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Fast Local Algorithmsfor Large Scale Nonnegative Matrix and

Tensor Factorizations

Andrzej CICHOCK 7@, Member and Anh-Huy PHAN'"®) Nonmember

SUMMARY  Nonnegative matrix factorization (NMF) and its exten-
sions such as Nonnegative Tensor Factorization (NTF) heserbe promi-
nent techniques for blind sources separation (BSS), apabfsimage
databases, data mining and other information retrieval dustering ap-
plications. In this paper we propose a family dfi@ent algorithms
for NMF/NTF, as well as sparse nonnegative coding and represemtatio
that has many potential applications in computational osezience, multi-
sensory processing, compressed sensing and multidinmahsiata anal-
ysis. We have developed a class of optimized local algostiwhich are
referred to as Hierarchical Alternating Least Squares (BA&lgorithms.
For these purposes, we have performed sequential corestraimimiza-
tion on a set of squared Euclidean distances. We then extidgproach
to robust cost functions using the Alpha and Beta divergereel derive
flexible update rules. Our algorithms are locally stable andk well for
NMF-based blind source separation (BSS) not only for the-de¢ermined
case but also for an under-determined (over-complete) (casefor a sys-
tem which has less sensors than sources) if data &ieiently sparse. The
NMF learning rules are extended and generalized\fgh order nonneg-
ative tensor factorization (NTF). Moreover, these aldgonis can be tuned
to different noise statistics by adjusting a single parametererSite ex-
perimental results confirm the accuracy and computatiomdibpnance of
the developed algorithms, especially, with usage of niayter hierarchical
NMF approach [3].

key words: Nonnegative matrix factorization (NMF), nonnegative tensor
factorizations (NTF), nonnegative PARAFAC, model reduction, feature ex-
traction, compression, denoising, multiplicative local learning (adaptive)
algorithms, Alpha and Beta divergences.

1. [Introduction

Recent years have seen a surge of interest in nonnegativ
and sparse matrix and tensor factorization - decomposi-
tions which provide physically meaningful latent (hidden)

components or features. Nonnegative Matrix Factorization
(NMF) and its extension Nonnegative Tensor Factorization

(NTF) - multidimensional models with nonnegativity con-
straints - have been recently proposed as sparsefacid et
representations of signals, images and in general natgral s

nalgdata. From signal processing point of view and data
analysis, NMIINTF are very attractive because they take
into account spatial and temporal correlations between var
ables and usually provide sparse common factors or hidde
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Tablel Basic tensor operations and notations [16]

o |outer product Xn
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® [Kronecker product Yin)
® [Hadamard product ue
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n — mode product of tensor and matrix
n — mode product of tensor and vector
n — mode matricized version of

UN ouUN-Dg...ou®
UNoe..oUoutle...ouW

(latent) nonnegative components with physical or physio-
logical meaning and interpretations [1]-[5].

In fact, NMF and NTF are emerging techniques for
data mining, dimensionality reduction, pattern recogniti
object detection, classification, gene clustering, spaose
negative representation and coding, and blind sourceaepar
tion (BSS) [5]-[14]. For example, NMNTF have already
found a wide spectrum of applications in positron emission
tomography (PET), spectroscopy, chemometrics and envi-
ronmental science where the matrices have clear physical
meanings and some normalization or constraints are im-
posed on them [12],[13], [15].

This paper introduces several alternative approaches
and improved local learning rules (in the sense that vec-
fors and rows of matrices are processed sequentially one
by one) for solving nonnegative matrix and tensor factor-
izations problems. Generally, tensors (i.e., multi-way ar
rays) are denoted by underlined capital boldface lettgr, e.

Y e R'»I2>xIn - The order of a tensor is the number of
modes, also known as ways or dimensions. In contrast, ma-
trices are denoted by boldface capital letters, & pvectors

are denoted by boldface lowercase letters, e.g., columns of
the matrix A by a; and scalars are denoted by lowercase
letters, e.g.a;. Thei-th entry of a vector is denoted by

a;, and (, j) element of a matriA by &;. Analogously, el-
ement {,k, q) of a third-order tenso¥ € RK*Q by yjq.
Indices typically range from 1 to their capital version,.e.g
i=12...,1; k=212...,K;qg=1,2,...,Q. Throughout
this paper, standard notations and basic tensor operatiens
used as indicated in Table 1.

2. Modelsand Problem Statements

In this paper, we consider at first a simple NMF model de-
scribed as
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Fig.1 lllustration of a third-order tensor factorization usingredard
NTF; Objective is to estimate nonnegative vectnfg forj=12..., J
andn=1,23.

Y=AX+E=AB" +E, (1)

whereY = [yi] € R™K is a known input data matrix,
A = [a,a, ...,a)] € RX is an unknown basis (mix-
ing) matrix with nonnegative vectom € R!, X = BT =
[X].XJ,....X]]" € RP¥ is a matrix representing unknown
nonnegative componem_é andE = [ey] € R™K repre-
sents errors or noise. For simplicity, we use also matrix
B = X" = [by, by,...,by] € R which allows us to use
only column vectors. Our primary objective is to estimate
the vectorsy; of the mixing (basis) matriA and the sources
X; = bT (rows of the matrixX or columns ofB), subject to

nonnega‘uwty constraints

The simple NMF model (1) can be naturally extended
to the NTF (or nonnegative PARAFAC) as follows: “For
a givenN-th order tensolY e R'**!2-xIv perform a non-
negative factorization (decomPosmon) into a sethbfun-
known matrices:U® = [u? ul . ul]e R, (0 =
1,2,...,N) representing the common (loading) factors”,
ie., [11], [16]
2)

1)ou(jz)o .-ou(jN)+§

=1

1l
'_'Mc_.
C/‘\

where o means outer product of vectétsand Y
2¢n u@o

~-oU§N) is an estimated or approximated

(actual) tensor (see Fig. 1). For simplicity, we use the fol-
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with u?ll; = 1forn=1,2,.. ,N-1,¥j=1,2,...,
alternatively apply a Kruskal model:

34 P ou®

j=1

J, or

[

+E= ou™) + E, (3)

whered = [1, 42, ...,4;5]" € RJ are scaling factors and the
factors matricet)™ = [u®, ul, ..., u] have all vectors
u(j”) normalized to unit length columns in the SeInB@Hg =
uTul = 1, vj,n. Generally, the scaling vectdrcould be

derived ast; = ||u§N)||2. However, we often assume that the
weight vectorl can be absorbed the (non-normalized) factor
matrix UN), and therefore the model can be expressed in the
simplified form (2). The objective is to estimate nonnegativ
component matriced)™ or equivalently the set of vectors
5“) (n=1212....,N, j=1,2...,J), assuming that the

number of factors] is known or can be estimated.

