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Abstract
A Machine Learning Approach to Web Personalization
by Corin R. Anderson

Co-Chairs of Supervisory Committee:

Professor Daniel S. Weld
Computer Science & Engineering

Assistant Professor Pedro Domingos
Computer Science & Engineering

Most web sites today are designed one-size-fits-all: aliorsssee the exact same pages regard-
less of interests, previous interactions, or, frequergn browsing client (desktop PC or wireless
PDA). But one size often does not fit all. Instead of presentire same content, the web experi-
ence should be dynamic and personalized, adapting to r&'sjteeferences as evinced in previous
interactions.

This thesis proposes a framework for personalizing the welegence. Within our ROTEUS
framework, we view personalization as a two-step procesisstimodeling users, and then improv-
ing the site given the model. We frame this problem as a madbarning task: the goal is to predict
users’ web navigation given their previous behavior. Wel@epseveral means of personalization,
including improving the wireless web and building persael, dynamic portals, and concentrate
on one in particular—automatically adding shortcuts telliknavigation destinations.

A challenge in modeling web navigation is that training dataan entire site may be plentiful,
but sparse for any individual page. This difficulty can berowene, however, by noting that most
large web sites have a rich underlying relational structbeg can be exploited for generalization:
pages can belong to different typesd, pages about laptop computers versus pages about printers)

with each type described by a different set of attributeg,(size of display versus printing speed).



We leverage this structure by developing relational Markowdels (RMMs), a novel extension
to Markov models. States in an RMM belong to relations anddamscribed by variables over
hierarchically structured domains. Based on these hieiesc the RMM defines sets of related
states, learns transition probabilities between these aatl uses shrinkage to estimate transitions
between individual pages. This thesis presents RMMs inild&td provides results showing that

they outperform traditional Markov models for predictinglwnavigation by a substantial margin.
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Chapter 1

INTRODUCTION

Information access has become a ubiquitous part of our tiedg. We consult the web for ev-
erything from local news, to technical references, to amswespecific questions, such as “Where’s
the seminar | need to be at in 5 minutesRavigationis the art of accessing information on the
web—following links and browsing through content. Unfaorately, in today’s web, this art is a
rather dissatisfying one. It is dissatisfying because, asawvigate, we are constantly bombarded
with content and links that are irrelevant to the task at haf@versing this sea of distractions is
frequently annoying and, at times, so frustrating that we gip on our information quest altogether.

Following in the spirit of Perkowitz and Etzioni's challemgo the Al community [80], we pro-
pose buildingadaptive web sitethatpersonalizehe web experience for each visitor. A personalized
web experience is one that has been customized to an inélwigitor or group of visitors (as op-
posed to a transformation intended for the entire web aeéjeriThrough personalization, we can
improve the navigation on a web site by, for example, hiditligg content and links of interest,
hiding those that are irrelevant, and even providing nekslim the site to the user’s likely web des-
tinations. We are particularly interested in automatedeaghes (as opposed to ones that demand
the user’s explicit input), and thus frame the problem as ehime learning one. The goal is to pre-
dict a user’s actions on the Web (or on a single web site),cbasebservations of the current visit,
other users, and data describing the sites viewed. In tkipteh we further motivate this problem,

provide several scenarios in which personalization is fieiag and outline our general approach.

1.1 Motivation

Most web sites today are designed with a one-size-fits-albgdphy: the site designer determines

the needs of the visitors and builds the content accordirtgwever, one size frequently does not

fitall. Visitors may use the site in ways different from thesimer's expectations and for which the
site’s presentation (pages) or navigational structur&kg)i are not well-suited. Visitors’ browsers
may be unable to display the content as the designer interimerhuse of screen resolution or
bandwidth constraintse(g, the visitor is browsing from a wireless PDA or cell phone)eB the
same visitor may have different interests on different smmas, perhaps based on content viewed
at another site (for instance, after viewing a news storyulaamerger between two companies, a
visitor may be more interested in the stock quotes for thesepanies than for the usual portfolio).

Personalizatiorcan improve the web experience by adapting:

e The presentation of a single pageby rearranging regions of the page to put the most impor-

tant material near the top (to increasestdiencs;

e The content on each pageby adding data that is highly relevant, or eliding data tisat

irrelevant;

The navigational structure of a site by adding links between previously non-linked pages

that help lead visitors to their web destinations;

The navigation between or aggregation of several siteby building portal sites combining

content and links from many frequently-visited sites.

Personalization can improve a wide range of web experieraed we highlight three such

scenarios here.

1.1.1 Scenario 1: Information-seeking browsing

Suppose that every Tuesday a visitor, Craig, looks for tfeedind abstract of the day’s colloquium
for the University of Washington Computer Science DepartineCraig starts at the main entry
page (wwv. cs. washi ngt on. edu), follows the link to the “Events and Talks” page, followsth
link to the “Colloquia” page, scrolls through the list of tauia for the current quarter, and finally
follows the link for the current day’s colloquium. To find ¢hinformation again the next week, he

must follow these same steps—drilling down through seveaagles, scrolling content, and hunting
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Figure 1.1:Shortcut link to colloguia. A personalized link to the Colloquia page is added because
itis a frequent destination.

for the right link. Each of these steps takes time and is amxppity for error, and completing the
entire sequence correctly each week is unnecessarilydonsuming.

In contrast, compare the same interaction on a personaditedIn the first week of the term,
Craig follows the same links as before. But by the followingek, the site can immediately sug-
gest a link directly to the Colloquia page, because it hagmis Craig’s previous navigation (see
Figure 1.1). The link is even placed near the “Events andsTdikk, as that appears to be where
Craig starts his quest for this information. With this skatf instead of following three links and
scrolling extensively to reach his destination, Craigdai just two links, saving a great deal of

time and effort.

1.1.2 Scenario 2: Wireless web browsing

One of the fastest growing communities of web users is thataifilevisitors—people who browse
the Web with wireless PDAs, cell phones, and pagers. Ne#rbeth phones sold today are “web-
ready” and authorities predict that the number of wirelegsrhet devices will outnumber desktop
computers in the near future [86]. Despite this trend, harelew web sites today cater to mobile
visitors, instead optimizing their content exclusively éesktop clients. Unfortunately, mobile de-
vices are not as capable as their desktop counterpartg lreited by small screens, low-bandwidth

networks and slower processors.

In this second scenario, suppose Cathy is on a commuteranainvants to read a summary of
the day’s Mariners baseball game. At her desk, she’'d visitélam sitevww. mar i ner s. or g)
with her PC browser, but, when commuting, she has only hexless PDA. Cathy enters the URL
by hand in her PDA and reaches the first page. Her PDA's brodaes not support cascading style
sheets [64] or JavaScript [42], and few of the embedded imbge immediately, so she has some
difficulty orienting herself on the page. Cathy scrolls thgh several screens to find the link for the
current game, and clicks to follow it. The PDA's network cenotion is only 19.2 Kbps, so nearly
30 seconds pass before the new page is downloaded. Unftafyreven after the page is loaded
completely, Cathy cannot find the box score on the page, Becais buried among superfluous
content. She finally gives up in frustration, deciding imst¢o wait until she gets home to catch the
game highlights.

Most of the difficulty in this scenario is caused by the smatkeen size, slow network, and
limited capabilities of the PDA. Several companies [10, 88, 37] propose to address these diffi-
culties bytranscodingthe original content into a simpler format for the PDA. Rejt@ complex
HTML with simpler code will improve the visual appearancesath page, but will not reduce how
much user interaction is needed to find the target contenter8gmalized mobile web experience,
however, could reduce these actions. The personalizeavsii® observe a user both on the wire-
less device and the desktop computer to build a model ofdsterand navigation. When the user
requests a page from the wireless device, the personalizatiould adapt to the cost model of the
device, for example, by displaying only text, and aggregationtent from many pages into one
HTML document (because scrolling on a PDA is less costly foflawing a link). In this scenario,
personalization is not simply about saving a link here amdeth-it is about bringing content and

visitors together before the visitor gives up in frustratio

1.1.3 Scenario 3: Personal web portal

This third scenario highlights how personalization canriove the everyday web experiences of a
typical software developer, whom we will call Casey. Caséghtiread a web-based newspaper as
soon as he gets to work, and then spend a few hours on softwsetogment, with intermittent

consultation of online programming documentation. Folfaya break at noon for lunch and to



read comics on the Web, Casey returns to programming, magseta mid-afternoon break to check
news and a few more comics, and finally consult online tranfitmation shortly before leaving at
5:30pP.M. Such stereotypical patterns of web access are common. \owgespite the regularity
with which users view content, few mechanisms exist to asgih these routine tasks. Lists of
bookmarks must be authored and maintained manually by aserare presented in a cumbersome
hierarchical menu. Links and content on manually perseedliportals, such as MyMSN [70] or
MyYahoo! [95], are more easily navigable, but still must B®sen and managed by users in an
explicit manner.

Given an automatically personalized portal, Casey wouldatlihis web browsing through the
portal's proxy, allowing it to record and model his onlinehbbgior. Whenever Casey opened a
browser window or returned to the “Home” page, the portal ldalisplay a personalized, dynamic
page, including links and content of likely interest to hishoreover, this portal could depend on the
context of the browsing session, including the time of dbg, tbpic of recent browsing, the other
applications currently running on Casey's computgc. This personalized portal does not adapt
each individual page requested, but provides a view of tfuerimation Casey is likely to seek in the
current browsing session. The personalized portal wouwd €asey effort in finding the content he

wants, when he wants it.

1.2 Our two-step approach to personalization

We view personalization as a two-step process. In the fiegi, st web personalization system
(or personalizey builds a model of the user, including aspects that modelutes’s interest in

content and navigation behavior. In the second step, theopalizer adapts the web experience,
transforming content or navigation to maximize the valuéhefsite given the user model. Next, we

describe these steps in more detail.

1.2.1 User modeling

The primary goal of user modeling is to enable prediction ner’s actions on a personalized web
site, and thus to determine which adaptations are usefuhfowisitor. There is a rich literature

describing user modeling in general and the interactiow®en it and adaptation in specific (see,

for example, the overview of user modeling systems by Kob8)[ In our work, we model two
aspects of a user: interest in content and navigation beha@ur model of a user’s interest in
content relates to the textual content on each page—theswdisplayed. We model this aspect
using a traditional information retrieval approach to mgassimilarity between the set of words of
interest to a specific individual and the set of words appean a document. A user’s navigational
behavior is modeled as a Markov chaire( the user is an agent transiting probabilisticly through a

state-based world), conditioning on recent navigatiotohys

1.2.2 Adapting content

To generate a personalized web experience for a visitor,seéauristic search through the space of
siteg. This approach is is very similar to that presented by Peitzdi®9], although our models of a
site and a visitor are more sophisticated; we present the®eation 2. We are also more concerned
with personalizingcontent for anindividual visitor, as opposed to making adaptations generally
useful for a site’s entire web audience, although our apgirdagrelevant to both targets.

Each state in the search space conceptually describes aterelitee navigational structure, the
content on each page, and how each page is graphically pedsehhe representation of the site
may rely on the HTML of the pages directly, or, for sites bailop databases, the representation
may use the queries and HTML templates defining the conteim¢. sEarch operators personalize
various elements of the site, as suggested in Section 1dvdlbe of each staté €., personalized
site) is the expected utility the visitor receives by bravgsthat site. Intuitively, expected utility is
the sum of the utilities of each page on the site, discounyethd difficulty in navigating to each
page. The expected utility depends on the model of the visiioe search for the personalized site

continues until an optimal site is found, or until compuiatl resources are exhausted.

1.3 Summary of the thesis

The primary questions we address in this thesis are:

We use the term “site” to mean either a traditional web site portal site, the latter of which may loosely combine
content from many, disparate web sites. While the contestioh portal sites transcends a single webver it still
consists of pages and links, and referring to it as a sitelgfiegpour discussion



e How can automated personalization improve the web expegfen

e How can automated personalization scale to adapt conteegfth visitor at each page im-

pression?

PROTEUS. Our first implemented personalizerRBTEUS aims to address the first question.
The RRoOTEUSpersonalizer embodies ourBTEUSarchitecture for web personalization, which we
describe further in Chapter 3. TheRBTEUS system personalizes web browsing for visitors using
wireless PDAs (such as Palm VIIs) at many web sites, adaptoy site in turn. The system models
users by their textual content interests and the sequentavadation actions they perform, empha-
sizing the content interests and attempting to captur@-paige navigationi.g., scrolling). The
PROTEUS implementation uses a heuristic search algorithm, hithbing in the space of person-
alized sites, and supports three search operators: elitterttofrom a page, reorder elements on a
page, and add a shortcut link to a page. Eliding content eordeeing elements on a page improve
the presentation of an individual page, while adding shibdioks improves the navigation through
the site.

We ran a small user study oR®TEUSand found that personalization did improve web brows-
ing, but we also found three weaknesses. First, adaptatiaue to the site that the user does not
expect can be disorienting and not beneficial. For exam{ilting large blocks of uninteresting
content may seem useful (if the content is uninteresting,user will not want to see it), but may
also inadvertently remove visual landmarks that the uded@n for navigation. Second, naive
search through the space of personalized sites is commalyi expensive, too expensive for ac-
ceptable server-side run-time performance. Third, algfiowe collected a great deal of data, about
many pages and many visitors, much of it was unusedrayi®usin personalizing the site because
the system considered improvements for each visitor irat&mi of other users. Consequently, the
learned user models were frequently unreliable, despitdaving “more” data.

MINPATH. To address these weaknesses, we focused our efforts onla pergonalization,
adding shortcut links, and developed theNWATH algorithm, which finds personalized shortcut
links efficiently. Adding shortcut links to a page is freqtlgruseful for visitors, helping them

reach their destinations more quickly, and rarely decre#ise usability of a page. Our work with

MINPATH seeks to answer the second primary question in the thesig:chn personalization be
made efficient?

The MINPATH user model simplifies the content interest—in fact, it asssiall pages have the
same intrinsic value—but treats navigation with more mieci. In addition, MNPATH employs
model-based clustering to group similarly-behaving wvisittogether (following the technique used
in WebCANVAS [24]) and build models for these groups baseé targer volume of training data
(i.e., based on the training data from all the cluster's members).

MINPATH adds shortcuts to each requested padsy computing theexpected savingthat a
shortcut fromp would offer, as the product of the navigation effort the Iwkuld save and the
probability the user wants to reach the shortcut destinatintuitively, MINPATH examines every
possible shortcut frorp in a site and selects the shortcuts with the greatest expected savings. Of
course, MNPATH does notactually consider every possible shortcut, but instead uses a bdunde
graph traversal in the web site, startingpatcomputing the expected savings for all pages visited.
In traversing the web site, MPATH is effectively emulating the actions of visitors, follovgirthe
probabilistic model learned for the visitor’s cluster. Tteversal can be very fast, depending on the
bound selected, and thusiMPATH can suggest shortcut links in a fraction of a second. Exparts
with MINPATH found that it can identify shortcuts that would save visitop to 40% of their
navigation effort.

Relational Markov models. Although MiNPATH avoids most of the weaknesses GfdAEUS a
problem persists: how to predict behavior on seldom- or nbeéore-visited pages. In moving from
PROTEUSto MINPATH, we train user models with data from more individuals. Thiua,particular
visitor has not viewed a page before, but another (or marhgrotisitors in the same cluster have,
then MINPATH can make a reliable prediction about navigation. But a maguent case is one
where few if any visitors in the same cluster will have vieveggaige before. New pages are added to
sites constantly, e-commerce and other sites produce tgbgian unlimited number of new pages
from database queries, and the Zipf-like distribution [BLweb page visitation all point toward
a highly skewed distribution of training data—data is piethtabout some pages but very sparse
about most others. As a solution to this problem, we extenckMamodels to take advantage of
relational structure, thus producing relational Markovdels (RMMs). Relational Markov models

allow states in the model (pages in a site) to belong to aioel@nd be described by a number of



parameters, each parameter value being drawn from a higcally structured domain. Web sites
frequently have a great deal of relational structure alyeaailable, in the form of a database schema
or human-authored site schema describing the content. Xaon@ge, an e-commerce site’'s pages
naturally are divided into: main entry page, product degimn pages, pages describing groups of
products €.g, by manufacturer), shopping cart paget;. The hierarchy of values of parameters
affords a means of generating a hierarchy of states, and wehis state hierarchy to perform
generalization from specific states to higher abstractafrstates. For example, we can compute
the probability of transiting from apecificmusic CD page to a page about the artesg( a page
selling “Stunt” to a page about the Barenaked Ladies) byreging that probability directly (with
perhaps sparse data) and shrinking it toward the probabilia more general action (following the
link to the artist page fromany music CD page).

In preliminary experiments incorporating relational Mavkmodels into MNPATH, we found
that MINPATH can save users 50% to 80% more links than when using traditMarkov models.
Further, MNPATH is able to suggest useful shortcut links on pages that mehbevisitor nor anyone
else has ever viewed before.

MONTAGE. Our final system for web personalization returns to the pwbbf improving the
web experience as a whole, re-addressing our first thesitiqnghow automatic personalization
can be made useful). In the dNTAGE system, we automatically generate personalized, dynamic
portals of web content, based on the navigation behavioraoh endividual visitor. The target
audience for MONTAGE is desktop users (as opposed to wireless PDA users RaTBug, and
MONTAGE produces an aggregation of content+antage—in the form of either a text- and links-
only display or a graphically-rich amalgam of content amitdi. Also unlike ROTEUS MONTAGE
provides a personalized view of content from many sitesatatince, instead of only one site at a
time.

MONTAGE uses the individual-user model introduced byd@eEus but records theontextof
each web request: the time and date of the request, the tbpgcent browsing, perhaps the other
applications the user has been using latetg, A web user views a montage as the starting page in
the browser, or whenever the browser returns “home.” Eaunh the user views the montage oM-
TAGE captures the user's current context and computes the comalitprobability of the user’s

interests and navigation given the context. UnlikeoPEusand MINPATH, which have the user's
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currently- and recently-requested pages as conditionthéuser model, MNTAGE must rely only

on the general context of browsing (because a request fongage is the first request in a multi-site
browsing session). In a fielded user study of the systemicjishts reacted favorably to person-
alizing content based on their past interactions and thefneat browsing context, and suggested a

number of improvements to the usability of such a system.

1.4 Contributions of this thesis

This thesis makes the following contributions:

1. Precise statement of web personalization problemWe outline the space of web personal-
ization systems and precisely state what web personalizatieans. Our statement extends

and generalizes Perkowitz's statement of the adaptive welpimblem [79, 80, 82].

2. Framework for personalization as search.We follow a similar approach to Perkowitz [79],

but contribute:

e Aricher model of a web site; and

e A principled model of web site utility for a visitor, based walue of content and prob-

abilistic navigation.

3. Efficient approach to finding shortcut links (the MINPATH algorithm). Using a simplified
but precise user model, we find high-quality shortcut linK&ciently. We evaluate many
probabilistic models for web navigation, including firstdasecond order Markov models,

clusters of models, and several hybrid models.

4. Development of relational Markov models. We provide a formal definition of what rela-
tional Markov models are, describe where they are appkgabid relate them to other proba-
bilistic models. We show in experiments that relational ktarmodels outperform traditional

Markov models for predicting web navigation.
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5. Evaluation of several systems (ROTEUS, MINPATH, and MONTAGE). We build and
evaluate three systems for personalizing web interactiammg conduct user studies for two of

them.

1.5 Ouitline of this thesis

In Chapters 2 and 3, we refine the web personalization prolaledhdetail our general approach.
Chapter 4 presentsR®TEUS our personalizer that improves web browsing from wirelB&As.

We describe our MVPATH algorithm for finding shortcut links in Chapter 5. Chapterevelops our
work on relational Markov models and uses RMMs in an expermiméth MINPATH. In Chapter 7,

we present our work on the ®NTAGE personalized web portal system, including a user study. We
conclude the thesis with a discussion of related and futuném Chapters 8 and 9 and summarize
in Chapter 10. Appendixes A and B provide additional detadle our experiments and Appendix C

describes many current web log mining techniques, inclydiose we used in our work.
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Chapter 2

WEB PERSONALIZATION

In this chapter we discuss the web personalization probl&ebegin with a brief comparison
of web personalization and adaptive hypermedia, and thearithe the range of possibilities for
personalizing the web experience—the “space of persatalizs.” We present formal models of a

web site and of web navigation, and formally state the webgrelization problem.

2.1 Web personalization and adaptive hypermedia

Adaptive hypermedia can be viewed as a generalization qitagaor personalized web systems.
The field of adaptive hypermedia has been researched singeblefore the advent of the Web,
although it received a considerable influx of attention 8fdhereafter. The goals of adaptive
hypermedia are the same as those of adaptive and persahaietework: to “build a model of the

goals, preferences, and knowledge of each user, and usadhisl throughout the interaction with
the user, in order to adapt to the needs of that user” [19]. fdrécular techniques employed by
adaptive hypermedia systems span a wide range, althougtyihieally focus more on rule-based
approachesi.g., the system automatically builds a user model, but a humsigmer specifies what

action should be taken given the model). Brusilovsky hastevriseveral excellent surveys of the

adaptive hypermedia field [16, 19], and we compare our agpré@specific systems in Section 8.1.

2.2 The space of web personalization

Just how “personalized” a web experience is depends on nemgbles: whether it is personalized
for a single user or for large groups of users; whether eqizrges are adapted or only navigation
between them changestc. Traditional web sites, delivering the same content to evésiyor, oc-
cupy one point in this many-dimensional space. More modppraaches, such as customizable

portal sites or sites offering visitors recommendationseeon past browsing, fill other voids. We
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describe the dimensions of this space, and place thesesgefiweb experience in this space, below.

2.2.1 Scope of target audience

The target audience of a personalized experience is thepgrbuisitors who will see the exact
same content as each other. Traditional web sites delieesaime content regardless of the visitor's
identity—their target is the whole population of the Web.rde@al portal sites, such as MyYa-
hoo! [95] and MyMSN [70], allow users to build a personaliagéw of their content—the target
here is the individual visitor. A middle ground between #hextremes places visitors into one of
a small number of archetypal groups.d, a university may have different site views for current
students, prospective students, and faculty).

Adapting content for the entire Web audienese masséas the advantage that the agent can
spend more resources producing a high-quality personializa-the expenditure is amortized over
a large audience. In comparison, personalizing for eadgtoviequires efficient (and consequently
less sophisticated) algorithms, as the agent must adamiotitent frequently. Perkowitz and Et-
zioni [82] refer to adaptation targeting a large audiereg,(the whole Web audience) agrans-

formation and adaptation for individual visitors asstomization

2.2.2  Scope of personalization

We view the web experience as a hierarchical composition arfiyrsub-experiences: a browsing
session visiting many sites; many site-sessions at inadlidieb sites; and individual page views
within each site-sessidn Each level of this hierarchy can be personalized and thereadf the
adaptations depends on the level of decomposition.

Assingle page view can be personalized by altering how théeetiis displayed, or by suggesting
navigation links to likely destinations. A site-sessioloak an agent to predict the set of pages the
visitor will view and improve the navigation between themivéh many site-sessions over a period
of time, the agent can also predict the content interests&oh visit and both show more interesting

content and avoid displaying redundant content over timeally, a personalizer adapting entire

1We refer to both site-session and browsing session simplysassion when its use is clear from context.
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browsing sessions across many sites can leverage the caatitiesnbetween sites, aggregating

similar content and providing navigation between sitefe(ively creating personalized portals).

2.2.3 Location of user modeling

Collecting information for the user model can happen at anmany locations. At the browsing
client, the agent can collect detailed information aboetdbmplete interaction between user and
web content: the pages viewed, how long each page is viewth (called the “dwell time”), the
navigation between pages, the navigation on a single gagescrolling through a page), whether a
user records a bookmark for the pageg. Unfortunately, at the browsing client, the personalizes ha
access to only the current user’s model, and not the modedthef users. Web users are reluctant
to share with others such detailed information about thein browsing, so the personalizer must
base its adaptations on only the current-user model.

At the opposite end of the spectrum from the client, an irthlial web server can collect statistics
about accesses to all of its pages by all the users on the Websdrver knows exactly when each
page was requested, and everyone who viewed it. Howevesetlier cannot observe these visitors’
behavior at other sites, nor can it observe how the visitetsadly interacted with each page of
content {.e., how much they scrolled through it, if it was displayed in tv®wser window for
long, etc)?. In addition, information collected by the server may beanived by third-party agents
acting on behalf of one or more visitors.g, a web proxy cache [51] effectively masks many users’
accesses to a web page as a single access).

In between these extremes, an intermediate proxy can absgamy users’ behaviors browsing
many web sites, with the same detail as the web server. Thanistermediate proxy will know
that its many users all view the same set of web pages, buhatilknow, for instance, how much
the users have scrolled through the pages, or for how mueahttimcontent held the attention of the
user. A model built by a proxy trades off the completenessiefhodel—knowing all the browsing
for an entire population—with the detail of the model—knogithe minutiae of the interaction

(scrolling, dwell timesegtc).

2There are some “tricks of the trade” that allow a web servgiaimer more detailed information about how its content
is used by visitors; see Appendix C for more details.



15

2.2.4 Location of personalizer

Likewise, the personalizer itself may operate at a numbeliffgrent locations. Three locations nat-
urally arise—at the client, at the server, and at an intefatedoroxy—with implications for what
personalizations are possible with each choice. At thecte an intermediate proxy, personaliza-
tion over any scope of time is possible, from individual p&meany sessions across many sites. At
a web server, personalization may occur only for each iddi site—spanning sites is not possi-
ble. There also is a corresponding trade-off in locationefpnalization and the data available for
modeling users, as discussed earlig.(a client-side personalizer usually cannot access ssiger-

user models).

2.2.5 \Visitor's goal of web interaction

To improve the web experience, we must have some idea of wbgtates each visitor to interact
with a web site or web page. On one extreme is idle browsingsfifey.” The visitor is simply
viewing content that satisfies his or her interests, be theytsor long-term. For this motivation,
personalizing the site by adding content that generallgrésts the visitor would be useful. The
time the user spends viewing pages is not as important, sniing navigation time is only a
secondary concern. Of course, helping the user in findiregésting content is useful.

On the other extreme are users seeking a particular bit ofrimdtion, such as the location
of a class at a university or the cost of an airline ticket omaael site. We call this behavior
goal-directed browsing, and each session of such browsirinéormation sortie.? Information
sorties are frequent in mobile web browsing (from wirele§3AB or cell phones). The visitor's
behavior is single-minded and not interested in diversi@ven for other pages that match long-
term interests. Appropriate personalizations for infotiora sorties would reduce visual clutter by
eliding uninteresting content, and directly link to thedrhation sought, by predicting the user's
current goal. Scenario Two (Chapter 1) gave an examplenrdton sortie for the box score of a

baseball game (and the consequences of not personalizrexpierience).

3Thanks to Adam Carlson for suggesting this term.
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2.2.6 Model of web site

A dimension of more practical concern is how the web site isceptually modeled by the person-
alizer. A common representation is as the directed graphedf pages and hypertext links often
called asite graphor web graph A weakness of the site graph is that presentation of coment
pages and the conceptual relation between elements ofrtasteonflated—both are represented
as the same HTML. Instead, we can represent the site’s detziea, navigation, and presentation
separately, as suggested by systems suctras&L [40] or TIRAMISU [7]. With this decomposi-
tion, we can personalize each aspect of the site indepdpptartexample, by adapting the queries
that select what data to display, or by changing a single rgerE ML template that consequently
adapts many pages in the same, consistent manner. Thiseamgon of the content selection and
navigation is called thsite schema

Another model, related to the site graph, augments the niodé® model with the relational
structure that they share. For example, many pages at ammerce site are product description
pages and are described by the same set of attributes (proaluwe, manufactureetc); still other
pages are the main entry page, shopping cart pages, ancemadéyproducts (by manufacturer,
by product typegtc). This relational information allows the personalizer take generalizations
about how the site is used, and to apply adaptations obséovespecific pagese(g, a particular

product page) to other, related pages (other product pages)

2.2.7 Personalization agent

Although we have referred to a personalization agent ingbaition, the act of personalization can
be performed by a human webmaster, a human web user, an datbpraecess, or any combination
thereof. A human webmaster likely has the most accurateemtion of the content available, but is
expert in only one site. Also, the human webmaster is a bettle for performance—the webmaster
cannot personalize more than a few score pages per day.
The human visitor, on the other hand, has the most accurateption of his or her interests,

both at a single site and across many sites. The user is b&bped to adapt content to maximize
its value, but is likely not an expert in the content at ang.sioreover, users tend to be loath to

expend any effort to customize their own views of the Webneté could directly benefit them
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(e.g, in a survey we conducted for ourdNTAGE work [6], three-quarters of respondents organized
their bookmarks less than once per month).

