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1Achievable Rate of Two-Hop Channels under

Statistical Delay Constraints

Deli Qiao

Abstract

This paper analyzes the impact of statistical delay constraints on the achievable rate of a two-hop wireless com-

munication link, in which the communication between a source and a destination is accomplished via an intermediate

full-duplex relay node. It is assumed that there is no directlink between the source and the destination, and the relay

forwards the information to the destination by employing the decode-and-forward scheme. Both the queues at the source

and relay node are subject to statistical queueing constraints imposed on the limitations of buffer violation probability.

Given statistical delay constraints specified via maximum delay and delay violation probability, the tradeoff between

the statistical delay constraints imposed to any two concatenated queues is identified. With this characterization, the

maximum constant arrival rates that can be supported by thistwo-hop link are obtained by determining the effective

capacity of such links as a function of the statistical delayconstraints and signal-to-noise ratios (SNR) at the source

and relay, and the fading distributions of the links. It is shown that imposing unbalanced statistical delay constraints to

the queues at the source and relay can improve the achievablerate. Overall, the impact of statistical delay constraints

on the achievable throughput is provided.

Index Terms

Two-hop wireless links, statistical delay constraints, quality of service (QoS) constraints, fading channels, effective

capacity, delay violation probability, full-duplex relaying.

I. INTRODUCTION

With the widespread of smart-phones and tablets, the volumeof global mobile traffic has increased

explosively in recent years. The portion of multimedia datahas surged significantly in the wireless traffic,
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such as mobile video and voice over IP (VoIP)[1]. In such traffic, delay is an important consideration.

Meanwhile, providing deterministic quality of service (QoS) guarantees is challenging for the wireless

systems, since the instantaneous rate of the channel is vulnerable to numerous factors, such as mobility,

changing environment and multipath fading [2]. Therefore,guaranteeing statistical QoS guarantees is more

favorable.

Effective bandwidth theory has been developed to analyze high-speed systems operating under statistical

queueing constraints[3][4]. The queueing constraints areimposed on buffer violation probabilities and are

specified by the QoS exponentθ, which is defined as

lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

= −θ, (1)

whereQ is the queue length in steady state,Qmax is the maximal queue length. With the above characteri-

zation, the statistical delay violation probabilities canbe characterized through the effective bandwidths of

the arrival and departure processes jointly [3][6][8]. Also, Chang and Zajic have characterized the effective

bandwidths of the time varying departure processes in [5], which can be utilized to analyze the volatile

wireless systems. Moreover, Wu and Negi in [6] defined the dual concept of effective capacity, which

provides the maximum constant arrival rate that can be supported by a given departure process while

satisfying statistical delay constraints. The analysis and application of effective capacity in various settings

have attracted much interest recently (see e.g. [7]-[21] and references therein). For instance, in [7], the

authors derived the optimal power control policies that maximize the effective capacity of a point-to-point

link. In [9], the authors obtained the resource allocation and scheduling policies for video transmissions

under the framework of effective capacity. In [11], the authors characterized the effective capacity in a

time division downlink system and proposed the optimal scheduling schemes that can achieve points on the

boundary of the effective capacity region.

In this paper, we study the effective capacity in relay channels under statistical end-to-end delay constraints.

In particular, we assume that there are buffers at both the source and the relay nodes, and consider the

queueing delay introduced by the buffers. Note that [13]-[21] have also recently investigated the effective
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capacity of the relay channels. For instance, Tang and Zhangin [13] analyzed the power allocation policies of

relay networks, where the relay node is assumed to have no queue, i.e., the packets arriving to the relay node

are forwarded immediately. In [14], Liuet. al.considered the cooperation of two users for data transmission,

where the interchanged data goes through only the queue of the other user. Parag and Chamberland in [15]

provided a queueing analysis of a butterfly network with constant rate for each link, while assuming that

there is no congestion at the intermediate nodes. The effective capacity of the two-hop link in the presence

of the statistical queueing constraints at the source and relay node is given in [16], and the performance for

multi-relay links is analyzed in [17].

As a stark difference from previous work, we consider the performance of two-hop wireless communication

systems under the statistical delay constraints in the formof limitations on the end-to-end delay violation

probabilities in this work. Note that statistical end-to-end delay analysis can also be found in [18]-[21]. In

[18], Wu and Negi considered statistical end-to-end delay constraints for half-duplex relays, and gave an

effective capacity formulation with time allocation to thedifferent hops. In [19]-[21], the authors considered

the statistical end-to-end delay constraints of multi-hoplinks, while assuming that the statistical delay

violation probability of the queues are equal. However, it is possible that the relay can tolerate more stringent

delay constraints while not affecting the system performance. Additionally, we note that for the analysis of

link selection in half-duplex buffer-aided systems, the authors considered the case that only the relay node

has queue, and analyzed the average queueing delay[22].

Our contributions and major findings in this paper can be summarized as follows. We consider the end-

to-end delay for the information passing the queues at the source and relay node of the two-hop links, and

analyze the impact of statistical end-to-end delay constraints, imposed as the limitations on the maximum

delay violation probability. First, for the general case oftwo concatenated queues, we characterize the

tradeoff between the statistical delay constraints imposed to the queues, which provides a framework for

dynamically adjusting the delay constraints at the two interacting queues. With the obtained interplay, we

derive the effective capacity of the two-hop links under target statistical end-to-end delay constraint. Unlike

the results in [16][17] with given statistical queueing constraints, the effective capacity obtained is for target

end-to-end delay constraints, and we optimize over the statistical queueing constraints at the queues of the
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Fig. 1. The system model.

source and relay node to achieve this effective capacity. Wealso describe a method for analysing the effective

capacity in such settings. Additionally, we show that balancing the delay constraints between the two queues

is not always an optimal way. Instead, having bias towards one queue, i.e., lessening the delay constraint

at one queue, can lead to larger achievable rate, which is verified by numerical results later. Moreover, it is

demonstrated that the improvement is affected by the statistical delay constraints, the signal-to-noise ratio

(SNR) levels and the channel conditions of the links.

The rest of this paper is organized as follows. In Section II,the system model and necessary preliminaries

are described. In Section III, we present the tradeoff between the statistical delay constraints of any two

concatenated queues. We describe our main results for block-fading channels in Section IV, with numerical

results provided in Section V. Finally, in Section VI, we conclude the paper.

II. PRELIMINARIES

A. System Model

The two-hop communication link is depicted in Figure 1. In this model, sourceS is sending information

to the destinationD with the help of the intermediate relay nodeR. We assume that there is no direct link

betweenS andD (which, for instance, holds, if these nodes are sufficientlyfar apart in distance). Both the

source and the intermediate relay nodes are equipped with buffers. Hence, for the information flow of such

links, the queueing delay experienced is given by

D = Ds +Dr, (2)
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where Ds and Dr denote the stationary delay experienced in the queue at the source and relay node,

respectively.

We consider the full-duplex relay, where reception and transmission can be performed simultaneously at

the relay node. In theith symbol duration, the signalYr received at the relay from the source and the signal

Yd received at the destination from the relay can be expressed as

Yr[i] = g1[i]X1[i] + n1[i], (3)

Yd[i] = g2[i]X2[i] + n2[i], (4)

whereXj for j = {1, 2} denote the inputs for the linksS−R andR−D, respectively. More specifically,X1

is the signal sent from the source andX2 is sent from the relay. The inputs are subject to individual average

energy constraintsE{|Xj |2} ≤ P̄j/B, j = {1, 2} whereB is the bandwidth. Assuming that the symbol rate

is B complex symbols per second, we can easily see that the symbolenergy constraint of̄Pj/B implies

that the channel input has a power constraint ofP̄j. We assume that the fading coefficientsgj , j = {1, 2}

are jointly stationary and ergodic discrete-time processes, and we denote the magnitude-square of the fading

coefficients byzj [i] = |gj[i]|2. Above, in the channel input-output relationships, the noise componentnj[i] is

a zero-mean, circularly symmetric, complex Gaussian random variable with varianceE{|nj[i]|2} = Nj for

j = 1, 2. The additive Gaussian noise samples{nj [i]} are assumed to form an independent and identically

distributed (i.i.d.) sequence. We denote the signal-to-noise ratios asSNRj =
P̄j

NjB
.

