have
nonnegative values by half-wave rectifying.
††lsNTF failed for large scale example with tensor of 500× 500

× 500. However, for the same problem with a reduced dimension
of tensor: 300× 300× 300, lsNTF needed 2829.9800 seconds and
achieved 99.9866% of fit value, so our algorithm was at least 50
times faster.

14
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

space−time−frequency components using parallel factor analysis,”
NeuroImage, vol.22, no.3, pp.1035–1045, 2004.

[8] A. Shashua, R. Zass, and T. Hazan, “Multi-way clusteringusing
super-symmetric non-negative tensor factorization,” European Con-
ference on Computer Vision (ECCV), Graz, Austria, May 2006.

[9] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs:
dynamic tensor analysis,” Proc.of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pp.374–383, 2006.

[10] M. Heiler and C. Schnoerr, “Controlling sparseness in non-negative
tensor factorization,” Springer LNCS, vol.3951, pp.56–67, 2006.

[11] T. Hazan, S. Polak, and A. Shashua, “Sparse image codingusing a
3D non-negative tensor factorization,” International Conference of
Computer Vision (ICCV), pp.50–57, 2005.

[12] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications
in the Chemical Sciences, John Wiley and Sons, New York, 2004.

[13] M. Berry, M. Browne, A. Langville, P. Pauca, and R. Plemmons,
“Algorithms and applications for approximate nonnegativematrix
factorization,” Computational Statistics and Data Analysis, vol.52,
no.1, pp.155–173, 2007.

[14] A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amari,
“Nonnegative tensor factorization using Alpha and Beta divergen-
cies,” Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP07), Honolulu, Hawaii, USA,
pp.1393–1396, April 15–20 2007.

[15] P. Sajda, S. Du, T. Brown, L. Parra, and R. Stoyanova, “Recovery
of constituent spectra in 3d chemical shift imaging using nonnega-
tive matrix factorization,” 4th International Symposium on Indepen-
dent Component Analysis and Blind Signal Separation, Nara,Japan,
pp.71–76, April 2003.

[16] T.G. Kolda and B. Bader, “Tensor decompositions and applications,”
SIAM Review, June 2008.

[17] A. Cichocki, A.H. Phan, R. Zdunek, and L.Q. Zhang, “Flexible com-
ponent analysis for sparse, smooth, nonnegative coding or represen-
tation,” Lecture Notes in Computer Science, pp.811–820, Springer,
2008.

[18] A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He,
“Extended SMART algorithms for non-negative matrix factoriza-
tion,” Springer LNAI, vol.4029, pp.548–562, 2006.

[19] A. Cichocki and R. Zdunek, “Regularized alternating least squares
algorithms for non-negative matrix/tensor factorizations,” Springer
LNCS, vol.4493, pp.793–802, June 3–7 2007.

[20] N.D. Ho, Nonnegative Matrix Factorization - Algorithms and Ap-
plications, thse/dissertation, FSA/INMA - Dpartement d’ingnierie
mathmatique, 2008.

[21] N.D. Ho, P.V. Dooren, and V. Blondel, “Descent algorithms for non-
negative matrix factorization,” Numerical Linear Algebrain Signals,
Systems and Control, 2008. to appear.

[22] M. Biggs, A. Ghodsi, and S. Vavasis, “Nonnegative matrix factor-
ization via rank-one downdate,” ICML-2008, Helsinki, July2008.

[23] N. Gillis and F. Glineur, “Nonnegative matrix factorization and
underapproximation,” SIAM conference on Optimization, Boston,
May 2008. Preprint.

[24] A.H. Phan and A. Cichocki, “Multi-way Nonnegative Tensor Factor-
ization Using Fast Hierarchical Alternating Least SquaresAlgorithm
(HALS),” Proc. of The 2008 International Symposium on Nonlinear
Theory and its Applications, Budapest, Hungary, 2008.

[25] A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.I. Amari,
“Novel multi-layer nonnegative tensor factorization withsparsity
constraints,” Springer LNCS, vol.4432, pp.271–280, April11–14
2007.

[26] M. Nikolova, “Minimizers of cost-functions involvingnonsmooth
data-fidelity terms. application to the processing of outliers,” SIAM
J. Numer. Anal., vol.40, no.3, pp.965–994, 2002.