The automated personalization approach removes the bofdmtaptation from both the web-
master and the visitor. The automated approach can adafentqer visitor, per page impression,
and can leverage models of many visitors and many sourcesntémt. Unfortunately, the auto-
mated approach is only as accurate as the models it can adnthe inference of visitors’ true
interests from their observed behavior is necessarily iepe A mixed initiative approach would
perhaps be the best of all worlds: personalizations woulgdrerated automatically, with the user

or web designer optionally providing guidance to clarifgfarences or incorrectly modeled details.

2.2.8 Summary

Table 2.1 summarizes the dimensions of web personalizafioaditional web sites, that offer a
static view of content for all visitors, occupy one pointlistspace: the target audience is the whole
web, the scope is many site-sessions, “personalizatioppéras at the server side, and changes are
made by the human web designer. Sites such as MyYahoo! tadjetdual visitors, over the
course, of many site-sessions, offering server side pafigation, but must be maintained by the
web visitor.

This thesis explores two particular points that are soméwtstant from traditional web sites.
One point is a client-based automated personalizer, foclwvie developed and experimented with
ProTEUSand MONTAGE*. PRoTEUSadapts content for goal-directed site-sessions antiMGE
improves information browsing across browsing-sessi@uth use the site graph model and target
individual users.

The other point is a server-side personalizer, for which wsighed the MVPATH algorithm
and developed relational Markov models. The server-siqdeémentation allows the personalizer
to take advantage of the greater amounts of data availadle-thdescribing users and the site itself.
The purpose of MNPATH is to improve goal-directed browsing for individuals andugps of related

users, and we experiment with representing the site as grajph and as a site graph with relational

“These personalizers are actually implemented as proxiesfvenience, but take no advantage of other-user models
when adapting content.
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Table 2.1:Space of web personalization.

Dimension Range of values
Scope of target audience Whole Web
Group of related users
Individual user
Scope (in time) of personalizationWeb session
Many site-sessions
Single site-session
Single page view
Location of user modeling Client
Intermediate proxy
Server
Location of personalizer Client
Intermediate proxy
Server
Visitor's goal of web interaction | Browsing for long-term interests
Browsing for short-term interests
Goal-directed browsing (“information sortie”)
Model of web site Directed graph of pages and links (site graph)
Separate data selection, navigation, and content
presentation (site schema)
Directed graph of pages and links, and relational structure
of pages
Personalization agent Human webmaster
Human web visitor
Automated
Mixed-initiative

information.

Other points in this space have been explored either asyisplpplications or in the research
community. Personalized portal sites, such as MyYahoo] 83MlyMSN [70], are user-driven
(each visitor must build his or her own personalized porgalyl limit the adaptations to a set of
webmaster-defined modifications. Perkowitz and Etziomiapdive web sites [82] use an automated
approach that transforms individual web sites.( personalization and modeling occur at the site)
for the entire Web audience. Their adaptive web sites goatiei users have short-term interests in

a particular genre of pages, and thus they build “index pagpages of links to pages relating to
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a common concept. Web agents such as Letizia [65] or Web\Wafél7] personalize pages for
individual visitors by adopting a site graph model and augiing the page representation with
additional features, such as text keywords. User modelgp@rsonalization happens either at the
client site (Letizia) or the server site (WebWatcher). Wéew a wider selection of related work in

more detail in Chapter 8.

2.3 A formal model of web personalization

In this section we present a precise statement of the webmeaigation problem. As we mentioned
earlier, personalizing a web site is very similar to buiglian adaptive web site [82] or an adaptive
hyperspace [17], but specifically targets the Web and adaptslividual users or classes of users;

we highlight other differences in our discussion. We begirdefining several terms.

2.3.1 Definitions

We model a web site as a directed graph whose nodes are patj@egase directed arcs are hy-
pertext links. More precisely, a web sit€ is a triple (P, £, 1T), whereP is a set of pagest, is

a set of hyperlinks, antll is a set of partitions of the pages ™ A pagep € P is a hierarchical
aggregation of content that appears in a web browser giveartecplar URL (Uniform Resource
Locator). The hierarchy of web content is meant to captueeviual aggregation of content on
the display. For example, a page is often composed of a rtaigbar along the top or left side,
and a primary content region in the center; the primary auniegion may be divided by horizontal
lines to create smaller regions of conteet. In practice, this hierarchy typically follows the tree of
HTML tags in the source of the page. Page thus represented as the root of this hierarchy, and is
acontent nodeA content node: is a pair(C, B) whereC' is a sequence of childref,, . .., ¢;) of

¢, andB is a behavior that imparts on its children. The elements@fmay be plain text, embedded
objects (such as images), or (recursively) content nodes. bEhaviorB is the action that affects
the human-viewable content. For example;ifere a “<st r ong>" node, thenB would render its
children in boldface; or it: were an ‘<a>" node, thenB would render its children as a hypertext
link.

Alink I € Lis a triple(ps, pa, a) Wherep; is the source page.€., the page on which the link
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appears)p, is the destination pageanda is the anchor text. When the anchor text is unimportant
or clear from context, we may abbrevidte- (ps, p4, a) asps—pa.

A partition T € II expresses some set of relations about the pagég.inFor example, a
partition may express the directory relation by segregapiages by their “top-level” directory
(e.g,/ homes/ corin/research/ and/ hones/ wel d/ i ndex. ht m would be in the group
/ homres and/ educat i on/ cour se- webs. ht m would be in the group educat i on). Al-
ternatively, a partition may express the conceptual typeawh pageg.g, personal home pages
versus course web pages versus research group pafespy also be hierarchical: for example,
a hierarchical organization of the pages according to séVevels of directories. Many such rela-
tional structures may be relevantii, soll is often a set with many elements.

A visitor is any agent that requests pages from a web site.ré/paticularly interested in mod-
eling human visitors, although we note that a substantiatiion of web requests is made by rolSots
(for example, during February 2002, as much as 20% of theestgtiowwy. ¢s. washi ngt on. edu
were made by robots). A visitaris represented as a p&ik, D) whose elements are, respectively,
the visitor's history of page requests and the visitor's dgraphics. A single reques is a tuple
(ps, pa; ¢) containing the source pagg’, destination page,, and context of the request. The
context embodies the time of the request, the device usedike e request, the topic of recent
browsing,etc. When clear in our discussion, we will use simplyto refer to the page, requested
in ;. The demographic® is ann-tuple of values that embody all the available informatitwowa
the visitor external to the web experience: the visitor's,agender, city of residence, annual income
bracket,etc.

By themselves, requests 1 are little more than a morass of low-level system activigcés,
but they can be refined into structure more useful for pedgzatan. In particular, see Appendix C
for common practices in cleaning and processing these [Blgs.end result of this process is a set
of session®r trails. A session is sequence of page requests made by a singée thisit is coherent

in time. That is, each subsequent request is made within $iertime window of the previous

Spa may also be the distinguished pageernal which represents any page outside the current web site.

SA robotis a software agent that requests web pages automaticaist démmon are wespidersthat crawl the Web
collecting pages for indexes such as Google [53].

"The sourcer, may also be the distinguished pagéernal, which represents any page outside the current web site.
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request. A trail is a session that is also coherent in sphege exists some link between each pair

of subsequent pages. More precisely, if we denote the timexpfestr; astime(r;), then a sequence

Vi,0 <i<n,time(r;) <time(ri;1) < time(r;) + timeout

andS is a trail if and only ifS is a session and

Vi,0 <i<mn,r — rip1EXists

The length of a session or trail i, the number of links followed. From the perspective of
the personalizer watching a visitor's behavior midway tlglo a session or trail, only prefix
(ro,-..,r;) has been observed. The session or saffix (r;11,...,7,), can only be hypothesized.

In summary we have:

w= (P.L,1) A web site is a directed graph of pages and links with
structure describing the pages

= (pss pa, a) A link has a source, destination, and anchor

pi= ¢ A page is its root content node

¢ = ({(ci1,....cix), B) Acontent node is a sequence of children and node
behavior; or

c;i = text A content node is plain text; or

¢, = object A content node is an embedded object

V= (H,D) A visitor is a history of requests and set of demographics

H=(rg,...,mn) A history of requests is a sequence

ri= (Ps:PdsP) A request has an originating pagg destination pagg,,

and context

2.3.2 Evaluation

To find the best personalized site, we requireegaluation functionF (W, p, ¢,v) — R that mea-

sures the quality of a personalized sité for a particular visitors and requested pagegiven the
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Given:
A web siteWW = (P, L, 1I),
A set of visitorsV = {vg. ..., v},

A distinguished visitow; = (H,D) € V,
An entry page € P,
An evaluation functionF (W, p, v);
Output:
A web siteWW’ = (P', £',T') that maximizesF (W', p, v).

Figure 2.1:Web personalization problem statement.

current browsing context. The quality of a site is a complex function of many things twsitor's
desire to find relevant information quickly; the cognitivest imposed on the visitor by presenting
a view of the site that is potentially different from the wisis expectation; the site administrator’s
desire to deliver content efficiently; the content ownegsice to sell products or influence the vis-
itor; etc. In our work, we concentrate on only a subset of these aspeatsely, the value of the
site from the point of view of the visitor. In particular, weillsnot directly model the cognitive
load required when viewing a page, but instead will encoéeride-off between predictability and

improvements to the interface in the bias of our algorithms.

2.3.3 Problem statement

We can now state precisely the web personalization prolileendlefinition appears in Figure 2.1.
We call an agent that generates a personalized web site aiteepessonalizer. A web site
personalizer may run on the server itself, on the visitorsising client, or at an intermediate proxy.
Note that the web personalization problem differs from tHapive web site problem defined by
Perkowitz and Etzioni [82] by optimizing the content for atifiguished visitow;, based on context
¢ and using a richer model of web site and evaluation. In theameder of this dissertation we will
explore several forms of web site personalization in defBiie next chapter presents our general

approach, followed by chapters discussing our implemesystems.
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Chapter 3

PERSONALIZATION AS SEARCH

In this chapter, we present ourRBTEUSframework for personalizing web sites. We frame the
task as a search problem, similar to that proposed by Petkamd Etzioni [79, 82]. Within this
framework, a personalizer follows the two-step approacttired in Section 1.2, separating user
modeling and adaptation. In essence, our web site pergenglerforms a search through the space
of possible web sites. The initial state is the original wéb sf unadapted pages. The state is
transformed by any of a number of adaptation functions, thatcreate pages, remove pages, add
links between pagegtc. The value of the current stated, the value of the web site) is measured
as the expected utility of the site for the current visitod émowsing context. The search continues

either until no better state can be found, or until compateti resourcese(g, time) are exhausted.

3.1 State representation

Each state in our search spagés an entire web sitdy’; thus,S = {Wy, Wi, ...}. Although an
actual implemented system (such as ours, as we discusk ri@grchoose to adapt only a single

page at a time, we model the entire web site to allow adaptatio be made anywhere in the site.

3.2 State evaluation

We estimate the quality of the personalized web site as theated utility of the site from the point
of view of the requested pagé&z(W, p, ¢,v) = E[U, 4(p)]. Intuitively, the expected utility is the
sum of the utility the visitor receives by browsing each pagthe site, discounted by the difficulty
of reaching each page. For example, following a link at theedbthe current page may not be
difficult, but reaching a page many links away will requireadiing (to find the links) and waiting
for intermediate pages to download, which can be partiulangthy over a wireless network. The

graph nature of a web site naturally suggests a recursiversal to evaluate the site, starting from
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the current page. At each step in the traversal, (at each page in the site), we define the utility
of the page as the sum of itgtrinsic utility—the utility of the page, in isolation—and thextrinsic

utility—the utility of the linked page’s We make these concepts more precise below.

3.2.1 Web site model for evaluation

We transform the search state model slightly to make evaluaasier. We observe that, while
adaptation requires detailed internal structure of eadhpege, an evaluation function that is based
on a human visitor's view should not be exposed to this irtestructure, but should see only a
linear sequence of text and links. Thus, instead of usingré®based model, we use only the
leavesof the tree in their left-to-right order.

The leaves of a page; and their ordering impose a linearization of the contentjctviwe
subsequently decompose into a sequence of “screens” . . , sim), €ach of which represents the
web content that can be seen in one window of the visitor's/bes. A single screesy; is composed
of web contenti(e., the text and graphics that are displayed), which we derw#§;aand a set of
links 131, . . ., 1;;; that appear on the screen. In summary:

Pi = {840y Sim) A page is a sequence of screens

sij = (Tij. {lijr,-- -, lijx}) Each screen contains web content and links

3.2.2 Expected utility

Because our goal is to maximizxpectedutility, we must be able to calculate the expectation
that the visitor will view any given piece of content in théesi To this end, we explicitly model
the visitor's navigation through the site. We consider tWeraative but related models of visitors’
action. In both, we assume the visitor has only a fixed seawigation actionst his or her disposal.

Specifically, if the visitor is at screen;, then the set of available actiong:is

A ={agerolls 0115+ @}

In many ways, the intrinsic and extrinsic utilities are amus to the authority and hub weights, respectively, from
Kleinberg's work [59].

2The visitor can also simply stop browsing at the site. We rhtftle action by creating a specisiop page ini’ to
which every other page links. When a visitor stops browsheger she implicitly follows the link to thetop page.
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That is, the visitor may: scroll down to the next screen (asgg thats;; is not the last screen of
the page); or follow any link that appears on the screen.

The two models differ in whether they assume the actions areialy exclusive. In the first
model, which we call theession modghctions are not mutually exclusive—the visitor may parfor
anumber of actions at any screen, follow three different links (each time returning to thigsen
with the browser’s “back” button) and scroll to the next saref content). Thus, in this model, we
maintain independent probabilities that the visitor wilké each action, and these probabilities
will generally not sum to one. This model is appropriate wiiempersonalizer will adapt the site
infrequently €.g, once per day, or once per session), or when the sequencewbysly-visited
pages is unimportant.

In the second model, which we call tiiil model the actionsare mutually exclusive—the
visitor may take only one action. Further, this model makessimplifying assumption that all the
content on a page displays in one screen; thus, this modaigiscroll actions.g., it considers only
navigation actions). The trail model is appropriate if tleegonalizer adapts the content after each
request—that is, if the personalizer assumes the visitbhnai take multiple actions without giving
the system another opportunity to adapt the site or currage pThis model effectively calculates a
probability for each possible trail of page requests thearisnay take (given the recently-observed
trail prefix), and is thus best suited for personalizers tiegjuire or can take advantage of this
sequence information.

Given a model of navigation (either the session model orrdierhodel), we can formulate the
expected utility of the site. Recall from Section 2.3.3 tthet evaluation functiotF takes as input
the web sitéV, the page requested the browsing context, and the current visitor model, and
calculates the quality of the site. If we I8t andp be the personalized versions Bf and the

requested pageandUy,4(p) be the utility ofp for visitor v, then:

F(W.p,¢,v) = E[Uvy(p)]

In other words, as we observed earlier, the evaluatidivaé the product of a recursive traversal
through the site, and this equation states thiatthe root of that recursion. Similarly, because only

the first screen of is initially visible to the visitor, we calculate the expedtutility of p (or anyp;,
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in fact) as the expected utility of its first screen:

E[Uv(pi)] = E[Uv,g(si0)]

The expected utility of a single screep; is the sum of its expected intrinsic and extrinsic

utilities:
E[Uvg(sij)] = E[lUvg(si;)] + E[EUv(sij)]

The intrinsic utility of a screen measures how useful theaals content is toward fulfilling the
visitor's information goal, in isolation of the rest of theety site. Typically, the intrinsic utility will
depend on the visitor model—the past history and demogeapi more detailed description of in-
trinsic utility depends on particular assumptions regagdiisitor interests and goals; see Chapter 4
for a discussion of the method we used rdTEusand Section 7.4 for our approach inWTAGE.

The extrinsic utility, on the other hand, measures the vafieescreen’s connections to the rest
of the web site. As we noted earlier, the visitor may reacleottarts of the web site by taking
navigation actions from the current screen. Associateti eétch of these actions is a probability
that the action will be taken, denoted B (actior|¢). In addition, actions may impose a cost
to the visitor (.e.,, a negative utility); these costs afe and~, for scrolling and following a link,
respectively. These costs subtract directly from the ebgukatility of the action, and represent the
cost to the visitor (in time, monegtc) of taking the action. In summary, if we letest(l;;;)
be the destination page of link;;, then the extrinsic utility of screer;; is a sum weighted by

probabilities:

E[EUyy(si5)] = Pr(scroll|¢)(E[Uv.g(sij+1)] = vs) +

[Py (Lijel ) (E[Uv, (dest(lie)] — w)] (3.1)
%

We can see that Equation 3.1 introduces the recursive coempaifi the evaluation function, by

referencing the utility of other pages and screens. Thersemuis halted when the expected utility
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of a screen or page is less than the cost of reaching thatritdnte, whenE[Uv4(s; j+1)] < 7s OF
E[Uv,g(dest(liji))] < n).

The equations given above and a formula for intrinsic ytitiompletely determine the utility of
an adapted page However, the equations given, evaluated verbatim, woatda computationally
tractable—they call for a screen-by-screen decompositf@otentially every page in the entire web
site. For small sites, this fine-grained analysis may beiples$ut many sites have hundreds if not
thousands of static web pages, as well as potentially Bsstdynamic web pages—far too many to
examine individually. Fortunately, the evaluation can kedmcomputationally much simpler with
the aid of a few assumptions and simplifications. We desdhbse conditions and how to take

advantage of them as we present our implemented systems.

3.3 Search control

Any state-space search method is, in principle, applicébleur problem, but we found that a
simple hill-climbing search control method worked well¢sEable 3.1). Throughout the search, the
personalizer maintains the best-known state sdB@stStateand a current search seBdarchSeed

At each iteration in the search, the personalizer produltasades one “step” away from the search
seed by applying the search operators (described belodyegtaces the search seed with the best
of these new states. The search stops after a fixed numberatidgns and the personalizer returns

the best state found.

3.4 Search operators

The search operators make individual adaptations to thesiteb For example, an operator may
create a new page, or add a link between existing pages, ademblock of content from one page
into another. These adaptations may affect any part of thej®., a single page or link, or many

pages), but in our work we concentrate on operators thatenfle only the requested pageThe

specific search operators we examine are detailed as wenpezseh system in this dissertation.
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Table 3.1:Search control. The Search function takes a web site, visitor model, browsing context,
and requested page as input and returns the personalieddl sitat maximizesF (W, 5, ¢, v).

Inputs:

W Unadapted web site

Visitor for whom to personalize
Context of current browsing session
Next page requested by

SIS S

Search(W, v, ¢, p)
BestState— W
BestValue— F (W, p, ¢, v)
SearchSeed- W
For K iterations:
S < Generate new states frofearchSeed
s « State inS with greatestF (s, p, ¢, v)
SearchSeed- s
If value of s > BestValue
BestState— s
BestValue— F(s,p, ¢,v)
ReturnBestState
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Chapter 4

THE PROTEUS ARCHITECTURE

This chapter presents our first implemented system for wiebpsirsonalization: ROTEUS'.
ProTEUS follows the search framework described in the previous traalthough we describe
a few implementation-specific issues here. The goalRbREUSIis to improve the mobile web
browsing experience by personalizing content. Visitosase the Web from mobile clients, such
as wireless Palm VllIs, andR®TEUS acts as an intermediary between the visitor and the Web.
PROTEUStreats the entire web as a single “site,” in the sense tratrRUS builds a single model
based on visitors’ behavior at all sites viewed. We evati&@eoTEUswith a small field study and
present those findings in Section 4.5.

ProTEUS follows the architecture presented in Chapter 3, and weeptelsere the details of
the system left unspecified by the high-level architectur®oTEUS employs the search control
described earlier, and uses expected utility (with a sessiwigation model) to evaluate each state.
Figure 4.1 shows the architecture of our implementation. n&e introduce the search operators,

followed by details of how we calculate the intrinsic usilibf content for our visitors.

4.1 Search operators

PrROTEUSemploys three search operators to adapt content on thebite:content, swap-siblings,
andadd-shortcut. These operators manipulate the content on the requesged @iéher eliding or
rearranging content, or adding navigation links. We liri elision and rearranging adaptations to
operate only on select regions of the page catledtent blocksto ensure the operation does not
change the meaning of the content. The next section desdtiese content blocks, and we follow

by giving more detail about each adaptation.

*Much of the material presented in this chapter was publisinéte 10th International Conference on the World Wide
Web [4].

30

3Request Personalizer . =Request
» Personalize >
ltHTML content || &HTML WmiN_Com
—= Visitor
=== Models Model |, Access
browser

Figure 4.1:PROTEUS architecture.

4.1.1 Content blocks

A content blockcorresponds to a conceptually coherent region of conteth®page that an adap-
tation may manipulate. For instance, content iadi v > tag can be manipulated, as can entire lists
(<ul >, <ol >), but a single emphasized worg€nt>) cannot. In addition, blocks can be nested.
Figure 4.2 shows a typical decomposition into these cortétks, for Yahoo!'s finance portal

(fi nance. yahoo. con). PROTEUSuses the following heuristics to identify content blocks:

A paragraph of text. Regions of text in the HTML file that cantanly small spans of

markup €.g, links, emphasized wordstc) are aggregated into paragraphs even iknm>

tag existed in the original document.

An HTML header h1>, ..., <h6>) and all the content following it until the next header

of the same “level” or higher. For example, af2>, all the content following it, including
perhaps<h3> headers, until the nexth2> or <h1>. This block also is limited in scope

by the header tag’s parent node in the HTML parse tree.

An HTML table (<t abl e>).

A single row in a table €t r >)2.

2Note that, although theontentsof a table row or cell may be adapted, we never remove the s®ifjto ensure that
the table remains formatted correctly.
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Figure 4.2:Content blocks. Solid black borders outline blocks of content that may beipaated
by search operators. Note that these blocks may be nested.

e Asingle cellin atable{t d>).

e Alist (<ul >, <ol >, or<dl >).

e Alistitem (<l i > in ordered or unordered lists, or both tkelt > and<dd> from a defi-

nition list).

o Adivision (<di v>).

e Aform (<f or m>).
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4.1.2 elide-content operator

The elide-content operator replaces a subtreejofvith a link to the original content in a fashion
similar to Digestor [13] (Figure 4.3). Content elision tesdoff screen space and visual complexity
of p for the cost the visitor may incur to view the elided conterg.(to follow the link). Note that
elided content is still available—the visitor can alwayadie the original content by following the
replacing link. The anchor of the newly created link is dedvrom the first several words of the
elided content; RoTEUSIimits the anchor length to three words of the first HTML taglie block.
This choice of anchor is useful when the content block staitts an HTML header tag (hence, the
anchor text would be the header text), but can perform pafgr example, the block contains an

unrelated advertisement near the top.

4.1.3 swap-siblings operator

The second operatoswap-siblings, permutes two subtree siblings s hierarchy. The result
of swap-siblings is to swap the positions of the subtrees’ content in the netipage: ifc; is
the left-sibling ofc,, then swapping; andc, will place the content o, abovec; in the browser
window. Like elide-content, swap-siblings is allowed to swap only preidentified content blocks.
In addition, swap-siblings may not swap any blocks that are implicitly ordered, suchrdered

lists (<ol >) or text (<p>). Figure 4.4 shows an example @fap-siblings.

4.1.4 add-shortcut operator

The final operatoradd-shortcut, creates a new link frorj to some other page i (Figure 4.5).
BecausdV may have an arbitrarily large number of pagadd-shortcut does not consideall new
links from 5. Insteadadd-shortcut considers only those pages that can be “reached” by follpwin
at mostk links from (the original version ofj. Thus,add-shortcut may create a link fromp to
another page that effectively “shortcuts” a longer pathriéd. For instance, if the visitor previously
followed the patty — p, — py — p. — pg, add-shortcut may create a link directly fronp to
pa. Furthermore, ROTEUS places the new linp — p, next to the linkp — p,, based on the
assumption that, if the visitor previously reacheggby first going throughp,,, and the visitor wants

to find p, again, the visitor will look toward the link tp, first. Of course, ROTEUSknows to place
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Figure 4.5:Shortcut links. PROTEUShas created a new shortcut link on the this page: “UW CSE
Faculty”. The link is placed near the most common startingpaf the path it shortens.

p — pg Nearp — p, only if the visitor actually took the path — p, — --- — py before. If the
visitor has not established this path before, th@oP=us places the link based on the patither
visitors at the site have taken. That is, if there are mankpftomyp to p,, PROTEUSWIll choose
the most popular path and place the shortcut link near thesfep along that path. The anchor text
of the link is chosen as the destinatior’$ i t | e> (if it exists), the first<h1> (if it exists), or the
URL.

4.2 Web site evaluation

As we stated in the previous section, we evaluate the setatdsdy calculating the expected utility
of the web site for the visitor (RoTEUSignores the visitor browsing context). The previous sectio
described the framework for this evaluation, but left soretails to the actual implementation of

the system. Below, we describe these choicesRoTEUS
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4.2.1 Probabilities and costs of navigation actions

ProTEUSemploys the session navigation model, as described indpe®2.2. ROTEUSestimates
the probabilities that the visitor takes each of the actiaveilable at screes;; by measuring the
frequency with which the visitor took the action in the paBar example, the probability that the
visitor follows a link ps;—p, is the quotient of the number of sessions in which the visitewed
pa Sometime aftep, divided by the number of sessions in which the visitor viewedi.e., the
probability of the linkps;—pg4 is simply the probability the visitor will reach; sometime aftep;).

The probability for scrolling is derived empirically and feld constant. ROTEUS presently
uses a probability of 0.85 that the visitor will scroll to thext screen, although this number can
be determined by collecting more information from the asg browser (for instance, dividing up
every conceptual page of content into HTML pages that fit gyxadthin one screen, and counting
how often the visitor requests each additional screenfabotent; such a technique is used by the
Daily Learner [15]).

Actions impose a cost on the visitor. Through empirical eatibn, we set the cost of scrolling,
vs in Equation 3.1, at 0.01 and the cost of following a link,at 0.05. These values tended to work
acceptably in practice, although we found that our resuksewargely insensitive to their exact
values. These costs subtract directly from the expectdityuif the distal page, which ranged in
value from 1.0 or 2.0 all the way up to over 100.0, with the disiation between high-quality
and low-quality pages at different levels for different igseln practice, the dominant factor in the
expected utility equation is the product of probabilitidgaking chains of actions. That is, for all
but the most probable links the visitor would follow, the tidution of a remote page to expected
utility is already vanishingly small, irrespective of thest of following the link. The situation is

similar for scrolling through the screens of the currentgpag

4.2.2 Intrinsic utility

Our implementation measures the intrinsic utility of a sereas a weighted sum of two terms,
which relate to how the screen’s content matches the Visipweviously viewed content, and how

frequently the visitor viewed this screen.Tif; is the viewable content on screey), then:
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WUy (sij) = wgim- simy (135) + Wfreq freqy (sij) 4.1)

simy (T;;) is the similarity betweeff;; and a model representing the visitor's web content in-
terest. In ROTEUS we are concerned only with the textual content of the pagd,ignore any
graphical elements. We model the visitor and the requesiatent asvord vectors vectors in an
n-dimensional space, with each word that appears on any wgb g a different dimension. We
omit words from a fixed set of common “stop words,” such as'{lgu’, ‘the’, ‘an’, etc. We scale
both vectors according to a TFIDF scheme [87], which weigbsde proportionally to how often
they appear in the document (in this case, the visitor or oesi model), and inversely propor-
tionally to how often the words appear amy document. We explain this approach in more detail
next.

Let wr;; be the word vector for conteri;;, and consider a particular worel The value of
wry; (k) is the number of times worél appears anywhere ifi;;, divided by the number ofther
pageson which wordk appears. For instance, if the word “Microsoft” appearedetgnes inT;;,
but appeared in a total of 119 documents, thef) (“Microsoft”) = 8/119. The numerator is called
the “term frequency” and the denominator is called the “doent frequency.”

