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Achievable Rate of Two-Hop Channels under

Statistical Delay Constraints

Deli Qiao

Abstract

This paper analyzes the impact of statistical delay comsgr@n the achievable rate of a two-hop wireless com-
munication link, in which the communication between a sewand a destination is accomplished via an intermediate
full-duplex relay node. It is assumed that there is no diliekt between the source and the destination, and the relay
forwards the information to the destination by employing tlecode-and-forward scheme. Both the queues at the source
and relay node are subject to statistical queueing conssramposed on the limitations of buffer violation probitlgil
Given statistical delay constraints specified via maximwaiayl and delay violation probability, the tradeoff between
the statistical delay constraints imposed to any two camzded queues is identified. With this characterizatioa, th
maximum constant arrival rates that can be supported bytwiishop link are obtained by determining the effective
capacity of such links as a function of the statistical dedapstraints and signal-to-noise ratiGN\R) at the source
and relay, and the fading distributions of the links. It i®sh that imposing unbalanced statistical delay conssdmt
the queues at the source and relay can improve the achieableOverall, the impact of statistical delay constraints

on the achievable throughput is provided.

Index Terms

Two-hop wireless links, statistical delay constraintslgy of service (QoS) constraints, fading channels, ¢ifec

capacity, delay violation probability, full-duplex reliag.

. INTRODUCTION
With the widespread of smart-phones and tablets, the volafglobal mobile traffic has increased

explosively in recent years. The portion of multimedia diags surged significantly in the wireless traffic,
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such as mobile video and voice over IP (MoIP)[1]. In suchfizafdelay is an important consideration.
Meanwhile, providing deterministic quality of service (®oguarantees is challenging for the wireless
systems, since the instantaneous rate of the channel igrablie to numerous factors, such as mobility,
changing environment and multipath fading [2]. Theref@earanteeing statistical QoS guarantees is more
favorable.

Effective bandwidth theory has been developed to analygke-fipeed systems operating under statistical
gueueing constrainis[3][4]. The queueing constraintsi@@osed on buffer violation probabilities and are
specified by the QoS exponefit which is defined as

i 108 Pr{@ > Qmax} _

Qmax—00 Qmax

—0, (1)

where( is the queue length in steady staf®y.« is the maximal queue length. With the above characteri-
zation, the statistical delay violation probabilities dag characterized through the effective bandwidths of
the arrival and departure processes jointly([B][6][8]. &l€hang and Zajic have characterized the effective
bandwidths of the time varying departure processes lin [Blickv can be utilized to analyze the volatile
wireless systems. Moreover, Wu and Negi in [6] defined thel doacept of effective capacity, which
provides the maximum constant arrival rate that can be stgghdy a given departure process while
satisfying statistical delay constraints. The analysid application of effective capacity in various settings
have attracted much interest recently (see é.g./[7]-[21] eaferences therein). For instance, in [7], the
authors derived the optimal power control policies that inéze the effective capacity of a point-to-point
link. In [9], the authors obtained the resource allocatiow @dcheduling policies for video transmissions
under the framework of effective capacity. In [11], the authcharacterized the effective capacity in a
time division downlink system and proposed the optimal daliag schemes that can achieve points on the
boundary of the effective capacity region.

In this paper, we study the effective capacity in relay cledsnnder statistical end-to-end delay constraints.
In particular, we assume that there are buffers at both tlhecsocand the relay nodes, and consider the

gueueing delay introduced by the buffers. Note that [L3]}[Rave also recently investigated the effective



capacity of the relay channels. For instance, Tang and Zimgjig] analyzed the power allocation policies of
relay networks, where the relay node is assumed to have neegue., the packets arriving to the relay node
are forwarded immediately. In [14], Liet. al. considered the cooperation of two users for data transomssi
where the interchanged data goes through only the queues aftkier user. Parag and Chamberland_in [15]
provided a queueing analysis of a butterfly network with tamisrate for each link, while assuming that
there is no congestion at the intermediate nodes. The sfecapacity of the two-hop link in the presence
of the statistical queueing constraints at the source dagt reode is given in[[16], and the performance for
multi-relay links is analyzed in_[17].