B. Statistical Delay

We first state the following result from [5], which characterizes the statistical queueing constraint for

given arrival and departure processes under certain conditions.

Theorem 1 ([5]): Suppose that the queue is stable and that both the arrival processa[n], n = 1, 2, . . . and

service processc[n], n = 1, 2, . . . satisfy the Gärtner-Ellis limit, i.e., for allθ ≥ 0, there exists a differentiable
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logarithmic moment generating function (LMGF)ΛA(θ) such that1

lim
n→∞

logE{eθ
∑n

i=1 a[n]}
n

= ΛA(θ), (5)

and a differentiable LMGFΛC(θ) such that

lim
n→∞

logE{eθ
∑n

i=1 c[n]}
n

= ΛC(θ). (6)

If there exists a uniqueθ∗ > 0 such that

ΛA(θ
∗) + ΛC(−θ∗) = 0, (7)

then

lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

= −θ∗. (8)

whereQ is the stationary queue length. �

Consider a single stable first-come first-serve (FCFS) queuewith statistical queueing constraintθ satisfying

(8). The queueing delayD experienced by the information flow going through the queue can be expressed

as [3][6]

lim
Dmax→∞

− log Pr{D > Dmax}
Dmax

= θδ, (9)

whereδ is decided by the arrival and departure processes jointly. Define[6]

J(θ) = θδ = −ΛC(−θ) (10)

as the statistical delay exponent associated with the queue. Note thatJ(θ) is a function of the statistical

queueing constraintθ, and largerJ(θ) implies more stringent delay constraints. Above,ΛC(θ) is the LMGF

of the service process. Then assume that the queue is not empty, the delay violation probability can be

1Throughout the text, logarithm expressed without a base, i.e., log(·), refers to the natural logarithmloge(·).
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written equivalently as [8][9]

Pr{D > Dmax} .
= e−J(θ)Dmax, (11)

where we definedf(x)
.
= e−cx when limx→∞

− log f(x)
x

= c.

With the previous characterization, we can obtain the probability density function of random variableD

as [20]

pD(x) =
∂

∂x
(1− Pr{D > x}) .

= J(θ)e−J(θ)x. (12)

Now consider two concatenated queues as depicted in Fig. 1. For the queueing constraints specified by

θ1 andθ2 with (7) satisfied for each queue, we define

J1(θ1) = −ΛC,1(θ1), andJ2(θ2) = −ΛC,2(θ2), (13)

whereΛC,1(θ1) andΛC,2(θ1) are the LMGF functions of the service rate of queue 1, 2, respectively. In the

two-hop system, we can express the end-to-end delay violation probability as

Pr{D1 +D2 > Dmax} = 1−
∫ Dmax

0

∫ Dmax−D1

0

pD(D1)pD(D2)dD2dD1 (14)

.
=











J1(θ1)e−J2(θ2)Dmax−J2(θ2)e−J1(θ1)Dmax

J1(θ1)−J2(θ2)
, J1(θ1) 6= J2(θ2),

(1 + J1(θ1)Dmax) e
−J1(θ1)Dmax, J1(θ1) = J2(θ2).

(15)

We need to guarantee that the statistical delay performanceof the two-hop link is not worse than the

statistical delay performance specified by(ǫ,Dmax), whereǫ is the limitation on the statistical delay violation

probability, andDmax is the maximum tolerable delay. Then, we should have

Pr{D1 +D2 > Dmax} ≤ ǫ. (16)

C. Effective Capacity

Under the statistical queueing delay constraints, we can dynamically control the delay constraintJ1(θ1)

andJ2(θ2) at the queue of the source and relay node as long as the statistical end-to-end delay performance
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(16) can be guaranteed. At the same time, for each realization of (θ1, θ2), assume that the constant arrival

rate at the source isR ≥ 0, and the channels operate at their capacities. To satisfy the queueing constraint

at the source, we must have

θ̃ ≥ θ1, (17)

whereθ̃ is the solution to

R = −Λsr(−θ̃)

θ̃
, (18)

andΛsr(θ) is the LMGF of the instantaneous capacity of theS−R link.

According to [5], the LMGF of the departure process from the source, or equivalently the arrival process

to the relay node, is given by

Λr(θ) =











Rθ, 0 ≤ θ ≤ θ̃,

Rθ̃ + Λsr(θ − θ̃), θ > θ̃.
(19)

Therefore, in order to satisfy the queueing constraint of the intermediate relay nodeR, we must have

θ̂ ≥ θ2, (20)

whereθ̂ is the solution to

Λr(θ̂) + Λrd(−θ̂) = 0. (21)

Above,Λrd(θ) is the LMGF of the instantaneous capacity of theR−D link.

Note that we can characterize the effective capacityRE(θ1, θ2) with (θ1, θ2) following the method provided

in [16, Theorem 2]. DenoteΩ as the set of pairs(θ1, θ2) such that (16) can be satisfied. After these

characterizations, effective capacity of the two-hop communication model under statistical delay constraints

(ǫ,Dmax) can be formulated as follows.

Definition 1: The effective capacity of the two-hop communication link with statistical delay constraints
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specified by(ǫ,Dmax) is given by

Rǫ(ǫ,Dmax) = sup
(θ1,θ2)∈Ω

RE(θ1, θ2) (22)

whereΩ is the set of all feasible(θ1, θ2) satisfying (16). Hence, effective capacity is now the maximum

constant arrival rate that can be supported by the two-hop channels under the statistical delay constraints.

III. STATISTICAL DELAY TRADEOFF

For the following analysis, we first characterize the interrelationship betweenJ1(θ1) and the associated

minimumJ2(θ2) satisfying the statistical delay constraint (16). We have the following results.

Lemma 1:Consider the following function

ϑ(J1(θ1), J2(θ2)) =
J2(θ2)e

−J1(θ1)Dmax − J1(θ1)e
−J2(θ2)Dmax

J2(θ2)− J1(θ1)
= e−J0Dmax = ǫ, for 0 ≤ ǫ ≤ 1, (23)

whereJ0 is defined as the statistical delay exponent associated with(ǫ,Dmax). DenoteJ2(θ2) = Φ(J1(θ1))

as a function ofJ1(θ1), we have

a) Φ(J1(θ1)) is continuous. ForJ1(θ1) = Jth(ǫ), we have

Φ(J1(θ1)) = Jth(ǫ) (24)

where

Jth(ǫ) = − 1

Dmax

(

1 +W−1

(

− ǫ

e

))

, (25)

whereW−1(·) is the Lambert W function, which is the inverse function ofy = xex in the range(−∞,−1].

b) Φ is strictly decreasing inJ1(θ1).

c) Φ is convex inJ1(θ1).

d) J1(θ1) ∈ [J0,∞), andJ2(θ2) = Φ(J1(θ1)) ∈ [J0,∞).

Proof: See Appendix A.

Remark 1:The above properties can be understood intuitively. LargerJ1(θ1) enforces more stringent
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Fig. 2. J2 v.s. J1. Dmax = 1. ǫ = 0.001.

delay constraints for the queue 1, and we can have loosened delay constraints for the queue 2; vice versa.

When either queue is subject to a deterministic constraint,i.e., θ = ∞, the delay violation only occurs

at the other queue. In Fig. 2, we plotJ2 as a function ofJ1 for the caseǫ = 0.001 and Dmax = 1 sec

for illustration. Note that only(J1, J2) in the dark region can be acceptable to achieve the statistical delay

performance. As can be seen from the figure, the curve given bythe lower boundary matches the properties

in the Lemma.