It is easy to check that fd¥ = 2 and foru® = A and
U® = B = XT the NTF simplifies to the standard NMF.
However, in order to avoid tedious and quite complex nota-
tions, we will derive most algorithms first for NMF problem
and next attempt to generalize them to the NTF problem,
and present basic concepts in clear and easy understandable
forms.

Most of known algorithms for the NTNMF model
are based on alternating least squares (ALS) minimization
of the squared Euclidean distance (Frobenius norm) [13],
[16],[18]. Especially, for NMF we minimize the following
cost function:

De(Y 1Y) = % IY - AXIZ, Y= AX, (4)
and for the NTF model (2)
2
De(Y 1Y) = ‘Y z UV ou®o...oul) 5)
F

subject to nonnegativity constraints and often additional
constraints such as sparsity or smoothness [10]. Such for-

Iowmg notations for the parameters of the estimated tensormulated problems can be considered as a natural exten-

2 [[u(l) (2) ...,u(jN)]] = [{U}] [16]. A residuum ten-

sor defmed ag = Y - Y represents noise or errors depend-

ing on applications. This model can be referred to as non-

negative version of CANDECOMP proposed by Carroll and
Chang or equivalently nonnegative PARAFAC proposed in-
dependently by Harshman and Kruskal. In practice, we usu-
ally need to normalize vectoré”) € R’ to unit length, i.e.,

fUsually, a sparsity constraint is naturally and intrinjcaro-
vided due to nonlinear projected approach (e.g., half-waeé-
fier or adaptive nonnegative shrinkage with gradually desirey
threshold [17]).

"For example, the outer product of two vectars R', b e R’
builds up a rank-one matriA = ac b = ab" € R and the outer
product of three vectorsa e R', b e RX, ¢ e R? builds up third-
order rank-one tensol. = ac bo ¢ € R***Q, with entries defined
asYikg = & bk Cq.

sion of the extensively studied NNLS (Nonnegative Least
Squares) formulated as the following optimization prolhlem
“Given a matrixA € R™J and a set of the observed values
given by a vectoy € R', find a nonnegative vector € R’

to minimize the cost functiod(x) = %Hy— Ax||§, i.e.,

. 1 2
min (9 = 51y - A3 ©®)

subject tox > 0" [13].

A basic approach to the above formulated optimization
problems (4-5) is alternating minimization or alternating
projection: The specified cost function is alternately min-
imized with respect to sets of parameters, each time opti-
mizing one set of arguments while keeping the others fixed.
It should be noted that the cost function (4) is convex with
respect to entries o& or X, but not both. Alternating mini-
mization of the cost function (4) leads to a nonnegative fixed
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point ALS algorithm which can be described briefly as fol- ‘T{ A }f
lows: e —
1. Initialize A randomly or by using the recursive appli- f ’ : }J
cation of Perron-Frobenius theory to SVD [13]. I ¢
2. EstimateX from the matrix equatiolA" AX = ATY
by solving —
. 1 e
m)én De(Y||AX) = §||Y — AX||2, with fixed A. (Ix1) (IxJ) (IxT)

Fig.2 Conceptual illustration of processing of data for a largalesc

3. Set all negative elements ¥fto zero or a small posi-  NMF. Instead of processing the whole mat¥ixe R*K, we process much
smaller dimensional block matricé& € R'*C andY; € RR*K and cor-

tive value. ) . e Rl
4. EstimateA from the matrix equatior)(XT AT = XYT rRes<p<0?.d :?ogr fseilﬁ:glricr::;t:/l\?:fl;\feﬂ%assus”lnedd/?;\aet fﬁe fﬁgg\r/]vsc a?]g t};eafri]rdst
by solving C columns of the matrice¥, A, X are chosen, respectively.
min De(Y||AX) = 1||YT - XTAT|2, with fixed X i i
A F 2 , . M columns, and so on. The same procedure is applied for
rows. Another approach is to cluster all columns and rows
5. Set all negative elements éfto zero or a small posi-  in C andR cluster and select one column and one row form
tive values. each cluster, respectively. In practice, it iffatient to chose

J<R<4JandJ < C < 4J. Inthe special case, for squared

The above ALS algorithm can be written in the following ) " h c :
Euclidean distance (Frobenius norm) instead of altergatin

explicit form ALTIMEC ’
minimizing the cost function:

X « maxe, (ATA)IATY} = [ATY],, 7) 1

A — maxs, YXT(XXT) Y = [Y X T, , (8) De(Y I AX) = SIIY - AX,
where A is the Moore-Penrose inverse &f ¢ is a small e can minimize sequentially two cost functions:
constant (typically, 10'%) to enforce positive entries. Note
thatmax operator is performed component-wise for entries De(Y: | ArX) = E”Yr “AX|2, forfixed A
of matrices. Various additional constraints Arand X can i
be imposed [19]. De(Ye |l AXe) = = [[Yo— AXdZ, forfixed X.

For large scale NMF problem far << | andJ << K 2

the data matriy is usually low rank and in such cases we \jinimization of these cost functions with respecttcand

do not need to process all elements of the matrix in order to 5 sybject to nonnegativity constraints leads to simple ALS
estimate factor matriced and X (see Fig. 2). In fact, in-  ypdate formulas for the large scale NMF:

stead of performing large scale factorization of (1), we can
consider alternating factorization of much smaller dimen- A — |YeX{], = [YeXe(XeXE)

sion problems: N _
_ X — [ATY], =[(ATA)IATY]
Y, = AAX+E, for fixed (known) A, (9
Y. = AXc + Eg, for fixed (known) Xe  (10)

(11)
12)

+ b
.

The nonnegative ALS algorithm can be generalized for
the NTF problem (2) [16]:

whereY; € R andY, € R*C are matrices constructed ~
i (n O-n O_nT||O-n 1
form preselected rows and columns of the data matyie- UYW « |Yn U (U u ) ,
spectively. Analogously, we construct reduced dimensions . *
matrices: A, € R®J and X e RJX_C by using the same in- - [Y(n) Uo-n ({UTU}&") ] ,n=1,...,N. (13)
dexes for columns and rows which were used for construc- +

tion of the r_natnceé(C andY,, respectively. There_ are sev- whereY(, e BRIl is n-mode unfolded matrix of
eral strategies to chose columns and rows of the input matrix ] T (T ()
data. The simplest scenario is to chose the Rrsdws and ~ the tensofY e R™2 and{U U} = (UMUM@

the firstC columns of data matriX. Alternatively, we can  --- @ (UM™DTUMD) @ (UM-DTY-1y g ... @ (UDTUD),