Let wy be the visitor's word vector, and again consider a whbrdnstead of simply summing
the number of times the visitor has encountered the widoefore, we compute a weighted sum in
the following manner. Any words on a page at the end of a bragvsession receive a high weight;
if the visitor stopped browsing after that page, then thafepanore likely than not, answered the
visitor's needs’ On earlier pages in a browsing session, any words nedintkeselected receive a
moderate weight, while the other words on the page recdile dir no weight. We assign moderate
weight to link anchor words because these words caught #i®ors eye while browsing; these
words must have some significance for the visitor. The teequency for a word: is thus the

weighted sum of all the occurrences of wdrdn the visitor’s history. The document frequencies,

30f course, a visitor may end a browsing session without eatsfging his or her information goal, and, worse, this
model would reinforce whatever dead-end the visitor stdpgte However, our experience indicates that, for a wide
range of information-seeking goals, the last page in asessbst ofterdoessatisfy the visitor’s task, and does contain
pertinent content. An interesting line of future work wolde to improve how the content model is populated from the
access logs.

38

by which the entries i, are divided, are the same as fof;, : the number of web pages on which
word k appears.
The similarity betweelT;; andV is thus finally computed as the dot product of the word vectors

normalized by their lengths:

wr;,; Wy

simy (Ty) = 7——
w1 - [Jwv |l

The freqy (s;;) term in Equation 4.1 measures the utility 9f by the number of visits to its
parentpagep;. Intuitively, each visit top; expresses an incremental unit of value given to the
page and we distribute this value uniformly among the screertsusTireqy (s;;) is calculated by
counting the number of visits tg, and dividing by the number of screens into which it decorepos
We balanced the weightsg;jpy, a”d“‘freq in Equation 4.1 to trade off each additional page view by
the visitor for roughly 1% of text similarity. As with the aoh cost values, this choice of value

seems to work well in practice, but this value can be detezchempirically.

4.3 Heuristic optimizations

In the last chapter, we noted that calculating expectedyutising the given equations verbatim
would be computationally intractable—the equations imlyeed to recur through the entire web
site, evaluating each screen of content. Fortunately, wentake this evaluation more tractable
with two heuristics. The first heuristic is to assume thatdbst of scrolling a page of text is much
smaller than that of following a linky < ~;). In this case, the cost of viewing, say, the second
screen on a distant page is dominated by the cost of readangage; + s ~ ;). Thus, we may
treat all pages but as single-screen pages and can ignore the recursion dueotlingcon these
pages.

The second heuristic places a bound on the number of pags#&leced when evaluating.
We implemented a priority queue into which pagesand screens;; are placed, ordered by the
maximum probability that the visitor will reach the respeetcontent. For example, the first screen
on p has probability 1.0, the second screen probability 0.88, atink very frequently followed

from the second screen (say, in nine sessions out of ten)rbhalglity 0.85 x 0.9 = 0.765. We can
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tune exactly how much computation is spent evaluagibg setting a threshold on the probability—
any content that has a lower probability of being viewed wiithply be ignored in our computation.

This threshold gives us a direct “knob” that we can turn tdéraff performance for accuracy: the
lower the threshold, the more accurate the evaluation,eae¥pense of recurring through more of

the site.

4.4 Performance

PROTEUSISs written in Python and uses a MySQL database senmnTRUSruns as a proxy through
which mobile clients connect. To adapt a remote web sigTRUS retrieves the requested page
and manipulates it locally, retrieving additional pagesrirthe remote site on demand. Our system
can generate each alternative personalization in 10 etlisds and produces an average of 40
adaptations per search iteration. Evaluating each peigatian requires roughly 500 milliseconds
using a probability threshold of 0.001. In our experiments ran RROTEUS for 20 iterations of
search for each page, which typically produced a persatfimge in four to seven minutes.

With these rates, RoTEUS can successfully adapt a web site offline in a reasonable rainodu
time, but is not yet fast enough to produce personalizedecwat “click-time.” However, two simple
enhancements can substantially increase the speed of stensyFirst, the single most-expensive
operation is retrieving content from the remote host. Ostesy caches as much information locally
as it can, but ensuring that the local information is ac&yrand collecting new content from remote
hosts, consumes a great deal of time. Hd¥euswere installed on the remote web site directly,
this overhead would be eliminated. Second, although Pyithan excellent prototyping language,
its performance in certain areas, such as string manipulais less than ideal. Our later systems,
such as MNPATH (Chapter 5), are written in C++ and perform more than two maé magnitude

faster. We are confident that an equivalent speed-up istpessr PROTEUS

4.5 Evaluation

In this section we present the results of an experiment tratigies insight into the effectiveness
of our system. In the experiment, we track ten test subjdmisivsing habits on their desktop

workstations and then compare how effectively these stdbjesn use a suite of personalized and
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non-personalized web sites on a wireless Palm Connecteah2eg. We measure visitor effort in
terms of both time to attain the goal and the amount of nalaganumber of scrolling actions
and links followed) the visitor must take. In the followingksections, we present our method of

collecting data, details of our experimental setup, andresults and analysis.

4.5.1 Test subjects

Nine of our ten user study participants were graduate stsdanthe University of Washington;
the other was a faculty. All participants had extensive eepee on the Web (all were computer
scientists), but only three had used handheld computeesigixely before. None of the participants
had browsed the web from a mobile device, and few users wenédida with the web sites we

examined in our study.

4.5.2 Data collection

A key element in our experiment is a body of detailed accegs for the test subjects’ browsing
behavior. To produce these logs, we instrumented everestibjdesktop browser to make all its
requests through a proxy, and to not cache any web contenis, Plages the subjects viewed and
links followed were recorded in the lofys We then asked the test subjects to perform a suite of
information-seeking tasks (“information sorties”) thaewrovided each day. The tasks dictate a
starting page and we directed the subjects to attain thaeilsdiy browsing exclusively at the given
site. The complete list of questions used in our experimppears in Appendix A. We use two

example questions for illustration here:

e “Find the current stock price for MSFT, starting fat nance. yahoo. conf. We varied
the particular stock ticker symbol among a number of compgiated technology stocks

(MSFT, YHOO, AMZN, etc).

¢ “Find the make and model of the editor’s choice digital caareicnet . conf. The variable

is the consumer electronics device, which we selected frowng several choices.

“The only page views missing from the logs were pages visittguthe browsers Forward and Back buttons.
However, because every new page request included the URheofeferring document, we could reconstruct the
entire sequence of page requests, with the only exceptitoopé of Forwards and Backs.
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The tasks in the seed suite were drawn randomly from a digioib of parametric questions
(i.e., the tasks contain variables that permit many similar batichentical questions) and represent
a coherent model of visitor interestd, the goals were typical of a visitor whose interests did not

change substantially over time).

4.5.3 Evaluation with a mobile device

In our experiment, we asked the test subjects to browse tiewité a wireless Palm Connected
Organize?. The subjects were given a suite of information-seekindstmeachieve, drawn from the
same distribution as the goals during the original seededising phase. Note that about half of the
goals in this test phase were identical to the goals fromekeead-browsing phase (although not all
of our participants answered all the goals during the trjmhase). This duplication is acceptable
in our experiments, because visitors frequenmtlil have the same goals on a number of occasions,
for example, when the answer to a question changes with g (What is the stock price of
MSFT today?”). During this experiment, we measured the number of regiog actions taken and
amount of time required to meet each information-seeking.go

We asked test subjects to answer the suite of questions:twinee, on the unmodified web
site, and once on personalizedrersion of the target site. We reversed the order of unmatidied
personalized site on half the test subjects, to reduce atigipant training effects. We personalized
the target site for each visitor by allowingRBTEUSo first build a model of that visitor, based on
the subject’s past seeded browsing data (their desktopdbemd browsing data), and then to create
adapted pages for the test suite. We did not personalizey @agge of every web site because
of the sheer volume of the task—all the sites in our study aiaetl dynamic web content and
potentially an unlimited number of pages. Because our otimeplementation is not yet fast enough
to adapt a single page in real-time, we personalized the bitéore the subjects performed their
tests. We chose the specific pages feoPEUSto adapt by using our human judgment of where
the subjects would likely visit during the test. Note thatdfie not influenced theersonalizatiorat

all—we simply selected the subset of pages thrdPEUswill personalize, purely for the sake of

5We connected a Palm VII to a Ricochet wireless modem for nétwonnectivity and used EudoraWeb [89] as the
web browser on the Paim.
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Unmodified
Personalized

Number of links followed

Figure 4.6:Links followed. Pairs of bars represent questions in the test suite and deseat as
they were presented in the experiment. Each pair is labeitie web site used in the information
sortie, and the heights show average number of links foltbwe

efficiency. On average, ®®TEUS personalized 21 pages for each subject, which represe@8d 3
of the subjects’ page views during the experiment. BecagseErPuspersonalized only a subset of
the actual pages viewed, our results present a lower bourtdeobenefit the visitor would receive
and tend to understate the full impact personalization dibale for a mobile visitor.

A priori, we anticipated two results from this experiment. First, amticipated that, to reach
their information goals, the subjects would require fewavigation actions and less time on the
personalized site than on the equivalent unmodified sitecol8& we anticipated that subjects’
behavior would become more efficient as they repeatedlygatet the web sites on the Palm device.
To mitigate this “subject-training” effect in our resultse alternated for each visitor which version
of the web sites we presented first—personalized or unmadifighus, both versions of the web
sites received equal advantage in our experiment as a whole.

Figures 4.6, 4.7, and 4.8 compare links followed, scrolimgons required, and time spent to
attain each goal on the personalized versus unmodified weh shlong they-axis is the amount
of effort—time in seconds or number of links or scrolling iaos—while along thec-axis is the
location of each goal listed chronologically. Results floe uinmodified sites appear as the left,

darker column while results for the personalized sites arengin the right, lighter column. These
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Figure 4.7:Scrolling actions required. Pairs of bars represent questions in the test suite and are
ordered as they were presented in the experiment. Eachsgalvéled with the web site used in the
sortie, and the heights show average number of scrollingrszneeded to complete the task.

graphs show that, for many of the siteRTEUSS personalizations appear quite usefuRdTEUSS
addition of shortcut links and elision of unnecessary cointeduced both the time required and the
amount of visitor navigation at the sites. However, the gialdo illustrates a number of weaknesses
in our implementation. These are not fundamental flaws irepproach, but rather implementation
issues that must be addressed by a successful personalizer:

Overly aggressive content elision.For a number of personalized pages, particularly those
for thecnet . comandf i nance. yahoo. comdomains, RoTEuselided blocks of content that
contained the links for which the visitor was looking, thgyerequiring more effort to attain the
information goal. ROTEUSS visitor model incorporates both content and structuraffgrences,
but it is clear that the weights of these preferences mustbed: carefully. As an extension to
PROTEUS one could incorporate eonfidencemodel that predicts how accurate each component
of the model will be on each page. For example, on a page comggpredominantly links, the
confidence in the structural model component is much grétaderfor the content.g., word-based)
component. That is, the personalizations on a page of lihksld depend more strongly on the
probability the visitor will follow each link, and less stigly on the textual content of each anchor

word. Additionally, the confidence in the structural compondepends on the number of times the
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Figure 4.8:Time required. Pairs of bars represent questions in the test suite and deesat as they
were presented in the experiment. Each pair is labeled Wwéhwteb site used in the sortie, and the
heights show average time in seconds to complete the task.

visitor has viewed the page. If the visitor views the pagguently, and follows the same two links
each time, then the personalizer has much higher confidéwatetttose links are very important
elements of the page.

Another side effect of overly aggressive elision was thatial cues used by visitors to orient
themselves were removed br®&TEUS Without these cues, visitors had difficulty navigatinghvrit
each page. The cues themselves are apparently “not iritefeats far as the user model would
predict, but clearly do have some use for the visitors.

Inconspicuous elision links.We designed our method of eliding content explicitly to tate
incorrect elision of content by ®bTEUS PROTEUS creates a link in the place of the removed
content. However, the subjects in our study often could ndittfie link to the elided content, usually
for one of two reasons. First, the link anchor text for elideuhtent was taken from the first few
words of the removed content. For the examples in Figureh& amchors are intuitivee(g, “Mutual
Funds...”). However, when the elided content block comtdjrior instance, an advertisement at the
top, PROTEUS selected the text from the advertisement as the link anclt@ary, an unintuitive
choice. Unfortunately, automatically finding a brief sunmynaf a block of text, much less a page

of content, is an open research problem [68]. A second reabsion links were difficult to find
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was that their visual appearance was no different from therdinks on the page. Thus, the visitors
could not tell when a link led to elided content, or when thek Isimply led to another page. A

simple solution to this problem is to add a unique annotatielision links, or find some other

approach to make elision links more salient.

Over-estimated navigation probabilities. On graphically intense pages, suchcam. com
orcnet . com the visitor can easily find his or her desired link when using desktop browser.
However, on the mobile device, such a page typically appesues morass of links and text, often
indistinguishable from one another, and the visitor hasigdéficulty in locating the link of inter-
est. Unfortunately, RoTEUScalculates the probability that the visitor follows a linknply as how
often the visitor has followed the link before while browgian thedesktopwhen the visitor is un-
encumbered by the display constraints of the mobile devibeis, RROTEUStends to overestimate
the link probabilities and, instead of adapting the pagesthuce the visual complexity, will search
for (what it views as) more useful personalizations, suchdding new shortcut links. In another
line of future work, one could expand the link probabilityigsate to take linksalienceinto account,
which will discount the value of visually complex pages and@irage ROTEUSto create simpler
pages. An alternative approach would be to explicitly mdbeldifferences in navigation behavior
between desktop and mobile users, and apply this functitimetobserved desktop model to create

an approximate mobile model.

4.6 Summary

This chapter described our initial attempts to personalie® sites, in this case for mobile visi-
tors. Our experiment provides evidence that search-basesbpalization is an effective means of
retargeting existing content to mobile clients. Howeven; implemented system displayed some
weaknesses, in particular slow run-time performance assipte detrimental changes to the site.
In the next chapters, we address both these concerns, bgrosiing on theadd-shortcut adap-
tation. Adding shortcut links rarely degrades the web epee and frequently improves it. In the
next chapter we describe an algorithm that identifies usdfoltcut destinations very efficiently,
and subsequently we refine this approach to take advantathe oélational structure inherent in

most web sites.
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Chapter 5

THE M INPATH ALGORITHM

In this chapter, we concentrate on a single personalizagidd-shortcut, that had a high impact
in our PROTEUSexperiment. We develop an algorithm that finds shortcutsiefftly, and in partic-
ular leverages much more of the web server log data to builetmatiable navigation models. In the
next section we present ourIMPATH algorithm, followed by an evaluation of several instamoias

of MINPATH on data from our institution’s web siteww. cs. washi ngt on. edu).!

5.1 Finding shortcuts with M IN PATH

We assume the visitor is on an information sortie—lookingtfee page at the site that will answer
an information need. Our goal, then, is to help the user rélaghtarget page quickly; we do so
by providing shortcut links to visitors to help shorten lomgils. Our system adds shortcut links
to every page the visitor requests. Ideally, the shortcutgested will help the visitor reach the
destination of the trail with as few links as possible. Weestae shortcut link selection problem

precisely as:
e Given: a visitorV, a trail prefix(pg, . .., pi), and @ maximum number of shortcuts

o Output: alist of shortcuts linksg;—q1, a1, ¢1), ..., Pi—Gm, @m, cm), Wherea; is the anchor
of link p;—g¢;, the link is placed as content nodg and the lisminimizesghe number of links

the visitor will follow betweerp; and the visitor's destination.

Each link selected includes three parts: the link destinathe anchor shown to the user, and the
location on the source page to place the link. In this thegisconcentrate on only the first of these

challenges, and we evaluate our approach using a simulatgdthat ignores the anchor text and

Much of this chapter appeared in the 17th InternationaltIdamference on Attificial Intelligence [3].
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location. However, a reasonable strawman approach coelthesdestination pagesti t1 e>, if
it exists, or URL as the anchor, and place the link in a fixegimm region on each source page.

The choice ofm, the number of shortcuts to add per page, is an importantamjs given as
an input to the problem. Large valuessef for instance, equal to the number of pages on the site,
would allow a personalizer to add a shortcut to every pagenThe user could “easily” navigate to
any page on the site with a single link. Of course, such a pefszed page would be unusable: the
page would be unmanageably large, from the standpoint aferamg the HTML, and particularly
from the cognitive standpoint of the visitor understanding content. Instead, we anticipate that the
human web site designer will chooseto be small, for example, five or fewer. With a small value
of m, and by placing the shortcuts in a consistent position oh page in the site, the designer can
minimize the added cognitive cost of displaying dynamicteahon each page. Thus, in our work,
we assume the site designer has made such choices, and we elplictly model the cognitive
cost in adding shortcuts.

The last page in the trail prefiy,, is the page the visitor has requested most recently, and the
page on which the shortcuts are placed. We calculateatimgsthat a single shortcyi;—q offers
as the number of links the visitor can avoid by following tshbrtcut. If we know the entire trail
T = (po, .- ,Dis- -, Pn), then the number of links saved py—q is:

j—i—1 if g=p;forsomei <j<n
0 otherwise

That is, if the shortcut leads to a page further along the, tlaen the savings is the number of

links skipped (we subtract one because the visitor musfaitibw a link—the shortcut link). If the

shortcut leads elsewhere, then it offers no savings.

5.1.1 TheMINPATH algorithm

At a high level, our approach follows the search frameworlkChapter 3, but optimizes for adding
shortcuts. First, we make the assumption that the intringlity of each page is equal (thus, the
expected utility of each page depends solely on the extrirtity—the page’s connections with the
rest of the web site). Second, instead of searching throweditstate-space, our algorithm computes
the value of each relevant shortcut link in only one invamati This choice has an effect on the

optimality of MINPATH, as we discuss in Section 5.1.2.I\MPATH employs the trail model of user
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navigation (Section 3.2.2).

If one had knowledge of the complete trgik, .. .. p;, ... p,), selecting the best shortcut desti-
nation at any pagg; would be easy: simply makegt — p,2. Of course, at runtime, a visitor has
viewed only a trail prefix, and the adaptive web site mustrittie remaining pages. Our approach
relies on a model of the visitor's behavior to compute a phbiliig for every possible trail suffix
(gi+1,--- . qn) On the site. Intuitively, these suffixes are all the possghlbtrails originating from
pi. Given a suffix and its probability, we assign expected saving® the shortcup; — ¢; to each
¢; in the suffix as the product of the probability of the suffix @éhd number of links saved by the
shortcut. Note that a particular shortgyt— ¢; may appear in many trail suffixes€., many trail
suffixes may pass through the same pageand so the expected savings of a shortcut is the sum of

the savings of the shortcut for all suffixes.

A brief example will elucidate these ideas. Suppose thas#ovihas requested the trail pre-
fix (A, B,C) and we wish to find shortcuts to add to page Suppose that our model of the
visitor indicates there are exactly two sequences of padgevisitor may complete the trail with:
(D, E,F,G,H), with a probability of 0.6, andI, J, H, K') with a probability of 0.4. The expected
savings from the shortcut’ — E would be0.6 x 1 = 0.6, because the trail with pag@ occurs
with probability 0.6 and the shortcut saves only one linke EBixpected savings for shortatt— H
includes a contribution from both suffixe8:6 x 4 + 0.4 x 2 = 2.4 + 0.8 = 3.2. Of course, in
practice, there are far many more than two trail suffixes twsater, and these suffixes may even be
subsequences of each othery, (I, J), (I, J, H), (I, J, H, K), etc).

The MINPATH algorithm is shown in Table 5.1. THexpectedSavings function constructs the
trail suffixes by traversing the directed graph induced ke wreb site’s link structure. Starting at
the page last requested by the visifgr, ExpectedSavings computes the probability of following
each link and recursively traverses the graph until the aibdlty of viewing a page falls below a
threshold, or a depth bound is exceeded. The savings at egeh@urrentSavingpis the product
of the probability,Ps, of reaching that page along suffi and the number of links saveb- 1. The

MinPath function collates the results and returns the besthortcuts. The next section describes

2We leave to future work the task of generating an anchor fefitik and selecting a position for it on the originating
page.
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how we obtain the model required byINPATH.

5.1.2 Analysis oMINPATH

Returning the best. shortcuts is optimal only in a restricted sense. SpecifickliNPATH assumes
that the expected savings of shortgutq is independent of other shortcuts that may be added to
pagep. Based on this assumption, INPATH makes a greedy choice when building its setrof
links to add top: MINPATH takes then links that, individually, have high expected savings. This
assumption is likely violated in practice; for example, tsfmrtcuts with high expected savings may
both lead along a common trail suffix, and so the expecteshgawf both is not the sum of each in-
dividually. However, it is convenient for computation, asNWATH needs to calculate the expected
savings for each page in the site only once. The complexitisicomputationExpectedSavings
in Table 5.1) isO(b%) whereb is the average number of links on each page, the branching fac-
tor) andd is the length of trail suffixes considered. We choose smadllesford to ensure this
computation is fast.

It is desirable to relax the assumption that shortcuts ategandent, because doing so would
allow MINPATH to make better use of the limited number of shortcuts addedage. One proposal
is to follow a greedy heuristic, selecting, at first, the $ngest shortcut— ¢, but then re-calculating
the expected savings for all other shortogitgenthe existence gf—q. Unfortunately, this proposal
is not provably optimal—the optimal set tfo shortcuts may be the second- and third-place links
when ordered by expected savings. However, this approactdwwoduce sets of shortcuts that
perform no worse, and perhaps much better, than our curreRPMH algorithm. One important
subtlety is how the existence of previously selected shtstaffects navigation throughout the site.
For example, suppose that pagéas two links,z—y andz—z, and the shortcub—¢ bypasses
the trailp — = — y — ¢. Given the existence qf—¢, the probability of navigation at may
be effected, because the shortcut reduces the fractioaftittat = that followsz—y. In addition,
if ¢ links to z, then the shortcupb— 2z would have lower expected savings, because the expected
trail to z has become shorter (one link, now, frgmto ¢, instead of three). We leave as future
work exploring this extension, although it should be laygelmatter of careful bookkeeping €.,

recording the probability and length of each trail suffixdaujusting the probabilities and savings
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Table 5.1:MINPATH algorithm.

Inputs:

T  Observed trail prefiXpo, . . ., p;)
pi Most recent page requested
V  \Visitor identity

m Number of shortcuts to return

MinPath(7, p;, V, m)
S «— ExpectedSavings(p;. T, V. (), 1.0,0,{})
SortS by expected page savings
Return the best: shortcuts inS

Inputs:

Current page in recursive traversal

Trail prefix (observed page requests)

Visitor identity

Trail suffix (hypothesized pages in traversal)
Probability of suffixT

Length of suffixr’

Set of shortcut destinations and their savings

- mESSNT

ExpectedSavings(p, T, V, T, Ps, 1, S)
If (1 > depth bound) or®; < probability threshold)
ReturnS
If(1<1)
CurrentSavings— 0
Else
CurrentSavings— P; x (I — 1)
fpgsS
Add p to S with Savings(p) = CurrentSavings
Else
Savings(p) < Savings(p) + CurrentSavings
Trail — concatenatd” andT
For each linkp — ¢
P, — probability of followingp — ¢ givenTrail andV
Ty, «— concatenatd’; and(q)
S «— ExpectedSavings(q, T, V., Ty, Py, 1 4+ 1,5)
ReturnS
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given the proposed shortcuts).

A provably optimal solution may require examining all pdssisets ofn shortcuts on the site
There are(,’,"L) such sets on a site with pages, and for each set,IMPATH must compute the
expected number of links the visitor will follow given thet e shortcuts. The number of these sets
grows roughlyn™, and the computation for each requi@gb?) time. Thus, the optimal solution
may require computation time greatly in excess oNFAATH or our other proposed, but non-optimal,

approach.

5.2 Predictive models

The key element to MUPATH’S success is the predictive model of web usage; in this@ectve
describe the models we have implemented and evaluated. robalplistic model MNPATH uses
must predict the next web page requesgiven a trail prefix(pq, . . ., pi—1) and the visitor's identity
V (the identity can lead to information about past behavidhatsite, demographicstc): P(p; =
q/(po, - ...pi—1), V). Of course, a model may condition this probability on onlytjpa even none of
the available data; we explore these and other variatiottssrsection. To simplify our discussion,
we define a “sink” page that visitors (implicitly) requestevhthey end their browsing trails. Thus,
the probability P(p; = pgin(po. ---,pi-1), V) is the probability that the visitor will request no
further pages in this trail. Finally, note that the models krarned offline, prior to their use by
MINPATH. To answer our second thesis question in the affirmative, ithao enable dynamic

personalizations per page impression, only the evaluatiohe model must run in real time.

5.2.1 Unconditional model

The simplest model of web usage predicts the next page reguesthout conditioning on any
information. We learn this model by measuring the proportid requests for each pageon the

site during the training peridd

3In the worst case, all possible setssoflinks must be examined. However, more typically, many sedy ine
eliminated because the sum of the expected savings of th@itcsits, independently, is less than that of some current-
best set of shortcuts.

“More precisely, throughout our implementation we use MAfivetes with Dirichlet priors [54], setting: to 4.0.
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number of timeg requested
total number of page requests

P(pi = q) =

We assume the visitor can view a page only if it is linked frdva turrent page. Thus MPATH
forces the probabilities of pages not linked from the curigeige to be zero and renormalizes the

probabilities of the available links. If the current pageis;, then MNPATH calculates:

P(pi=q)

S Poed) if p; 1 — g exists
q e
0

P(pi = qlpi-1) =
otherwise

where the;' are all the pages to whigh_; links.

Despite having large volumes of training data, we cannddlaimodel that predicts each and
every page—many pages are requested too infrequently isblielestimate their probability (al-
though we address this concern directly in Chapter 6). Fampte, during September 2000, the
UW CSE web site . cs. washi ngt on. edu) received 129,000 page requests covering 8,000
unique URLSs, but no requests for the remaining 232,000 welegaMVlore generally, Glassman has
observed that web page requests follow a Zipf-like distitou[51], in which a very small fraction
of the pages receive a very large fraction of the traffic. 8stgad of modeling navigation between
individual pages, we group pages together to increasedbgiegate usage counts, and replace page
requests by their corresponding group label (much in thetsgiwork by Zukermanet al. [98]).
Specifically, we use the hierarchy that the URL directoryatire imposes as a hierarchical cluster-
ing of the pages, and select only the most specific nodes fiibe dosest to the leaves) that account
for some minimum amount of traffic, or usage, on the site. {Beiection corresponds to a partition
in the sefll used to model the web site.) The pages below each node shaneraon URL prefix,
or stem that we use as the label of the node. By varying the minimuage&shreshold, we select
more or fewer nodes; in Section 5.3, we report howNATH’s performance is correspondingly
affected.

Figure 5.1 illustrates this idea on a portion of the web siteused to evaluate MPATH. In
the example, we suppose that 1,000 web requests are made/iedicat i on hierarchy of the
site—pages whose URLs begin witeducat i on. If the threshold were set at 15% (150 requests),

then the selected nodes woulddse142, cse143, courses, course-webs.html, andeducation;
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Figure 5.1: Aggregating web usage at URL stems.The URLs are grouped according to their
directory structure. Associated with each node is a couhibef often any of the URLs below that
node were requested.

each of these nodes received at least 150 requediste that this process is not simply a cut
through the tree; both leaf nodes and interior nodes aretsele Note, also, that some of the
selected nodes are actual web pages while others are diesctbat contained many pages and
subdirectories. The stem at each node is the prefix commofi tdRds below the node, and

is formed by concatenating the labels from the root to thatenoFor example, the stem for the

cseld42 node is/ educat i on/ cour ses/ cseld2/ .