IV. EFFECTIVE CAPACITY IN BLOCK-FADING CHANNELS

In this section, we seek to identify the constant arrival rates R that can be supported by the two-hop

system while satisfying the statistical delay constraintsspecified by(ǫ,Dmax). We consider a block fading

scenario in which the fading stays constant for a block ofT seconds and change independently from one

block to another.
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The instantaneous capacities of theS−R andR−D links in each block are given, respectively, by

C1 = TB log2(1 + SNR1z1), and C2 = TB log2(1 + SNR2z2), (26)

in the units of bits per block or equivalently bits perT seconds. These can be regarded as the service

processes at the source and relay.

A. Buffer Stability and Log-Moment Generating Function of Block Fading Channels

To ensure the stability of the queues, we need to enforce the following condition[5]

Ez1{C1} < Ez2{C2}. (27)

That is, the average arrival rate for the queue at the relay should be less than the average service rate.

Under the block fading assumption, the logarithmic moment generating functions for the service processes

of queues at the sourceS and the relayR as functions ofθ are given by [7]2

Λsr(θ) = logEz1

{

eθC1
}

, and Λrd(θ) = logEz2

{

eθC2
}

. (28)

Therefore, the LMGF for the arrival process of the queue at the relay is

Λr(θ) =











Rθ, 0 ≤ θ ≤ θ̃,

Rθ + logEz1

{

e(θ−θ̃)C1

}

, θ > θ̃.
(29)

B. Effective Capacity under Statistical Delay Constraints

In the following, we first assume that there existsθ1 and θ2 such that (16) is satisfied. We identify the

effective capacity associated with the givenθ1 andθ2 values. Following the statistical delay tradeoff indicated

2Now, due to the assumption that the fading changes independently from one block to another, we can, for instance, simplify (5) asΛA =

limn→∞
log E{eθ

∑n
i=1 a[i]}

n
= limn→∞

log
∏

n

i=1 E{eθa[i]}

n
= limn→∞

∑
n

i=1 log E{eθa[i]}

n
= limn→∞

n log E{eθa[1]}
n

= logE{eθa[1]}. If fading is
correlated, such simplifications are in general not possible and analysis needs to be based on the limit forms of the asymptotic logarithmic
moment generating functions. However, if the service ratescan be regarded as Markov modulated processes, then it is shown in [23, Section

7.2] that limn→∞
log E{e

θ
∑

n
i=1 a[i]

}
θn

= 1
θ
log sp(φ(θ)r) where sp(A) denotes the spectral radius or equivalently the maximum of the absolute

values of the eigenvalues of the matrixA, andφ(θ)r is a matrix which depends on the transition probabilities ofthe Markov process. In such
cases, an analysis similar to the one given in this paper can be pursued to identify the effective capacity of the two-hop system under the
statistical delay constraints.
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in Lemma 1, we can obtain the effective capacity over all possible θ1 andθ2, which is the effective capacity

under the statistical delay constraint in Definition 1.

From (13) and (28), we have

J1(θ) = − logEz1{e−θC1}, andJ2(θ) = − logEz2{e−θC2}. (30)

To proceed, we need the following properties ofJ(θ).

Lemma 2:Consider the function

J(θ) = − logEz{e−θC} for θ ≥ 0, (31)

whereC = TB log2(1 + SNRz). This function has the following properties.

a) J(0) = 0.

b) J̇(0) = Ez{C} > 0, i.e., the first derivative ofJ(θ) with respect toθ at θ = 0 is given by the average

service rate.

c) J(θ) is a concave function ofθ.

d) limθ→∞ J(θ) = − log Pr{C = 0}, i.e., the probability of the event that the service rate is 0.

Proof: See Appendix B.

Remark 2:From the properties above, we can see thatJ(θ) is equal to 0 atθ = 0, and then it increases

sublinearly, and achieves upperbound, if it exists, forθ → ∞. Therefore,J(θ) is a bijective function ofθ,

and for each value ofJ , we can find the associatedθ.

Assumption 1:Throughout this article, we consider the fading distributions that satisfy the following

conditions:

1) Pr{z1 = 0} = 0.

2) Pr{z2 = 0} = 0.

Remark 3:Under this assumption, we can see thatJ1(θ) andJ2(θ) approaches to∞ asθ increases. Note

that for the continuous distributions of the fading states,such as Rayleigh and Rician fading, the above

assumption is justified immediately. If the above assumption does not hold, we can see that the upperbounds
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for J1(θ1) andJ2(θ2) are finite values, and the following analysis still holds while only considering a sliced

part of (J1, J2) of the J1 − J2 curve characterized in Lemma 1.

Note that we can also derive the following properties of effective capacity.

Lemma 3: ([16]) Consider the functions

ϕ(θ) = −1

θ
logEz1{e−θC1} =

J1(θ)

θ
for θ ≥ 0, (32)

φ(θ) = −1

θ
logEz2{e−θC2} =

J2(θ)

θ
for θ ≥ 0. (33)

whereC1 andC2 are given by (26). We have

a) The functions are decreasing inθ.

b) ϕ(θ) is increasing inSNR1, andφ(θ) is increasing inSNR2.

Remark 4:According to Lemma 2 and the conditions specified in (17) and (20), we can see that the

effective capacity obtained always satisfy the statistical delay constraints as long asθ1 and θ2 satisfy (16).

Therefore, with the definitions ofJ1(θ1) and J2(θ2) in (30), we can find the associatedθ1 and θ2 on the

lower boundary curve indicated by Lemma 1. Iterating over this set ofθ1 andθ2, we can obtain the effective

capacity under the statistical delay constraints. For other values ofθ1 and θ2, either the delay constraint

cannot be satisfied, or one of the queues is subject to more stringent constraint than necessary, leading to

worse performance due to Lemma 3.

For the following analysis, we define

Ωǫ = {(θ1, θ2) : J1(θ1) andJ2(θ2) are solutions to(23)}. (34)

Additionally, we need the following upperbound on the arrival rates supported by the two-hop system.

Proposition 1: ([16]) The constant arrival rates, which can be supported bythe two-hop link in the

presence of queueing constraintsθ1 andθ2 at the source and relay, respectively, are upperbounded by

R ≤ min

{

− 1

θ1
logEz1

{

e−θ1C1
}

,− 1

θ2
logEz2

{

e−θ2C2
}

}

= min

{

J1(θ1)

θ1
,
J2(θ2)

θ2

}

. (35)
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Remark 5: In the rest of the text, we use the following definitions

R1 =
J1(θ1)

θ1
, and R2 =

J2(θ2)

θ2
. (36)

They represent the two terms inside the minimization of (35).

The effective capacity of the two-hop system, i.e., maximumof the arrival rates that can be supported in

the two-hop system in the presence of queueing constraintsθ1 andθ2, is given by the the following result.

Theorem 2:([16]) The effective capacity of the two-hop system givenθ1 > 0 andθ2 > 0 is given by the

following:

Case I: If θ1 ≥ θ2,

RE(θ1, θ2) = min

{

− 1

θ1
logEz1

{

e−θ1C1
}

,− 1

θ2
logEz2

{

e−θ2C2
}

}

. (37)

Case II: If θ1 < θ2 andθ2 ≤ θ̄,

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−θ1C1
}

(38)

whereθ̄ is the unique value ofθ for which we have the following equality satisfied:

− 1

θ1
logEz1

{

e−θ1C1
}

= − 1

θ1

(

logEz2

{

e−θC2
}

+ logEz1

{

e(θ−θ1)C1
}

)

. (39)

Case III: Assumeθ1 < θ2 andθ2 > θ̄.