select randomly, e.g., uniformly distributed, i.e. evély At present, ALS algorithms for NMF and NTF are con-
row and column. Another option is to chose such rows and sidered as “workhorse” approaches, however they may take
columns that provide the large-norm values. For noisy  many iterations to converge. Moreover, they are also not
data with uncorrelated noise, we can construct new columnsguaranteed to converge to a global minimum or even a sta-
and rows as local average (mean values) of some specifidcionary point, but only to a solution where the cost funcsion
numbers of columns and rows of the raw data. For exam-cease to decrease [13],[16]. However, the ALS method can
ple, the first selected column is created as average of thébe considerably improved and the computational complex-
first M columns, the second columns is average of the nextity reduced as will be shown in this paper.
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In fact, in this paper, we use aftérent and more so-  Algorithm 1 HALS for NMF: GivenY e R!>X estimate
phisticated approach. Instead of minimizing one or two cost A € R'*J andX = BT € R>K
functions, we minimize a set of local cost functions with the ™"\ iiaiize nonnegative matria andor X = BT using ALS
same global minima (e.g., squared Euclidean distances and2: Normalize the vectora; (or bj) to unit £,-norm length,
Alpha or Beta divergences with a single parameter alpha or 3: E=Y - ABT;
beta). The majority of known algorithms for NMF work ~ 4: repeat.
only if the following assumptioik >> | > J is satisfied, foré(ﬁ <1=t0EJ+d2 bT-
wherelJ is the number of the nonnegative components. The by = [YO ;]‘ '
NMF algorithms developed in this paper are suitable also ) Al
for the under-determined case, i.e., kor- J > |, if sources & < [Y(J) bj]+

’ ’ | . : aj < aj/llajll2;

are sparse enough. Moreover, the proposed algorithms areg. EJC yfj) _Jaj bl
robust with respect to noise and suitable for large scale-pro 11:  end for :
lems. Furthermore, in this paper we consider the extension!2: until convergence criterion is reached
of our approach to NMINTF models with optional sparsity
and smoothness constraints.

o N ou

that we enforce the nonnegativity constraints with a sim-
ple “half-wave rectifying” nonlinear projection, we obrted

3. Derivation of Fast HALSNMF Algorithms simple set of sequential learning rules:

. _ _ ) 1 .
Denoting the columns bA = [ay,&,...,a] and B = bj — =iz [Y(I)T a,-] , Ay = [Y(J) b,—] ,(21)
[by, by, ..., by], we can express the squared Euclidean cost e * b; b +
function as .
for j = 1,2,...,J. We refer to these update rules as the
1 T2 HALS algorithm which we first introduced in [3]. The same
Y@, 8, by, b) = §”Y_ ABIIF or similar update rules for the NMF have been proposed

1 J or rediscovered independently in [20]-[23]. However, our
§”Y - Z a; bJTllﬁ. (14) practical implementations of the HALS algorithm are quite
ji=1 different and allow various extensions to sparse and smooth
NMF, and also for théN-order NTF.
First of all, from the formula (15) it follows that we

The basic idea is to define residues:

v = y— Z apbg =Y-ABT + a; bJT, do not need to compute explicitly the residue ma¥ in
Py each iteration step but just smartly update it [24].
- Y_ABT + aj—lb-jr_l _ aj—lb-jr_l +a b,-T (15) It is interesting to note that such nonlinear projections

can be imposed individually for each souv_qeandorvector
for j = 1,2,...,J and minimize alternatively the set of cost  &;, S0 the algorithm can be directly extended to a semi-NMF

functions (with respect to set of parametgg and{b;}): or a semi-NTF model in which some parameters are relaxed
to be bipolar (by removing the half-wave rectifying opera-
Dg)(aj) _ }“Y(j) - a b,TIIE, for a fixedb;, (16) tor []4, if nece_ssary). Furt.herm.ore, in practice, it is neces-
2 sary to normalize in each iteration step the column vectors
Dg)(bj) - }”Y(j) _ g b,TIIE, for a fixeda, (17) a; andor b; to unit length vectors (in the sensefnorm
2 (p=1,2,...,)). In the special case @b-norm, the above

for j = 1,2,...,J subjecttoa; > Oandb; > 0, respectively. algorithm can be further simplified by ignoring denomina-
In other words, we minimize alternatively the set of tOrsin (21)andimposing normalization of vectors aftetreac
cost functions iteration steps. The standard HALS local updating rules can
be written in a simplified scalar form:

| K
byj < [Z ajj yi(ﬂ)} , aij « [Z by yi(ﬂ)} , (22)
i1 . ] .

with a; < a&j/llajll, where yi(i) = YO = yik -
> pzj @ipbkp. Efficient implementation of the HALS algo-
rithm (22) is illustrated by detailed pseudo-code given in

. ) 1
DP(YPllay b]) = 51V — ajb] I, (18)

forj=1,2,...,Jsubjecttoa; > 0andb; > 0, respectively.

The gradients of the local cost functions (18) with re-
spect to the unknown vectoas andb; (assuming that other
vectors are fixed) are expressed by

oDV (YW|1a; bT) _ Algorithm 1.
— L2~ a0l b - YO by, (19)
" a 3.1 Extensions and Practical Implementations of Fast
aDY (YW)a; bT) . HALS
L 6bj 17 = bj ajT aj — Y(')Taj. (20)

The above simple algorithm can be further extended or im-
By equating the gradient components to zero and assumingroved (in respect of convergence rate and performance
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and by imposing additional constraints such as sparsity andalgorithm 2 FAST HAL S for NMF: Y ~ ABT
smoothness). First of all, fierent cost functions can be  “1: initialize nonnegative matri& andor B using ALS
used for estimation of the rows of the matkx= BT and the 2: Normalize the vectora; (or bj) to unit £z-norm length
columns of the matrixA (possibly with various additional ~ 3: repeat
regularization terms [19],[25]). Furthermore, the column gf ;(‘/’ 9%"";‘?‘3;
of A can be estimated simultaneously, instead of one by one. 5. - ATA’

For example, by minimizing the set of cost functionsin (4) 7: for j=1toJdo
with respect tdb;, and simultaneously the cost function (18) 8 bj < [bj +w; - Bvj],
with normalization of the columna; to unit £,-norm, we 1%:_ ‘f;dJoaam_
obtain a very #icient NMF learning algorithm in which the 7 P°= $B; ’
individual vectors ofB are updated locally (column by col- 12 o=8T8;
umn) and the matripA is updated globally using nonnega- 13: for j=1toJdo
tive ALS (all columnsa; simultaneously) (see also [19]): 14: aj < |ajqj+p-A qu
DT =T T Ty-1 12 enda%o;: aj/”ajuz;

bj [Yﬁl) ajL /(ai a), Ae [YCXC (XeXe) ]+ - (23) 17: until convergence criterion is reached
whered;] is an j-th vector of a reduced matrid, € R
Matrix A needs to be normalized to the unit length column
vectors in the/>-norm sense after each iteration. 3.2 HALS NMF Algorithm with Sparsity and Smoothness