5.2.2 Nave Bayes mixture model

The unconditional model assumes all trails on the site anéai—that a single model is sufficient
to accurately capture their behavior. Common intuitiongasts this assumption is false—different
visitors produce different trails, and even the same visitay follow different trails during separate
visits. As an alternative, we hypothesize that each trdibrigs to one (or a distribution) ok
different clusters each described by a separate model. We can thus computeadthebility of

requesting page by conditioning on the cluster identity;.:

SNote, however, that usage at higher noeesludedower nodes that are selectecburses is selected because its
usage, exclusive afse142 andcse143, is still greater than 150.
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K

P(pi = q|(po; ---,pi1)) = > P(pi = ¢|Ck) P(Crl{po; - - -, pi-1)) (5.1)
=1

The result is anixture modethat combines the probability estimat@ép; = ¢|C},) of the K differ-
ent models according to a distribution over the models. ByeBatheoremP(Cy|(po. . ...pi 1)) x
P(Ck)P((po.-...pi—1)|Cy). To calculateP((pg,...,pi—1)|Ck), we make the Naive Bayes as-
sumption that page requests in the trail are independeende cluster, thus?((po, . . ., pi—1)|Ck) =
I1;=0...—1 P(p;IC). The resulting model is Waive Bayes mixture modg@imilar to those used in
AuTocLAss[26]) for which we learn the model parametdP§p; = ¢|C);) and the cluster assign-
ment probabilities”(Cy,) using the EM algorithm [34].

The mixture model uses the probabiliti# Cy|(pq, - - ., pi—1)) as a “soft” assignment of the
trail to the cluster—each clustér;, contributes fractionally to the sum in Equation 5.1. Al
tively, we may use a “hard” assignment of the trail to the nmmsbable clusterC.. We explore
both of these possibilities in Section 5.3. The valuegkofnay be fixed in advance, or found us-
ing holdout data. For each value &Ff, we compute the likelihood of the holdout data given the
previously learned model, and choose fiighat maximizes the holdout likelihood.

An additional piece of information useful when selecting thuster assignment is the visitor's
identity, which we can incorporate by conditioning Equat®.1 onV. If we assume that page
requests are independent of the visitor given the clusten the only change to the right side of
Equation 5.1 is thaP(C},) becomes”(Cy|V'). Unlike an individual trail, a visitor's behavior may
not be well represented by any single model in the mixtureabse the same visitor will behave
differently when seeking different information golsThus, we represent a visitor as a mixture of
models, and estimate t1&(Cj,|V') as the proportion of the visitor's history that is predictsdCs,.
Specifically, let = {T1, ..., T, } be the set of: trails the visitor has produced on the site previous

to the current visit, and®(T;|C) the probability that clustef’. produced traill;; then

h
P(CIV) = 3. P(T|CL) /h

=1

This assumption depends on how the cluster models are tkaviie could either cluster individual trails, or cluster
visitors but train the models on the visitorsetsof past browsing trails. We have experimented with both apgines
and found the former yielded the best results.
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5.2.3 Markov models

Both the unconditional and Naive Bayes mixture models rigraokey piece of information from
the web accesses: the sequential nature of the page trdilst-Arder Markovmodel, on the other
hand, incorporates this information by conditioning thehability of the next page on the current
page: P(p; = q|p; 1). The Markov model is trained by counting the transitionsfrpages; 1
to p; in the training data, and by counting how often each pageapses the initial request in a
trail. As before, we replaced the URLs of page requests wiRl dtems to increase the volume
of relevant training data. The need for this transformai®®even greater for the Markov model
because it has quadratically more probability values tonegé than the unconditional model, and
the events (the links; | — p;) are more rare.

We experimented with first- and second-order Markov mod&i&{ = ¢|p; 1) and P(p; =
qlpi 1,pi 2)), and with using a mixture of Markov models [24]. We use thes&M-based method

to build these mixtures as we did to learn the Naive Bayesuréxmodel.

5.2.4 Positional and Markov/Positional models

In addition to conditioning the probability on the last regted page, we also consider conditioning
on the ordinal position of the request in the visitor's traiP(p; = q|i) or P(p; = q|i,pi—1).
Effectively, this model is equivalent to training a separatodel (either unconditional or Markov)
for each position in the trail (although, for practical pasgs, we treat all positions after some limit
L as the same position). Visual inspection of the trainingsti@d us to hypothesize that these
models may better predict behavior, although conditiomnghe additional information increases

the amount of training data necessary to properly fit the hode

5.3 Results

We evaluate NN PATH's performance on usage at our home institution’s web sisetb@n data from

September 2000 and February 2002. The September 2000 datacpd a training set of 35,212
trails (approximately 20 days of web usage) and a test set5802trails (approximately 1.5 days
of usage); the time period from which the test trails werengr@ccurred strictly after the training

period. During the training and testing periods, 11,98Xuaipages were requested from the total
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population of 243,119 unique URLSs at the site. The Februaf2lata produced 154,724 training
trails in the first three weeks of the month and 2,500 tedstcdiosen uniformly from the trails in the
last week. We consider only those trails with link lengthestdt two, because shorter trails cannot
be improved. We set MiPATH’s link depth bound to 8 and probability thresholdlio~?; in all our
experiments the probability threshold proved to be thetéighonstraint.

We measure MNPATH’s performance by the number of links a visitor must followéach the
end of the trail. We estimate visitor behavior when providedrtcuts by making two simplifying
assumptions. First, we assume that, when presented witbranere shortcuts that lead to destina-
tions along the visitor’s trail, the visitor will select tis&ortcut that leads farthest along the traé.(
the visitor greedily selects the apparently best short@&ezond, when no shortcuts lead to pages in
the visitor’s trail, the visitor will follow the next link irthe trail (.e., the visitor will not erroneously
follow a shortcut). Note, finally, that MiPATH places shortcuts on each page the visitor requests,
and so the visitor may follow multiple shortcut links alongiagle trail.

Without shortcuts, the average length of trails in the Sapier 2000 test set is 3.42 links and
3.33 for the February 2002 test set. Given an oracle thadgorddict the exact destination of the
visitor's current trail, MNPATH could reduce the trail to exactly one link. The differencénsen
the unmodified length (3.42 or 3.33) and one link is the rarfggawvings MNPATH can offer web
visitors.

We first explore the relationship between the minimum URLgesthreshold and the perfor-
mance of MNPATH. Using the February 2002 data, we compare thresholds bet&%e(which
produces 10 URL stems) and 0.005% (which produces 3,216sytant all pages visited more
than once (minimum, yielding 21,140 stems) when learningxdure of first-order Markov mod-
els. Figure 5.2 shows these results. The general trendti§itiea-grained models.g., lower usage
threshold and thus more URL stems) lead to improved RATH performance, although the differ-
ences in performance between thresholds less than 0.05%eremall. In the September 2000
experiments we adopted a 0.025% threshold; for the Feb2@09 data, we chose 0.010%

We next compared MiPATH’s performance when using a variety of models (see Figurg 5.3

The first column shows the number of links followed in the uxified site (from the September

"We chose the lower threshold for the February data becausmdienore training data available.
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Figure 5.2:Varying threshold of URL stem usage.All series depict a first-order Markov model
and adding three shortcuts per page. The series range f@h@inimum usage threshold (21,140
stems) to 5% (10 stems). The series are grouped by the nurfibkrsters in the mixture. Error
bars denote 95% confidence intervals. Results based ondfgl2002 data set.

2000 data). In the second and third sets of columns{MATH uses, respectively, an unconditional
and Markov model and produces 1, 3, or 5 shortcuts. In theassets, MNPATH uses mixture
models of either 10 or 25 clusters, and selects the disioibuif the models in the mixtures based
on only the current trail prefix (ignoring past visitor bef@y. These graphs demonstrate first
that MINPATH does reduce the number of links visitors must follow: whemgisa mixture of
Markov models and suggesting just three shortcutsyRATH saves 0.97 links, which is 40% of
the possible savings. Second, we see that the Markov mogalpfditioning on the sequence
information, outperforms the unconditional model substdig—three shortcuts suggested with
the Markov model are better than five shortcuts found withutheonditional model. Third, these
results indicate that mixture models provide a slight atlvge over the corresponding single model
(for example, 2.72 for the Naive Bayes mixture model veizu$ for the unconditional model).

We computed the average of the difference in trail lengtlvben the single model and the mixture
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Figure 5.3:M INPATH's performance (September 2000)Each column shows the average number
of links followed in a trail. The mixture model columns arenatated with the number of clusters.
All error-bars denote 95% confidence intervals.

model for each test trail, and found the gains are signifiaatite 5% leveli(e., the 95% confidence
interval of the mean of the difference between the modetsd@mpletely above zero). Finally, we
found that the differences between 10 and 25 clusters in tkieira are not statistically significant.
Figure 5.4 shows a comparison ofiMPATH’s performance with a range of mixture model sizes
on the February 2002 data. We found no significant differdraed on the number of clusters, but
this result could be explained by one of two reasons. Firatést trail is produced by a visitor who
has not previously browsed the site, themd¥®aTH will use mixture model weights following the
class priors. That is, all test trails produced by first-timigtors will be predicted using the same
combination of mixture components, which is equivalent single model whose transition matrix
and initial state vector is an interpolation of the mixtu@nponents. Thus, additional mixture
components may not help, becauseNlPaTH has no insight on how to select the right component

for the first-time visitor.
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Figure 5.4:Varying number of clusters. MINPATH's performance suggesting three shortcuts per
page and using a mixture of first-order Markov models. Eramsliienote 95% confidence intervals;
results taken from February 2002 data.

A second explanation is that a single first-order Markov nhede encode the behavior of sev-
eral potentially very different groups of users. For exagpisers in cluste€; may frequently
follow the trail (pq4, py, pc), and users irCs follow (p4. pe, ps). A single first-order Markov model
can predict navigation fdvothclusters with the same accuracy as two separate models)deetee
relevant entries in the transition matrix for the two tradlsare no common source or destination
pages. We call such clusters of usaon-overlapping as their behavior does not “overlap” in the
site. For our purposes, conflating non-overlapping modet®t detrimental—all that MiPATH re-
quires is reasonable predictive accuracy. However, tdmis\isualize communities of users based
on their browsing, such as WebCANVAS [24], must separatedtwusters into separate models.
WebCANVAS separates non-overlapping clusters by allovanly one state in the Markov model
to have non-zero initial probability. Thus, each model effesly predicts sequences that all begin
with the same page request, and then perhaps diverge. Wenrepted the WebCANVAS split-

ting approach, as well as an alternative cluster-splitapgroach of our design, to verify that the
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predictive behavior of the conflated model was not worse tharsplit models. In our method of
splitting conflated models, we separate non-overlappingpaments as a post-modeling step. We
build a graph from the first-order Markov model’s transitimatrix, in which there is a node for each
model state and an edge between states (nodes) if the ivarmiobability between them is greater
than some threshold. We then separate the connected components in this grapbuiiddsepa-
rate first-order Markov models for each component. This apgn seemed to perform well—each
model appeared to display only a single behavioral clustert-we did not explore this approach in
detail, as it does not improve predictive accuracy (andcbeis not useful for NNPATH).

Finally, we note that the results of Figure 5.4 do not congatadur finding that a mixture of
Markov models was best for the September 2000 data. The URtutarity of the February 2002
data was finer, allowing the Markov model to separate tramsjtrobabilities that would have been
conflated in the September 2000 models. In the Septemberrad@dels, because more pages are
grouped together in the same URL stem, differences in behavhong those pages are lost in a
single Markov model.

In Figure 5.5, we compare methods for selecting the mixtistidution for a trail prefix, using
mixtures of 10 models. Each group of columns shows a diffecembination of model and as-
signment type (hard or soft). In each group, we in turn camdithe assignment on no information
(i.e., we use a uniform distribution for the soft assignment amdloan selection for the hard assign-
ment), the visitor's past trails, the visitor's currentitrand both the past and current trails. Our
first conclusion is that soft assignment is a better choicd®h mixture models (significant at the
5% level). Second, both past trails and the current traifiypteelp MINPATH select an appropriate
assignment to the cluster models. However, the combinatidsoth features is not significantly
better than using just the current trail prefix with the NeRayes mixture model, and does slightly
worse than just the current trail with the mixture of Markoedels. This result is somewhat surpris-
ing; we had expected, especially when the prefix is short thieapast trails would provide valuable
information. Apparently, however, even the first one or tveg@ requests in a trail are sufficient to
assign it to the appropriate clusters. It would be intengstod investigate if this result remains true
for larger sites.

Our last variation of model conditions the probability ore tbrdinal position of the page re-

quest in the trail. We compared the unconditional and Markexdels against positional and
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Figure 5.5: Varying model assignment strategy. Each of the four series represents a different
model assignment strategy. Results drawn from SeptemI|@€r @&xa.

Markov/positional models, choosing several values of tleximum number of distinct positions
L. Figure 5.6 shows these results for valuesLofanging from O {.e., a non-positional model)
through 10. The extra positional information improves tee@mance of the unconditional model,

significantly at the 5% level, but does not substantially iove the Markov model.

In his thesis, Perkowitz proposed an alternative methofiridng shortcuts [79]. In his memory-
based approach, for each pae/iewed on the site, the personalizer records how often evtbrgr
page( not directly linked fromP is viewed afterP in some trail. Effectively, this approach esti-
mates the probability that a visitor & will eventually view(@, given thatP— (@ does not exist, by
counting how often this event has occurred in the training.d&/hen pageP is requested in the
future, the shortcuts are the tep most-requested pagés Note that, typically, the destinations

with the highest probabilities will bexactlytwo links from P, because navigation to any further
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Figure 5.6:Varying length of positional models. Positional length zero corresponds to the non-
positional model (either unconditional or first-order Mawl. Results from February 2002 data.

destinations will vary rarely be more likely than navigati the closer pade As a consequence,
these shortcuts usually save only one link, but typicalididown different trails in the site, because
only one destination along a given trail is link length tworfr P.

MINPATH also estimates the probabilities of reaching any giggeinom P, but does so by com-
posing the page transition probabilities along a trail tigio the site. The advantage of our approach
is that it reduces data sparseness, although at the expensking a first-order assumptidnthat
may not hold in practice. MiPATH can also require far less storage than the memory-based ap-
proach: the first-order Markov models need space linearémtimber of visited links in the site,
but the memory-based approach requires space linear irutn@er of visited trails—typically far
larger than the number of links.

Figure 5.7 compares MPATH using first-order Markov models with the memory-based ap-

proach for a range of shortcuts shown on each page. We foamthamemory-based approach and

8Navigation to a distanf) may be more likely than to a closer page only when there ar¢ipreipaths through the
site, through different interim pages, that all reagh

90r, a second-order assumption, ifiNPATH uses a second-order Markov modtt.
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Figure 5.7: Comparing MINPATH and memory-based approach. The Markov models group
URLSs together at the 0.010% threshold. The difference betwibe memory-based approach and
the MINPATH runs are significant for three, four, and five shortcuts. Redtom February 2002
data.

MINPATH performed approximately equivalently when suggesting/ ame or two shortcuts per
page, but, as we expected, the memory-based approach ttkesdrvantage of the larger num-
ber of shortcuts to suggest per page. Note, also, that thedified trail length is already rather
small (3.33 in the February 2002 data) so the memory-basgeagh is not particularly disadvan-
taged by suggesting shortcuts saving only one link. Whenestricted our test to trails that are
much longer (for instance, a minimum of 10 links) WPATH seemed to perform much better than
the memory-based approach (although, we have insufficiaifé to measure this difference with

statistical significance).

An advantage that MiPATH has over Perkowitz’s approach is thatN\MPATH admits a more
versatile selection of shortcuts. For examplaN®aTH can calculate the expected savings of each
shortcut given the existence of the other shortcuts addértteequested page. Perkowitz's approach
cannot take advantage of this conditional information,aose it derives its recommendations di-

rectly from the original usage data. In addition, althoubl memory-based approach is limited
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to predicting only previously-observed destinations, vtk present a model of navigation in the
next chapter that can predict behavior at previously unpages. MNPATH takes advantage of this
model to offer shortcuts to destinations that are novel étésting data.

We finally note that MNPATH’s running time is quite small. The modelsIMPATH uses are
learned offline, but the process usually requires only sgwvamutes. Given a model and the trail
prefix, MINPATH finds a set of shortcuts in 0.65 seconds on an average desitophs delay
is more than fast enough for delivering content to wirelegb wlients, and we are confident that
with judicious code optimization it could be reduced to belme-tenth of a second. Additionally,
by changing the depth bound and probability threshold timait khe recursion in the MuPATH

algorithm, we can directly trade off computation time foogieut accuracy.

5.3.1 Discussion

The models MNPATH uses have a few weaknesses, however. First, despite hasfihggs millions

of training examples, these models cannot learn reliablesttion probabilities at the page-level—
the number of probabilities to estimate is more than thelalvig training data can allow. Moreover,
web requests follow a Zipf-like distribution [51], so a vemyall set of pages receives an overwhelm-
ing majority of the traffic and most pages are visited infrenfly. MINPATH lessens this difficulty
by grouping web pages by their common URL stems, but thisistauis the second weakness: it
fails to capture the semantic relations among the web péifeso pages exist in the same directory,
they are related (for example, an exam review page and acassgnment page), but perhaps not
as closely related as some pages from different direct¢fiesexample, exam review pages from
all previous offerings of that course). In the next chapter, wscdbe an approach that addresses
both these weaknesses, by incorporating the relationattstie of a web site into a Markov model

of navigation.

5.4 Summary

This chapter presented ourINPATH algorithm for efficiently finding high-quality shortcut ks.
Our experiments show that MPATH can be highly effective at improving navigation in sites,jeth

is beneficial for wireless and desktop web visitors alike. &plored several predictive models of
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web usage, evaluated how they perform withNRaTH, and found that a mixture of Markov models

worked best.
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Chapter 6

RELATIONAL MARKQOV MODELS

At the end of the last chapter we highlighted two main weakese®f the probabilistic models
used with MNPATH: the models have insufficient data for reliably learning@agained accesses,
and the models ignore the relational structure of the sitéckvmay be of value. These criticisms
apply broadly to many probabilistic models and applicaionot just Markov models predicting
web navigation. In this chapter, we present a novel teclenfqu endowing Markov models with
relational structure, thus producing relational Markovdals (RMMs). We evaluate RMMs and
traditional Markov models for predicting navigation in seal web sites, and compare their effec-
tiveness in finding shortcut links with MPATH?.

In the next section we briefly review how probabilistic madale used to model sequential
processes. Section 6.2 introduces our relational Markodaehapproach and describes learning and
inference in these models in detail. We compare relationaikigl models with traditional Markov
models in Section 6.4 and conclude with a brief survey of abilistic models in Section 6.5 and

summary in Section 6.6.

6.1 Background on probabilistic models

Markov models [85] are widely used to model sequential gses, and have achieved many prac-
tical successes in areas such as web log mining, compushbaiogy, speech recognition, natural
language processing, robotics, and fault diagnosis. Hewéfarkov models are quite limited as
a representation language, because their notion of stls the structure that exists in most real-
world domains. A first-order Markov model contains a singdiable, the state, and specifies

the probability of each state and of transiting from oneestatanother. Hidden Markov models

Material in this chapter also appears in the 8th Internafi@onference on Knowledge Discovery and Data Min-
ing [5].
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(HMMs) contain two variables: the (hidden) state and theeolaion. In addition to the transition
probabilities, HMMs specify the probability of making eambservation in each state. Because the
number of parameters of a first-order Markov model is quadimthe number of states (and higher
for higher-order models), learning Markov models is fekesitnly in relatively small state spaces.
This requirement makes them unsuitable for many data miapmjications, which are concerned
with very large state spaces.

Dynamic Bayesian networks (DBNs) generalize Markov mobglsllowing states to have in-
ternal structure [93]. In a DBN, a state is represented byt afseariables, which can depend on
each other and on variables in previous states. If the demeydstructure is sufficiently sparse,
it is possible to successfully learn and reason about mugeratate spaces than using Markov
models. However, DBNSs are still limited, because they asstimat all states are described by the
same variables with the same dependencies. In many apmtisastates naturally fall into different
classes, each described by a different set of variableseXample, a web site can be viewed as a
state space where each page is a state and each hyperlinkssible transition. Classes of pages
for an e-commerce site include: product descriptions, pimgpcarts, main gatewagtc. Variables
associated with a product description page might be theuoteid, the price, the quantity on hand,
etc. Variables associated with a shopping cart page includeub®mer’s name, the shopping cart
ID, any relevant coupongtc. These variables can help predict a user's navigationabiest but
it clearly would make no sense to associate a price with teésgjateway page or a credit card
number with a product description page.

Examples of multiple state classes from other areas include

Speech and language processindarts of speecte(g, only verbs have tense), semantic contexts

(e.g, asking about flights versus asking about hotels), typessobdrseetc.

Mobile robotics. Types of location€.g, indoors/outdoors, offices, laboratories, bedrooets).

Computational biology. Components of metabolic pathways, regions of DNA, protéincsures,

etc.

Process control. Stages of a manufacturing process, machine types, intéateqatoductsetc.
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Fault diagnosis. Fault states associated with different subsystems, eattavdifferent set of sen-

sor readingsetc.

This chapter proposeglational Markov models (RMMsa generalization of Markov models
that allows states to be of different types, with a differseit of variables associated with each type.
In an RMM, a set of similar states is represented by a preglimatelation, with the state’s variables
corresponding to the arguments of the predicate. The doofagach argument can in turn have
a hierarchical structure, over which shrinkage is carriatl[69]. RMMs compute the probability
of a transition as a function of the source and destinati@dipates and their arguments. RMMs
are an example of a relational probabilistic representatimmbining elements of probability and
predicate calculus. Other representations of this typkidtecprobabilistic relational models [47],
probabilistic logic programs [76] and stochastic logicgnams [75].

We expect RMMs to be particularly useful in applications tt@mbine low-level and high-level
information, such as plan recognition from low-level angpor speech recognition aided by natural
language processing. An example of the former is inferrifgrmation-seeking goals of web site
users from the sequence of links they follow. Doing thisiiefece makes it possible to automatically
adapt web sites for different users, and as a result, to neinsers’ effort in reaching their goals.
RMMs are able to predict user behavior even in web sites (ds plaereof) that the user has never
visited before, and are thus potentially much more broadful than previous approaches to web

log mining, including traditional Markov models.

6.2 Relational Markov models

Recall that a Markov model is a model of a discrete system ¢hialves by randomly moving
from one state to another at each time step.first-order Markov models a model of such a
system that assumes the probability distribution over tiet state only depends on the current
state (and not on previous ones). L&tbe the system’s state at time step Formally, a first-
order Markov model is a tripléQ, A, 7), where:Q = {qi1, ¢, ..., gn} is a set of statesd is the

transition probability matrixwherea;; = P(S;=g;

S; 1=4¢,) is the probability of transiting from
stateq; to stateq;, assumed the same for all> 0; and is theinitial probability vector, where

m; = P(Sg = ¢;) is the probability that the initial state i5. Given a first-order Markov model,
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Figure 6.1: Propositional Markov model for an e-commerce site. Each box is a PMM state,
representing a page in the site. Arrows indicate possiblesttions in the PMM, and correspond to
hyperlinks in the site.
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Figure 6.2:Corresponding relational Markov model. Each shaded box is a page/state, and states
are are grouped (in rounded-corner boxes) by their relation

the probability of observing a sequence of statessi,. .., sr) is P(So = s, S1 = s1,...,S7 =

s1) = P(So=s0) 1‘[,7:I P(S;=s;|S:-1=s:-1). Given a set of observed sequences, the maximum-
likelihood estimate of an initial probability; is the fraction of sequences that start in sigteand

the maximum-likelihood estimate of a transition probapili;; is the fraction of visits tay; that

are immediately followed by a transition tg. In annth order Markov model, the probability of
transiting to a given state depends on thprevious states, and the transition matriXsis+ 1)th-
dimensional. We refer to Markov models of any order definethis way aspropositional Markov
models (PMMs)

Relational Markov models (RMMs) are obtained from the psiponal variety by imposing a

relational structure on the set of states. For example,idena Markov model of an e-commerce
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web site, in which each page is a state. A PMM would have a enfguoposition” for each
page/state: for the main entry page, for each product qegmripage, for the checkout pagetc.
(see Figure 6.1). In a PMM each state is an atomic entity, laetis no notion of types of states.
In contrast, an RMM groups pages of the same type iietations with each relation described
by its own set of variables (see Figure 6.2). For example,relation might be “product descrip-
tion page,” with a variable “product” representing the protithe page describes, and “stdekel”
representing whether the product is in stock or on back orddditionally, these variables them-
selves are grouped together, forming a hierarchy of valk&gre 6.3 shows a fragment of such
a hierarchy for products at an e-commerce site. A stateriostds thus uniquely described as a
tuple in a relation instantiated with leaf values from eaahable’s domain hierarchy. For exam-
ple, ProductPage(iMac, in_stock) would represent the page describing an iMac computer that is
currently in stock at the site’s warehouse. Moreover, agwgling non-leaf values is possible and
corresponds to aabstraction—a distinguished set of states that are similar to each dthdre
sense that they have the same type and their arguments tieltmg same sub-trees in the domain
hierarchies. RMMs leverage these state abstractions f@hmuoher learning and inference than
PMMs, and make useful prediction possible in very largeestpiaces, where many (or most) of
the states are never observed in the training data. In thsrpave focus on first-ordéRMMs,
but our treatment is readily generalizable to RMMs of anyeerdThe next subsections describe

representation, learning, and inference in first-order RMM

6.2.1 Representation

Formally, an RMM is a five-tupldD, R, Q. A, 7). D is a set of domains, where each domain,
D € D, is atree representing an abstraction hierarchy of valiash leaf ofD represents a ground
value. R is a set of relations, such that each argument of each nelttles values from the nodes
of a single domain iD. @ is a set of states, each of which is a ground instance of onbeof t
relations inR, i.e,, where each argument is instantiated with a leaf of the spmading domainA

(the transition probability matrix) and (the initial probability vector) are the same as in a PMM.

2First-order” is sometimes used in the literature to meanghme as “relational” or “predicate-level,” in oppositton
“propositional.” In this paper we use it in the Markov sertsejenote the assumption that future states are independent
of past states given the present state.
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Figure 6.3:Abstraction hierarchy of products. Leaves in the tree represent ground values, while
internal nodes denote categories of related values.

To continue our simplified e-commerce example, suppose fhatcontains abstrac-
tion hierarchies for Products and StockLevels as shown in Figure 6.3. R is the
set {MainEntryPage(), ProductPage(Product,StockLevel) CheckoutPage()}, where
ProductPage(Product,StockLevel) specifies that the first and second arguments of the
ProductPage relation must come from th@roduct and StockLevel domains, respectivelyQ
consists of several states, one of whickPisductPage(iMac, in_stock).

We now show how to use the relations and domain abstractemarchies to define sets of states
as abstractions ové}. These abstractions are distinguished sets of states wiers®ers are similar
to each other by virtue of their relations and parameteraglThat is, states whose parameter values
are in common subtrees of their respective domains will appemany abstractions together, while
states with very different parameter values (or belonginditferent relations) will appear together
in only the most general abstractions.

We define these abstraction sets by instantiating a relalipwith interior nodes (instead of just
leaf nodes) from the domains @f's arguments. More formally, Letodes(D) denote the nodes

of a domainD. If d is a node in domairD, then letleaves(d) denote the leaves dD that are
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yPage( ] s ge(

MainEntryPage! ISt oo s ossoooososoooos CheckoutPage

)
\\ ProductPage(iMac, in_stock)

Figure 6.4: State abstractions for the relational Markov model. The hierarchy of Figure 6.3
defines abstractions over the RMM of Figure 6.2; the abstragtare depicted as rounded-corner
boxes, labeled with their relations and arguments, anasnoding their ground states.

descendants af. Let R € R be ak-ary relation with domain®;, ..., Dj. Letdy, ..., d; be nodes
in the corresponding domains. We define shate abstraction corresponding #®(d;, ..., d;) to

be the following subset af).

{R(b1,...,0r) € Q|6 € leaves(d;), Vi, 1 <i <k}

For example, given the domain trees shown earlier, FigudesBows several abstractions for
the e-commerce RMM. Note that the abstractfrmoductPage(AllProducts,in_stock) is the set of
two ground states{ ProductPage(iMac,in_stock), ProductPage(dimension4100,in_stock) }.