III.a: If

− 1

θ2
logEz2

{

e−θ2C2
}

≥ − 1

θ2
logEz1

{

e−θ2C1
}

, (40)

then

RE(θ1, θ2) = − 1

θ̃∗
logEz1

{

e−θ̃∗C1

}

(41)
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whereθ̃∗ is the smallest solution to

− 1

θ̃
logEz1

{

e−θ̃C1

}

= −1

θ̃

(

logEz2

{

e−θ2C2
}

+ logEz1

{

e(θ2−θ̃)C1

}

)

. (42)

III.b: Otherwise,

RE(θ1, θ2) = − 1

θ2
logEz2

{

e−θ2C2
}

. (43)

Recall that we are seeking to identify the effective capacity of the two-hop system under statistical delay

constraints specified by(ǫ,Dmax). Combining the behavior ofRE(θ1, θ2) delineated in Theorem 2 and the

tradeoff betweenJ1(θ1) andJ2(θ2) in Lemma 1, we have the following result.

Theorem 3:The effective capacity of the two-hop wireless communication systems subject to statistical

delay constraints specified by(ǫ,Dmax) is given by the following:

Case I: If θ1,th = θ2,th,

Rǫ(ǫ,Dmax) =
Jth(ǫ)

θ1,th
, (44)

where (θ1,th,θ2,th) is the unique solution pair toJ1(θ1) = Jth(ǫ), andJ2(θ2) = Jth(ǫ).

Case II: If θ1,th > θ2,th,

Rǫ(ǫ,Dmax) =











J0
θ1,0

, TB log2(1 + SNR2z2,min) ≥ TB log2(1 + SNR1z1,max),

J1(
◦
θ1)

◦
θ1

, otherwise.
(45)

whereθ1,0 is the solution toJ1(θ1) = J0, θ1 is given by(θ1, θ2) ∈ Ωǫ with

θ1 = θ2, (46)

and
◦

θ1 is the smallest value ofθ1 with (θ1, θ2) ∈ Ωǫ satisfying

− 1

θ1
logEz1

{

e−θ1C1
}

= − 1

θ1

(

logEz2

{

e−θ2C2
}

+ logEz1

{

e(θ2−θ1)C1
}

)

. (47)

Moreover, if dJ2(θ)
dθ

∣

∣

θ=θ1
≤ dJ1(θ)

dθ

∣

∣

θ=θ1
, the solution to (47) with(θ1, θ2) ∈ Ωǫ is unique.
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Fig. 3. The relay model.

Case III: If θ1,th < θ2,th,

Rǫ(ǫ,Dmax) =











J0
θ2,0

, TB log2(1 + SNR1z1,min) ≥ J0
θ2,0

J2(θ̌2)

θ̌2
, otherwise.

(48)

whereθ2,0 is the solution toJ2(θ2) = J0, and (̌θ1,θ̌2) is the unique solution to

J1(θ1)

θ1
=

J2(θ1)

θ2
(49)

with (θ1, θ2) ∈ Ωǫ.

Proof: See Appendix C.

Remark 6:Although implicitly, whenθ1,th = θ2,th, we can also show thatθ1,th is the smallestθ1 with

(θ1, θ2) ∈ Ωǫ satisfying (47) following the same argument in the proof. Note thatJth(ǫ) is a value decided

by only ǫ andDmax, while θ1,th andθ2,th also depend onSNR1, andSNR2, and the fading distributions.

Remark 7:The condition given in (45) or (48) indicate that eitherJ2(θ2) or J1(θ1) can approach to

infinity, and hence the only delay introduced is the queue at the source or the relay node, respectively.

Remark 8:Note that the effective capacity under statistical delay constraints is achieved when the queue

at the relay is about to be the bottleneck of the two-hop system. Depending on the fading distributions

and SNR levels, the operation point can be one such that the delay constraint at the queue of the source or

the relay node can be lessened. This provides us insight for the design of wireless systems, and resource

allocations.
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Fig. 4. Effective capacity in SNR2. SNR1 = 0 dB. ǫ = 0.001. Dmax = 1 sec.

V. NUMERICAL RESULTS

We consider the relay model depicted in Fig. 3. The source, relay, and destination nodes are located on

a straight line. The distance between the source and the destination is normalized to 1. Let the distance

between the source and the relay node bed ∈ (0, 1). Then, the distance between the relay and the destination

is 1−d. We assume the fading distributions forS−R andR−D links follow independent Rayleigh fading

with meansE{z1} = 1/dα andE{z2} = 1/(1−d)α, respectively, where we assume that the path lossα = 4.

We assume thatSNR1 = 0 dB in the following numerical results.

In Fig. 4, we plot the effective capacity as a function ofSNR of the relay node. We also plot the effective

capacity with balanced delay constraints for the two queues, i.e., J1(θ1) = J2(θ2) = Jth(ǫ). We fix d = 0.5,

in which case theS−R andR−D links have the same channel conditions. We assume that the statistical

delay constraint is given byǫ = 10−3 and Dmax = 1 sec. From the figure, we can see that the effective

capacity of two-hop system increases withSNR2. And, in all cases, the achievable rate is greater than the one

achieved with balanced delay constraints. In Fig. 5, we plotthe associatedJ2(θ2) as a function ofJ1(θ1).
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As can be seen from the figure,J2(θ2) increases asSNR2 increases, i.e., we can put more stringent constraint

to the queue at the relay, and hence the delay constraint at the source can be less. In this way, the effective

capacity of the two-hop system can be improved.

We are interested in the impact of the delay violation probability ǫ on the achievable performance. In Fig.

6, we plot the effective capacity asǫ varies forSNR2 = {3, 6, 10} dB. It is interesting that asǫ decreases,

the performance gap between different curves vanishes, i.e., the improvement caused by the increase of the

signal-to-noise ratio at the relay can be negligible. To getmore insights, we also plot the associated values

of J1(θ1) andJ2(θ2) asǫ decreases in Fig. 7. It can be found that the increase inJ2(θ2) is becoming larger

while the decrease inJ1(θ1) is smaller asǫ decreases. Considering the convexity ofJ2(θ2) in J1(θ1) in

Lemma 1, loosening the queueing constraint at one queue willrequire the other queue to operate in a much

more conservative way, which provides little gain under more stringent delay constraints, i.e., smallerǫ, .

In Fig. 8, we plot the effective capacity asd varies. We assumeSNR2 = {3, 6, 10} dB, ǫ = 0.001. We can

see from the figure that asd increases, i.e., the channel condition at theS−R link is worse, the effective
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capacity decreases, and the increase ofSNR at the relay node helps little. This is mainly because of the

severe channel conditions between theS−R link, which is the bottleneck of the system. Finally, we plotthe

effective capacity asd andǫ varies in Fig. 9, with the associated delay tradeoffJ1(θ1) andJ2(θ2) in Fig. 10.

We assumeSNR2 = 3 dB. In order to ensure the stability of the queues, the minimum dmin = 0.4569. Note

that due to the definition of supremum for the effective capacity, the performance atdmin can be achieved

via somed arbitrarily close todmin. As can see from the figure, for all cases, effective capacitydecreases

asd increases orǫ decreases, even with strong bias towards the queue at the source indicated by the larger

J2(θ2). It is interesting that for largeǫ, the performance improvement by adjusting the delay constraints at

the queues can be larger, albeit the improvement provided byincreasingSNR at the relay vanishes withd.

Motivated by this observation, we plot the effective capacity as d varies for SNR2 = 3 dB and ǫ = 0.05

in Fig. 11. It is obvious that the performance improvement bystatistical delay tradeoff first increases with

d, and after some point, it again decreases due to the poor channel conditions between theS −R link. It

is obvious that asd approach to 1, i.e.,TB log2(1 + SNR2z2,min) ≥ TB log2(1 + SNR1z1,max), the effective
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capacity is limited by theS−R link, and the two curve will merge each other.