As a stark difference from previous work, we consider thégrarance of two-hop wireless communication
systems under the statistical delay constraints in the foirtmmitations on the end-to-end delay violation
probabilities in this work. Note that statistical end-toededelay analysis can also be found [in/[18]}[21]. In
[18], Wu and Negi considered statistical end-to-end delaystraints for half-duplex relays, and gave an
effective capacity formulation with time allocation to tbd#ferent hops. In[[19]:[21], the authors considered
the statistical end-to-end delay constraints of multi-Himirs, while assuming that the statistical delay
violation probability of the queues are equal. Howevers possible that the relay can tolerate more stringent
delay constraints while not affecting the system perforceardditionally, we note that for the analysis of
link selection in half-duplex buffer-aided systems, thé¢haus considered the case that only the relay node
has queue, and analyzed the average queueing [delay[22].

Our contributions and major findings in this paper can be sanm®ed as follows. We consider the end-
to-end delay for the information passing the queues at thececand relay node of the two-hop links, and
analyze the impact of statistical end-to-end delay comtgaimposed as the limitations on the maximum
delay violation probability. First, for the general casetafo concatenated queues, we characterize the
tradeoff between the statistical delay constraints imgdsethe queues, which provides a framework for
dynamically adjusting the delay constraints at the tworadBng queues. With the obtained interplay, we
derive the effective capacity of the two-hop links undegédrstatistical end-to-end delay constraint. Unlike
the results in[[16][1[7] with given statistical queueing straints, the effective capacity obtained is for target

end-to-end delay constraints, and we optimize over thés8tal queueing constraints at the queues of the
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Fig. 1. The system model.

source and relay node to achieve this effective capacityaliedescribe a method for analysing the effective
capacity in such settings. Additionally, we show that belag the delay constraints between the two queues
is not always an optimal way. Instead, having bias towards qureue, i.e., lessening the delay constraint
at one queue, can lead to larger achievable rate, which iBegeby numerical results later. Moreover, it is
demonstrated that the improvement is affected by the statislelay constraints, the signal-to-noise ratio
(SNR) levels and the channel conditions of the links.

The rest of this paper is organized as follows. In Sectioth®, system model and necessary preliminaries
are described. In Section 1ll, we present the tradeoff betwihe statistical delay constraints of any two
concatenated queues. We describe our main results for-bHoakg channels in Section 1V, with numerical

results provided in Section V. Finally, in Section VI, we ctude the paper.

[I. PRELIMINARIES
A. System Model

The two-hop communication link is depicted in Figlte 1. listtnodel, sourceS is sending information
to the destinatioD with the help of the intermediate relay notke We assume that there is no direct link
betweenS and D (which, for instance, holds, if these nodes are sufficiefattyapart in distance). Both the
source and the intermediate relay nodes are equipped witkrsuHence, for the information flow of such

links, the queueing delay experienced is given by

D= D,+ D,, (2)



where D, and D, denote the stationary delay experienced in the queue atdheces and relay node,
respectively.

We consider the full-duplex relay, where reception anddmaission can be performed simultaneously at
the relay node. In thé&h symbol duration, the signal. received at the relay from the source and the signal

Y, received at the destination from the relay can be expressed a

Yo li] = g1[i] X1 [i] + nad], 3)

Yali] = g2[i] Xa[i] + nald], 4)

where X for j = {1, 2} denote the inputs for the link$— R andR — D, respectively. More specificallyy;

is the signal sent from the source aid is sent from the relay. The inputs are subject to individwarage
energy constraint&{|X;|*} < P;/B,j = {1,2} where B is the bandwidth. Assuming that the symbol rate
is B complex symbols per second, we can easily see that the syemeogy constraint of®;/B implies
that the channel input has a power constraint?pf We assume that the fading coefficientsj = {1, 2}

are jointly stationary and ergodic discrete-time procesaad we denote the magnitude-square of the fading
coefficients byz;[i] = |g;[i]|*>. Above, in the channel input-output relationships, theseaa@iomponent; 4] is

a zero-mean, circularly symmetric, complex Gaussian randariable with variancé&{|n;[i]|*} = N, for

j = 1,2. The additive Gaussian noise sampfes|[i]} are assumed to form an independent and identically

o

J
N;B"