Given a particular state € Q, it is especially interesting to know all the abstractiofisvaich
¢ is a member. Without loss of generality, suppose that R(éi,...,¢;) and the domains of

R’s arguments aré),, ..., D;,. We then define theet of abstractionf ¢, written A(q), as the

following subset of the power set 6f:

{R(d1,...,dr) C Q| d; € nodes(D;) A é; € leaves(d;),Vi,1 <i < k} (6.1)

For unary relations there is a total order.dfy), from the most specific{¢}) to the most general

(Q). Forn-ary relations, there is a partial order gt{q) (i.e., A(q) forms alattice of abstractions).
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[ Product(AllProducts, AllStockLevels) j

[Product(AIIProducls, in_stock)j [Producl(AIIComputers, AIISIockLeveIs)j
[Product(AIIComputers, inistock)j [Product(AIIDesktops, AIIStockLeveIs)j

[Product(AIIDesktops, in_stock)j [ Product(AppleDesktops, AIIStockLeveIs)]
[Product(AppleDesktops, in_stock)] [ Product(iMac, AllStockLevels) ]

[ Product(iMac, in_stock) ]

Figure 6.5:A lattice of abstractions. Boxes represent abstractions and arrows point in the @rect
of more general abstractions. These particular abstratiorm the lattice for the ground state
Product(iMac, in_stock).

For example, the abstractions Bfoduct(iMac, in_stock) are shown in Figure 6.5, where arrows
point in the direction of increasing generality. Finallyetank of an abstractiomx = R(d, ..., dy)
is defined ad + Z’f depth(dy), wheredepth() is defined as the depth of a node in a tree (with the
root being at depth zero). The rank @f (the most-general abstraction) is defined to be zero, and
ranks increase as abstractions become more specific.

In the case of finite domains, RMMs are no more expressive RidiMs; given an RMM,
an equivalent PMM can be obtained simply by creating a piitipasfor each tuple inQ. The
advantage of RMMs lies in the additional support for leagnand inference that the relational

structure provides, as described in the next subsection.

6.2.2 Learning and inference

In PMMs, the only possible learning consists of estimathegttansition probabilities;; and initial

probabilitiest;, and these estimates can be done reliably only for statesc¢har frequently in the

training data. In many cases.¢, when modeling a user of a large web site), most states are not
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observed in the training data, but it is still possible toeratize usefully from the observed behavior
to unseen states. RMMs provide a formal framework for dolig generalization.
For each possible state abstractienwe can define the corresponding initial probability

as the probability that the initial state is an elementofr, = > ;. Similarly, for each

Qi€
pair of state abstraction@, 3) we can define the corresponding transition probability; as the

probability of transiting from a state in to any state inj:

Gag= . [P((Ii\a) > aij-|
9i€a [ G EB J

where P(g;|a) is the probability that the current stategisgiven that the current state is a mem-
ber of «. The abstraction transition probabilities 5 can be estimated directly from the training
data by counting. By making suitable simplifying assummsiothey can then be used to estimate
the probabilities of transitions that are absent from theadd&or example, if we assume that the
destination state, is independent of the source stategiven the destination abstractigh then
asq = aq3P(q4]0), Wherea is the source abstractionP(q4|(3) can be estimated as uniform:
P(qa|B8) = 1/|6|, where|g] is the number of states in abstractién To make maximum use of all

the available information, we propose to useiature modefor each transition probability:

asq = P(Si=qal| Si-1=4s)
= > Y AstasP(ailB) (6.2)
a€A(gs) BEA(qq)

where the sum is over all abstractions of the source andnétistn states, and thg, 5's are non-
negativemixing coefficientshat sum to 1. The generative model implicit in Equation 6.that, to
generate a transition, we first choose a pair of abstracéweld(«, 5) with probability A, 3, and
then move to destination stagg with probability a,, 3P(g4|3). Effectively, this model performs
shrinkagebetween the estimates at all levels of abstraction. Shymksia statistical technique for
reducing the variance of an estimate by averaging it witimegtes for larger populations that include
the target one [69]. Equation 6.2 applies shrinkage acrosnére abstraction lattice, rather than

over a single abstraction path (as is more usual). For ex@naplorecast of the number of Apple
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iMacs sold at a given store can be shrunk toward a more relifalsecast for the average of this
quantity at all stores in the same city as the store of intefiélse comparative values for the, 's
effectively trade off bias and variance in the probabilistimate. Terms corresponding to more
general abstractions have lower variance, because thegstireated with more training data, but
have a larger bias than terms from more specific abstractidhss, good shrinkage weights have
two desirable properties: (1) they reduce the influence efrabtions with very little data; and (2)
they allow increasingly specific abstractions to dominatete training set size grows, with the
RMM reducing to a PMM in the infinite-data limit. The mixing efficients), 3 can be estimated

in a number of ways, corresponding to different variatiohewr system:

o RMM-uniform : Uniformly (i.e., all A, g's are equal). This approach has the advantage of

being extremely fast, but may lead to poor results.

RMM-EM : Using the EM algorithm, as described in McCallwnal. [69]. In preliminary

evaluation this option performed poorly, due to insuffitigaining data, so we did not eval-

uate it further.

RMM-rank : Using a heuristic scheme based on the rank of the abstnadtigarticular, we

experimented with the following method:

Nap

(6.3)

Ranka)+Rank3)
)‘nﬁ X ]

wheren, is the number of times that a transition from a state ito a state in3 could have
occurred in the datd.¢., the number of visits to a statg € « to which a transition to a state
q; € (is possible)k is a design parameter, and the proportionality constangiised from
the requirement that th®, 5’s sum to 1. This heuristic meets our desiderata for the wejgh
although many other variations are possible. The choideanintrols how much data must be
seen at a given abstraction level before that level can haigndicant weight, whems < £,
Aap = 0. In experiments with validation data, we have found thatirsgk = 10 works well

in practice.
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The size of the abstraction lattices, and hence the numbirmf in Equation 6.2, increases
exponentially with the arity of the source and destinatiefations. Thus, when these arities are
large, and/or when the abstraction hierarchies are deepaytnot be practical to compute all the
terms in Equation 6.2. Instead, we can select the more irgftivenones, and set the mixture weights
of the rest to zero (thus ignoring them). An efficient way oirdpthis culling is to learn a decision
tree with the destination abstraction as the class, andrtherents of the source relation as the
attributes. We will not use the decision tree for predictébrectly, but rather take advantage of its
learning machinery for selecting attributes with high imf@tion gain. Each node along the path in
the tree that the source state follows corresponds t@vafi) pair that will have a non-zero weight
in Equation 6.2. These weights can then be chosen using ahg ofiethods suggested earlier; this
approach is simply selectinghichterms will have non-zero weight.

More precisely, we learn probability estimation tre@r PET[84], because the goal is to esti-
mate the probability of each destination abstraction,erathan simply predicting the most likely
destination. Any set of abstractions that form a partitiérihe destination states can in principle
be used as the class. In this paper, we consider only thediigge!| of abstraction—the relation
R, € R of the destination state. We learn a PET for each sourceaelaeparately. The candidate
attributes include each argument of the source relatioraet éevel of its domain hierarchy; thus,
a k-ary relation each of whose arguments haabstraction levels yieldsn attributes. Figure 6.6
shows an example of such a PET.

To select the most informative terms in Equation 6.2 for @&gigource state, we consider the
path the state goes down in the PET. Each node in the path ressaciated probability distribu-
tion over destination abstractions (shown in Figure 6.6ashed-line boxes for a few nodes), and
corresponds to a set af, g terms in Equation 6.2, one for each destination abstractibine
corresponds to the decisions made from the root to the nadkj delongs to the set of abstrac-
tions that the PET predicts. For example, the highlightedi tede in Figure 6.6 corresponds to the
source abstractioRroductPage(AppleDesktops, in_stock) and (like all other nodes in the tree)
includes destination abstractioMainEntry(), ProductPage(AllProducts, AllStockLevels), and
Checkout. The terms gathered from all the nodes along the path to #i@te combined according
to Equation 6.2, with the shrinkage coefficients computeaguany of the methods described above.
We evaluated all three methods, and call these varRMM-PET-uniform , RMM-PET-EM , and
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RMM-PET-rank . Using EM is possible with the PET approach, because, uelédter, we are
predicting the destination relation, and not more spechistractions. Thus, there is sufficient data
to perform EM reliably.

More generally, we could build multiple PETSs, each one eatiing transitions to a different
partition of the states; thus, the source state would folioultiple paths, one in each PET. For
example, one PET would predict the destination relatiootler would predict the destination at a
lower level of abstraction (for instance, the relation ane variable’s ground valuegtc. The terms
collected from all the PETs would then be combined accortirigquation 6.2.

In practice, in large state spaces it is often the case tHateofnaction of the states are directly
reachable from a given state. For example, on a web site balpages that the current page links
to are directly reachable from it. In this case, fR&y,|3) terms in Equation 6.2 can be replaced by
terms that also condition on the knowledge of the set of state) that are directly reachable from
¢s. For states that are not reachable frgmP(qq|8,C(s)) = 0. For states that are reachable from
g5, under the previous assumption of uniform probabili®yg,| 3, C(s)) = 1/|C(s)].

Notice that, in principle, any machine learning method ddug used to predict the destination
state as a function of properties of the source state. Theapp proposed here implicitly encodes
the learning bias that the abstraction hierarchies overdtaion arguments are useful for gener-
alization {.e., two states whose values are closer in their respectiveucigies are more likely to

transition to the same state than states that are far apart).

6.2.3 Complexity

Inference in RMMs is slower than in PMMs, but is still quitsfaThe computation of a singlg,

requires combining up tp4(q,) x A(qq)| estimates, but each of these estimates is obtained from the

learned model by a simple lookup. Thus the overall compartas still fast, unless the abstraction
hierarchy is very large. In this case, an approach such aetheed by the RMM-PET variants
can greatly reduce the number of abstractions that need tmih&dered, by identifying the few
estimates that are most informative. Further, we can trdidénee for memory by pre-computing

and storing the:,’s, in which case inference becomes as fast as in PMMs.

Learning in RMMs conceptually involves estimating a tréinsi probability for every pair of
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Figure 6.6:A PET predicting destination relation from ProductPage. Rounded-corner boxes
represent tree nodes. The path the pRgeluctPage(iMac, in_stock) follows is highlighted. Each
node has an associated distribution over the destinatiatiaes; these are shown for the highlighted
nodes. Each node along this path selects a et,@f) abstraction pairs that are combined according
to Equation 6.2. The abstraction for a node is derived from the decisions madegaioe sub-path
from the root to that node, and thgabstractions are the abstractions the PET is predictirg (th
destination relation in this example).
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abstractions, rather than for every pair of states. Howewely the transitions between abstrac-
tions that actually occur in the data need be considerechérsame way that, in PMMs, only the
page transitions that actually occur need be considerel tinsition probabilities for non-leaf
abstractions can be computed without looking at the datagigyegating counts for the lower-level
abstractions. As a result, the dominant term in the leartimg of an RMM is often the computation

of the leaf-level probabilities, which is the same as for PMM

6.3 Using RMMs for web navigation

The last chapter observed thatWPATH’s performance is limited by the quality of the underlying
page navigation model, and, as we mentioned earlier, fidgrdPMMs have a number of weak-
nesses. The most significant is that PMMs cannot offer inohiguidance at pages for which there
is no training data. If a web page did not exist during thenireg period (or simply was not visited),
the Markov model can do no better than predict a uniform itlistion over the out-adjacent pades
This phenomenon is very common on large and/or dynamicgherated web sites: on a portal site
the news stories change every day; customers at an e-comsigtypically view product descrip-
tions they have not previously read; and after a semesteseis students begin viewing the course
pages for a different set of courses. Instead, ideally, weldvtike the model to take advantage of
the relational structure of the space of pages. For examigiégrs prefer news stories of a particular
genre and products of similar types. If a student views neoehomework pages for a particular
course in a given department, then the visitor is likely toteaue preferring homework pages, pages
for that course, and courses in that major.

As we demonstrate in the next section, RMMs effectively adslithe issue of sparse training
data in large sites, by making use of a relational model ofitbb site identifying semantic corre-
spondence between pages, both previously visited andsitedi The relational model is frequently
already available, because such a model is often created tivbéuman designer develops the site’s
navigational and content structure, or implements theldea to serve the content. Based on the

formal model from Section 2.3.1, the set of relatidRsn a web navigation RMM is an element of

30r, worse: if a page is created and linked from an oft-vispiege, then the maximum likelihood or maximumn
posterioriprobability of the new link will be very low.
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the site’s set of page partitionH,. In our evaluation we measure the predictive accuracy of RMM

for page navigation, and incorporate them into ouNPATH system.

6.4 Empirical evaluation

In this section, we address the following questions: (1)ushypothesis correct that RMMs out-
perform propositional Markov models when data is sparsg?in(@ata-rich environments where
PMMs perform well, are RMMs at a disadvantage? (3) Are RMMmgetitive in terms of CPU
time required for learning? (4) Which of the RMM variants iform, rank, or PET) performs best?
(5) How well does MNPATH perform when using RMMs versus PMMs?

To answer these questions, we selected four sets of log dk¢a from two real web sites,
www. gazel | e. com(the e-commerce site introduced in the KDDCup 2000 conipetj61]) and
the instructional pages from our home institutismw. cs. washi ngt on. edu/ educat i on/
cour ses/ . At both sites, we explicitly modeled when users ended a biryvtrail, by creating
a distinguishedsink page that was linked from every page in the site and whichsuseplicitly
visited at the end of a trail. We represented each page inithes a state and the input to the
models was the links users followed during the training geeriThe experimental task is to predict
the probability a user will follow each link given the usetisrrent page. The KDDCup data has the
advantage that it represents the large class of sites dgaiyagenerated from database queries and
page templates, but was not ideal because some domain ngpdekstions could not be answered
without the “live” sit¢. Our home institution’s site was useful because it is ojmmat and we have
substantial amounts of data available for mining.

For both sites we collected clickstream data and the listnélon each page. Determining
hyperlink connectivity was easy at our home institution—evawled the site and parsed linkage
data to create the model. However, although we had log datase. gazel | e. com the site was
no longer operational. Hence, we were forced to generat@amzimate linkage model composed
of the subset of links that were actually followed in the lagal While this solution is suboptimal

(even if a link was never followed, its presence may have énfted the behavior of visitors), the

“ww. gazel | e. comis now defunct.
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alternative (attempting to randomly add spurious but wefied links to each page) seemed ques-
tionable.

Generating good relational structure at each site wagystifarward. At our home institution,
for example, our model includegSourseOccurrence(Course, Term) pages for the main page of
each term’s offering of a coursAssignment(Course, Term, Assignment) pages for each prob-
lem set assignedtc. Content onmww. gazel | e. com as at many large web sites, was generated
dynamically by combining queries over a database with HTEloplates to produce pages. The
challenge, however, was in inferring the schemata of pagks-set of allowable templates and the
parameters that they each required—without having aceefisetlive web site. Fortunately, the
KDDCup log data encodes a comprehensive set of parametpestasf each request, and most of
these parameters have an obvious intuitive meaning (pageldée, product identifierstc). We
removed records for all but the nine most frequently acakgege templates and for templates
whose arguments are not present in the clickstream dagagearch results pages); this set of nine
templates was our initial candidate for the relation BetThe next challenge was determining the
arguments to each relation. By analyzing the frequency ofmal parameter values, it became
clear that some of the templates took optional argumentsa our framework requires relations
to have constant arity, we “split” such a relation into twawore relations, one for each non-null ar-
gument pattern. This process yielded 16 distinct relatior’®. Finally, for the hierarchies over the
parameter values, we used the trees defined for those pamanrethe KDDCup data. Appendix B
provides the detailed relational models for both sites.

In the following experiments, we compared PMMs with five RMBriants: RMM-uniform,
RMM-rank, RMM-PET-EM, RMM-PET-uniform, and RMM-PET-rankWe employed Laplace
smoothing [52] in the PMM and in the RMM-PET variants. For RMdhk and RMM-PET-rank
we set thek parameter at 10.0, a value which had produced good resultglafation data. For
each data set, we trained the models with varying numbersashples, and we recorded the aver-
age negative log-likelihood of a test example. A negatigglikelihood score is the number of bits
needed to encode an average test instance given the modefeatpnodel would have a score of
zero.

Our first experiment, which uses KDDCup data framw. gazel | e. com shows the substan-

tial advantage that RMMs can have over PMMs (see Figure 8Vith only 10 training examples,
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Figure 6.7:KDDCup 2000 data fwwv. gazel | e. comq Thez-axis shows the number of training
instances scaled logarithmically, and thexis is the average negative log-likelihood of a testing
example. Curves are based on 2000 testing instances. RMidsrtarm PMMs with as few as ten
training examples.

the RMMs perform significantly better than PMMs (the 95% oderfice interval around the mean
of the pairwise difference lies completely above zero). e amount of training data increases,
all models improve their prediction, but the RMM-PET vatgnoonsistently outperform the PMM.
In particular, this trend holds true even with abundantnireg data. This result is somewhat sur-
prising: the RMM-PET variants predict only the destinatiefation (and subsequently assume all
pages with the same relation are uniformly likely). priori, we would expect this restriction to
decrease performance, but, instead, this approach aplyaadiows the RMM to eliminate noisy

abstractions and predict navigation much better.

Our second experiment uses log data from November 2001 &oooe institution. When trained
with successively more data, RMM-rank and the RMM-PET vasahowed a slight improvement
over PMMs, but only when trained on up to 10,000 examples.aBse the UW CSE education
pages form a small site, it is a very data-rich environmest, the training data densely covers the

visited pages), and we were pleased that RMMs were not trdrop@MMs.
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Our third experiment also uses data from our home instityitrepresents traffic to the pages of
a single course, CSE 142 “Computer Programming |,” over laykdr. Here, we trained the models
on data from the instances of CSE 142 in Winter, Spring, Sumarel Fall 2001, and tested the
models on data from the instance in Winter 2002. Note thairtsteuctors (and course webmasters)
were different in the various instances; indeed, none ofébepages even existed at the time that
the training data was collected. As a result, the PMM can dhing better than predict a uniform
distribution over the links on each page. In contrast, an Ridkés advantage of the related common

relational structure of the training and test data to sigaiitly improve prediction (see Figure 6.8).

The computation time required for the RMM variants is notstahtially more than that for
PMMs. The RMM variants require some preprocessing of tha,datbuild the abstraction sets,
but this work can be done at learning time, independent ofdsieset. In this third experiment, for
example, preprocessing the site (containing 3,749 page$}¥M-rank and RMM-uniform took
four minutes (our RMM code is implemented in C++ and the expents were run on an 850MHz
Pentium IIIf. Inference in a PMM for a test example requires only a singli® of counts, while a
more complex set of counts must be shrunk together in the Rislifidnts. However, we found that,
on average, RMM-rank, RMM-uniform, and the PMM method afjuieed the same amount of time
(about 430 milliseconds) per example for inference. Theeddtbst of the RMM is hidden largely
because the work for one test instance may be cached an@dpplanotherd.g, two instances
with a common source state). The RMM-PET variants requiréferent preprocessing (to learn
the PET) which took 76 seconds and completed the prediatios in 1960 milliseconds.

Finally, we used RMMs to predict navigation for use in theNATH algorithm. We used data
from February 2002 (the same source as in Chapter 5), butelithe training and testing sets
to only those pages in thkeeducat i on hierarchy. We compared MPATH’s performance for
four different models: a single unconditional model with URtemming at 0.1%, a single first-
order Markov model with stemming at 0.1%, the RMM-uniformaet and the RMM-rank model.
We found that RMMs performed significantly better than theNP allowing MINPATH to save

users more links—often 50% to 80% more links than with PMMsastipularly when training data

SOur implementation calculates the non-leaf abstractiansition probabilities directly from the data, and not from
lower-level abstractions as we suggested in Section 6Th@3s, our computation could be improved substantially.
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Figure 6.8:Winter 2002 data from UW course CSE 142.Pages in the testing set (Winter 2002)
did not exist during the training period (Winter 2001 - Fellid). RMMs can take advantage of the
conceptually similar states to greatly improve prediction

was sparse. Between the RMM variants, RMM-uniform outperd RMM-rank in this data set,
perhaps because the RMM-rank variant was too eager to settbe shrinkage weights for more-
specific abstractions, regardless of how well these alisirectruly predict navigation.

In summary, we conclude that RMMs significantly outperforMMs when data is sparse and
perform comparably when data is rich. Computation time fMN&s is competitive with PMMs,
particularly when the training data can be preprocessedce RMM-PET approach offer signifi-
cant advantages by selecting the most informative mixemag, and the EM and rank approaches

perform favorably for computing the mixing coefficients.

6.5 A brief survey of related probabilistic models

Considerable work has been performed on a variety of diffepeobabilistic models; we illustrate
this space in Figure 6.9. The lower left corner representsnpgle model containing a number of
states of varying probability. Moving rightward adssquencénformation and leads to a Markov

model. Moving upwards addsructureby which we mean the notion of defining the states in terms
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Figure 6.9:Probabilistic models. Probabilistic models can be described by their supportHoee
features: sequential processes, relations between legiahd states, and structure within a state
description.

of variables and representing the joint probability disition compactly with explicit conditional
independence assumptions. Moving backwards into the padggrelational information—a set of

predicates and a domain of variables for each argument.

Viewed in this context, the connection between RMMs andrditet-order probabilistic repre-
sentations becomes clearer. Friedregaal.[47] extended the notion of Bayesian network to propose
probabilistic relational models (PRMs). Objects in a PRM divided into a set of classes, and a
different probabilistic model is built for each class, sffgng how its attributes depend on each
other and on attributes of related classes. Dynamic Bayeméaworks (DBNs) [32, 33, 93] form a
probabilistic dependency graph for uncertain temporadoeang. A DBN has a separate Bayesian
network for each time step, in which the values of variabtegifme ¢ can depend on the values of
variables in previous time slices. Thus, DBNs “improve” oklR®s in their use of explicit condi-
tional independences amongst a set of variables, but imasirto an RMM every state in a DBN
is treated the same way—it has the same variables and depeesie To our knowledge, RMMs
are the first probabilistic first-order model of sequentisdgesses to be proposed. However, it is
interesting to note that dynamic Bayesian networks can &gead as a special form of PRM where
there is only one class (the state) and the only relationdss#guential order between successive

states. PRMs have been extended to allow the class to benchiosea hierarchy [49]. RMMs al-
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low hierarchies over the attributes in each class, and coimipimodels at all levels using shrinkage.
This approach should be useful in PRMs also. One obviousfaréature work is to combine ideas
from RMMs, DBNs, and PRMs to define “Dynamic probabilistitateonal models” (DPRMSs).

Some work has been done in automatically inferring strécamong states in a model. For
example, TUBA [55] automatically categorizes the statebastions in a model, based on the sim-
ilarity of the utility function from the states and actioremd builds hierarchical abstractions for
each. These hierarchies offer insight to a human data menderstanding the learned model,
and Horvitz and Klein suggest that the utility-based apghazan assist in selecting the single best
abstraction from which to base a prediction. Automatichllyiding the state abstractions comple-
ments and supports our relational Markov model work, bsteiad of choosing only one abstraction
level, RMMs employ shrinkage to smoothly combine obseovatiat all abstraction levels.

Hidden Markov models have been extended in a number of wagsdommodate richer state
and observation information. For example, factorial hidéiéarkov models [50] decompose model
states intok components, described ldystate variable, that depend on each other only via the ob-
servation variable. A factorial hidden Markov model can mved as a special case of an RMM
with hidden state, in which all states belong to the sa&ragy relation, but which has a conditional
independence assumption that state variables in subsespaézs depend only on the correspond-
ing variables in the previous state. An area of future worlnigxploring how these conditional
independences can be leveraged by relational Markov mod@sarchical hidden Markov models
(HHMMs) [41] impose a hierarchical temporal structure os 8tates, in effect allowing states at
higher levels in the HHMM to represent a set of states in aldt. HHMMs are particularly
useful for modeling actions at different length scales,égample speech (the highest-level states
are words; each word-state is an HMM of phonensts). The temporal hierarchies are particularly
useful as a device to model the underlying process at a nuailaastraction levels, but they do not
enable a more robust learning such as what RMMs supporttagrand McCallum [46] build ab-
straction hierarchies for the observations in HMMs and hssé hierarchies to perform shrinkage
over the observables.

Other extensions of HMMs have been proposed(Lafferty et al.[62]). It should be possible
to subsume these within our framework; this goal is a matefiture research. RMMs are also

related to work on abstraction in reinforcement learniag( Dietterich [36], Dzerosket al.[39]),
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and may be useful in that field.

6.6 Summary

This chapter introduces relational Markov models (RMMsyemeralization of Markov models

that represents states with first-order relational pradicand leverages this information for better
learning and inference. We believe that RMMs are applicabk wide variety of domains besides
web navigation, such as mobile robotics, speech procespiogess control, fault diagnosis, and
computational biology.

Our experiments have shown that relational Markov modedsaasuitable alternative to tradi-
tional Markov models—RMMs infrequently perform worse, arah perform much better. When
data about all states is available in quantity, or if thetietes between states are not reflected in the
distribution of the data, RMMs offer no advantage relativéraditional Markov models. However,
when data is scarce or non-existent about some states, inudatt for conceptually similar states
(based on relational abstractions of the states), refaltibtarkov models significantly outperform
traditional Markov models. Intuition suggests that thisdacase holds true for the vast majority of

web sites, and that RMMs should prove widely useful.
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Chapter 7

THE M ONTAGE SYSTEM

This chapter presents our final web personalizegNWMAGE. MONTAGE builds dynamic, per-
sonalized web portals for visitors by combining content hnkis from many sites into one unified
view. MONTAGE predicts the user’s goal in each browsing session and pgm@®priate content
on the portal based on this prediction. In contrast totwPATH and FRROTEUS MONTAGE only
creates new pages—dNTAGE does not modify existing content. In addition, the expectse of
MONTAGE is as the browser start page, so the user will view the peligedaportal only once per
session, at the beginning. Thus, instead of improving idd& site-sessions, INTAGE aims to

improve entire web sessiofs.

7.1 Introduction

Despite the exploratory ring of the terms “browsing” andrfswg,” web usage often follows routine
patterns of access. For example, Chapter 1 presented tharicef a software developer whose
browsing is very regular day after day. However, despiterégeilarity with which users view con-
tent, few mechanisms exist to assist with these routinestasists of bookmarks must be authored
and maintained manually by users and are presented in a csonbe hierarchical menu. Links and
content on personalized portals, such as MyMSN [70] or My@H95], are more easily naviga-
ble, but still must be explicitly chosen and managed by ugets work on MNPATH can improve
routine tasks only if the goal is a single target on a site.h& task is to view many pages.g,
“interesting news stories”), or a series of pages, then RATH can offer little assistance.

The challenge that we tackled is to develop tools that assksts withroutine web browsing
Routine web browsing refers to patterns of web content adted users tend to repeat on a relatively

regular and predictable basis (for example, pages viewalait the same time each day, or in the

This chapter was substantially published in the 11th Irstéomal Conference on the World Wide Web [6].
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same sequence, or when working on the same &tsl}, In responding to this challenge, we pose

the following three hypotheses:

e Hypothesis T Users want “one-button access” to their routine web dastins (.e., users

want to minimize their effort in retrieving and viewing cemt).

« Hypothesis 2 Tools for routine web browsing are enhanced by tailorimidi and views to
a user’s current browsing context (as opposed to displagistatic set of content under all

circumstances).

e Hypothesis 3 Past web access patterns can be successfully mined t@tpfetire routine

web browsing.

To test these hypotheses, we designed and implemented therAGE system. MONTAGE
builds personalized web portals for its users, based on lmoteed from users’ web usage patterns.
These portals both link to web resources as well as embeémoinom distal pages (thus producing
amontageof web content; see Figure 7.1). After completing theMAGE prototype, we fielded
the system to evaluate its effectiveness as a tool and tomxtie validity of our hypotheses.

In the next section, we discuss routine browsing in moreildédtiowed by an outline of MON-
TAGE in Section 7.3. We discuss implementation specifics ofNWAGE in Section 7.4 and present

our experimental findings in Section 7.5. Section 7.6 caesuwith a brief summary.

7.2 Routine browsing

As we noted earlier, not all web usage is random or novel; weglssualso tend to revisit sites and
pages in aregular, predictable manner. In the example afrdguate student presented in Chapter 1,
the pages the student viewed depended entirely on his twoatext where context is taken as the
time of day and the general topic of the pages viewed preljiolddore generally, we define the
context of a web browsing session as the set of attributesiniflaences (either consciously or
subconsciously) the selection of pages a user views in @ssian. Many factors can be included

in a formalization of context. For instance, the context aailude the time of day, the period
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of time elapsed since the last session, the general topieeofast session, the most recent non-
browsing computer activityg(g, the most recently viewed e-mail messagsg, We define routine
web browsing as the overall pattern of content access thaeaperforms whenever in the same
or similar contexts. For example, if a user reviews a stoaitfpiio at around 1:15.M. every day,
then viewing the stock portfolio is a routine behavior—ippans at about the same time each day.
On the other hand, if the user spends an hour searching faniaftion about fishing in the Pacific
Northwest on only one day, then this behavior is not routieedise the user does not repeat it in a
similar context.