VI. CONCLUSION

In this paper, we have investigated the maximum constant arrival rates that can be supported by a two-hop

communication link with full-duplex relay under statistical delay constraints. We have provided a unified

framework for achieving statistical delay tradeoff imposed to the source and relay node while satisfying

the statistical delay constraints. We have determined the effective capacity in the block-fading scenario

as a function of the statistical delay constraints, the signal-to-noise ratio levelsSNR1 and SNR2, and the

fading distributions. It is interesting that having bias towards the delay constraints at one queue can help

improve the effective capacity of the two-hop system, especially when the delay violation probability can

be large. Also, we have shown that increasing theSNR level at the relay node can further improve the

achievable rate, while the improvement is negligible when either the delay constraint is too stringent or

the channel conditions between the source and relay node areconsiderably poor. Moreover, even when the

channel conditions between the source and the relay are becoming worse, we can still obtain non-negligible
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performance improvement by the statistical delay tradeoffwhen the delay violation probability is large.

APPENDIX

A. Proof of Lemma 1

1) WhenJ1(θ1) 6= J2(θ2), the continuity is obvious since there is no pole to the equation (23). Consider

J1(θ1) = J2(θ2). We can see that

lim
J2(θ2)→J1(θ1)−

ϑ(J1(θ2), J2(θ2)) = lim
J2(θ2)→J1(θ1)−

J2(θ2)e
−J1(θ1)Dmax − J1(θ1)e

−J2(θ2)Dmax

J2(θ2)− J1(θ1)
(50)

= lim
J2(θ2)→J1(θ1)−

e−J2(θ2)Dmax
J2(θ2)e

−(J1(θ1)−J2(θ2))Dmax − J1(θ1)

J2(θ2)− J1(θ1)
(51)

= lim
J2(θ2)→J1(θ1)−

e−J2(θ2)Dmax

(

1 + J2(θ2)
1− e−(J1(θ1)−J2(θ2))Dmax

J1(θ1)− J2(θ2)

)

(52)

= e−J2(θ2)Dmax (1 + J2(θ2)Dmax) (53)

Similarly, we can show that

lim
J2(θ2)→J1(θ1)+

ϑ(J1(θ2), J2(θ2)) = e−J1(θ1)Dmax (1 + J1(θ1)Dmax) . (54)

From (15), we can see that atJ1(θ1) = J2(θ2), ϑ(J1(θ2), J2(θ2)) is continuous, i.e.,J2(θ2) = Φ(J1(θ1))

is continuous, and from (16), we should have

(1 + J1(θ1)Dmax) e
−J1(θ1)Dmax ≤ ǫ (55)

which gives us (25) immediately by solving the above equation with equality.

2) Taking the partial derivative ofϑ(J1(θ1), J2(θ2)) in J1(θ1) and noting that the right-hand-side (RHS)

of (23) is constant, we have

∂ϑ(J1(θ1), J2(θ2))

∂J1(θ)
=

1

(J2(θ2)− J1(θ1))2

(

(

J̇2(θ)e
−J1(θ1)Dmax − J2(θ2)Dmaxe

−J1(θ1)Dmax − e−J2(θ2)Dmax

+ J1(θ)J̇2(θ2)Dmaxe
−J2(θ2)Dmax

)

(J2(θ2)− J1(θ1))− (J̇2(θ2)− 1)

×
(

J2(θ2)e
−J1(θ1)Dmax − J1(θ1)e

−J2(θ2)Dmax
)

)

= 0, (56)
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which, after combining the coefficients oḟJ2(θ2) and rearrangement, gives us

Φ̇(J1(θ1)) = J̇2(θ2) =
J2(θ2)

J1(θ1)
e(J2(θ2)−J1(θ1))Dmax

(J2(θ2)− J1(θ1))Dmax+ e−(J2(θ2)−J1(θ1))Dmax − 1

(J2(θ2)− J1(θ1))Dmax+ 1− e−(J2(θ2)−J1(θ1))Dmax
(57)

In the following, we will show thatΦ̇(J1(θ1)) < 0. Denotex = (J2(θ2)− J1(θ1))Dmax, and define

ν(x) =
x+ e−x − 1

x+ 1− ex
. (58)

Then, we can rewritėΦ(J1(θ)) as

Φ̇(J1(θ1)) = J̇2(θ2) =
J2(θ2)

J1(θ1)
e(J2(θ2)−J1(θ1))Dmaxν(x). (59)

Note thatJ2(θ2)
J1(θ1)

e(J2(θ2)−J1(θ1))Dmax is positive. Taking the first derivative ofν(x), we obtain

ν̇(x) =
4− 2 (ex + e−x) + x (ex − e−x)

(x+ 1− ex)2
(60)

We can show thaṫν(x) ≥ 0. Supposex > 0. Considering the numerator of above equation, we have

4− 2
(

ex + e−x
)

+ x
(

ex − e−x
)

= −2
(

e
x
2 − e−

x
2

)2
+ x

(

e
x
2 − e−

x
2

) (

e
x
2 + e−

x
2

)

(61)

=
(

e
x
2 − e−

x
2

) (

−2
(

e
x
2 − e−

x
2

)

+ x
(

e
x
2 + e−

x
2

))

(62)

=
e−

x
2

x+ 2

(

e
x
2 − e−

x
2

)

(

x− 2

x+ 2
ex + 1

)

(63)

≥ 0 (64)

where x−2
x+2

ex ≥ −1 is incorporated since it is an increasing function ofx, and its value atx = 0

is -1. Therefore,ν̇(x) > 0 for x > 0, i.e., ν(x) is increasing forx > 0. In a similar way, we can

show thatν̇(x) > 0 for x < 0. Additionally, we can showlimx→0 ν̇(x) = 0 by considering the Taylor

expansions ofex ande−x at x = 0 and noting that the numerator goes to 0 in an ordero(x4) while the

denominator goes to 0 in the order ofx4 (detail is omitted since it is trivial). Therefore,ν is increasing

24



in x. Meanwhile,

lim
x→∞

ν(x) = lim
x→∞

x+ e−x − 1

x+ 1− ex
= lim

x→∞

1− e−x

1− ex
= 0. (65)

Hence,ν(x) < 0, which in turn, tells us thaṫΦ(J1(θ1)) < 0 in (59). Therefore,J2(θ2) = Φ(J1(θ1)) is

strictly decreasing inJ1(θ).

3) We will show the convexity ofΦ by consider the branches forJ2(θ2) > J1(θ1) andJ2(θ2) < J1(θ1),

respectively.

For J1(θ1) < Jth(ǫ), we know thatJ2(θ2) > J1(θ1). Consider

J̇2(θ2) =
J2(θ2)

J1(θ1)
e(J2(θ2)−J1(θ1))Dmax

(J2(θ2)− J1(θ1))Dmax+ e−(J2(θ2)−J1(θ1))Dmax − 1

(J2(θ2)− J1(θ1))Dmax+ 1− e−(J2(θ2)−J1(θ1))Dmax
(66)

=
J2(θ2)

J1(θ1)
exν(x) (67)

where againx = (J2(θ2) − J1(θ1))Dmax. Note that asx increases,J2(θ2)
J1(θ1)

should increase sinceJ1(θ1)

decreases andJ2(θ2) increases. From the above discussion, we knowν(x) < 0, for x > 0. Define

η(x) = exν(x), η(x) < 0 for x > 0. Then if we can show thatη(x) is decreasing asx increases, then

J̇2(θ2) = Φ̇(J1(θ1)) will decrease withx, since a decreasing minus value multiplying an increasing

positive value will lead to smaller minus value. Taking the first derivative ofη(x), we have

η̇(x) = ex(ν(x) + ν̇(x)) = ex
2 + x2 − (ex + e−x)

(x+ 1− ex)2
. (68)

Note that the numerator2 + x2 − (ex + e−x) can be shown to be less than 0 forx > 0. More

specifically, consider that its second derivative2 − (ex + e−x) is less than 0 forx > 0 and the first

derivative2x − (ex − e−x) at x = 0 is 0, and hence its first derivative is always less than 0, which

tells us that it is a decreasing function inx with the maximum value atx = 0 as 0. Therefore,̇η < 0.