[27] P.C. Hansen, “Regularization tools version 3.0 for matlab 5.2,” Nu-
merical Algorithms, vol.20, pp.195–196, 1999.

[28] B.W. Bader and T.G. Kolda, “Algorithm 862: Matlab tensor classes

for fast algorithm prototyping,” ACM Trans. Math. Softw., vol.32,
no.4, pp.635–653, 2006.

[29] A. Cichocki, A.H. Phan, and C. Caiafa, “Flexible HALS algorithms
for sparse non-negative matrix/tensor factorization,” Proc. of The
eighteenth of a series of IEEE workshops on Machine Learningfor
Signal Processing, Cancun, Mexico, 16–19, October 2008.

[30] M. Minami and S. Eguchi, “Robust blind source separation by Beta-
divergence,” Neural Computation, vol.14, pp.1859–1886, 2002.

[31] M. Mørup, L.K. Hansen, J. Parnas, and S.M. Arnfred, “Decompos-
ing the time-frequency representation of EEG using non-negative
matrix and multi-way factorization,” tech. rep., 2006.

[32] M.P. Friedlander and K. Hatz, “Computing nonnegative tensor fac-
torizations,” Tech. Rep. TR-200621, Dept. Computer Science, Uni-
versity of British Columbia, Vancouver, December 2007. To appear
in Optimization Methods and Software.

[33] C.A. Andersson and R. Bro, “TheN-way Toolbox for MATLAB,”
Chemometrics Intell. Lab. Systems, vol.52, pp.1–4, 2000.

[34] D.D. Lee and H.S. Seung, Algorithms for nonnegative matrix fac-
torization, NIPS, MIT Press, 2001.

[35] C.J. Lin, “Projected gradient methods for non-negative matrix fac-
torization,” Neural Computation, vol.19, no.10, pp.2756–2779, Oc-
tober 2007.

[36] A. Cichocki and R. Zdunek, “NMFLAB for Signal and Image Pro-
cessing,” tech. rep., Laboratory for Advanced Brain SignalProcess-
ing, BSI, RIKEN, Saitama, Japan, 2006.

[37] R. Bro, “PARAFAC. Tutorial and applications,” SpecialIssue
2nd Internet Conf. in Chemometrics (INCINC’96), pp.149–171,
Chemom. Intell. Lab. Syst, 1997.

[38] M. Mørup, L.K. Hansen, and S.M. Arnfred, “ERPWAVELAB a
toolbox for multi-channel analysis of time-frequency transformed
event related potentials,” Journal of Neuroscience Methods, vol.161,
pp.361–368, 2007.

Andrzej Cichocki was born in Poland. He
received his M.Sc. (with honors), Ph.D. and Ha-
bilitate Doctorate (Dr.Sc.) degrees, all in elec-
trical engineering, from the Warsaw University
of Technology (Poland). He is the co-author of
four international books and monographs (two
of them translated to Chinese): Nonnegative
Matrix and Tensor Factorizations and Beyond,
J. Wiley 2009, Adaptive Blind Signal and Im-
age Processing, J. Wiley 2002, MOS Switched-
Capacitor and Continuous-Time Integrated Cir-

cuits and Systems (Springer-Verlag, 1989) and Neural Networks for Op-
timization and Signal Processing (J. Wiley and Teubner Verlag, 1993/94)
and author or co-author of more than two hundreds papers. He is Editor-in-
Chief of Journal Computational Intelligence and Neuroscience. Currently,
he is the head of the laboratory for Advanced Brain Signal Processing in
the RIKEN Brain Science Institute, Japan.

Anh Huy Phan received his B.E. and M.Sc.
degrees from the Ho-Chi-Minh City University
of Technologies, in area of Electronic Engineer-
ing, He worked as Deputy Head of Research
and Development Department, Broadcast Re-
search and Application Center, Vietnam Tele-
vision; also, taught as lecturer part-time at Van
Hien University, Hong Bang University, Elec-
tronic and Computer Center of University of
Natural Sciences in Ho-Chi-Minh City, Viet-
nam, in areas of Probability and Statistics, Nu-

merical Algorithms, MATLAB Programming. Actually he is working as
the technical staff in the Laboratory for Advanced Brain Signal Process-
ing and he is doing research towards his Ph.D. degree under supervision of
Professor Cichocki.