distributed (i.i.d.) sequence. We denote the signal-tsencatios asngr; =

B. Statistical Delay

We first state the following result from [[5], which charadtes the statistical queueing constraint for
given arrival and departure processes under certain ¢onslit
Theorem 1 ([5]): Suppose that the queue is stable and that both the arriveégsa@[n|,n = 1,2,... and

service procesgn|,n = 1,2, ... satisfy the Gartner-Ellis limit, i.e., for all > 0, there exists a differentiable



logarithmic moment generating function (LMGRB),(#) such thﬂ

log E{ef? i1 aln]
o losEfe }

li = AA(0), (5)
n—o00 n
and a differentiable LMGFR\(¢) such that
log B ef 2ie1 clnl
lim 28 ELe b A0, (6)
n—oo n
If there exists a uniqué* > 0 such that
AaA(07) + Ac(—=07) =0, (7
then
. log PI{Q > Qmax}
lim = —0". 8
Qmax—00 Qmax ( )
where( is the stationary queue length. |

Consider a single stable first-come first-serve (FCFS) quathestatistical queueing constraifisatisfying
(8). The queueing delap experienced by the information flow going through the queare loe expressed
as [3][6]

i —log Pr{D > Dpmax} _

Dmax—00 Dmax

94, %)

where/ is decided by the arrival and departure processes joingfinB[6]

J(0) = 05 = —Ac(—0) (10)

as the statistical delay exponent associated with the qu¢oke that.J(6) is a function of the statistical
queueing constrairt, and largerJ(6) implies more stringent delay constraints. Aboxe,(0) is the LMGF

of the service process. Then assume that the queue is noy,etitdelay violation probability can be

Throughout the text, logarithm expressed without a baeg,lag(-), refers to the natural logarithiog, (-).



written equivalently as [8][9]
PI‘{D > Dmax} - e—J(B)Dmax7 (11)

where we defined (z) = ¢~ whenlim,_,., —2/®) —

xT

With the previous characterization, we can obtain the godity density function of random variabl®

as [20]

pp(z) = % (1 =Pr{D >zx}) = J(@)e“](e)x. (12)

Now consider two concatenated queues as depicted ir_FigorlthE queueing constraints specified by

6, andf, with (7) satisfied for each queue, we define
J1(01) = —Aca(61), and Jy(65) = —Ac2(62), (13)

whereAq1(01) and Ac»(6,) are the LMGF functions of the service rate of queue 1, 2, @smdy. In the

two-hop system, we can express the end-to-end delay \dalg@tiobability as

Dmax  fDmax—D1
Pr{D1 + D2 > Dmax} =1- / / pD(Dl)pD(DQ)dDQle (14)
0 0

J1(01)e—72(02)Dmax_ 1, (9, )e—/1(01) Dmax
N 1(61) g 31(91)—J2593 — ) Jl(el) 7é J2(92)7 (15)

(1 + Jl (91)Dmax) G_Jl(el)Dmax, Jl (91) = JQ(@Q)

We need to guarantee that the statistical delay performafdbe two-hop link is not worse than the
statistical delay performance specified (layDmax), Wheree is the limitation on the statistical delay violation

probability, andDya« is the maximum tolerable delay. Then, we should have
Pr{D; 4+ Dy > Dmax} < €. (16)

C. Effective Capacity

Under the statistical queueing delay constraints, we caramhycally control the delay constraid(6;)

and Jy(6,) at the queue of the source and relay node as long as theisttesid-to-end delay performance

7



(16) can be guaranteed. At the same time, for each realirafigd,, 6;), assume that the constant arrival
rate at the source i® > 0, and the channels operate at their capacities. To satisfyjtlieueing constraint

at the source, we must have

0> 0, (17)
whered is the solution to
A, (—0
R=-tr (18)

and A,,.(0) is the LMGF of the instantaneous capacity of the- R link.
According to [5], the LMGF of the departure process from tharse, or equivalently the arrival process

to the relay node, is given by

IN
>
IA
=}

A(0) = o ’ (19)

RO+ A, (0—6), 6

V
™

Therefore, in order to satisfy the queueing constraint efitttermediate relay nodB, we must have
é 2 927 (20)

whered is the solution to

A~ A~

A (0) + Apa(—0) = 0. (21)

Above, A,4(0) is the LMGF of the instantaneous capacity of IRe- D link.