Alternatively, even moreficient approach is to per- Constraints
form factor by factor procedure, instead of updating
column-by column vectors [2$]- From (21), we obtain the |n order to impose sparseness and smoothness constraints
following update rule foib; = x; for vectorsb; (source signals), we can minimize the follow-
, - ing set of cost functions:
by « YOTay/(ajay) = (Y - ABT + ajb]) aj/(a] ay) 0 1
DevDia: b7y = Z1v — 3.p7112
— (YTaj _ BATaj + b]a']raj)/(a']l'aj)’ DF (Y ||a] bj) = 2”Y a.J b] ”F +
+asp lIDjlls + @sm llp(L by)ll1, (30)

for j = 1,2,...,J subject toa; > 0 andb; > 0, where

with b; — [bj] . Due toflaj|2 = 1, the learning rule fob; asp > 0, asm > O_ are regularization parameters cpntrol-

has a simplifieH form ling level of sparsity and smoothness, respectivelys a
suitably designed matrix (the Laplace operator) which mea-

- ([YTA]j - B [ATA]j + bjaJTaj)/(ajTaj), (24)

b « [bj + [YT A]_ _B [AT A]] . (25) sures the smoothness (by estimating tiiedences between
J Ha neighboring samples dfj)" andy : R — R is an edge-
Analogously to equation (24), the learning rule fay is preserving function applied componentwise. Although this
given by edge-preserving nonlinear function may take various forms
[26]:
) h'h: A T
aj [ajbj bj +[YB], - A[B B]J,L, (26) o) = 11/, 1<a<2 (31)
aj < aj/llajll. (27) o(t) = m, (32)
Based on these expressions, we have designed and imple-  ¢(t) = 1+]t//a —log(1+tl//a), a >0, (33)

mented the improved and modified HALS algorithm given
below in the pseudo-code as Algorithm 2. For large scale
data and block-wise strategy, the fast HALS learning rule
for bj is rewritten from (24) as follows

we restrict ourself to simple cases, whei®) = |t|*/a for

a =1 or 2, andL is the derivative operator of the first or
second order. For example, the first order derivative operat
L with K points can take the form:

b [b,— +[YTA] /i - B[AIAr]_/na,-ng] 1 -1
. : * 1 -1
- [bj +[VIADA] - B[ATA DA,]],] (28) L= N (34)
+ . .
whereDa, = diag(lall;2 182152 . . ., [14sll?) is a diagonal -
matrix. The learning rule foa; has a similar form and the cost function (30) becomes similar to the total-
variation (TV) regularization (which is often used in sig-
aj « [aj + [YCBCDBC]]- -A [BI BCDBC].] (29) nal and image recovery ) but with additional sparsity con-
N 3 N He N straints:

whereDg, = diag(|bill;% lIball3%, - . .. I1byll;%) andb; is the tIn the special case fdr = I ande(t) = [t], the smoothness

j-th vector of the reduced matrB; = XI e ROV, regularization term becomes sparsity term.



6
DY (YD|ja; b)) = —||Y(l) a;b] |12 + asp lIbjlls +
K-1
+ a'smz b j — By l- (35)
k=1
Another important case assumes thé) = %|t|2 andL is

the second order derivative operator wi¢hpoints. In such
a case, we obtain the Tikhonov-like regularization:

) ) 1 :
szl)(y(l)”aj bJT) = §||Y(J) - a b]—||,2: + asp lIbjll1 +

1
> @sm ILbjll2.

In the such case the update rule &iis the same as in (21),
whereas the update rule fby is given by:

bj « (I + asn LTL) (YD Ta) - agp k).

+ (36)

(37)

wherelx € RK is a vector with all one. This learning rule

is robust to noise, however, it involves a rather high compu-
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with the normalization (scaling) of the columns Afto the
unit lengthf,-norm.

Animportant open problem is an optimal choice of reg-
ularization parametersy,. Selection of appropriate regular-
ization parameters plays a key role. Similar to the Tikhenov
like regularization approach we selected an optimg| by
applying the L-curve technique [27] to estimate a corner of
the L-curve. However, in the NMF, since both matrides
andX are unknown, the procedure is slightlyfférent: first,
we initiateasy, = 0 and perform a preliminary update to ob-
tain A and X; next we setrgm by the L-curve corner based
on the preliminary estimated matrik; then, we continue
updating until convergence is achieved.

4. Fast HALS NTF Algorithm Using Squared Eu-
clidean Distances

The above approaches can be relatively easily extended to
the NTF problem. Let us consider sequential minimization

tational cost due to the calculation of an inverse of a large of a set of local cost functions:

matrix in each iteration. To circumvent this problem and

to considerably reduce the complexity of the algorithm we

present a second-order smoothing operatar the follow-
ing form:

-2 2
1 -2 1
L= 1 -—2 1
1 -2 1
2 2
-2 0 2
-2 10 1
-2 10 1
= + .
-2 1 01
-2 2 0
=-21 +2S. (38)
However, instead of computing directllyo; = —2I bj+2Sb;,

in the second term we repladg by its estimationb; ob-

2
DUyl i) ||Y(J) Wou®o. OU(jN)||F (42)
= 3V -u fuf T, (43)
217 M ! F’
for j = 1,2,...,J, subject to the nonnegativity constraints,
T
whereY"” = u®ou@, ou, {Uj}® =Moo

W™ o ™o o [uM]T and

YO =y Z u(pl) ° u(p2) 0.0 u(pN) (44)
p#]
J
= (u(pl) O+++0 u(pN)) + (ugl) O +++0 UEN))
p=1
=Y - Y+ [{ul. (45)
where[[{u;}] = u] .o u™ is a rank-one tensor. Note

tained from the previous update. Hence, a new smoothingthat (43) is then— mode matricized (unfolded) version of

regularization term withp(t) = t?/8 takes a simplified and
computationally moreféicient form

~ 1 ~
sn = llp(~2b; +2Sb))ll = Sllb; — Sbyliz . (39)

Finally, the learning rule of the regularized HALS algonth
takes the following form:

bj « [Y(j)T a—asplk + @sm S EJJ-L/(a]—T aj + asm)
=|YOT aj - g Ik + asn S Bj]+/(1 +asn) . (40)