Hence,J̇2(θ2) < 0 is decreasing asJ1(θ1) decreases forJ1(θ1) < Jth(ǫ), i.e., Φ̈(J1(θ)) ≥ 0. Similarly,

we can show thaẗΦ(J1(θ1)) ≥ 0 for J1(θ1) > Jth(ǫ). Together, we know thaẗΦ(J1(θ1)) ≥ 0, and hence

J2(θ2) = Φ(J1(θ1)) is a convex function inJ1(θ1).

25



4) Let J1(θ) go to infinity, we can see that

lim
J1(θ)→∞

ϑ(J1(θ), J2(θ)) = lim
J1(θ)→∞

e−J2(θ2)Dmax = e−J0Dmax (69)

which indicateslimJ1(θ)→∞ J2(θ2) = J0. On the other hand, if we letJ2(θ) go to infinity, we can show

that limJ2(θ)→∞ J1(θ1) = J0. Together, we obtain the result in the lemma. �

B. Proof of Lemma 2

a) This property can be readily seen by evaluating the function atθ = 0.

b) The first derivative ofJ with respect toθ can be evaluated as

J̇(θ) =
Ez

{

e−θCC
}

Ez {e−θC} > 0. (70)

Then, J̇(0) can be obtained by evaluating the above equation atθ = 0.

c) The second derivative ofJ with respect toθ can be expressed as

J̈(θ) = − 1

(Ez {e−θC})2

(

Ez

{

e−θCC2
}

Ez

{

e−θC
}

−
(

Ez

{

e−θCC
})2

)

. (71)

By Cauchy-Schwarz inequality, we know thatE{X2}E{Y 2} ≥ (E{XY })2. Then, denoting

X =
√
e−θCC2 andY =

√
e−θC , we easily see thaẗJ(θ) ≤ 0 for all θ. Thus,J(θ) is a concave function.

d) Note that as long asC 6= 0, limθ→∞ e−θC = 0, and wheneverC = 0, eθC = 1. Therefore, we have

lim
θ→∞

Ez 6=0

{

e−θC
}

= 0. (72)

Then limθ→∞ J(θ) = limθ→∞− log
(

Ez 6=0{e−θC}+ Ez=0{1}
)

= − log Pr{C = 0}. �

C. Proof of Theorem 3

With the delay tradeoff specified in Lemma 1, we can see that there is potential improvement of effective

capacity by adjusting the statistical delay constraint imposed to the queues at the source and the relay nodes.

As a start point, we considerJ1(θ1) = J2(θ2). According to the Lemma 2 and the subsequent discussions,
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we can always findθ1,th and θ2,th for Jth(ǫ) defined in (25). Now, with the values ofθ1,th and θ2,th, we

have different behaviors of the effective capacity depending on the conditions indicated in Theorem 2. We

seek to find the optimalJ1(θ1) andJ2(θ2) with (θ1, θ2) ∈ Ωǫ to maximize the effective capacity, whereΩǫ

is defined in (34).

Case I: Assumeθ1,th = θ2,th.

For this case, we should have

RE(θ1,th, θ2,th) = R1 =
Jth(ǫ)

θ1,th
=

Jth(ǫ)

θ2,th
= R2. (73)

We assert that this value is the effective capacity of the two-hop system, i.e.,

Rǫ(ǫ,Dmax) = sup
(θ1,θ2)∈Ω

RE(θ1, θ2) = RE(θ1,th, θ2,th). (74)

We can show this by contradiction. From Lemma 3, we know that the effective capacity is a decreasing

function in θ. Suppose that there exists someR > RE(θ1,th, θ2,th) that can be supported by the two-hop

system withθ1 and θ2. With Lemma 3, we must haveθ1 < θ1,th. ThenJ1(θ1) < J1(θ1,th). According to

the statistical delay tradeoff shown in Lemma 1, we can see that J2(θ2) > J2(θ2,th), which tells us that

θ2 > θ2,th according to Lemma 2, sinceJ2(θ) is increasing inθ. Now from the Proposition 1, we obtain

R ≤ min

{

J1(θ1)

θ1
,
J2(θ2)

θ2

}

=
J2(θ2)

θ2
<

J2(θ2,th)

θ2,th
= RE(θ1,th, θ2,th) (75)

which leads to a contradiction.

Case II: Assumeθ1,th > θ2,th.

In this case, we can see that

R1 =
J1(θ1,th)

θ1,th
=

Jth(ǫ)

θ1,th
<

Jth(ǫ)

θ2,th
=

J2(θ2,th)

θ2,th
= R2. (76)

The effective capacity associated withθ1,th, θ2,th specializes intoCase I of Theorem 2. Therefore,RE(θ1,th, θ2,th) =

min{R1, R2} = R1. Obviously, the queueing constraint imposed at the source is more stringent. To achieve

better performance, we should try to relieve the queueing constraints at the source, i.e., decreaseθ1, or J1(θ1)
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equivalently. Correspondingly, from Lemma 1,J2(θ2) should increase, and we haveJ2(θ2) > Jth(ǫ) > J1(θ1).

In the following, we will provide a characterization ofθ1 as we iterate over(θ1, θ2) ∈ Ωǫ to find the optimal

pair that maximizes the effective capacity.

First, noting that asJ1(θ1) decreases fromJth(ǫ) to J0, we can see thatθ1 decreases fromθ1,th to some

finite valueθ1,0, which is the solution toJ1(θ) = J0. To the opposite,θ2 increases fromθ2,th < θ1,th to ∞.

Clearly, from the continuity ofJ2(θ2) = Φ(J1(θ1)), θ2 and θ1 should be continuous as well. Hence, there

must be one point(θ1, θ2) ∈ Ωǫ such that

θ1 = θ2, (77)

and for allθ1 < θ1, we will haveθ2 > θ2 = θ1 > θ1. According to Lemma 2, we knowJ1(θ) andJ2(θ) are

increasing functions ofθ. Therefore, at this point, we have

R1 =
J1(θ1)

θ1
<

J1(θ1,th)

θ1
=

Jth(ǫ)

θ1
=

J2(θ2,th)

θ1
<

J2(θ2)

θ1
=

J2(θ2)

θ2
= R2. (78)

That is, the queue at the source is still the bottleneck of thetwo-hop system. We can further relieve the

queueing constraint at the source.

Now, asθ1 further decreases,θ1 < θ2. Consequently, the effective capacity associated with(θ1, θ2) now

specializes intoCase II of Theorem 2. As can be seen from [16, Lemma 2], the queue at therelay will not

affect the performance as long asθ1 andθ2 satisfy the following inequality given by

− 1

θ1
logEz1

{

e−θ1C1
}

≤ − 1

θ1

(

logEz2

{

e−θ2C2
}

+ logEz1

{

e(θ2−θ1)C1
}

)

. (79)

Note that asθ1 decreases fromθ1 to θ1,0, the LHS of the above inequality increases fromJ1(θ1)
θ1

to J0
θ1,0

. On

the other hand, atθ1 = θ1, we haveθ2 = θ1, and the value of the RHS of the above inequality at(θ1, θ2)

is given by

RHS=
J2(θ2)

θ1
>

J1(θ1)

θ1
. (80)
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As θ1 → θ1,0, or J1(θ1) → J0, we know that

lim
J1(θ1)→J0

RHS= lim
J1(θ1)→J0

− 1

θ1

(

logEz2

{

e−θ2C2
}

+ logEz1

{

e(θ2−θ1)C1
}

)

= lim
J1(θ1)→J0

θ2
θ1

(

− 1

θ2
logEz2

{

e−θ2C2
}

− 1

θ2
logEz1

{

e(θ2−θ1)C2
}

)

. (81)

Note further thatJ2(θ2), and henceθ2, approaches to infinity asJ1(θ1) → J0. The first term inside the

parenthesis goes to the minimum rate ofR−D link, i.e., TB log2(1+ SNR2z2,min) and the second term goes

to the largest rate of the linkS−R, i.e.,TB log2(1+ SNR1z1,max). So as long as the smallest rate ofR−D

is less than the largest rate of the linkS−R, the limit in (81) goes to−∞. It is important to note that if

the highest rate ofS−R can be supported by the linkR−D, i.e.,

TB log2 (1 + SNR2z2,min) ≥ TB log2(1 + SNR1z1,max), (82)

then there is no congestion at the relay node at all. In this case,θ2 can take any value greater than 0, and

the only delay caused is the queue at the source. Therefore, the arrival rates are limited by theS−R link,

and to satisfy the statistical delay constraints, we have

Rǫ(ǫ,Dmax) =
J0

θ1,0
. (83)

Now, we consider the case when (82) is not satisfied. In such cases,θ2 → ∞ asJ2(θ2) → ∞. From the

continuity of the functions, we know that there must be some(θ1, θ2) ∈ Ωǫ such that the above inequality in

(79) is satisfied with equality. Denote the smallestθ1 as
◦

θ1. Then, for allθ1 <
◦

θ1, (79) cannot be satisfied.