Note that we can characterize the effective capakityd, 6>) with (6, 62) following the method provided
in [16, Theorem 2]. Denoté) as the set of pairgf;, ;) such that[(I6) can be satisfied. After these
characterizations, effective capacity of the two-hop camitation model under statistical delay constraints
(¢, Dmax) can be formulated as follows.

Definition 1: The effective capacity of the two-hop communication linkiwstatistical delay constraints



specified by(e, Dnay) is given by

Re(eaDmax): sup RE(917‘92) (22)

(01,02)€Q

where( is the set of all feasibléd, 6;) satisfying [(16). Hence, effective capacity is now the maxim

constant arrival rate that can be supported by the two-hapretls under the statistical delay constraints.

[Il. STATISTICAL DELAY TRADEOFF

For the following analysis, we first characterize the irgktionship between’;(6;) and the associated
minimum J(6,) satisfying the statistical delay constraint](16). We hawe following results.
Lemma 1:Consider the following function

Js (92)6—J1(61)Dmax —Ji (61)€—J2(92)Dmax

= e JoPma — ¢ for() < e <1, 23
J2(02) — J1(61) - (23)

I(J1(01), Ja(0s)) =

where J; is defined as the statistical delay exponent associated (wifb,y). Denote Js(05) = ®(J1(0;))

as a function of/,(6,), we have

a) ®(J1(6,)) is continuous. Fot/;(0;) = Ju(€), we have

®(J1(6h)) = Jun(e) (24)

where

Jin(€) = —D:qax (1 +W_, <—£>> , (25)

whereWV_,(-) is the Lambert W function, which is the inverse functionyof xze” in the rangg —oo, —1].
b) @ is strictly decreasing i/ (6,).
c) ¢ is convex inJ;(6;).
d) Ji(61) € [Jo,00), and Jo(by) = O(J1(601)) € [Jo, 00).
Proof: See Appendix“A.

Remark 1:The above properties can be understood intuitively. Latfjéf,) enforces more stringent
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Fig. 2. J2 v.S. Ji. Dmax= 1. ¢ = 0.001.

delay constraints for the queue 1, and we can have loosenay canstraints for the queue 2; vice versa.
When either queue is subject to a deterministic constramt,/ = oo, the delay violation only occurs
at the other queue. In Figl 2, we pldt as a function ofJ; for the casec = 0.001 and Dy = 1 sec
for illustration. Note that only.J;, J;) in the dark region can be acceptable to achieve the stalisteday
performance. As can be seen from the figure, the curve givehdjower boundary matches the properties

in the Lemma.

IV. EFFECTIVE CAPACITY IN BLOCK-FADING CHANNELS

In this section, we seek to identify the constant arrivaésak that can be supported by the two-hop
system while satisfying the statistical delay constraspscified by(e, Dmax). We consider a block fading
scenario in which the fading stays constant for a block’afeconds and change independently from one

block to another.
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The instantaneous capacities of the- R and R — D links in each block are given, respectively, by
Cl =TB 10g2<1 + SNR121>, and CQ =TB 10g2(1 + SNRQZQ), (26)

in the units of bits per block or equivalently bits p&r seconds. These can be regarded as the service

processes at the source and relay.

A. Buffer Stability and Log-Moment Generating Function tdd® Fading Channels

To ensure the stability of the queues, we need to enforcedll@ving condition[5]
Ezl{Cl} < EZQ{CQ} (27)

That is, the average arrival rate for the queue at the relayldhbe less than the average service rate.
Under the block fading assumption, the logarithmic momemegating functions for the service processes

of queues at the sourc® and the relayR as functions of are given by|[]
Ao (0) =1ogE., {*'}, and A4(0) =logE., {e"}. (28)

Therefore, the LMGF for the arrival process of the queue atrélay is

(VAN
>
IA
Ny

RO, 0
A (0) = ) (29)
RO +1ogE,, {€<9_9)Cl} , 0

\
3

B. Effective Capacity under Statistical Delay Constraints

In the following, we first assume that there exig8tsand #, such that[(16) is satisfied. We identify the

effective capacity associated with the giverandé, values. Following the statistical delay tradeoff indichte

“Now, due to the assumptlon that the fading changes indepdpdeom one block to another, we can, for instance, smypdﬂ) asAa =
0 n_ prefali] ebali e

limy, s o0 M = lim,_, M = limy, o0 M = lim,_, M — logE{eea }. If fading is

correlated, such simplifications are in general not possirld analysis needs to be based on the I|m|t forms of the astimjpogarithmic

moment generating functions. However, if the service rates be regarded as Markov modulated processes, then ituamsho[23, Section
071 ali) . . .