Our intuition strongly suggests that routine browsing isomimon mode for interacting with
the web; our informal surveys early in our study suggested riany people tend to view the same
page or constellation of pages when in similar contexts. fbee important questions that must
be answered are whether we can formulate good notions oéxipnitlentify the routine browsing
associated with each context, and leverage this informatassist the user. These questions are
embodied in the hypotheses we posed in the introduction endreswered with our experiments

with the MONTAGE system.

7.3 TheMONTAGE system

A web montage is a page that offers “one-stop shopping” fersiso find the information they
want. A montage combines content from many different pagédng to pages or embedding distal
content, saving the user the need to follow even a singletinkew content. A montage is more
than “just a list of favorites,” for three reasons. One reeisothat remote pages may be embedded
in the montage, aggregating content from multiple sitesother is that the content depends on
the user’s context of browsing g, the topic of recently viewed pages, or the time of detg,),
so the content is relevant to the task at hand. ThirdNVAGE automatically selects and manages
the appropriate content, without the need for explicit infpam the user. In contrast, the browser
favorites list requires much setup and maintenance by taetase useful, and this requirement is
often more effort than users are willing to expend.

Three typical montage views are shown in Figures 7.1, 7.8, 7a8. Figure 7.1 is the “Main

Montage” which displays links and embedded content grodyyedpic. This particular montage has



rosoft Internet Expl [ = |
|e-=»-@@ & H Fle Edt Wiew Favortes Took Help -
Main  Refresh  Your other Business & Finance - Computers & Intermet - & Media

Montage mentsge Montages: - Home & Family - Society, Politics, & News - Sporis & R

Society, Politics, & News

Computers & Internet

Microsoft, U.S. shape
tentative settlement

HARRISON / THE SEATTLE
A bite out on the town
Flashing enhanced incisors, Jon Taylor amives at the
Troll under the Aurora Bridge for a Halloween
celebration, Fremont’s Cirque du Flambé performance
group played host to a gathering under the bridge that
culminated with a costume parade of 200 people
through the neighborhood.

Fluvaccine may be delayed. but supply should he
adequate

L [—

\Also of interest in Society, Politics, & News:
The New York Times on the Web

Mercury Center Breaking News

| Preferred content. Preferred content.
CUOMEC  The Seattle Times Home Page S o on 2.1.1 Documentation -
o o e foois July 20,2001
Page updated 2t 09:54 2.m. Al Tutorial Al
(start here) =

Global Module Index
(For quick access to all documentatio)
Library Reference

Library Reference
(keep this under your pillow) >
« >

| Aiso of inferest in Computers & Internat.
Python211

Python Language Website

Entertainment & Media

| Freferred content:

Customize WSDOT Puget Sound

\Also of inferest in Entertainment & Media
‘ttp/fwindowsmedia com/m;

Joe The Circle: Volume 12, Iss.

[ETomme

[ [ BB Unknown zone (Mixed)

91

92

7 Corin's Society, Politics, & News Montage - Microsoft Internet Explorer

=101

& = @D || Be et vew Favortes Toos teb [ |
Society, Politics, &  Refresh Yo other ¢ Internet - & Media - Home & Family - Socisty,
News Montage montage IMontages: Politics, & News - Sports & R i
oghe  The Seattle Times Home Page | 2PR2 The New York Times on the Weh
Papa plsied 0054 aim. 2l | | 11.5. Bombs Key Taliban Center;

Microsoft, U.S. shape

tentative settlement

K H THE SEATTLE TIMES

MARK HA i
A bite out on the town
Flashing enhanced incisors, Jon Taylor arrives at the
Troll under the Aurora Bridge for » Halloween
celebration, Fremont's Cirque du Flambé performance
group played host to a gathering under the bridge that
culminated with a costume parade of 200 people
through the neighborhood.

Fluvaccine may be delayed, but supply should be

T — ol

Opposition Said to Be Repulsed

By TERENCE NEILAN

United States jets pounded a strategic Taliban
gantison in northern Afghanisten today, witnesses
seid, but a Taliban spokesmen said an sttack by
opposition forces on a key northern city failed.

+ 1LS_Jets Boydb Taliban Villages

* On a TalibanGuided Tow, Fats Prove Elusive

‘THE DISEASE
Anthrax Continues to Ripple Across the
Nation

By ERIC LIPTON

As investigators fanned out today to find the
sousce of the anthrax that killed a New York
‘hospital workes, preliminary tests found spotes in

four mailrooms of the FD A TECHNOLOGY

+ Anthyex Reports Spread to Midwest U.5.and Microsoft Agree on
o TR =)

<«

(Reuters |
‘Contiruing his tour of the Mideast,
British Prime Minister Tony Blair
et today with Palestinian Authority
President Yasir Arafat in an atterapt
10 testart Israeli- Palestinian peace
talks. Go to Articls

|&] Dane

Other links

CNN.com
CNN.com- Bush: All missions being 'executed as
bitpfforww msntbe.con/m/mwlnw.asp?
oeem

Slashdot | Finally, A Solution To The DMCA

Unknown Zone (Mixed)

Figure 7.1:Main montage. Content is grouped by topic, and each topic heading linksttp-
specific montage. The page with the highest expected utlitthe user is embedded on the montage
itself; other relevant pages in the same topic are includdihks on the montage.

Figure 7.2: A topic-specific montage. This montage embeds content from several pages and in-
cludes a pane containing many links to other pages in thie sapic.



93

laix]
|& - - Q@ & || Be Edt wew Favorkes Took Hep =
Computers & Internet Society, Politics, & News

e Python21.1 D July 20, 2001 o The Seatle Times Home Page

e Python21.1 o The New York Times on the Web

e Python Language Website o Mercury Center Breaking News

o Welcome to the Mi ft te Web Site e CNN.com

e 11.22 Using the cgi module o CNN.com - Bush: All missions being 'executed as

o Corey's bookmarks planned - 0.
o Slashdot | Finally, & Sotution To The DMCA

Entertainment & Media Sports & Recreation
o WSDOT Puget Sound Area Traffic Cameras o Seattle Times: Scores & stats

o hitp/fwindowsmedia con/mg/home asp?

WMPFriendly=tme

Joe The Circle: Volume 12, Issue 5

The Official Site of the Seattle Mariners

hitpfredic windowsmedia com/pviwme-en-

us/3/HOMED hta?WMPFs.

 Intro to Hamsterdance2 com

* hitp: /e msnbe com/m/mw/mw.asp?
s=&1=V&id=n_mitchell_condi.

o SignUp end Win

Business & Finance Uncategorized
o Welcome to MSN.com o hitp/fsearch support microsoft.com/kb/c.asp?

f=0&SD=GN&LN=E,

Home & Family

 Dilbert Comic Strip Archive - Dilbert -The
Official Di,

<]

&] Dore [ [ B8 Local intranet 7/

Figure 7.3:A links-only montage. Embedded content is omitted to allow many more links in this
view. Links are grouped by topic, and &NTAGE selects the placement of topic regions on the
display. Link anchors are the destinatien i t | e>, if it exists, or the URL itself.

94

three topic-specific panes: “Society, Politics, & News,bt@puters & Internet,” and “Entertainment
& Media,” each containing a cropped view of a distal web pagge lanks to other pages within the
respective topic. Thus, the user can immediately view tter@don’s current news, the user’'s most
frequently-viewed programming documents, and the cutraffic conditions around the area. The
position and selection of content is determined automijtibey M ONTAGE. The user can set the
size and location of the “lens” on the remote content pageacoept MONTAGE's defaults (we
discuss the user interface for adjusting lenses in Secti8r8)7 In Figure 7.2 is a topic-specific
montage, which shows several embedded pages and reldted Both the topic-specific montage
and the main montage are assembled automatically to fit jikinathe user’s current browser
window, to eliminate the need to scroll the page. The useneaigate between these montages by
following links at the top of each view. Figure 7.3 shows aifired montage that contains only
links. Still other visualizations are possible: a browsmslibar showing iconic representations of
pages; a persistent display of bookmarks auxiliary to tlevber window;etc. We plan to explore
these alternatives in future work.

Building a web montage is a two-step process, as we desciib€thapter 1. We summarize

how MONTAGE carries out these steps next.

7.3.1 Step 1: Mine the user model

The primary source of information for the user model is thgusmce of pages the user requested.
MONTAGE records the time and date of each page visit, the page’s URLtte topic of the page’s
content (this data is the contextof the request, as described in Section 2.3.1). The topicdea
determined using text classification procedures [25, 2], W& applied a content classifier trained
to assign topics to web content, developed by Chen and DUgg&isThe topic classifier employs
the linear support vector machine (SVM) method and assigok page a probability of being in
each category of a static topic ontoldgyWe took as the topic of a page the category with the

highest probability.

2An extension to MONTAGE work would be to adaptively adjust the level of detail in tbpit ontology, specializing
into subtopics any topics that are overpopulated, whileiteplarge, sparsely-populated topics general. Although w
used high-level categories for our initial user study, cumtent-tagging subsystem tags content more finely, enmugoyi
a hierarchical ontology of concepts.
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The result of evidence collection is a sequence of requagtet by topic that MNTAGE further
refines intosessionsFor MONTAGE'S purposes, a session is a sequence of page requests timast beg
with a visit to the user'start page—the first page the browser displays, or the page visited when
the user clicks the “home” button. In practice, OMTAGE does not know which page is the start
page and, thus, uses heuristics to identify when one sessidsand when the next session begins.
Section 7.4 provides the exact details of how we clean anthergthe data into sessions.

MONTAGE uses the page sequences and sessions to compute five abpetthe user for the

model. We summarize these aspects here; Section 7.4 desbidlv these aspects are computed.

Candidate pages MONTAGE selects a subset of the user’s previously visited pagesras-ca
dates for inclusion in the montage. MITAGE places no upper limit on the number of pages
selected, but does set minimum requirements for inclusiothis set (such as a minimum

number of times the user has ever viewed the page).

Interest in page. MONTAGE estimates the user’s apparent interest in each page, fsirbgr
how much time the user spent looking at the page, how many tim user followed from the

page etc.

Interest in topic. MONTAGE also estimates the user’s interest in the higher-levelctopi
pages viewed. Because, for instance, although the user huay relatively little interest
in several different specific pages, he or she may be stronggyested in the single topic

encompassing them all.

Probability of revisit. MONTAGE estimates the probability that a user will revisit a page in

the next browsing session, given the user’s current context

Savings possible.Placing a link or embedding a page on the montage saves thease
gational effort. MONTAGE measures this savings as the effort the user expended tiagiga
to the page originally. All things being equal, dATAGE will favor including pages on the

montage that would be difficult to revisit manually.
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7.3.2 Step 2: Assemble the montage

Equipped with the user model, MNTAGE is ready to assemble the content montage. Because the
montage depends on the user’s current browsing conteatyMGE builds a new page each time the
user revisits his or her montage. M TAGE begins the assembly by calculating the overall expected
utility of viewing each content topic or candidate page. Aketa simplified approach compared to
PrROTEUSS utility function, because the motivation here is in ewding pages previously visited,
and not necessarily the navigation through the site. Iniquaar, we ignore extrinsic utility, and
compute the probability of visiting a page by conditioning the browsing context. The cost of
navigation is incorporated into our measure of intrinsittityt Another advantage of this model

is that, because we are concerned only with estimating the & revisited pages, and not novel
pages, we can do so independently of all other pages hecause we do not explicitly model
navigation). This model will allow (for these specific papesore effective learning than possible

with MINPATH or PROTEUS(Which require more training data, to build a model of natiya).

We approximate the value of the pageo a user as a function of the intereg{p), and the
navigation savingsS(p). In the general case, the value is some combination of theséattors:
f(I(p),S(p)). We treat these factors as independent and have exploredabeeighted additive
model and a weighted multiplicative modeln our experiment, we chose the multiplicative model,
and took as the value of a pagép)”** x S(p)*2. If we assume the utility of displaying uninteresting
content to be zero (and not, for instance, negative), therexpected utility of a page is the product
of the probability the user will visit the page given the @t context,Pr(p|C), and the value of

the page. Thus, we take as the expected utility of a page:
B[U(p)] = Pr(plC)(I(n)** x S(p)*) (7.1)

Likewise, we compute the expected utility of a toffias the product of the probability that the user

30f course, an additive model can be viewed simply as the ihgarof the multiplicative model. The significant
difference arises when computing expected utility: in atiplitative model, doubling the interest in a page, for
example, always doubles the expected utility, but in antagdmnodel, one term may dominate, and thus doubling the
other will have little effect on expected utility.
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will view any page with topicZ” in the current context”r(7|C), and the user’s interest in the topic:

E[U(T)] = Pr(T|C)I(T)

This choice has the effect of favoring “larger” topics, besa every page with non-zero visit prob-
ability and interest will positively contribute t&[U(7)] (by increasing eithePr(7|C), I(T), or
both). Moreover, this behavior is what we desire: even ifpal§es of some topi€ individually
have low re-visit probability and interest, if the user hiésmed many more pages of topit than
any other, than that topic has high expected utility for teruand should be represented in the
montage.

MONTAGE uses these computed values to place content on the montaggximize the total
expected utility, subject to the sizes of the browser windowl each of the embedded pages. Ef-
fectively, MONTAGE solves a 0-1 knapsack problem where the knapsack is the éramindow
area and each item is a candidate page or topic with asstaiate (specified by the user or from
a default setting) and utility (computed as above). In pcactwve could provide users with tools to
inspect and tune measures of interest and navigation savamgl allow them to provide feedback
on the function for combining these factors. For example tlie multiplicative model, we could
assess from users the relative weighting ascribed to Btteegsus navigation savings. For our stud-
ies, we considered these factors to be equal and providediffixetions for interest and savings. In
Section 7.4 we describe how®ATAGE mines the interest, savings, and probabilities from the web

usage logs.

7.3.3 User control of montage clippings

In the previous section, we saw that the content embeddeteombntage was cropped to a web
pageclipping, a smaller window than the original page (see Figure 7.4)NVAGE allows the user
to have complete control over the size and position on thaldisge of this clipping. By specifying
the length, width, and focal point of the clipping, usersateepersistent lenses onto particular por-
tions of the content of pages. Users can also dictate thedrexy with which the content refreshes
itself during the dayi(e,, if the user simply leaves his or her browser at the montageNfGE

will automatically refresh the embedded content with theegifrequency).
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7.4 Implementation

The implementation of MNTAGE follows the framework we presented in the previous section;
this section we describe the specific details.OWAGE was coded in Python and runs on both

Windows and Linux platforms using Internet Information Bees (I1S) or Apache web servers.

7.4.1 Collecting data and mining models

Users of the MONTAGE system direct all of their web browsing through a proxy thagd each
request. In our experiments, we used a single proxy running eentral server, although theaw-
TAGE framework supports running the proxy on individual usenputers. An important advan-
tage of the individual proxy installation is user privacy-He proxy and the rest of the INTAGE
system all operate on the user’'s computer, then the usemizies the risk of unintentionally shar-
ing private information with third parties. We chose thetcalized proxy approach for convenience

of the experiment.
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MONTAGE cleans the logs following the techniques described in Agdpe€&. With the proxy
logs cleaned and sessionized OMTAGE proceeds to select the candidate pages and topics. Any
page or topic that has been visited more than once is a caediBar each candidate, ®NTAGE
builds a naive Bayes classifier [38] to estimate the prdinakie user will view the page in a future
context. The model classifies a session as to whether thenilterew the page or topic in that
session. The particular evidential features employedtheeoverall rate with which the user views
the page; the rate of viewing the page for each 3-hour blotkref in the day i¢e., midnight — 3:00
A.M., 3:00A.M. — 6:00A.M., etc); and the predominant topic of the pages viewed during the la
4-hour block of time. We evaluated many other features, sisdhe time since the previous session
and the last URL visited, but these other features eitheredf less lift in predictability or required
more training data than we had available.

The final aspects of the user model are the savings possikde wimbedding a page on the
montage and the user’s interest in a page or topic. We estéhthe savings as the average number
of links followed to reach the candidate page from the firgiepa any session that includes the
candidate page. The user's interest in a page is estimatetstieally as a weighted sum of the
average number of links followed from the padép), and the average number of seconds spent in

sessions starting with the page(p):

I(p) = L(p) = 0.50 + D(p) = 0.03

The constants were chosen to equate an average of two libwéad fromp with an average session
time length of 30 seconds. We chose these number empiricallgxtension of MNTAGE would
expose these values to the user to enable more direct conothis trade-off. The user’s interest

in a topic7 is the sum of interest over all pages whose topi€ is

I(T)=" I(p)
peT
We sum, instead of average, to reflect the user’'s cumulatiezest in a topic. If the user has low
interest in many pages all about one common topic, by virfugewing the large number of pages,

we presume the user has a higher interest in the common topic.
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7.4.2 Displaying montages

As the browsing context is potentially different each tirhe tiser requests his or her montage, the
montage may be rebuilt frequently. Our implementation neguonly a few seconds to rebuild a
montage, with the time dominated by solving the knapsacklpro to place embedded content and
topic panes in the browser window. We are confident we coufgrave this time by an order of
magnitude with judicious optimization. In our experimentg rebuilt and cached test subjects’
montages only once per hour, both for convenience and bedhesset of features we chose for

browsing context does not change faster than about onceoper h

As we described previously, we developed two different afigations for a montage: the
embedded-content montage (Figure 7.1) and the links-omigtage (see Figure 7.3). The links-
only montage is quite simple to display: it is a two-dimensibtable and contains only links to
web sites—no embedded content, images, JavasetpiThe link anchors are chosen as either the

target page's<t i t | e> or, lacking a title, the URL itself.

The embedded-content montage is a bit more complex. Itisddras a set of nested r ame >s:
the navigation bar, each topic pane, and the content patigis wach topic pane, are alff r ane>s.
The hosting<f r ameset >s specify the size of each pane; it is this mechanism thatsatothe
size of the cropping window for distal content. To scroll tlantent to the appropriate position on
the distal page, MNTAGE sets thesr ¢ of the frame to be the corresponding URL and additionally
adorns the URL with a tag the ®NTAGE proxy intercepts (recall that the user directs all browsing
through the proxy, including requests made for content efdbe in the montage). The dDNTAGE
proxy passes the request along to the appropriate servaoyirg the adornment) and inserts a
small amount of JavaScript into the resulting HTML streamt $&ack to the user. The proxy makes
no other changes to the returned HTML, but the grafted JaigtSwill scroll the page to its appro-
priate position as it is loaded by the browser. We note thatl@nnative approach would be to pass
the URL directly to MONTAGE and have it fetch the page and modify the content itself—rexine
for adorning URLS or intercepting requests with the proxgwéver, because the URL the browser
would see is a MNTAGE page, rather than the actual target site, the browser wilcammunicate
any cookies to the remote server. Thus, to ensure the brdvedievesit really is communicating

directly with the remote site, we chose the URL adornmenteaugh.
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Figure 7.5: Customizing embedded content.The user can change the cropping window on the
distal page by simply resizing and scrolling the browserdmin.

The user may change the size and position of the croppingomirzh distal content by clicking
the “Customize size & focus” link in the upper-left cornerasfy content pane. In responseph-
TAGE opens a new browser window as shown in Figure 7.5. The usecaatnol three aspects of
how the content is displayed in the montage. First, the umedaectly change the size and position
of the clipping window simply be changing the size and squoBition of the browser window: drag
the window larger, and the clipping window becomes largeccd®d, the user can control how text
flows on the page by specifying the width and height (in the fields in the figure) of theirtual
browser windowthe page is rendered in. For example, if the user wants to ttr@gontent very
narrowly, he or she could specify the virtual browser be aflwidth 400 (pixels) for that page; the
page would then be formatted very narroflfinally, the user can control how often each clipping
reloads itself in the browser window by setting the periodséconds; zero seconds disables auto-
refreshing. By default, MNTAGE sets this value to zero (refreshing disabled), althoughnVhGE

could suggest a refresh interval based on the user’s pasitregquency to each page.

“Technically, each embedded clipping is placed withircr r ame> on a page sourced by<af r ane>. The width
and height fields the user enters simply control the size ®kthf r ame>; the actual browser window size controls
the size of the<f r ame>.
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7.5 Experimental evaluation

In Section 7.1, we presented three hypotheses about usatsie browsing behavior. A key step in
answering these questions is actually fieldingAGE among users. We conducted a two-week
user study of 26 web-savvy users during early October 208&rdhad extensive experience on the
Web but varied in the amount of daily browsing activity. Treets were computing professionals
and, by large, held a “time is money” philosophye(, waiting for web pages to load or hunting for
the right link to follow on a page is a wasteful experiencehu3, MONTAGE could significantly
improve their browsing experience by making their routinetvibrowsing more efficient.

During the study, users directed all their web browsing tigto a central proxy running on
our “MONTAGE server” (which ran the proxy, a web server, and theWfAGE implementation).

In the first week, we only collected usage information—udesvsed the web as they normally
would. At the end of the first week, we began building modelgadh user, once per day, to use
with MONTAGE. Recall that, although the user’s browsing context chamglegively frequently,
the predictive model for the user does not—a single additibour or half-day of browsing rarely
changes the model dramatically.

During the second week, we presented users their montagesnstructed users to make their
montage their browser’s start page, and to revisit the padeaat a few times each day. We also
added an additional pane to the montage to elicit feedba@nexer the user viewed the page (a
simple rating reflecting how “pleased” the user was with thamntage, ranging from 1 meaning
“Not pleased at all” up to 7, “Very pleased”). During this joet, 21 of our 26 users actually viewed
their montages, on average 25.1 times in the week, and movieedback 28% of the time (we
attribute most of the missing 72% of feedback to users sirfgatyetting to do so). We concluded
the study with a questionnaire.

To explore the validity of our hypotheses from Section 7.2,tested two variables influencing
the montage. First, we varied the montage visualizatiomagmh: embedded-content or links-only.
Second, we varied the model complexity: the expectedyytitiontext-sensitive model (“complex
model”) as described in Section 7.4, or a simple model usiiyg the overall frequency of revisits
to determine the probability of returning to the page.( ignoring interest in page and savings).

We presented every user in the study with two different styfe montage, drawn from the four
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Table 7.1:Study groups. Each group viewed two montage variations: the embeddetéobhcom-
plex model montage and another as shown in this table. Wet equarticipant as active if he or she
viewed and rated at least one montage during the study. Qagejeusers rated their montage 8.06
times in the study.

Group Visualization Model | Number userg
1 Links-only Simple 6
2 Links-only Complex 6
3 Embedded-content Simple 6

Table 7.2: Feedback scores.Users rated their montages between 1 (“Not pleased at aitl)
(“Very pleased”).

Visualization Model | Average score
Links-only Simple | 3.32
Links-only Complex | 4.97
Embedded-content Simple | 1.88
Embedded-content Complex | 3.22

total configurations; one style in the first half of the secaretk and the second style in the second
half. We particularly sought feedback on the embeddedectritcomplex model style, so each user

viewed that montage, and one other style. Table 7.1 showsesulting study groups.

7.5.1 General results

Our study groups were quite small, so our results can givg @gleneral impression of the compar-
ative trends. In future work, we would like to conduct a mucbrenextensive user study. Table 7.2
shows the average feedback score for each of the four mostglgs. Recall that a higher score
means the user was more pleased with his or her montage. T&b#hows the scores comparing
only one variable at a time, and Table 7.4 displays each sgudyp’s score for their respective
styles. Overall, the links-only montage using the model theorporates context appears to be the

favorite. We shall next analyze how these findings apply tchgpotheses.
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Table 7.3:Results by variable.

Visualization Average score
Links-only 4.40
Embedded-content 2.98
Model Average scorg
Simple 2.64
Complex 3.79

Table 7.4:Results by study group.Each study group viewed two different montage styles, switc
ing half-way through the second week of the experiment.

Visualization Model | Grpl| Grp2| Grp 3

Links-only Simple | 3.32
Links-only Complex 4.97
Embedded-content Simple 1.88

Embedded-content Complex| 3.08 | 4.00 | 2.50

7.5.2 Hypothesis 1

Users want “one-button access” to their routine web dediivres

As a result of our study, users could access their routinérdg®ns in four different ways:
follow a bookmark; follow a link on the links toolbar (a smadiolbar that displays only four to
six bookmarks); follow a link on a links-only montage; an@wicontent or follow a link on the
embedded-content montage. Although measuring bookmatKimks toolbar usage was outside
the scope of our original study, users’ qualitative feedtbadicates that users value the montage
higher than the manual approaches. Some users suggestbdd mhere they can manually add
links to the automatically-generated montage. We are denisig such an extension to our system.

Between the two visualization approaches, we were sugpteséind that the links-only montage
was unanimously preferred over the embedded-content merfsee Tables 7.2 and 7.3).priori,
we had expected users to prefer their target content embetideetly on their montages. Instead,
users apparently do not mind following at least one link ®wtheir destination.

We believe several factors may have influenced users’ apsnam this issue. One is that the
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links-only montage loaded nearly instantly as it is onlynfatted text. The embedded-content
montage, however, would take up to 30 seconds to load coetplédownloading all the distal
content embedded on the page). It's not clear how much ofitfisy was caused by our particular
experimental setupe(g, was the proxy a bottleneck?) and how much delay is ineétéhlg,
network delays). We plan to investigate this issue in a &utstudy by prefetching the content
embedded on the montage.

Another reason is that the links-only view alloweddIMTAGE to place many more links on the
display than with the embedded-content view. With moreditdkkchoose from, users had a greater
chance of finding a link to their destination immediatelytheut drilling down into a topic-specific
montage. Due to a someone large default size of the embextnieent web clipping, only one or
two clippings could fit on a single montage, unless the usstoonized the clipping size. We plan
to investigate other means for providing greater numbedippings, including rendering scaled-

down views of portions of pages.

7.5.3 Hypothesis 2

Tools for routine web browsing are enhanced by tailoringdimnd views to a user’s current brows-
ing context

The test for this hypothesis is the comparison between ampéex model and the simple one.
The complex model conditions the links and content on thetagmnon the user’s current context,
while the simple model ignores context. The latter half obl€a7.3 shows this comparison: the
model conditioned on context outscored the simple model bl @ver a point. Of course, this
result only scratches the surface—context is clearly usbfu what context should we use? In a
future study, we plan to evaluate how much predictive littregeature offers to determine the most

valuable set of features for the user model.

7.5.4 Hypothesis 3

Past web access patterns can be successfully mined to pfetie routine web browsing
The proof of this hypothesis lies in how often users foundrtteeget content on or using their

montage. Based on a post-study survey, many users agreadtiéidound the montage helpful in
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suggesting pages they indeed wanted to visit. Howeveg there several cases in whichdWTAGE
suggested pages that were clearly never going to be relisite particular, MONTAGE tends to
suggest search engine results pages to users,@sTME estimates the user’s interest in these
pages highly (MVNTAGE estimates interest in part as the number of links followednfthe page).
We plan to refine MONTAGE's interest estimate in a future implementation and test liypothesis
further.

Quantitatively, 73% of users responded in our post-studyesuthat they felt that MNTAGE
selected appropriate links and content at least occagjondle feel that this result supports our
initial approach to mining routine web browsing. Moreowee can improve this value in two ways.
First, due to a technical issue, JITAGE does not suggest intranet content; omitting these pages
accounted for 18% of the sessions in whicloMrAGE failed to suggest the correct target. With the
experience of the user study, we are confident that we cacawer this technical detail and expand
the universe of content BMINTAGE can offer. Second, 45% of the missed sessions led to pages tha
users had visited sometime earlier in the study. With a lomggtiory of web usage, and perhaps
a more sophisticated user model OMTAGE could potentially suggest useful content for many of

these sessions.