Moreover, consider Lemma 3, we know asθ1 decreases,R1 increases fromJth(ǫ)
θ1,th

to J0
θ1,0

. At the same

time, asθ2 approaches to infinity,R2 decreases fromJth(ǫ)
θ2,th

to TB log2(1 + SNR2zmin). Therefore, there must

be some value such that

R1 =
J1(θ1)

θ1
= R =

J2(θ2)

θ2
= R2 (84)
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with the associated statistical queueing constraints denoted asθ̌1 and θ̌2, respectively. Forθ1 < θ̌1, we have

R1 =
J1(θ1)

θ1
>

J2(θ2)

θ2
= R2. (85)

In the following, we can establish the comparison betweenθ̌1 and
◦

θ1 as

θ̌1 ≤
◦

θ1. (86)

Note here that if J0
θ1,0

< TB log2(1 + SNR2zmin), there is noθ1 for (84) to be satisfied, and hence we can set

θ̌1 to be 0, which satisfies the above claim obviously. Suppose that θ̌1 >
◦

θ1. Since at
◦

θ1, the condition for

Case II of Theorem 2 can be satisfied, we immediately see that

RE(
◦

θ1,
◦

θ2) =
J1(

◦

θ1)
◦

θ1

. (87)

However, according to Proposition 1 and (85), we have

RE(
◦

θ1,
◦

θ2) ≤ min







J1(
◦

θ1)
◦

θ1

,
J2(

◦

θ2)
◦

θ2







=
J2(

◦

θ2)
◦

θ2

<
J1(

◦

θ1)
◦

θ1

(88)

leading to contradiction. A numerical result provides a visualization of the aforementioned discussions onθ1,
◦

θ1, and θ̌1. We consider the the delay constraint given by(ǫ,Dmax) = (0.05, 1) in Rayleigh fading channel.

We assume thatSNR1 = 0 dB, SNR2 = 3 dB, T = 1 ms, andB = 180 kHz. We obtainθ1,th = 0.0178, and

θ2,th = 0.011. Now, asθ1 decreases withinΩǫ, we plot the values ofθ1 andθ2 in Fig. 12(a), the LHS and RHS

of (79) in Fig. 12(b), and the values ofR1 andR2 in Fig. 12(c). We can obtainθ1 = 0.0142,
◦

θ1 = 0.0131,

andθ̌1 = 0.0109. Obviously, we can see thatθ̌1 <
◦

θ1 < θ1. Note that we havePr{z1 = 0} = Pr{z2 = 0} = 0

for Rayleigh fading channel, and henceJ1(θ2) → ∞ asθ2 → ∞. Note also thatz1,max = ∞ andz2,min = 0

for Rayleigh fading channels.

Proposition 2: The effective capacity in this case is given by

Rǫ(ǫ,Dmax) = sup
(θ1,θ2)∈Ω

RE(θ1, θ2) = RE(
◦

θ1,
◦

θ2) =
J1(

◦

θ1)
◦

θ1

. (89)
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Fig. 12. The illustration ofθ1,
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θ1, and θ̌1. From a)-c), the cross points give usθ1,
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Proof: In order to prove the proposition, we have to show that there is no other arrival rate larger than

the value specified above that can be supported by the two-hoplink while satisfying the statistical delay

constraint. We know that for allθ1 >
◦

θ1,

RE(θ1, θ2) ≤
J1(θ1)

θ1
<

J1(
◦

θ1)
◦

θ1

= Rǫ(ǫ,Dmax), (90)

due to Lemma 3. Suppose that there existsR > RE(
◦

θ1,
◦

θ2) can be supported by the two-hop system with

θ1 and θ2. Then,θ1 <
◦

θ1. As shown above, forθ1 <
◦

θ1, the inequality defined in (79) cannot be satisfied,

and henceRE(θ1, θ2) falls into Case III of Theorem 2. In addition, with the previous characterization in

(77), we knowθ2 > θ2 = θ1 >
◦

θ1.

For Case III.b of Theorem 2, if (40) cannot be satisfied, i.e.,

J2(θ2)

θ2
<

J1(θ2)

θ2
, (91)

we know from Lemma 3 that the effective capacity is decreasing in θ, and as a result

RE(θ1, θ2) =
J2(θ2)

θ2
<

J1(θ2)

θ2
<

J1(θ2)

θ2
=

J1(θ1)

θ1
≤ J1(

◦

θ1)
◦

θ1

= RE(ǫ,Dmax) (92)

whereθ2 > θ2 = θ1 >
◦

θ1 is incorporated.

For Case III.a of Theorem 2, if (40) is satisfied, there existsθ̃∗1 ∈ (θ1, θ2) such thatθ̃∗1 is the smallest

solution to (42). With the assumptionR > RE(
◦

θ1,
◦

θ2) and Lemma 3, we must haveθ1 < θ̃∗1 <
◦

θ1, and

henceJ1(θ1) < J1(θ̃
∗
1) < J1(

◦

θ1). Considering the statistical delay tradeoff characterized in Lemma 1, we

must have the associatedJ2(θ2) > J2(θ̃
∗
2) > J2(

◦

θ2), and henceθ2 > θ̃∗2 >
◦

θ2. Note that with [16, Lemma

2], we can obtain the following inequality

− 1

θ̃∗
logEz1

{

e−θ̃∗1C1

}

= − 1

θ̃∗1

(

logEz2

{

e−θ2C2
}

+ logEz1

{

e(θ2−θ̃∗1)C1

}

)

(93)

< − 1

θ̃∗1

(

logEz2

{

e−θ̃∗2C2

}

+ logEz1

{

e(θ̃
∗
2−θ̃∗1)C1

}

)

(94)

since the RHS of (93) is always greater than the LHS for allθ ∈ [0, θ2] with given θ̃∗1. That is, the condition
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in (79) is satisfied at̃θ1
∗
. This violates the definition of

◦

θ1, which is the smallest solution to (79).

Combining the above discussions, we arrive at the conclusion that there is no otherθ1 that can achieve

higher effective capacity than (89). Hence, it is indeed thelargest achievable constant arrival rate in this

case. �

The aforementioned discussions show the existence of the solution to (47) under the statistical delay

constraints. To show the uniqueness, we need the following Lemma.

Lemma 4:Consider the function

f(θ1) = J2(θ2)− J1(θ1)− logEz1

{

e(θ2−θ1)C1
}

, for θ1 ≤ θ1 (95)

where(θ1, θ2) ∈ Ωǫ, and(θ1, θ2) is defined in (77). If the following condition

dJ2(θ)

dθ

∣

∣

∣

∣

θ=θ2

≤ dJ1(θ)

dθ

∣

∣

∣

∣

θ=θ1

(96)

is satisfied, thenf(θ1) is increasing inθ1.