7.2] thatlimy, oo M = 1 logsp(¢(0)r) where sPA) denotes the spectral radius or equivalently the maximunhefabsolute

values of the elgenvalues of the matvi!x and¢(0)r is a matrix which depends on the transition probabilitieshef Markov process. In such

cases, an analysis similar to the one given in this paper eapubsued to identify the effective capacity of the two-hggtem under the

statistical delay constraints.

11



in Lemmal1, we can obtain the effective capacity over all iids®, andé,, which is the effective capacity
under the statistical delay constraint in Definitldn 1.

From (13) and[(28), we have
J1(0) = —logE, {7}, and J5(0) = —logE,,{e 7>} (30)

To proceed, we need the following properties.df)).

Lemma 2: Consider the function
J(0) = —logE.{e %} for 6>0, (31)

whereC' = T'Blog,(1 + sNRz). This function has the following properties.

a) J(0) =0.

b) J(0) = E.{C} > 0, i.e., the first derivative of/ () with respect to at§ = 0 is given by the average
service rate.

c) J(0) is a concave function of.

d) limy_ J(#) = —log Pr{C = 0}, i.e., the probability of the event that the service rate.is 0

Proof: See AppendixB.

Remark 2:From the properties above, we can see th@) is equal to 0 at) = 0, and then it increases
sublinearly, and achieves upperbound, if it exists,&er oo. Therefore,J(#) is a bijective function o,
and for each value of, we can find the associatéd

Assumption 1:Throughout this article, we consider the fading distribo that satisfy the following
conditions:

1) Pr{z; =0} =0.
2) Pr{z, =0} =0.

Remark 3:Under this assumption, we can see thigy) and.J,(#) approaches too asf increases. Note

that for the continuous distributions of the fading statms;h as Rayleigh and Rician fading, the above

assumption is justified immediately. If the above assunmptioes not hold, we can see that the upperbounds

12



for J,(6,) and.J5(6) are finite values, and the following analysis still holds Mtonly considering a sliced
part of (J;, J;) of the J; — J, curve characterized in Lemnia 1.
Note that we can also derive the following properties of @it capacity.

Lemma 3:([16]) Consider the functions

o(6) = _% log . {1} = 7 1é9) for 030, (32)
o(0) = —% logE.,{e %2} = J2é9) for 6>0. (33)

whereC; and C, are given by[(26). We have
a) The functions are decreasingdn
b) ¢(#) is increasing insNR;, and ¢(0) is increasing iNSNR;.

Remark 4:According to Lemmad 2 and the conditions specified[in] (17) &fd),(we can see that the
effective capacity obtained always satisfy the statitiigday constraints as long @ and 6, satisfy [16).
Therefore, with the definitions af;(6;) and J»(6,) in [30), we can find the associatégd and 6, on the
lower boundary curve indicated by Lemina 1. Iterating oves siet ofd; andd,, we can obtain the effective
capacity under the statistical delay constraints. Forrottadues off; and 6., either the delay constraint
cannot be satisfied, or one of the queues is subject to mongestit constraint than necessary, leading to
worse performance due to Lemina 3.

For the following analysis, we define

Q. ={(61,02) : J1(0,) and J,(6,) are solutions to(23)}. (34)

Additionally, we need the following upperbound on the ativates supported by the two-hop system.
Proposition 1: ([16]) The constant arrival rates, which can be supportedth®y two-hop link in the

presence of queueing constraififsand#, at the source and relay, respectively, are upperbounded by

R < min 1 logE., {6_6101} , 1 logE,, {6_9202} = min J1(91)’ J2(02) . (35)
91 92 91 92

13



Remark 5:In the rest of the text, we use the following definitions

J2(62)

R, = , and Ry = %

(36)

They represent the two terms inside the minimization_of .(35)
The effective capacity of the two-hop system, i.e., maximafrthe arrival rates that can be supported in
the two-hop system in the presence of queueing constréirasd 6,, is given by the the following result.
Theorem 2:([16]) The effective capacity of the two-hop system givgrn> 0 andd, > 0 is given by the

following:

Casel: If 81 262,

1 1
Rg(01,605) = min { — logE,, {6_6101} T logE,, {6_9202} } (37)
1 2
Case ll: If 6, < 6, andb, < 6,
1
Re(61,60) = —5 logE., {6_6101} (38)
1

whered is the unique value of for which we have the following equality satisfied:
1 —6,C 1 —6C (6—061)C
—e—loglﬁlz1 {e 1 1}:—9—<logEz2 {e Q}jtlog;IEZ1 {e ! 1}) (39)
1 1

Case |11: Assumed; < 6, andd, > 6.

I.a: If
1 1
——logE,, {6_0202} > ——IlogE,, {6_0201} , (40)
62 62
then

1 .
Ri(01,0:) =~ logEx, {6—9 Cl} (41)

14



whered* is the smallest solution to

_ 1 —0c1 | _ _1 —02C> (02—6)C1
5 logE,, {e } =7 (logIEZ2 {e } +1ogE., {e }) (42)
[11.b: Otherwise,

Rp(0,02) = _8_12 logE., {e”"“}. (43)

Recall that we are seeking to identify the effective capagitthe two-hop system under statistical delay
constraints specified bfe, Dmax). Combining the behavior oRz(6:, 6,) delineated in Theorein 2 and the
tradeoff between/; (6,) and J»(6,) in Lemmall, we have the following result.

Theorem 3:The effective capacity of the two-hop wireless communarasystems subject to statistical

delay constraints specified ly, Dnay) is given by the following:
Case . If 04, = O4n,

Jth(e)

Re(Eu Dmax) = 0 ) (44)
1,th
where ¢ 4,,0241) is the unique solution pair td;(61) = Ju,(€), and Jy(62) = Jy(e).
Case I1: If 614, > Oa4n,
G{ﬁ’ TB 10g2(1 + SNRQZQ’min) 2 TB 10g2<1 + SNRlzl,max)7
Re(ea Dmax) = o (45)
w, otherwise.
01
where#, , is the solution ta/,(6,) = Jy, 0, is given by (6, 6,) € €2, with
6; = 65, (46)
and 51 is the smallest value df; with (6,,6,) € Q. satisfying
1 1
— logE,, {6_9101} = —9—<log E., {6_9202} + logE., {6(92_61)01} ) 47
1 1
Moreover, if Z2(%) ‘9=Q1 < 2410) ‘9=Q1' the solution to[(47) with(;, 6,) € Q. is unique.

15
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Fig. 3. The relay model.
Case l11: If 614, < G341,
i, TBIOg (1 -+ SNR; 21 mi ) > Jo
Re(€, Dma) = ™* i T B (48)

%32), otherwise.

where#, is the solution ta/y(62) = Jy, and ¢.,6) is the unique solution to

J1(01) o (61)
6 by (49)

with (61, 6) € (..
Proof: See AppendixC.

Remark 6:Although implicitly, whené, ;, = 65 .,, we can also show tha ,, is the smallest; with
(01, 605) € Q. satisfying [4Y) following the same argument in the prooftéthat.J,,(¢) is a value decided
by only e and Dpay, While 6, 4, and 6,4, also depend os8NR;, andsnr,, and the fading distributions.

Remark 7:The condition given in[(45) or (48) indicate that eithér(6,) or J;(6;) can approach to
infinity, and hence the only delay introduced is the queudatsburce or the relay node, respectively.

Remark 8:Note that the effective capacity under statistical delayst@ints is achieved when the queue
at the relay is about to be the bottleneck of the two-hop systeepending on the fading distributions
andsnRr levels, the operation point can be one such that the delastr@ont at the queue of the source or
the relay node can be lessened. This provides us insighh&design of wireless systems, and resource

allocations.
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Fig. 4. Effective capacity in SNR SNR; = 0 dB. ¢ = 0.001. Dmax =1 sec.

V. NUMERICAL RESULTS

We consider the relay model depicted in Hi@. 3. The sourday,rand destination nodes are located on
a straight line. The distance between the source and thénadish is normalized to 1. Let the distance
between the source and the relay nodellee (0, 1). Then, the distance between the relay and the destination
is 1 —d. We assume the fading distributions f8 R andR — D links follow independent Rayleigh fading
with meansE{z;} = 1/d* andE{z,} = 1/(1 —d)*, respectively, where we assume that the path doss4.
We assume thadénr, = 0 dB in the following numerical results.