Alternatively, for a relatively small dimension of matri,

an dficient solution is based on a combination of a local
learning rule for the vectors d8 and a global one foA,
based on the nonnegative ALS algorithm:

bj « [Y(j)Taj —agp Ik + g SE)jL /(1 + asm),

A [YeXIXeXD™, (41)

(42). The gradients of (43) with respect to eIememff%
are given by

(46)

— _Y(J)

O_n
O {uy " + U0, @7)

where scaling cdﬁ0|ent5y(“) can be computed as follows:

T e T

= {ulu/ (W) = (T ()

~ uEN)Tu(jN)’
1’

Hence, a new HALS NTF learning rule fmﬁ”’, (j =

P =

n#N

n=N. (48)
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1,2,....,N; n=12,...,N)is obtained by equating the
gradient (47) to zero:

O-n
fui}
Note that the scaling facton%”) have been ignored due to

normalization after each iteration step” = u(j”)/||u(.”)||2
forn=1,2,...N - 1. The learning rule (49) can be written
in an equivalent form expressed bynode multiplication of
tensor by vectors:

u® oy

Yo (49)

Ul e YO 5505 R0, u M g™

=YOX quy), j=1...,%n=1...,N  (50)

For simplicity, we use here a short notat@ﬂ) X_n {ujT} in-
troduced by Kolda and Bader [28] to indicate multiplication
of the tensorY by vectors in all modes, but-mode. The

above updating formula is elegant and relatively simple but

involves rather high computational cost for large scaldpro
lems. In order to derive a mordfeient (faster) algorithm
we exploit basic properties the Khatri-Rao and Kronecker
products of two vectors:

[U(l) o U(Z)] - [u(l)

i 1

or in more general form:
fuif ™ = ue];-

Hence, by replacing(rj]) terms in (49) by those in (45), and
taking into account 81), the update learning rule (49) can
be expressed as

ugn) — Y(n) [Uan]j - V(n) [U@—n]j + [[{uj}]](n) {Uj}Gin
— [Y(n)UO’"]j — ymyo-T [UG’"]]- n uEn) {Uj}O’"T {uj}&n
— [Y(n)Uein]j _ U(n) [U(D,.-.Tuo,n]j + 75n) uﬁn)

= [Youe o], =00 [UTuf | o

o)

Oey@ = O ay@
ou .. ufoul] =uPouf

(51)

= [YUe], - U [{UTU}® o (u(“)TU<">)]j #9040, (52)

subject to the normalization of vectos” for n =
1,2,...,N—1tounitlength. In combination with a compo-
nentwise nonlinear half-wave rectifying operator, we final
have a new algorithm referred as the Fast HALS NTF algo-
rithm:

U e [y 0

uf [Y(n)Uo’”]j—U(”)[{UTU}®®(U(”)TU(”))]

.(53)

+

J

The detailed pseudo-code of this algorithm is given in Al-
gorithm 3. In a special case &f = 2, FAST-HALS NTF
becomes FAST-HALS NMF algorithm described in the pre-
vious section.

fFor 3-way tensor, direct trilinear decomposition could bedu
as initialization.

In practice, vectoraﬁ”) have often fixed sign before rectifying.

Algorithm 3 FAST-HALSNTF

1: Nonnegative random or nonnegative ALS initializatidf® '
2: Normalize allu® forn=1,..., N — 1 to unit length

3: Ty = (UBOTUD) @ ... @ (UNTUN)
4: repeat
5y =diaguMNTuMN)
6: forn=1toNdo
7: y=1lifn=N
8: T2 =Y (U}
9: Ta=Ti0UMTUM)
10: for j=1toJdo
11: ul < [y u + T2l - U [T5)] ¥
12; ul® = u® /P if e N
13: end for
14 T1=TaeuUMTym®
15:  end for

16: until convergence criterion is reached

5. Flexible Local Algorithms Using Alpha Divergence

The algorithms derived in previous sections can be extended
to more robust algorithms by applying a family of general-
ized Alpha and Beta divergences.

For the NMF problem (1) we define the Alpha diver-
gence as follows (similar to [14], [18],[25], [29]):

DY ((LYD].) Il ayx; ) =

9 L] RR
, Yy
g ) 'n[%]— »i’w?]s a=0,  (54b)
! ik
Z (1) ﬁ () _ D) _
Y In Z|(j) 4 Vi | a=-1, (54c)
ik ik

ik [Y]ik_ Zp;&j aipok and;.(l? = ainjk = aijbk,- for

i=12,...,J

The choice of parameter € R depends on statistical
distributions of noise and data. In the special cases of the A
pha divergence far = {1, 0.5, -2}, we obtain respectively
the Pearson’s chi squared, Hellinger’s, and Neyman’s chi-
square distances while for the cagses 0 anda = -1, the
divergence has to be defined by the limits of (54a)yas 0
anda — -1, respectively. When these limits are evaluated
for @ —» 0 we obtain the generalized Kullback-Leibler di-
vergence defined by Eq. (54b) whereasdor —1 we have
the dual generalized Kullback-Leibler divergence given in
Eq. (54c) [1],[14],[19],[25].

The gradient of the Alpha divergence (54) forr —1
with respect tog;; andby; can be expressed in a compact

Wherey(j) =

form as:
oDl 1 2\
A Y TH LS 55
6bkj @ Z aj {(y_(l) ’ (55)
[ |k_
oy 1 2 )
Fa ;zk: by {[W -1f. (56)
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By equating the gradients to zero, we obtain a new multi- Algorithm 4 Alpha-HALSNTF
plicative locale-HALS algorithm:

api » : Computey® = E+uP o u@o ... ouM™
where the “rise to the power” operatiors®! are performed fo‘r":‘i“&m do—* Ujoujro...ol;

componentwise. The above algorithm can be generalized to g. u™ as in (65)
the following form !

1: ALS or random initialization for all nonnegative vectaujﬁ)
. : (n) _ .
[Y(j) T] Ia] a [1/a] [Y(j)] el bj [1/a] 2: Normalize aII‘uj forn=1,2..,N-1to unltAIength,
b — + ,a — + , (57) 3: Compute residue tens@r=Y - [{U}]=Y-Y
J al al ! b! b:lal 4: repeat
17 U 5 for j=1toJdo
6:
7

9: Normalizeu%") to unit length vector ih # N
T ) (i) i 10: end for ‘
by « ¥ M a «yt T([ ]+) ! (58) 11: UpdateE = YU) — ugl) o ugz) 0...0 uEN)
al ¥(ay) bl w(b;) 12:  end for

13: until convergence criterion is reached

where¥(x) is suitable chosen function, for examplgx) =
x 1, componentwisie

In a similar way, novel learning rules for the-order
NTF problem (2) can be derived. For this purpose, we con-
sider then-mode matricized (unfolded) version of the tensor
Y