Proof: Following the proof in Appendix A, we viewθ2 as a function ofθ1. Now taking the first derivative

of f over θ1, we have

df(θ1)

dθ1
=

dJ2(θ2)

dJ1(θ1)

dJ1(θ1)

dθ1
− dJ1(θ1)

dθ1
−

Ez1

{

e(θ2−θ1)C1C1

}

(

dθ2
dθ1

− 1
)

Ez1 {e(θ2−θ1)C1} (97)

=
dJ2(θ2)

dJ1(θ1)

Ez1

{

e−θ1C1C1

}

Ez1 {e−θ1C1} − dθ2
dθ1

Ez1

{

e(θ2−θ1)C1C1

}

Ez1 {e(θ2−θ1)C1}

+
Ez1

{

e(θ2−θ1)C1C1

}

Ez1 {e(θ2−θ1)C1} − Ez1

{

e−θ1C1C1

}

Ez1 {e−θ1C1} . (98)

where dJ1(θ1)
dθ1

=
Ez1{e−θ1C1C1}
Ez1{e−θ1C1} is substituted into (98).

First, similar to Lemma 2, we can show that the functiong(θ2) = logEz1

{

e(θ2−θ1)C1
}

is convex inθ2,

i.e., d2g(θ2)

dθ22
≥ 0. This tells us that the derivative ofg(θ2) is increasing inθ2, and

dg(θ2)

dθ2

∣

∣

∣

∣

θ2=0

=
Ez1

{

e−θ1C1C1

}

Ez1 {e−θ1C1} . (99)
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Therefore,

Ez1

{

e(θ2−θ1)C1C1

}

Ez1 {e(θ2−θ1)C1} − Ez1

{

e−θ1C1C1

}

Ez1 {e−θ1C1} ≥ 0. (100)

Considering the definition of(θ1, θ2) in (77), we know that for allθ1 ≤ θ1, we haveθ2 ≥ θ2. Note that

J1(θ1) andJ2(θ2) are concave functions according to Lemma 2, i.e., their firstderivatives decreases withθ1

andθ2, respectively. Therefore, we have

dJ1(θ)

dθ

∣

∣

∣

∣

θ=θ1

≥ dJ1(θ)

dθ

∣

∣

∣

∣

θ=θ1

, (101)

dJ2(θ)

dθ

∣

∣

∣

∣

θ=θ2

≤ dJ2(θ)

dθ

∣

∣

∣

∣

θ=θ2

, (102)

which, after combining with the assumption in (96), gives us

dJ1(θ1)

dθ1
≥ dJ2(θ2)

dθ2
. (103)

Next, recalling the statistical delay tradeoff characterized in Lemma 1, we can see thatdθ2 < 0 for

dθ1 > 0, i.e., θ2 decreases as we increaseθ1. Then, we can get from (103) that

dθ2
dθ1

≤ dJ2(θ2)

dJ1(θ1)
. (104)

Note that bothdθ2
dθ1

and dJ2(θ2)
dJ1(θ1)

are negative values. Considering the expression in (98), wenow have

df(θ1)

dθ1
≥
(

1− dJ2(θ2)

dJ1(θ1)

)

(

Ez1

{

e(θ2−θ1)C1C1

}

Ez1 {e(θ2−θ1)C1} − Ez1

{

e−θ1C1C1

}

Ez1 {e−θ1C1}

)

≥ 0. (105)

That is,f(θ1) is an increasing function inθ1. �

Note that after eliminating the denominator of both sides ofthe equation (47), and moving the LHS of

the obtained equation to the right side, we can obtain the function given in (95), which is increasing inθ1

for θ1 ≤ θ1. Therefore, the solution to the equation (47) is unique.

Case III: Assumeθ1,th < θ2,th.
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For this case, atθ1,th, we know that

R1 =
J1(θ1,th)

θ1,th
=

Jth(ǫ)

θ1,th
>

Jth(ǫ)

θ2,th
=

J2(θ2,th)

θ2,th
= R2. (106)

The queue at the relay becomes the bottleneck. We need to be careful about the effective capacity in this

case. To improve the system performance, we may instead increase the queueing constraintθ1 at the source,

and correspondingly, the queueing constraintθ2 at the relay can be less. Actually, decreasing the queueing

constraint at the source node will not improve the performance, as will be justified later.

First, according to Lemma 2, we can see that asJ1(θ1) increases fromJth(ǫ) to ∞, θ1 increases from

θ1,th to ∞. To the opposite behavior,θ2 decreases fromθ2,th to some finite valueθ2,0, which is the solution

to J2(θ) = J0. Therefore, from the continuity ofθ1 andθ2, we again have one point(θ1, θ2) such that

θ1 = θ2. (107)

and for all θ1 < θ1, we haveθ1 < θ1 = θ2 < θ2. Also, we know thatR1 decreases fromJth(ǫ)
θ1,th

to

TB log2(1 + SNR1z1,min), while R2 increases fromJth(ǫ)
θ1,th

to some finite valueJ0
θ2,0

. Therefore, there must be

a value such that

R1 =
J1(θ1)

θ1
= R =

J2(θ2)

θ2
= R2 (108)

with the associated statistical queueing constraints denoted asθ̌1 and θ̌2, respectively. For allθ1 < θ̌1, we

have

R1 =
J1(θ1)

θ1
>

J2(θ2)

θ2
= R2. (109)

Note that the above result implicitly assume thatTB log2(1+SNR1z1,min) <
J0
θ2,0

. If this condition does not

hold, thenθ1 can take any value, and the only delay is introduced by the queue at the relay node. Hence,

the effective capacity under the statistical delay constraint is given by

Rǫ(ǫ,Dmax) =
J0

θ1,0
. (110)
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Consider the queue stability condition (27), this is possible when the average rate ofR−D link is larger

but has more severe fading conditions.

Now, as a stark difference from the previous case, we should have

θ̌1 ≥ θ1. (111)

Suppose thaťθ1 < θ1, we can show the following contradiction. First, atθ̌1, from the definition ofθ1 in

(107), we have

θ̌1 < θ1 = θ2 < θ̌2. (112)

According to the definition of̌θ1 in (108), we can obtain

J1(θ̌1)

θ̌1
=

J2(θ̌2)

θ̌2
⇒ J1(θ̌1) < J2(θ̌2). (113)

On the other hand, according to Lemma 1, we should have

J1(θ̌1) > J1(θ1,th) = Jth(ǫ) = J2(θ2,th) > J2(θ̌2) (114)

leading to contradiction.

Since θ̌1 > θ1, with (107), we can see that

θ̌1 > θ1 = θ2 > θ̌2. (115)

Now, the effective capacityRE(θ̌1, θ̌2) specializes intoCase I of Theorem 2, we have

RE(θ̌1, θ̌2) = min

{

J1(θ̌1)

θ̌1
,
J2(θ̌2)

θ̌2

}

=
J1(θ̌1)

θ̌1
=

J2(θ̌2)

θ̌2
. (116)

Next, we can show the following result.
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Proposition 3: The effective capacity in this case is given by

Rǫ(ǫ,Dmax) = sup
(θ1,θ2)∈Ω

RE(θ1, θ2) = RE(θ̌1, θ̌2) =
J2(θ̌2)

θ̌2
=

J1(θ̌1)

θ̌1
. (117)

Proof: From Proposition 1, we know that

R ≤ min

{

J1(θ1)

θ1
,
J2(θ2)

θ2

}

. (118)

Now, for θ1 > θ̌1, we can see from Lemma 3 that

R1 =
J1(θ1)

θ1
<

J1(θ̌1)

θ̌1
= Rǫ(ǫ,Dmax) (119)

and forθ1 < θ̌1, we haveθ2 > θ̌2, and hence

R2 =
J2(θ2)

θ2
<

J2(θ̌2)

θ̌2
= Rǫ(ǫ,Dmax). (120)

Therefore,Rǫ(ǫ,Dmax) in (117) is the largest achievable constant rate in this case. �
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