7.5.5 Discussion

Overall, it appears that the ®NTAGE user modeling components work well—the context-sensitive
model scored higher than the simpler model. Additionalsgrs are concerned that their start pages
load quickly; 64% of our users indicated speed of loadingstiaet page as “very important.” This
concern is more important, in fact, than having the targéteir session display in the start page. We
are thus interested in incorporatingdW TAGE with a web prefetching system to greatly improve the
load time of the embedded-content montage. One could ateaeihe utility model (Equation 7.1)
to incorporate the cost of waiting for the ®NTAGE to load the remote content, in the same way
that FRoTEUSINcorporates the cost of navigation actions (Equation.3.1)

Users appreciated ONTAGE'S efforts to automatically select and place content on treen,
but they still want some manual authoring mechanism. A nunabeisers point to their links

toolbar as what they feel MINTAGE must compete with. Although it is true thatdMTAGE was
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able to identify a number of these preselected shortcutsnzatically, it is clear that users would
be more inclined to adopt a hybrid system that also allowslii@ct manipulation and authoring of

content to include.

7.6 Summary

The goal of MONTAGE is to improve the experience of routine web browsing—thenlsing that
users tend to repeat over and over in similar situations. niygemented the MNTAGE prototype
system by coupling proxy-based monitoring and predictigerumodeling machinery with layout
and display techniques that compose web montages. We posadishypotheses about routine web
browsing and addressed them in a user study. We found thest aigpreciated having an automatic
system that could suggest links for them to follow, given aalor view of their current browsing
context. However, we found that users particularly wanteddystem to operate as fast as possible,
being effectively transparent in there access to the WebfdiMed that loading the montage page
should take no more than one or two seconds, and users wamtedsanual authoring capabilities.
These findings encourage us to push forward in a number aftitires with MONTAGE, as we have

highlighted in this chapter and outline in Section 9.4.
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Chapter 8

RELATED WORK

In this chapter we compare our research with relevant ctiaed recent work. We previously
discussed how relational Markov models compare to othebgiilistic models; here, we survey

other web personalization techniques.

8.1 Adaptive hypermedia

The goals of adaptive hypermedia ally closely with our wdrkimprove web (hypermedia) inter-
actions by modeling users and adapting the experienceapethe most significant difference lies
in the application domain. Most adaptive hypermedia wokkseo improve: online educational
systemsi(e., adapt the learning to the student); help systems (adamitite particular context of
the help request); information retrieval (helping users fis much relevant content as possible); or
online information systems (helping users find high-gyatiintent quickly). Brusilovsky provides
an excellent overview [19] of these systems, and the May 28§# of theCommunications of the
ACM [18], as well as the book by Brusilovslet al.[17], feature contributions from several of the

most prominent members of this community.

8.2 Personalized content and portals

Our work has been inspired by Perkowitz and Etzioni's adaptveb sites [80, 82, 79]. Our work

differs from theirs on three important points:

« Adaptive web sites find singular transformations that appeall visitors at the site, while
PROTEUS MINPATH, and MONTAGE personalize the web content for several sizes of audi-

ence, from all visitors down to each visitor.

e The only transformation Perkowitz and Etzioni’'s adaptivetvsites produce is synthesizing
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index pages-hubs of links to other pages in the site. Our personalizensider a much wider
range of adaptations, that personalize individual pages, €lide-content), site-sessions

(add-shortcut), or entire browsing sessions (embedding distal conteatdrsingle portal).

e Their site evaluation metric measures only the navigatispeat of the site’s visitors. Our
approach, estimating the expected utility, combinesafisitcontent interests with a model of
their navigation behavior, and is applicable both as intliai pages change content, and to

newly created (or never-before visited) pages.

Another proxy-intermediary approach is the Web Intermeega(WBI) [11, 67] project. WBI
proposes an architecture of pluggable intermediariesetkiat between web servers and web clients.
These intermediaries generate, transform, and monitocahéent they see in connection with re-
quests made from web visitors, and can be used either indilidor in chains. In many ways,
our approach to web site personalization can be viewed agiaytar transformation intermediary,
providing highly personalized content for users. An ingtirgg line of future research would be to
reimplement ROTEUSIn the WBI framework and investigate what new capabilitissavailable to
it as a member of WBI's federation (in particular, what otlreermediaries are available that could
be usefully composed withFOTEUS MINPATH, or MONTAGE).

The PersonalClipper [44] allows visitors to build their oaustom views of web sites by record-
ing navigational macros using a VCR-metaphor and selectingponents of the target page to view
with a mobile device. In contrast toR®TEUS the PersonalClipper requires the visitom@anually
create these navigational macros and place the result opettsenal clipping. However, based
on feedback from our MNTAGE study, it would be interesting to combine PersonalClippéhw
PROTEUSOr MONTAGE to support a mixed-initiative personalized experience.

Among research on personalizing web portals, the mostainmilspirit to MONTAGE are Per-
sonalClipper [44] (oMyOwnWeli8]) and the Web-based Object-Oriented Desktopo@) [23].
The PersonalClipper architecture reliessite descriptionswhich are essentially programs that run
on a web site (following links, filling in formsetc) and produce a block of HTML as output (a
clipping). These site descriptions are built by the user following@R/metaphor [9]: the visitor

starts recording a descriptor, navigates the site to findstrdgtion page, and ends the descriptor by
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selecting the HTML fragment that is of interest. Users ofs@aalClipper would select the site de-
scriptions desired on a start page, and the system wouldiexte site descriptions and concatenate
the results for display. The WebViews [45] project exterfusse ideas to allow for parameterizable
site descriptionsg.g, a macro for selecting airline flight status given the caraied flight number)
and to output for mobile defines.g, transcoding the output into XML for voice browsing).

Woob employs external information components to extract andgss useful content from
many different sites. Users of @D manually select which components to display and how to lay
out the resulting content on the screenoNTAGE improves on these approaches in two ways. First,
MONTAGE automatically selects the content to display, freeing ther from the need to manually
maintain the personalized page. Second)NMAGE embeds web clippings, an approach that we
believe captures a more intuitive and robust approach wing distal content than filtering and
processing content based on the HTML markup of the page.

Newsblaster [12] is a system for clustering news articlesifmultiple sources and automatically
authoring summaries of the stories. Newsblaster's muaitittinent summarization could be used
with MONTAGE to author more descriptive labels for the content paneseémtbntage. Moreover,
with automatic summarization, ®NTAGE would no longer need a topic classifier, and could instead
cluster content and links based on usage or keywords, aetittabclusters based on the automatic
summary.

Also similar to MONTAGE is work on automatically building bookmark lists. PowerBeo
marks [63] automatically builds a Yahoo!-style web diregtof the pages each user visits, selecting
which pages to include by how often the user visits them anithély link structure. The Bookmark
Organizer [66] is a semi-automated system that maintaingrarchical organization of a user's
bookmarks while letting the user keep control of certaireasp(such as “freezing” nodes in the hi-
erarchy to prevent them from being changed). These systeduse the effort required to maintain
the bookmark lists, but they do not address all the drawbatksich lists. PowerBookmarks and
the Bookmark Organizer are insensitive to the user’s brogvsbntext, and may require substantial
user effort to find the target link (navigating a hierarchicegenu structure or drilling down through
a web directory). In contrast, DNTAGE's user model leverages the content of pages viewed and
the frequency of links followed to automatically selecthriguality bookmarks, and to display the

most appropriate bookmarks for the user’s current conféxNTAGE also displays both embedded
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content and links in a single page, requiring no scrollind anmost one link to follow.

Building a web montage is related to the more general intérebuilding web-based docu-
ment collections. Systems such as Hunter Gatherer [92tassers in building collections of web
content, either web pages or within-the-page blocks oferntin contrast to these systemspht
TAGE builds its collection automatically and dynamically, taieffectively “hard-wired” to only one
collection (the “material for a start page” collection). &techniques in MNTAGE and collection
building systems nicely complement each other, and it wbalthteresting to apply the user-assisted
assembly techniques to ®MTAGE. For example, both MNTAGE and the user could add compo-
nents (links and embedded content) to the start page dote@nd MONTAGE would automatically
group and display the components to the best of its abilitye Tiser could assist ONTAGE with
components that are incorrectly displayed or that are adusulially. The participants in our study

agreed that this type of mixed-initiative system would ljkiee their favorite.

8.3 Improving mobile web content

A number of companies [10, 89, 56, 37] have taken the first cernial step to bring web content
to wireless devices: syntactic translation. Syntactiogtation re-codes the web content in a rote
manner, usually tag-for-tag or following some predefinedpkates or rules. This method enjoys
some success, particularly for mobile clients that haveastisome graphical displag.¢, a Palm
Connected Organizer, but not text-only pagers). Howeves, approach essentially produces a
scaled down version of the original web site: all the origic@ntent and structure designed for the
desktop, broadband visitor, but in miniature form. The n®kisitor must wade through a morass
of possibly irrelevant links and content to find the singlengef information for which he or she
is looking; browsing such a site with a small screen and atbawewidth network connection only
exacerbates this problem. Syntactic translation is notweffaapproach—quite to the contrary,
it is a necessary component of a successful mobile web sitbat\i¥ lacks is an awareness of
the particular needs of each visitor—syntactic transtasionply perpetuates the “one-size-fits-all”
philosophy from the original web site.

Two systems similar to our ®TEUSwork are Digestor [13] and Pythia [43]. Neither system

personalizes web content, but both concentrate simply amwstorming content for display on a
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small screen with limited network bandwidth. Digestor uaesteepest-descent search similar to
ours, to find an optimal page. However, Digestor rates thétyud a web page not on the visitor’s
expected utility, but only on how much screen space the pagepies (smaller pages have higher
quality). This quality metric has two significant weakness€irst, different elements on a page
will have different value to the visitor, and should not beasered simply by how large they are.
Second, this metric encourages the system to create degemages—a blank web page receives
the highest quality value. Both these weaknesses are aédréy a richer visitor model, such as
we define for ROTEUS In contrast to Digestor andR®TEUS Pythia does not use search, and
instead performs distillation of every image on the requested web page to reduce the sdeeen s
and file transmit cost of the content. Pythia allows the oistb subsequently select images to
restore to a larger size in a refinement step. Pythia’s appraawell suited to improving how
images are transmitted and viewed on mobile devices, butable to improve the textual content
or navigational structure in a web pagerd@reusaddresses both of these issues and, in fact, would
be beneficially complemented by Pythia’s approach.

Several other systems also seek to improve the wireless xpelsience. The Daily Learner [14,
15] is an agent that learns a Palm VII user’s preference farsneontent, by monitoring exactly
which stories the user requests from both the Palm devicéhsnor her desktop computer. Based
on this feedback, the Daily Learner builds a model of theuaxtontent the user prefers, and au-
tomatically builds a page of links to other news stories wgithilar content. This model is similar
to that used by RoTEUSto calculate intrinsic utility, with the exception that TBaily Learner's
TFIDF weighting is done over a much larger corpus of documelntvould be interesting to incor-
porate their content model intoR®TEUSto predict intrinsic utility with higher confidence.

The goal of m-Links [91] is to enable access to web contemt fellular phones, on which only
two to four lines of text are viewable. With such limited despspace, transcoding existing content
is not feasible—reducing arbitrary content into such a $spce is nearly impossible. Instead, m-
Links automatically identifies objects of interest on welgemand builds its own hierarchical menu
for accessing these objects. m-Links also associates aith ebject a set of services available,
for example, printing PDF files, reading e-mail, or listanito the text of a document with text-
to-speech synthesis. The m-Links approach can be viewedes@rocessing step in our search

framework: each web page is first converted into an m-Linkscstire, and then we could perform
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search through the space of arrangements of content, @dtemhoving web data from one page
to another or moving important items higher in lists showith® user. Successfully personalizing
web content on a cellular phone could have great impact inilmekeb usability, but also faces a
significant challenge: training data is very sparse. ThdyDaéarner combines training data from
mobile and desktop devices, and personalization for @elptione web browsing must do the same.
The Stanford Power Browser [20, 21, 22] is a client-side apph that seeks to improve the
viewing of web pages. Most significantly, the Power Browsealges “accordion summarization:”
sections of text of a web page are first displayed “rolled-apd replaced with a single line of text.
The user can easily expand each rolled-up section by clickim the text to view progressively
more detail. The advantage of summarization is to allow & tsquickly view the whole content
of a document, at a high-level, and then drill down into orfipse parts of interest (and avoid
scrolling through irrelevant content). The Power Browsamplements our RoTEUSapproach by
improving the interaction with each page the visitor vies.interesting item of future work would
be to evaluate the improvement in navigation each of thesirfies offers, and how they interact

with one another.

8.4 Predicting navigation

Predicting web navigation well has impact beyond web petization. Much of the earlier work
on predicting navigation was done with an eye toward serpegdicting future requests and pre-
sending documents to clients. When the server guessesiigribe latency of the next request is
greatly decreased; and if the server guesses incorreleflyclient simply resets the connection and
requests the intended next document.

The two leading approaches for predicting navigation arekblamodels and:-gram models.
Markov andr-gram models are very closely related, and we distinguismtby whether they pre-
dict which URL will be requested next (these ategram models), or if they computepaobability
of the next request (these are Markov models).

An n-gram is a sequence of web requests, and the-gram model records how often each
sequence of, requests was made in the training data. To predict a futupeest, an agent looks for

ann-gram that matches the suffix of the user’s recent browseig frevious work [83, 90, 97, 35]
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has explored how to choose whigkhgram and how to reduce the model storage requirement (given
that the size of the model increases exponentially w)thA common technique is to learrgrams
forn = 1,2,3,... and select the longestgram that matches the current testing trail [83]. This
process can be viewed as a form of shrinkage: the length of-tram is a measure of it specificity,
and one can combine multiple applicablegrams by shrinking estimates with larger values:of
toward more general estimates with smaller values.ofDeshpande and Karypis [35] propose
using pruning techniques to reduce the model size and irepposdictive accuracy. A drawback
of the n-gram approach is that it requires large volumes of datadim treliably and to ensure
adequate coverage of 2-, 3-, and longegrams. Another drawback, common to betfgram and
Markov models, is that a model that treats URLs as unrelatgdbolic entities cannot generalize to
previously unvisited pages. Alsp;gram models often simply prediethich page will be requested
next, and do not estimate the probability of that next rejuBlse models our MNPATH algorithm
requires must produce a visit probability for each link fagigen page in the site.

In Chapter 5 we discussed how Markov models could be usedettigtrweb navigation. The
WebCANVAS system [24] also uses Markov models (mixtures afikdv models, in fact) to model
navigation, for the purpose of visualizing the resultingugs of users. Sarukkai [88] builds first-
order Markov models and Zukermaat al. [99] build first- and second-order models. Sarukkai
suggests several applications enabled by predicting aawiy including server pre-sending, client-
side highlighting of the user’s next link, and automaticrtgeneration i(e., automatically finding
high-likelihood trails in the site and showing these totais). Experiments from both works show
that Markov models can predict the next page request relgtwell; Sarukkai, for example, reports
a 50% predictive accuracy.€., 50% of the time, the page with the highest predicted prdinabi
was the next page requested). Zukernearal’s second-order model performed better than their
first-order model, but an even greater gain was achievedrbplgiconditioning the model on the
set of available links on the client’s referring documentNATH also conditions its probability in
this way, and for the same reason—the user is far more likefgltow a link from the current page
than jump to a random page elsewhere in the site.

Other methods of web prediction are possible. Mladeni¢ praposed building naive Bayes or
k-nearest neighbor models to predict which link the user feilow given the text of the current

page, the possible destinations, and the pages previoieshes by the visitor. Our work with
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relational Markov models differs in that we produce a pralighdistribution over the out-links,

instead of selecting only the single most likely one.

8.4.1 Web recommender systems

Mobashetet al.[73] propose building frequent itemsets of URLSs viewed, #veh suggesting pages
in these itemsets not yet seen. A partial user session is @@ugainst each itemset to derive
a matching score, and each URL in the itemsets is rated byetfermatching score, the URL's
relevance to the itemset, and the minimum click-distand¢e/éen the user’s current session and the
URL. The highest-rated URLSs not visited in the current sesaire the recommendations. Mobasher
et al. present anecdotal results showing that useful recommiendaappear within the top 15 links,
but do not evaluate their approach on a wide range of realdwger sessions. In addition, this
method can serve only as a heuristic for page recommenedatioiike MINPATH, this approach
does not compute the probability of visiting a page, nor greeted savings for links (their distance
formula is based on a minimum traversal, which may not be sorgble assumption).

In later work, Mobasheet al.[74] combine their previous usage-based page clusteripgpaph
with a content-based approach: producing clusters of pagsed on their textual features. They
present anecdotal evidence that each clustering schenfsndaacommendations that the other did
not, but they do not demonstrate on real-world data whicbmenendations are, in fact, useful for
web visitors.

Yanet al.[96] model visitors as vectors in URL-space—matlimensional space with a separate
dimension for each page at a site—and cluster them usingioraal vector clustering techniques
(in their case, the leader algorithm). They explore varipggameter values for leader, including
minimum cluster (membership) size and maximum distance/dst any page and the median of
the cluster, but leave for future work producing recommeiodia given these clusters.

Letizia [65] is a client-side agent that browses the web muémn with the visitor. Based on the
visitor's actions €.g, which links the visitor followed, whether the visitor rads a page in a book-
marks file,etc), Letizia estimates the visitor's interest in as-yet-wers@ages. Unlike MPATH,
which resides on a web server, Letizia is constrained togkeurces on the web visitor’'s browsing

device, and is thus not well suited to a wireless environmémiddition, Letizia cannot leverage
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the past experiences ofhervisitors to the same site—Letizia knows about the actionsndy its

visitor.

WebWatcher [57], Ariadne [58], and adaptive web site agfft$ are examples of web tour
guides, agents that help visitors browse a site by suggestitich link each visitor should view
next. With the assistance of a tour guide, visitors can oliils frequently viewed by others and
avoid becoming lost. However, tour guides assume that exagg along the trail is important, and
typically are limited to only suggesting which link on a pagdollow next (as opposed to creating

shortcuts between pages).

SurfLen [48] and PageGather [82] improve navigation byding lists of links to destinations
sharing a common topic. SurfLen mines for association rylegorming a form of “market basket”
analysis [1]. PageGather builds a co-occurrence matriX pbars of pages visited and finds clusters
of pages frequently viewed in the same session. These tilgmisuggest the top. pages that are
most likely to co-occur with the visitor’s current sessi@ither by presenting a list of links in a
window adjacent to the browser (SurfLen) or by constructingew index page containing the links
(PageGather). However, both of these systems assume itoe ean easily navigate a lengthy list
of shortcuts, and thus provide perhaps dozens of suggested IMINPATH improves on these
algorithms by factoring in the relative benefit of each stutit and suggesting only the few best

links specific to each page request.

SurfLen [48] and PageGather [82] suggest pages to visitdbasepage requests co-occurrent
in past sessions. SurfLen mines for association rulesppeifig a form of “market basket” anal-
ysis [1]. PageGather builds a co-occurrence matrix of dlispaf pages visited and finds clusters
of pages frequently viewed in the same session. These #igwrisuggest the top pages that are
most likely to co-occur with the visitor's current sessi@ither by presenting a list of links (Sur-
fLen) or by constructing a new index page containing thedifRageGather). However, both of
these systems assume the visitor can easily navigate &jeligjtof shortcuts, and thus provide per-
haps dozens of suggested linksINPATH improves on these algorithms by factoring in the relative

benefit of each shortcut, and suggesting only the few bdst Bpecific to each page request.
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8.5 Adding conceptual knowledge to web pages

The goal of the WebKB project [31] is to populate a relatiokabwledge base given the textual
content and hyperlink connectivity of web pages. This gedifferent from that of RMMs—RMMs
presume the existence of a relational model and predicsitians using the model. However,
it would be interesting to apply the WebKB learning approéetpopulate a modedescribing a
web siteand use RMMs to predict navigation in that model. Althoughstrecommerce sites are
dynamically generated from database queries, many othge Eites €.g, corporate intranets or
academic institution web sites) exist only as large calbest of static web pages. The WebKB
approach could prove fruitful for producing the relatiomaformation RMMs need for such static
sites.

Finally, much research has been done in recent years orifgiagsveb pages€.g, Pazzani
et al. [77], McCallum, et al. [69]). Any web page classifier that yields class probak#itcan in
principle be used in place of RMMs for adaptive web navigatidowever, many of these classifiers
are based on viewing web pages as bags of words, and are toéke advantage of the relational
structure of the site. Incorporating bag-of-words infotima into RMMs may be useful and is a

direction for future work.
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Chapter 9

FUTURE DIRECTIONS

Our work on web personalizers demonstrates that autometduhigues can improve the web
experience. We outline below how one could improve our gxgstystems, extend their capabilities,

and carry out further research in this general area.

9.1 The future of PROTEUS

We noted in Section 4.5 that a weakness of content elisiorrRioTRBUSs was that links to elided
content were indistinguishable from links to full-fledgeshtent at the site. A possible improvement
to this adaptation would be to annotate elided content limids a special symbol, such as “[&]",
that would indicate how the original page had been modified.

It would also be valuable to perform a more exhaustive studgdtermine the cost of user
actions s, v, and P(scroll) in Equation 4.1). In our work we have assumed that the user is
equally likely to scroll to each subsequent screen on a gagentuition also suggests that perhaps
the probability of scrollingat all (i.e., to the second screen) is much lower, and that scrolling to
subsequent screens is (conditionally) greater. That idsigov may scroll to the second screen
with probability 0.03, but will subsequently visit eachlfaling screen with probability 0.40. A
more rigorous user study to measure these parameters ceedtlygimprove the quality of the
evaluation metric. Another direction would be to apply wédm cognitive science to more closely
model how humans understand online information, how thésréact with it, etc. Drawing from
this foundation has led to impressive improvements in imfation visualization (for example, the
LineDrive system [2] for visualizing driving directions).

This thesis examined only three adaptations ROPEUS—content elision, swapping content,
and adding shortcuts—but many others are possible and goolé useful. For example, instead

of replacing images with their HTML “alt” text, asR®TEUSdoes presently, we could scale or crop
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images to reduce their sizes. This approach, used in Pyt8ia Would retain more information
from the image but not overly burden mobile web clients. Awotadaptation could help users
interact with web forms, by predicting the user’s input antbanatically filling in fields.

We implemented ROTEUSas a proxy to enable personalization of all web sites, raggi@and
expecting) no assistance from those sites’ maintainersieder, some web sites may wish to place
constraints on how content should be personalized, andifiregto provide guidance to ROTEUS
to ensure these constraints are met. For example, a signéesnight wish to specify that certain
elements on the page are immutatdeg( copyright notice and link to privacy policy) but others can
be elided, rearranged, or added to. Perkowitz and Etzimpgsed the idea of adaptive HTML, or
A-HTML [81], an extension to HTML in which designers couldegss these constraints in the body
of the documents themselves. An interesting line of futucekwvould be to formalize A-HTML,
restrict ROTEUSto obey these constraints, and explore how constrainingehgonalization could

perhaps reduce the disorientation that users experienea thiey browse from mobile devices.

9.2 The future of MINPATH

Itis clear that the quality of a shortcut link depends on thaliy of the phrase that anchors it on
the originating page. A visitor seeking information aboatl@quia at a university is more likely
to follow a link labeled “Today’s colloquia” than one labéléClick here” or “Shortcut.” One way

to label shortcuts is by the'tit| e> information from the destination page. This approach is
generally how search engines label search results, butthe | e> may be missing, incorrect
or vague €.g, “Homework” for a page at a university), or overly verboseg, the concatenation
of each page topic along the path from the main entry pagedb dastination). An alternative
approach would be to generate perhaps several dozen canditizhor phrases, and use a machine
learning system to predict which would be the best anchoe ddndidates could be word phrases
from the destination page, or a combination of words on ttetiietion and (not) on the originating
page, or even phrases anchoring links to the same destiffation other pages on the Web. The
candidates could be evaluated by a model trained using htaggied anchor phrases and features
such as the source of the phrase, the TFIDF [87] value of thesphcompared to the source and

destination pagestc.
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The results comparing M PATH to the memory-based approach (Figure 5.7) show, in patt, tha
MINPATH is not making as effective use of a set of shortcuts as pesdi# discussed in Section 5.3
how MINPATH could be extended to condition expected savings on the sebafcuts selected, and
evaluating this approach is an interesting next step. Aerdtitful avenue to explore is employing
higher-quality models. Combining M PATH with relational Markov models improved MPATH’s
performance significantly when training data is sparse. eDffossibilities include higher-order
Markov models, models that condition on content of pageg, (conditioning on the page topic),
and models that condition on broader browsing contexd,(the context used by BMINTAGE). It
would also be useful to explore other means of assigningovssio clustersi(e., mixture model
components). One possibility would be to allow the user tbooplly choose which archetypal
behavior best fits his or her browsing patterns.

Finally, a valuable extension of this work would be a fieldseénustudy, combining MiPATH
with relational Markov models and deploying the system oe onmore web sites. A fielded study
improves on our earlier evaluation of IMPATH by avoiding the simplifying assumptions we made
regarding user navigation. TheINPATH models would likely be re-learned often, to account for
the influence that the automatically-created shortcuts haa on the navigation. The subtlety of
the experiment is in measuring the success of a shortcutexénple, if a user follows a shortcut,
and then navigates from that destination, then the showtestprobably beneficial to the visitor.
However, if a user follows a shortcut and immediately fokomnother link from the original page,
then the shortcut may not have been useful, adjdtsatisfy the user’s then-current goal, and the
user is now exploring for a new goal. One way to discern betwtbese cases is to collect exit
surveys from a sample of users, asking whether they founddheent they were looking for, and

then extrapolate these results to the larger population.

9.3 The future of relational Markov models

Relational Markov models are a fertile ground for continuesgearch, both in directly extending
RMMs and in applying the relational ideas to other probabdi models. An immediate area to
pursue is in further developing the RMM-PET approach, bydiug PETSs to predict finer parti-

tions among the destination abstractions. An interestinduéon of RMMs is to relational hidden
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Markov models, where both the states and the observatienslestribed by typed relations and
shrinkage is carried out over their respective abstrastioAnother direction is incorporating a
model cluster identity into the transition probability,ciuas the identity of a cluster of visitors at
a web site, and shrinking between many models learned ftareift sizes and scope of user clus-
ter (such as a single user, a cluster of similar users, andehef all users at the site). A third
path of research is to apply RMMs to other domains, such aslenaibot localization or speech
recognition.

Chiefly important to relational Markov models is the relat@b information: if the relational
structure is uninformative, then RMMs are no more usefuhtRMMs. In our applications the
relational structure was readily available, but a directaf future work would explore how the
structure can be learned, and the trade-off between quaflitglational structure and predictive
accuracy of the RMM. We discussed earlier how a machine ileguampproach, such as used in the
WebKB project [31], could learn where pages belong in a i@fal structure schema, given the
schema and a set of training instances. Another area offwtark is to learn the structural schema
itself (i.e., the relations and the abstractions of member states).dBaemn TUBA [55], of clustering
states based on their utility functions, could similarlydpplied here by clustering states based on
their transition probability distributions. A hierarclaicclustering could produce abstractions of

states, but learning a non-trivial lattice of abstracti@nsore subtle.

9.4 The future of MONTAGE

The MONTAGE user study highlighted several aspects of the system forawement. One is the
speed of loading the montage; the current system can reggiineuch as 30 seconds to load a mon-
tage. The primary bottleneck lies in how thedMTAGE proxy is architected—a single unresponsive
server can stall the proxy and cause the entire montage dosloavly. Instead of fetching montage
content only on-demand, &NTAGE should pre-fetch content at regular intervals (or, at ety
suggested by the user model). AlternativelypNrAGE could finesse the main montage load time
issue altogether by using a text- and links-only main mostagth graphical embedded-content
montages only for topic-specific views.

Although MONTAGE presently collects user models at a central proxy, each agent based
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on only one visitor's user model. A useful extension wouldfae collaborative filtering between
groups of similarly behaving users. For example, a group atiine learning researchers may
view several common sites but only one of the group has désedva new machine learning related
resource €.g, a new conference web). A collaborative montage could disgiie new resource for
all members of the group, based on the information that the sie is machine learning related,
matching the interests of all group members. Of course, #sallicollaborative filtering work, one
must carefully guard the privacy of members.

Another extension would enable users to more directly cbritve content displayed on the
montage and the system trade-offs in the user model and gestigg content. For example,dvi-
TAGE users could optionally suggest content and links to includexclude from the montage, and
MONTAGE would display the manually- and automatically-selectethgonents to the best of its
ability. Users could also place constraints on how the adrtedisplayed, for example, requiring
that some particular web clipping always appears in the upgkt corner. To influence the under-
lying user model, the user could, for example, adjust thetiked weights given to cost of navigation
and value of information, thus indirectly controlling hovefuently content is embedded or simply
linked from the main montage. The user could also giveNMAGE feedback about its selection of
content, either by rating individual suggestions, or by maly adding or removing items from a
montage.