T 6. Flexible HALS AlgorithmsUsing Beta Divergence
Y = U® (o). (59)
Actually, this can be considered as an NMF model whtk Beta divergence can be considered as a flexible and com-

U® andB = U°". From (51), we have plementary cost function to the Alpha divergence. In order
b = [Uo,n] _ {u_}@fn_ (60) to obtain local NMF algorithms we introduce the following
! i ! definition of the Beta divergence (similar to [14], [18], |30
Applying directly the learning rule (58) to the model (59)

gives DY(YOL. || ax,) =
Y1) b
ul? {%] (61) O - e
1 . ] ik 4+ _ ik 4+
| (b)) | Zk] (1) == e ] p>0, (66a)
wherngr’f) is ann-mode matricized version of) in (45) 0]
» - - ounT Do) In( ‘5)*] - [yl + é?), B=0, (66b)
Ygrj])) = Y(n) - Y(n) + U(jn) b-]r = Y(n) - Y(n) + U(jn) {Uj} ik Z”J(
= Y(n) - Y(n) + [[{uj}]](n)' (62) Z In( '_IJ<) ]+ [yl(li)]Jr _ 1] ﬁ:_]_ (660)
For a specific nonlinear functioH(-) (¥(x) = x%) ik [Yi(i)h 'i)
(b)) = P({uj}*) wherey! = yi — Y.  apbip andZ) = ajxx = ajbyg
= ‘P(ugN)) - @\p(u?”l)) @\y(u(jn-l)) . @\p(ugl)) for j =1,2,...,J. The choice of the real-valued parameter

W(up)en (63) B < -1 depends on the statistical distribution of data and

! ’ the Beta divergence corresponds to Tweedie models [14],
and the denominator in (61) can be simplified as [19],[25],[30]. For example, if we consider the Maximum

Likelihood (ML) approach (with no a priori assumptions)

T N fy1.10-nT NO-n — T N®-n

by (b)) = {ug = {¥(U = fup (upi™,  (64) the optimal estimation consists of minimization of the Beta
this completes the derivation of a flexible Alpha-HALS NTF Divergence measure when noise is Gaussian @ith 1.
update rule, which in the tensor form is given by For the Gamma distributiof = —1, for the Poisson distri-

in ) = butiong = 0, and for the compound Poissgne (-1, 0).
\P([X ]+) Xn {Uj} (65) However, the ML estimation is not optimal in the sense of

furen)™

u(jn) P

a Bayesian approach where a priori information of sources
and mixing matrix (sparsity, nonnegativity) can be imposed
where all nonlinear operations are componentiise It is interesting to note that the Beta divergence as special
: . cases includes the standard squared Euclidean distamce (fo
Fora = 0 instead ofb(x) = x* we usedD(x) = In(x) [18].

In practice, instead of half-wave rectifying we often usk di ﬂ =d1)' t|i|1be Itikurgt;lsaléq distancg (:__01)' and the general-
ferent transformations, e.g., real part®fx) or adaptive nonneg-  128d Kullback-Leibler divergencef{ = 0). .
ative shrinkage function with gradually decreasing thochiill In order to derive a local learning algorithm, we com-

variance of noise2.. pute the gradient of (66), with respect to elementsfo &;:
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Algorithm 5 Beta-HALSNTF

1: Initialize randomly all nonnegative factott™
2: Normalize alluj for | = 1...N — 1 to unit length,
3: Compute residue tens@=Y - [{U}] =Y —Y
4: repeat

5: for j=1toJdo

6: ComputeY® = E + ugl) o ugz) 0...0 uSN)
7: forn=1toN-1do

8: ul? = [YO % (9],

9: Normalizeuﬁ“) to unit length vector
10: end for ]
11: ul —T—Y(J) Xon (¥(U)

{P(uj)" uj

12: UpdateE = Y() - (1) ° u(z) .o uEN)
13:  endfor

14: until convergence criterion is reached

E[(fj) — Z( () B —(Iy J)] );(l)ﬁ 1) ai; (67)
by = : ZA Yik i

5D

T " ;( 407 - (Y1) 2077 . (68)

By equating the gradient components to zero, we obtaina 2.

set of simple HALS updating rules referred to as the Beta-
HALS algorithm:

b — = Z & (Y1) . (69)
| lf
1 S )
aj « ———= > b (Y1), (70)
Zk 1 5kj k=1

The above update rules can be written in a generalized com-

pact vector form as

Y 1) ¥(ay)

o OT)YE) YO by
! v@ha

. (71)
W(b]) b;
where ¥(b) is a suitably chosen convex function (e.g.,
¥(b) = b and the nonlinear operations are performed
element-wise.

uforn = 1,...,
iteration step:

N — 1 to unit length vectors after each

U — YO ], u® =@/, (74)
The detailed pseudo-code of the Beta-HALS NTF algorithm
is given in Algorithm 5. Once again, this algorithm can be
rewritten in the fast form as follows

u® [75") u + [V (P, - U0 [{‘P(U)TU}%LL o

wherey(”) = {¥(u])uj}®",n = 1,...,N. The Fast HALS
NTF algorlthm is a speC|aI case WM’(X) =X

In order to avoid local minima we have also developed
a simple heuristic hierarchical Alpha- and Beta- HALS NTF
algorithms combined with multi-start initializations ngi
the ALS as follows:

1. Perform factorization of a tensor for any valueaobr

B parameters (preferably, set the value of the param-

eters to unity due to simplicity and high speed of the

algorithm for this value).

If the algorithm has converged but has not achieved the

desirable fit value (FIT max), restart the factorization

by keeping the previously estimated factors as the ini-
tial matrices for the ALS initialization.

If the algorithm does not converge, alter the values of

a or B parameters incrementally; this may help to over-

step local minima.

. Repeat the procedure until a desirable fit value is
reached or there is a negligible or no change in the fit
value or a negligible or no change in the factor matri-
ces, or the value of the cost function in negligible or
zero.

3.

7. Simulation Results

Extensive simulations were performed for synthetic and
real-world data on a 2.66 GHz Quad-Core Windows 64-bit

The above learning rules could be generalized for the PC with 8GB memory. For tensor factorization, the results

N-order NTF problem (2) (using the similar approach as for
the Alpha-HALS NTF):

o (YD1, ¥ (b))

’ (b)) b; (72)

whereb; = {u;}®, andY(r’;)) are defined in (62) and (45).
By taking into account (63), the learning rule (72) can
be written as follows

o YRl (e
5T et

YO, X (2(u)))
upen — (P(u))T ugle-

Actually, the update rule (73) can be simplified to reduce
computational cost by performing normalization of vectors

(73)

were compared with some existing algorithms: the NMWF
[31], the ISNTF [32] and also with twofigcient implementa-
tions of general form of PARAFAC ALS algorithm by Kolda
and Bader [16] (denoted as ALS) and by Andersson and
Bro [33] (denoted as ALB). To make a fair comparison
we apply the same stopping criteria and conditions: maxi-
mum diference of fit value, and we used three performance
indexes: Peak Signal to Noise Ratio (PSNR) for all frontal
slices, Signal to Interference Ratio (STR)r each columns

of factors, and the explained variation ratio (i.e., howlwel
the approximated tensor fit the input data tensor) for a whole
tensor.

"The signal to interference ratio is defined $kR(a;, &;) =
10log(layli3/(la; — &;113)) for normalized and matched vectors.
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7.2 Experiments for NTF
7.1 Experiments for NMF

In Example 4, we applied the NTF to a simple denois-

ing of images. At first, a third-order tensyr e R3>5x40
In Example 1 we compare our HALS algorithms with  whose each layer was generated by the L-shaped membrane
the multiplicative Lee-Seung algorithm [34] and Chih-Lin function (which creates the MATLAB logoY[:,:, K] =
Projected Gradient (PG) algorithm [35] for the benchmark ksmembrane(1,25),k=1,...,40 has been corrupted by ad-
Xspectra [36] (see Fig.3(b)). Ten mixtures were randomly ditive Gaussian noise with SNR 10 [dB] (Fig. 7(a)). Next,
generated from 5 sources (Fig.3(a)). We seleated 1.5 the noisy tensor data has been approximated by NTF model
for a-HALS andg = 2 for 8-HALS in order to show the dif-  using oura-HALS andB-HALS algorithms with fit value
ference in performance in comparison to the standard gen96.1%. Fig.7(a), 7(b) and 7(c) are surface visualizatidns o
eralized Kullback-Leibler (K-L) divergence. Monte Carlo the 40-th noisy slice, and its reconstructed slicegbyand
analysis was also performed with 100 trials and the average3-HALS NTF (@ = 2,8 = 2), whereas Fig.7(d), 7(e) and 7(f)
values of SIR forX and running time for each trial were are their iso-surface visualizations, respectively. Iditon,

summarized on Fig.3(c). Fast HALS NM&~HALS andg- the performance for étierent values of parametersandg
HALS achieved higher performance than the two other well- are illustrated in Fig. 7(g) and 7(h) with PSNR in the left
known NMF algorithms. The simulation results fiékam- (blue) axis and number of iterations in the right (red) axis.
ple 2 presented in Fig.4 were performed for the synthetic In Example 5, we constructed a large scale tensor

benchmark (Fig.4(a)) with 10 sparse (non-overlapping}non with size of 500x 500x 500 corrupted by additive Gaus-
negative components. The sources were mixed by the ransian noise with SNR= 0 [dB] by using three benchmarks
domly generated full column rank matrik € R so X_spectra_sparse, ACPos24sparsel® and X_spectra
only two mixed signals were available. The typical mixed [36] (see Fig.8(a)) and successfully reconstructed oaigin
signals are shown in Fig.4(b). The estimated componentssparse and smooth components usingnds-HALS NTF

by the newg-HALS NMF algorithm (69)-(71) withg = algorithms. The performance is illustrated via volume; iso
0.1 are illustrated in Fig.4(c). Moreover, the performance surface and factor visualizations as shown in Fig. 8(b)), 8(c
for different values of the parametg@rare illustrated in  and 8(f); while running time and distributions of SIR and
Fig.4(d) and 4(e) with average Signal-to-Interferenc®SI PSNR performance factors are depicted in Fig. 8(g). Slice
level greater than 30 [dB]. Since the proposed algorithms 10 and its reconstructed slice are displayed in Fig.8(d) and
(alternating technique) perform a non-convex optimizgtio  8(e). In comparison to the known NTF algorithms the Fast
the estimated components depend on the initial conditions.HALS NTF algorithm provides a higher accuracy for fac-
To estimate the performance in a statistical sense, we pertor estimation based on SIR index, and the higher explained
formed a Monte Carlo (MC) analysis. Figures 4(d) and 4(e) variation with the faster running time.

present the histograms of 100 meahR samples for esti- In Example 6, we tested the Fast HALS NTF algo-
mations matriceA and X. We also conducted an experi- rithm for real-world data: Decomposition of amino acids
ment for the large scale similar problem in which we used fluorescence data (Fig.9(a)) from five samples containing
100 very sparse non-overlapped source signals and we mixryptophan, phenylalanine, and tyrosirmd 4us .mat) [33],
them by random generated full column rank mixing ma- [37]. The data tensor was additionally corrupted by Gaus-
trix A € R2100 (je, only two mixtures were used). Us- sian noise with SNR: 0 dB (Fig.9(b)) , and the factors were
ing the same algorithm but with 25 NMF layers, we were estimated with] = 3. Thes-HALS NTF was selected with
able to recover most of the sources in high probability. 8 = 1.2, where fora-HALS NTF we selecty = 0.9. All

The performance is evaluated through the correlation matri algorithms were set to process the data with the same num-
Rx = X XT which should be a diagonal matrix for a perfect ber of iterations (100 times). The performances and running
estimation (given in Fig. 5(a)). Whereas distribution of th times are compared in Fig. 10, and also in Table 3. In this
SIR performance is shown in Fig. 5(b). Detailed results are example, we applied a smoothness constraint for Fast NTF,

omitted due to space limits. a- andp- HALS NTF. Based on fit ratio and PSNR index
In Example 3 we used five noisy mixtures of three we see that, HALS algorithms usually exhibited better per-
smooth sources (benchmark signalsssmooth [36]). formance than standard NTF algorithms. For example, the

Mixed signals were corrupted by additive Gaussian noise first recovered slice (Fig.9(c)) is almost identical to thees
with SNR = 15 [dB] (Fig.6(a)). Fig.6 (c) illustratesfie- of the clean original tensor (99.51% Fit value). In compar-
ciency of the HALS NMF algorithm with smoothness con- ison, the NMWF, IsSNTF, ALK, ALS_B produced some
straints using updates rules (41), including the Laplace op artifacts as illustrated in Fig.9(d). Fig.9(e) and Fig)9(f
eratorL of the second order. The estimated components In Example 7 we used real EEG datatutorial-

by the smooth HALS NMF using 3 layers [14] are depicted dataset2.zip [38] which was pre-processed by complex
in Fig.6(b), whereas the results of the same algorithm with Morlet wavelet. The tensor is represented by the intef-tria
the smoothness constraint achie®®R A = 29.22 [dB] and phase coherence (ITPC) for 14 subjects during a proprio-
SIR X = 15.53 [dB] are shown in Fig.6(c). ceptive pull of left and right hand (28 files) with size 64
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Fig.3  Comparison of the Fast HALS NMI-HALS, B-HALS, Lee-
Seung and PG algorithms Example 1 with the data seXspectra. (a)

observed mixed signals, (b) reconstructed original spgemurces) using
theB-HALS algorithm, (c) SIRs for the matriX and computation time for

different NMF algorithms.
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sources fog = 0.1. (d) & (e) SIR values for matriXA and sourcesX