A final extension is enabling MINTAGE to dynamically select the level of granularity to model
content topics. A machine learning researcher will likelgnvmore fine resolution about web sites
than “Computers & Internet,”, but will not need nor want firgmanularity uniformly among all
topics. MONTAGE could place each page in a finely-structured topic hierarehy then display

only those sub-topics receiving at least some thresholdgtion of pages.

9.5 New directions

9.5.1 Mixed-initiative user modeling

A predominant weakness of automated personalization igebs is that automated user modeling
builds only a blurry image of the user. For example, ttPEUSmModel based on words occurring

in pages viewed gives only a general indication of the wohdd the visitor apparently tends to
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prefer. Of course, these words may not be indicative of thest the user is actually viewing (for
example, the text of advertisements may differ greatly fthetext central to the page).

As an alternative, several systems allow (in fact, requfiej users state their interests up front.
The clear advantage is that this communication is clear—pénsonalizer need not guess this aspect
of the model. Unfortunately, few users are willing to expéhig effort initially. An interesting line
of research would be to combine these approaches: aut@ihaticild an approximate model, and
allow the user to augment and correct any aspects of it heeoclsboses. A twist on this approach
uses active learning [29]: the personalizer proposes mussto the visitor that would maximally
improve the quality of the model with minimal effort. The DWfanD interface [94] takes this

general approach.

9.5.2 Personalizing non-web interfaces

Personalizing web sites is a stepping stone to to persamglinore general-purpose interfaces, in
which users can alter the state of the underlying systemgpesed to simply navigating through
it). A key challenge in personalizing such an interface iresnodelinghowthe interface is used,
and thus what adaptations are allowed. A logical extensi@muomodel of web interactions would
be to model applications as state-based processes whestathesncodes the configuration of the
entire application—the dialogs and windows displayed, dbetent of documentsgtc—and the
transitions are actions a user can take. Although the spateesis potentially infinite, effective

inference is possible using relational Markov models.

9.5.3 Adapting declarative interfaces

The web models our personalizers have used are based largéhg graph nature of the pages and
links. However, a competing approach is to model sites aghemj abstract level (as described in
Chapter 2), separating the site into data, structure, eembkptational elements [40, 7]. Each of these
aspects is specified separately be the web site designetheddta and structure are often selected
declaratively in the form of queries over a database. As separate elentieatseb site personalizer
can transform each aspect of the site independently for daibmputational cost savings and for

an expected utility gain. For example, when the data on teeisseparated from its presentation,
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the personalizer can very precisely tune what content thieoviwill see—largely independently of
how the content is currently presented. Moreover, the datil@ specification for data and structure
allows the personalizer to more easily reason about thé stethe agent need not infer the structure

by analyzing HTML pages).
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Chapter 10

CONCLUSIONS

Most web sites today are designed with a one-size-fits-albgbphy: a single view of the
content and navigational structure for every visitor undiérconditions. But one size frequently
does not fit all: visitors browse from different devices, kdor different content, and have different
styles of navigation. In order to maximize the value of a wakriaction, we propose to personalize
the experience for each user.

We view web personalization as a two-step process, of firstaliteg the users and then adapt-
ing the content to best meet the needs of each user (or grotgdadéd users). In this thesis we
have described this process in detail (Chapters 1, 2, anou),two personalizers based on this
architecture (ROTEUS in Chapter 4 and MNTAGE, in Chapter 7), and developed thesWPATH
algorithm (Chapter 5) for use inROTEUS

This thesis addressed two primary questions. Fiistv can automated personalization improve
the web experiencePo answer this question, we built and fielded two web perspes, FROTEUS
and MONTAGE, that automatically adapted the web experience for molvite desktop users, re-
spectively. Data from our user studies suggest that thepaligzed views of content did help web
users achieve their goals, but personalizers must taket@aret inconvenience users.§, hiding
visual cues on the page or shifting the placement on the sarfeeften-followed links). MONTAGE
was perhaps more successful tharoPEusbecause MNTAGE only created new pages and never
modified existing content (thus never giving itself an oppoity to disorient users on existing web
pages). But, for mobile web users, adapting existing cansemnecessity. The challenge for future
mobile content personalization is identifying which viseéements users rely on for navigation,
which elements are useful content for users, and which elesrere superfluous and should be
removed.

The second question we addressed wdsw can automated personalization scale to adapt

content for each visitor at each page impressiofhis question embeds two parts—scaling to
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real-time performance, and scaling to individual userse-ame address both. On the run-time
side, the original ROTEUS implementation required on the order of minutes to adaptge far

a mobile visitor, and this delay is too long. We developed lur PATH algorithm (Chapter 5),

in part, to directly address this concern, by finding shdrtimks efficiently. Learning the models
underlying MNPATH (e.g, traditional or relational Markov models) requires a resde amount of
time for batch processing, on the order of minutes to leasmftens of thousands of past sequences
on thousands of web pages. The on-line performance taskingirghortcuts for a page given a
learned model and current trail prefix—requires less thansatond for reasonable results, and this
number can be reduced by adjusting the recursion boundg iMtkPATH algorithm (depth bound
and probability threshold in Table 5.1).

The other part of the second question is scaling to indiigisitors and individual web pages.
PrRoOTEUS personalizes content for each visitor, but makes inefftoiese of the data available, by
ignoring all but the data for a single visitor at a timeINPATH makes much better use of the training
data available, by clustering users together and learniodefs for each cluster. In order to scale to
individual web pages, where training data may be sparse erstent, we developed relational
Markov models (Chapter 6), which learn models of navigatibmarying levels of abstraction, and

can rely on higher levels of abstraction when training datsparse at the more specific levels.

10.1 Contributions

This thesis has made the following contributions:

1. Precise statement of web personalization problemChapter 2 outlines the space of web
personalization systems and provides precise definitibasaeb site and a web visitor, and
how web navigation is modeled. Chapter 2 uses these defigitm state the web personal-
ization problem: given a web site, log data describing paktlior, and a current user, adapt

the page requested by the current user to maximize expetliéd u

2. Framework for personalization as search. Drawing inspiration from Perkowitz and Et-
zioni’s earlier work on adaptive web sites [80, 82, 79], wealep a richer model of a web

site and a more sophisticated model of web site utility. Tteelehof a web site includes the
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set of relations between web pages (or web content objecgeneral), allowing a person- and intelligent user interface efforts.
alizer to infer generalizations from these relations. Thebwite utility model calculates the
expected utilityof the site for a given visitor, and is based on the value ofctirgent and the

probability the visitor will view each page.

3. Efficient approach to finding shortcut links. To personalize content in real-time, we de-
veloped the MNPATH algorithm to find shortcut links efficiently (Chapter 5). IMPATH
leverages the past behavior of a large population of viitoithe site (as opposed to a single
user) and learns probabilistic models of web navigatiocluiting Markov models and hybrid
Markov models and clusters of modelsINMPATH is capable of finding valuable shortcuts fast

enough for personalizing content on-the-fly for each visito

4. Development of relational Markov models.In Chapter 6, we developed relational Markov
models, described where they are applicable, and discussedhey relate to other prob-
abilistic models (Section 6.5). We showed in experimentt telational Markov models
outperform traditional Markov models for predicting webvigation when data is sparse, and
that they can improve MiPATH’s performance by 50% to 80%. The techniques underly-
ing relational Markov models—endowing states with relaéibinformation and performing

shrinkage based on lattices of abstraction—are applidabieany other models as well.

5. Evaluation of several systemsThroughout this thesis, we have presented experimental re-
sults evaluating our approach, including two user studse{jons 4.5 and 7.5). The evidence

supports our innovations and points to where future effsinsuld be concentrated.

10.2 Conclusion

The number and complexity of user interfaces with which wteract continues to increase. In-
telligence in these interfaces, and personalization itiqudar, is a necessity in order that we may
manage this growth. Personalizing the web experience ispistthis direction, as the web is the
preeminent interface to online information systems. Thkbnéues described in this thesis improve

users’ ability to access information, and aim to serve asmplevork for future personalized interface
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Appendix A

PROTEUS USER STUDY QUESTIONS

“What is the top editor’s choice fo{device at cnet.com?”, wherédevice was one of: a
“semipro” digital camera; an ultralight laptop; a Palm OSitileeld; a CD-RW; a flat panel
display.

“What is the best price fofdevice at cnet.com?”, wherédevice was one of: a “semipro”

digital camera; an ultralight laptop; a Palm OS handheldPaRW; a flat panel display.

“What is the current stock value dficker)? Start at finance.yahoo.com”, wheftéiecker) is
in the set MSFT, YHOO, AMZN, ATHM, PALM, HAND, OMNY, AVGO, MC®, RIMM,
INSP, EBAY.

“What is the 52-week range fdticker)? Start at finance.yahoo.com”, whétieker) is in the
set MSFT, YHOO, AMZN, ATHM, PALM, HAND, OMNY, AVGO, MCOM, RIMV, INSP,
EBAY.

“What stocks wergupgraded/downgradedto a (strong buy, buy, hold, seélrating today?

Start at finance.yahoo.com”

“Find the research profile fotcompany. Start at finance.yahoo.com{tompany is one
of: Microsoft, Yahoo, Amazon.com, Excite@Home, Palm, Hgrthg, OmniSky, AvantGo,

Metricom, Research In Motion, InfoSpace, eBay.

“What is the average analyst rating (recommendation) foompany. Start at fi-
nance.yahoo.com” wherécompany is one of: Microsoft, Yahoo, Amazon.com, Ex-
cite@Home, Palm, Handspring, OmniSky, AvantGo, MetricRasearch In Motion, InfoS-

pace, eBay.
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“Find (item) for sale and report the highest bid (or report that none isstle). Start at
www.ebay.com.”.(item) was one of: an Olympus D-340R digital camera; a Nikon Coolpix
950; a Nikon Coolpix 990, a Palm Vx, a Samsung Syncmaster p5mh panel display,

a Pentax K-mount wide-angle lens, a Pentax K-mount 70-26fhZens, a Pentax K-mount
telephoto (300mm or longer) lens; a 1900 Morgan Dollar; 8819&lking Liberty half-dollar,

S mint mark; a 1976 proof quarter-dollar, S mint mark; a US oemorative “Hudson” half
dollar circa 1935.

“(When/Whergis the lecture for CSEclasg? Start at www.cs.washington.edu”, where

(clasg was one of: 505, 531, 533, 573, 589, 594.

“Is (room) available at({time) on (date? Start at www.cs.washington.edu”, whereom)
was either Sieg Hall 322 or Sieg Hall 114 aftune), ranged from 9:00 to 4:00 (by hour), and
(date ranged from November 13th to November 17th.

“What office is (person in? Start at www.cs.washington.edu”, wheépersor) was one of

sixteen selected graduate students or faculty at the Usityerf Washington.

“What is the topic of the upcoming colloquium, if any? Stadrh www.cs.washington.edu.”

“Is the colloquium in Sieg or in Kane, if any? Start from wwsiwashington.edu.”

“What is the top breaking news for today at cnn.com?”

“What is the top business news for today at cnn.com?”

“What's the latest news abouytopic) at cnn.com?”, wherdtopic) was chosen from: the
first resident mission to the International Space Stati@$)] violence in the Mideast; the
attack on the USS Cole; the U.S. presidential race; the Maftdvacker attack; the Singapore

Airlines plane crash in Taiwan.
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e ProductDetailLegwearProdAssort(Product, Assortment)

e ProductDetailLegwear(Product, Collection, Assortment)
Appendix B

B.2 www. cs. washi ngt on. edu
RELATIONAL SCHEMATA FOR EVALUATION SITES

The structure forwww. cs. washi ngt on. edu/ educati on/ cour ses/ was derived by
B.1 www. gazel | e. com reverse-engineering the structure of the existing sitee Tdrm and Course domain hierarchies

each contain a root node, a level of interior nodes (groupimgrses by undergraduate, graduate,
The relations fomww. gazel | e. comtake up to three parameterAsssortment, Product, and ) . .
etc.and grouping terms by the academic year), and the grounddhaés.URL variables are URLs

Collection. The domain hierarchies for these parameters are descekgititly in the KDDCup . i . i
relative to the particulaCourseSite(Course) or CourseOccurence(Course, Term) to which

2000 data.
they apply. The domain hierarchies f0RL and most other variables are flat, comprising only the
root node and many leaf values.
e Home()
¢ Boutique() o CourseWebs()
e Departments() e CourseSite(Course)

Legcare_vendor()

CourseSiteOther(Course, URL)

Lifestyles()

CourseOccurence(Course, Term)

Vendor()

CourseOccurenceOther(Course, Term, URL)

AssortmentDefault() CourseSampleCode(Course, Term, URL)

Assortment(Assortment)

Administrivia(Course, Term, URL)

ProductDetailLegcareDefault()

AllCoursework(Course, Term)

ProductDetailLegcare(Product)

CourseworkGeneralOther(Course, Term, URL)

ProductDetailLegwearDefault()

Coursework(Course, Term, Number)

ProductDetailLegwearProduct(Product) CourseworkCode(Course, Term, Number)

ProductDetailLegwearAssortment(Assortment)

CourseworkOther(Course, Term, Number, URL)

ProductDetailLegwearProdCollect(Product, Collection)

Turnin(Course, Term, Number)



AllExams(Course, Term)

Exam(Course, Term, URL)
AllLectures(Course, Term)
LectureOtherGeneral(Course, Term, URL)
Lecture(Course, Term, Number)
LectureOther(Course, Term, Number, URL)
Mailindex(Course, Term, SortBy)
MailMessage(Course, Term, Number)
Section(Course, Term, Section)

SectionOther(Course, Term, Section, URL)
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Appendix C

WEB LOG MINING

Web logs hold a wealth of information, much of which we havedum the work in this thesis.
However, this information is often mired in a sea of misimfation: requests for pages that do not
exist, transactions by users masquerading as othersaatitanrs with content never requested from
the serveretc. In this appendix, we outline several state-of-the-art néghes for separating the
wheat from the chaff of web logs: inferring which visitor tegsted which pages, filling in missing
requests hidden by proxies and caches, and building thesssmd trails used by web data mining
systems. Although most of these techniques are used byrceses and practitioners, few have
been treated in detail in the literature. One notable exoeps discussion of the WEBMINER
system [30], which describes how WEBMINER transforms arstaxy server access log into web

sessions. Here we provide more details on how to build bletgey; and how to infer web trails.

C.1 The weblog

Aweb log is a transcript of transactions made between a setevs and a set of servers. Figure C.1
shows several lines of a typical log. For historical reasamsny web logs use the same format. The
fields are separated by white space, typically a single spdit®ugh some fields are additionally

quoted. Referring to Figure C.1, in order from left to rigtite most important fields in the logs are:

e Web client computer. Either an IP address or the computer name. In an anonymizedbge

this entry is omitted or replaced with a unique identifiertthigles the client’s true identity.

e Time and date of request. Often in square brackets, and including time zone offsenhfro

Greenwich Mean Time.

e Requested documentTechnically, the field in the quotation marks is the first Isent from

the client in the HTTP request. The first term is the HTTP v&ET, HEAD, or POST being
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rockhopper - - [01/Feb/2002:13:02:34 -0800] "GET /homes/corin/ HTTP/1.0" 200 - ™" *Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"

rockhopper - - [01/Feb/2002:13:02:36 -0800] "GET /orgs/student-affairs/gsc/tgifl HTTP/L.0" 200 1350
"http://www.cs.washington.edu/homes/corin/” "Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"

rockhopper - - [01/Feb/2002:13:02:37 -0800] "GET i html HTTP/L.0" 200 3999

“ht
thedcs -

hananw.c: i if”"Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"

- [02/Feb/2002:19:19:12 -0800] "GET /homes/corin/job/ HTTP/1.0” 200 3216 ™"

"Mozilla/a. 75 [en] (XL1; U; Linux 2.2.16-22 i686; Nav)"

thedcs -

- [03/Feb/2002:23:15:40 -0800] "GET /homes/stevaroo/ HTTP/1.0" 200 1614 "-" "Mozilla/4.75 [en] (X11; U; Linux 2.2.16-22 i686; Nav)"

rockhopper - - [04/Feb/2002:09:20:59 -0800] "GET /490i HTTP/1.0" 302 246 ™" "Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"
(04 1201 P i

urrentQUr/ HTTP/1.0” 200 16189 ™"

"Mozilla/4.79 [en] (XL1; U; Linux 2.4.7-UP.26 i686)"

rockhopper - - [04/Feb/2002:09:20:59 -0800] "GET /home/cse.css HTTP/1.0" 304 -
rockhopper - - [04/Feb/2002:09:20:59 -0800] "GET /home/cse2.js HTTP/1.0" 304

lozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"
Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"

rockhopper - - [04/Feb/2002:09:21:04-0800] "GET urrentQ html HTTP/1.0” 200 7883

hitp:/fanw.c urrentQU”
rockhopper - - [04/Feb/2002:09:21:04 -0800] "GET /home/cse.css HTTP/1.0" 30«
rockhopper - - [04/Feb/2002:09:2
rockhopper - - [04/Feb/2002:09:22:

hitp:/fanww.c urrentQr/overview.ht
rockhopper - - [04/Feb/2002:09:22:12-0800] "GET /home/cse.css HTTP/1.0" 304 -
rockhopper - - [04/Feb/2002:09:22:12 -0800] 'GET /homelcse2.js HTTP/L.0" 304

Figure C.1:Sample web log entries.Each non-indented line represents a distinct HTTP request

ozilla/s

fen] (X11; Uj Linux 2.4.7-UP.26 i686)"

4 -*-" "Mozilla/d. 79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"
4-0800] "GET /home/cse2.js HTTP/1.0" 304 - ™" "Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"
2-0800] "GET feducation/courses/cse490i/CurrentQtr/slides. html HTTP/1.0" 200 8529

"Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"
0zila/a.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"
‘Mozilla/4.79 [en] (X11; U; Linux 2.4.7-UP.26 i686)"

made tomwmw. cs. washi ngt on. edu. Indented lines continue the previous line’s entry.

the most common. A GET request asks for the content of therdentt HEAD asks only for
the HTTP headers for the document—no content is sent. A P@&Jest allows the client
to send additional data to the server, for example, when mga&h e-commerce transaction.
The second term is the document being acted upon, usuaditiveeko the local serveii.g.,
without the leading http://). The final term refers to thesien of the HTTP that the client
conforms to. HTTP/1.0 and HTTP/1.1 are most common.

Server response. The web server sends a numeric status code to the clientatiaicthe

outcome of the HTTP request. Most common status codes are:

— 200 the document requested existed and was delivered.

— 301 the URL for the document has changed and the client shoelthesnew URL (the

server informs the client of the new URL)

— 302 the document exists under a new URL but the client shouldimea using the old
URL.

— 304 the document has not changeg ( the client should use the content stored in its
local cache).

— 404 the document could not be located on the server.
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« Referring document. When a client requests a document from a server, the cligat of
provides the server the URL of the source of the request the URL of the page where the
link was found). When this information is omitted (for exdegf a user followed a personal

bookmark, which does not have a URL), the field contains “-".

Web browser descriptor. Also called the user-agent, this string describes theorisitveb
browser. Most browsers identify themselves as “Mozillattwadditional information, such
as the version number, the operating system, and perhapdi¢he language locale. The
user-agent can also help identify web spiders; typically, @ser-agent that doest conform

to the standard descriptorse(, those containing “Mozilla”) is a spider. Also, spider web

browser names may contain “bot,” “spider,” or “crawler.”

User identifier. Not shown in Figure C.1, one additional common field is a uaigser
identifier, or cookie. This identifier is given to the visitor the first HTTP request their

browser makes, and the visitor's browser sends this cookileet server on each transaction.

C.2 Identifying users

One of the first steps in preparing web log data is to sepdnatpage requests made by each unique
visitor to the site. The most reliable approach is to asksugelog in with a username and password
each session they visit the site. Of course, requiringasisito explicitly log in may drive away a web
site’s customers, as well as add to the overhead of maintamdatabase of users and passwords.
A more common technique that offers almost the same qudlityatching users to requests is to
sort by the users’ unique identifier cookie. For users whe@ptand transmit cookies, this method
will correctly segregate browsing by visitdtsUnfortunately some users prefer to reject cookies;
for this group of visitors, the next best approach is to grtagether requests by client computer

name or IP address. This approach will work well to group estsi made in the same site-session,

There are methods to maliciously confuse a web server usiokies; for example a visitor could manually change
the value of their cookie to that of another visitor’s cookie web site administrator must certainly ensure that their
system is secure in the face of adversaries, but in this ajipere will assume that no such opponents exists.



147

but often is insufficient to track a user over a long periodinfet (because, for example, visitors
entering from a dial-up modem may have a different machimeenand address each visit).

All these approaches, however, are stymied by web proxiesd-party servers on the Web
through which remote visitors direct all their browsing. €Tproxy caches web content on its local
disks and passes along a request only when the local copyt-isf-olate or missing. Thus, the
proxy hides requests made by multiple visitors, and, evenrfdividual requests, obscures the
visitor’s client computer name. To avoid the hidden-cacbentent effects, a web server can mark
its content as non-cacheable; thus, each request musttte sea server. Of course, non-cacheable
content can greatly increase the server’s load, so thi@othould be chosen only for pages that
truly should be trackede(g, logged requests for inline images are often not useful fimimg, so
this content need not be marked non-cacheable). To deattilatlient computer name, the server

can issue cookies to the client.

C.3 Gathering data

The content of web logs is often only requests made for welepagd images on the server—the
logs do not contain information about how users interactenfimely with content, or about requests
made to other sites. We can peer into these additional actieimg two popular techniques: web

bugs and server-side redirection.

C.3.1 Web bugs

A web bug is a small inline image, typically 1-by-1 pixel, thia embedded on the web page.
Whenever the visitor views the page, the web bug image isestqd, and, thus, an HTTP transaction
is recorded in the server log. We can use web bugs to obsereaevbr a visitor views or leaves
a web page, even if that page is in the browser’s cache. On g we would like to monitor,
we place a web bug and some JavaScript code that fires antt@ad andonUnload events (see
Table C.1). The code directs the browser to change the URhefateb bug, which generates a
request to the server. The code includes a random stringib/RL, which is ignored by the server,
to ensure the browser will not fetch the web bug image fronsaishe. The result is that, whenever

the user views (loads) the page or moves elsewhere (un|ahdsyeb bug changes and the server
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Table C.1:JavaScript web bug. Whenever a user views (loads) the HTML page or leaves to view
another page (unloads), the web buignages/ 1x1. gi f is requested. The web bug URL is
adorned with the URL of the page; a random number ensuregthest has not been cached.

<HTM.>

<HEAD>

<SCRI PT | anguage="JavaScri pt"><!--
function | ogpage(dir) {

var url = |ocation.href
var i = url.indexOf("?")
if (i >0)

url = url.substring(0, i)

var rand = Math. randon()

im= "/imges/1x1.gi f?" + dir +
"& + url +"& + rand

docunent.imges[’1x1'].src = im

}

/'l --></ SCRI PT>

</ HEAD>

<BODY onlLoad="1ogpage('|oad’ )" onUnl oad=="1 ogpage(’ unl oad')">

<I MG ALT="" WDTH="1" HElI GHT="1" NAME="1x1" SRC="/i mages/ 1x1.gif">
</ BODY>

</ HTM.>

is informed, all without any apparent change to the vissteiew of the document.

C.3.2 Server-side redirection

Links followed on a web site to other pages on the same serllarsually be observed by the server
(modulo requests hidden by proxies). Requests made efftsitservers elsewhere on the Web, are
not reported. This information may be of interest, howewaesite may wish to know which links are
used by its visitors, regardless of the final destination.eghhique to garner this information that
has become popular recently is to redirect all links pointiif-site to a special script on the web
server. This script does nothing more than direct the webeseo return an HTTP status of “302:
Temporarily moved” and send along the off-site URL (whichsvpassed to the script in the HTTP
GET request). The server records the HTTP status, and this slent then makes the request to
the off-site server. The disadvantages of this approaclhatet increases the web server load and

increases the visitor's delay in reaching the destinatiagth®@link. However, the gain in knowledge
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about site usage is often worth this price. Further, thesesamn be reduced by enabling server-side

redirection on only a fraction of the web requests, usuallynan insignificant effect on accuracy.

C.4 Cleaning data

Given a log of web content accesses for a single visitor, the step in the web log preparation
pipeline is to remove requests that are irrelevant and triréquests that are missing. For con-
venience, let us assume that the object is to model how usenaét with pages (as opposed to
sub-page objects, such as images); this assumption oftda imopractice. Then, we may remove
any log entries made for URLs whose extension is a known ramefype €.9, .gif, .jpg, .png,
etc). To be more complete, what we could do is parse each HTML pagthe site, glean what
objects are embedded on the page, and form a “kill list” oftentto ignore. This approach is more
complete because it would include embedded frames, whigld@ML pages that appear as part
of other pages, and images or other embedded content usmgtandard naming conventions. Of
course, the cost of parsing every web page on a site may bébjiiatly expensive.

Another heuristic for inferring requests for embedded otsiés the time delay between HTTP
requests. If several web objects are requested within otlerée seconds of each other, then it is
quite likely that the requests after the first one are maderaatically by the web browser, and not
by the visitor quickly following several links. Thus, we maynit any requests made within a few
seconds of a previous request. (Also of benefit is to compersubsequent requests’ referrer field
with the previous request; if they match, the subsequentestgs more likely to be an embedded
object.)

Besides automatically requesting embedded content, wabsers may also request content
on a regular time frequency if the page requests it. For el@mmn. comuses the “http-equiv”
<met a> tag to indicate the page should be refreshed every 30 mintitass, if the user viewed
cnn. comat the end of the day on a Friday and did not return to the coenputtii Monday, then
the server would have recorded over 100 page impressiorthdosite. Of course, none of those
visits were “real” and should be removed if the goal is to mdke user’s actual navigation. In our
MONTAGE work (Chapter 7), we compute the statistical mode of thesiinterval for each URL

and, if at least 10% of the intervals belong to the mode, wexenany requests that are made within
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a small tolerance of the mode. Thus, we effectively remoeestéitond, third, fourthetc.request for
a page, but leave the first request (the actual visit the ua€eejrintact.

Finally, not all page visits will generate a request to thwesle some may be fulfilled by a proxy
or the client browser’s cache. We can infer these missinigsyisowever, by finding a likely path in
the web site between each actual web request (and also iakingccount each request’s referring
URL). The simplest case is when subsequent requests arefatlagéng a link from the previously-
requested page. If the visitor uses the browser back naefghttton to a previous page and follows
a link, the server will see the request and the referring pagecan build a tree of this behavior as
the shortest distance is the inferred “back” navigatiofs(technique is used in WEBMINER [30]).
If the user followed several links serviced by a cache, ard thlink that generated a request to the
server, we can hypothesize likely paths through the sithgps using the same traversal algorithm

as in MINPATH) between the last-known and present locations.

C.5 Sessionizing

The final step in mining the golden data from the web log madonigto generate web sessions
or trails. Techniques for generating (and definitions ofsgens and trails vary, but the common

elements are: sessions are coherent requests in time ascatie sessions coherent in space.

C.5.1 Building sessions

Intuitively, a session is the sequence of page requests hyageser in one “visit” to the site. More
practically, a session is a sequence of page requests byle siser, each made within a small
amount of time of the previous one, and followed by an idleqaer The threshold for the idle

timeout length can vary from 5 minutes to 30 minutes with agjmnately equivalent results.

C.5.2 Building trails

A trail is a sequence of page requests in which each subserparest was made by following a
link on the previous page, and doing so within a fixed amounine$ (5 or 10 minutes). A session
may give rise to many trails—one for each contiguous patlingglfollowed. A session may form

a tree (or forest) of navigation in a web site; a trail is a fatim the root to a leaf in that tree. Thus,
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a single session may contain many trails, and the trailslikélly contain the same requesis(, a

page request may belong to many trails, although to only easian).

C.6 Summary

This appendix summarizes the state-of-the-art in prodyaiteaning, preparing, and mining web
server access logs. Most of these techniques are used archsystems or fielded sites, although

few written works have been published codifying them.
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