(respectively) obtained by thi#HALS NMF for 3=0.1, 0.5,0.8, 1, 1.3 in

the MC analysis of 100 trials.
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Fig.6 lllustration of performance of the regularized HALS NMF @lg
rithm for Example 3.

given in Table 3. The components of the first fadé are
relative to location of electrodes, and they are used te-illu
trate the scalp topographic maps (the first row in Fig.11);
whereas the 2-nd factd® represents the frequency-time
spectral maps which were vectorized, presented in the sec-
ond row. Each component of these factors corresponds to a
specific stimulus (left, right and both hands actions).

In Example 8 we performed feature extraction for the
CBCL face data set. The tensor was formed using the first
100 images of dimension 19 19 and then factorized by
using 49 components and 100 components. FHh#ALS
NTF was selected witp = 1 to compare the HALS NTF
algorithms with the NMWF and the ISNTF algorithm. For
the case of 100 components, the reconstruction tensors ex-
plained 98.24 %, 97.83 % and 74.47% of the variation of the
original tensor, for thgg-HALS NTF, NMWF and ISNTF,
respectively (Table 3). Note that the estimated components
by usingB-HALS NTF (Fig.12(b)) are relatively sparse and
their reconstruction images are very similar to the origina
sources (Fig.12(a)).

Computer simulation for the above illustrated exam-
ples confirmed that the proposed algorithms give consistent
and similar results to that obtained using the known “state o
the arts” NMFNTF algorithms, but our algorithms seem to
be faster and morefigcient. In other words, through exten-
sive simulations we have confirmed that the FAST HALS

x 4392x 28. Exemplary results are shown in Fig.11 with NTF, a-HALS NTF ands-HALS NTF algorithms are ro-
scalp topographic maps and their corresponding IPTC time-bust to noise and produce generally better performance and
frequency measurements and performance comparisons arprovide faster convergence speed than existing recently de
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(a) The 40th noisy slice (b) a = 2,
PSNR=24.17[dB]
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(d) Noisy tensor e)a=2 f p=2
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Fig.7 lllustration of data reconstruction for noisy tengoe R3x51x40
for Example 4: (a), (b) & (c) surface visualizations of the 40th noisy slic
and its reconstructed slices by and 8-HALS NTF algorithms & = 2,
B = 2), respectively; (d)-(f) iso-surface visualizations afisy tensor and
its reconstructed tensors hy andg-HALS-NTF algorithms; (g) & (h)
Performance of the HALS NTF algorithms forfidirent values ofr andg
but for the same desired fit value 96.1%.
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(g) Performance comparison
Fig.8 lllustration of tensor reconstruction by Fast HALS NTF fox-

ample 5 with tensorY e R30%<500<500 qegraded by Gaussian noise with
SNR= 0[dB].
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(a) Slice of amindb) Gaussian noi¢g) HALS NTF  (d) NMWF
SNR= 0 [dB]

acid tensor 99.51% 98.76%

(e) Smoothed factors by HALS NTF (f) Factors by NMWF

Fig.9 lllustration of estimated factors by the FAST-HALS NTF imgo
parison to the NMWF algorithm for three-way decompositidnamino
acid data in Example 6. (a) The first slice of original tengb), The same
slice with huge Gaussian noise, (c)-(d) the reconstrudieesausing HALS
NTF and NMWF, (e)-(f) three estimated factors using HALS &iMWF
algorithms (The estimated factors should be as smooth aiye)s
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Fig.10 Comparison of performance and running time for amino acid

data with tensol e R¥20%61 corrupted by Gaussian noise with SNR
0[dB].

o
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(a) Left hand stimuli (b) Gamma activity of (c) Right hand stimuli
both stimuli
Fig.11 EEG analysis using the FAST HALS NTF féxample 7 with
factor matrices fotJ® for a scalp topographic map (first row), factof?)
for spectral (time-frequency) map (second row) (see [3BHfails). Re-
sults are consistent with previous analysis [38] but ruretis almost 8
times shorter and fit is slightly better.
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-' Table2 Description of data sets and notation of Examples
No| Data set | Size | 3
L-sh membrane function, MATLAB
4 IOg'gsoaped embrane function, T51X51X40 A

...111:!_‘1-
AR

(a) 6 original CBCL images (top) and their reconstructiogsib compo-
nents (94.81%) (center) and 100 components (98.24%) ¢aptto

_spectra_sparse,
CPos24sparsel® andX_spectra [36]
5 I/Amino acids fluorescence data,
claus.mat [37]

ITPC of 14 subjects during a propriocep-
; tive pull of left and right hand (28 datase &)
64channels x (61frequency — 72time) X

()]

500x 500x 504 4

‘ 5x201x61 | 5

2‘. 4392x 28

B L H i 28subjects, tutorialdataset2.set[38
-
| L 8 F’IIT CBCL face images ‘190>< 19x 100 100
-
| - . )
- r o Table3 Comparison of Performance of NTF Algorithms for Ex-
. amples 5-9
L i & | Fit (%) | Time (seconds)
- Example No| 5 6 7 8 5 6 7
' - L FastNTF 99.9955 99.51] 52.41 51.73 0.93 7.08
W a-NTF 98.77 6.33
' B-NTF 99.994Y 99.3¢ 98.24 470.53 1.85
- .' i NMWF T 99.9918 98.76¢ 52.38 97.83 513.37 3.1¢ 58.19
-— ISNTF 77 [ 98.06 51.33 74.47 O 3.30 4029.84
m ALSB 99.9958 98.53 53.17 145.78 2.5% 67.24
ALSK 99.9958 98.53 53.1 965.7¢ 1.7§ 66.39
L s 'q
- - B “w S— course, there are still many open theoretical problems like
. L] ' global convergence of the algorithms and optimal choice of
a andp parameters.
i . - Acknowledgment
- i q The authors would like to thank the associate editor Pro-
fessor Kazushi Ikeda and anonymous reviewers for their

(b) 49 basis components estimated®BHALS NTF, 94.95 % (Fit). valuable comments and helpful suggestions that greatly im-

Fig.12 lllustration of factorization of 100 CBCL face images inte 4  Proves this paper’s quality.
and 100 basis components by usinghdALS NTF algorithm.
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