In Fig.[4, we plot the effective capacity as a functionsaR of the relay node. We also plot the effective
capacity with balanced delay constraints for the two queues J;(0,) = J2(02) = Jin(e). We fix d = 0.5,
in which case thés — R andR — D links have the same channel conditions. We assume thatahstistal
delay constraint is given by = 1072 and Dyox = 1 sec. From the figure, we can see that the effective
capacity of two-hop system increases watfr,. And, in all cases, the achievable rate is greater than the on

achieved with balanced delay constraints. In Eig. 5, we fhletassociated,(6,) as a function ofJ; (6, ).
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As can be seen from the figuré,(0,) increases asnRr, increases, i.e., we can put more stringent constraint
to the queue at the relay, and hence the delay constrainé aoilirce can be less. In this way, the effective
capacity of the two-hop system can be improved.

We are interested in the impact of the delay violation prdigb: on the achievable performance. In Fig.
6, we plot the effective capacity asvaries forsnr, = {3,6,10} dB. It is interesting that as decreases,
the performance gap between different curves vanishestheeimprovement caused by the increase of the
signal-to-noise ratio at the relay can be negligible. Torgete insights, we also plot the associated values
of J1(6,) and J5(6,) ase decreases in Figl 7. It can be found that the increasg (if) is becoming larger
while the decrease i, (6,) is smaller asc decreases. Considering the convexity gff,) in J;(6;) in
Lemmall, loosening the queueing constraint at one queuaegillire the other queue to operate in a much
more conservative way, which provides little gain under enstringent delay constraints, i.e., smaker

In Fig.[8, we plot the effective capacity dsvaries. We assumsnr, = {3,6, 10} dB, e = 0.001. We can

see from the figure that asincreases, i.e., the channel condition at $he R link is worse, the effective
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capacity decreases, and the increasens{ at the relay node helps little. This is mainly because of the
severe channel conditions between $he R link, which is the bottleneck of the system. Finally, we plo¢
effective capacity ad ande varies in Fig[®, with the associated delay tradebfft,) and.J,(6,) in Fig.[10.
We assumesnRr, = 3 dB. In order to ensure the stability of the queues, the minmak, = 0.4569. Note
that due to the definition of supremum for the effective cégathe performance ad,, can be achieved
via somed arbitrarily close tod,,». As can see from the figure, for all cases, effective capaigiyreases
asd increases or decreases, even with strong bias towards the queue at theesadicated by the larger
J2(0). It is interesting that for large, the performance improvement by adjusting the delay caimés at
the queues can be larger, albeit the improvement provideidrgasingsnr at the relay vanishes witt.
Motivated by this observation, we plot the effective capaeis d varies forsnr, = 3 dB ande = 0.05

in Fig.[11. It is obvious that the performance improvemenstatistical delay tradeoff first increases with
d, and after some point, it again decreases due to the poonehaanditions between the — R link. It

is obvious that as! approach to 1, i.eJ'Blog,(1 + SNRyzamin) > T'Blog,(1 + SNR; 21 max), the effective
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capacity is limited by thés — R link, and the two curve will merge each other.

VI. CONCLUSION

In this paper, we have investigated the maximum constaivahrates that can be supported by a two-hop
communication link with full-duplex relay under statistlodelay constraints. We have provided a unified
framework for achieving statistical delay tradeoff impdde the source and relay node while satisfying
the statistical delay constraints. We have determined ffextre capacity in the block-fading scenario
as a function of the statistical delay constraints, the aigp-noise ratio levelsnr, and sNRr,, and the
fading distributions. It is interesting that having biasvéwds the delay constraints at one queue can help
improve the effective capacity of the two-hop system, esfigcwhen the delay violation probability can
be large. Also, we have shown that increasing $he level at the relay node can further improve the
achievable rate, while the improvement is negligible whéhee the delay constraint is too stringent or
the channel conditions between the source and relay nodeoasederably poor. Moreover, even when the

channel conditions between the source and the relay areridegavorse, we can still obtain non-negligible
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performance improvement by the statistical delay tradedi®én the delay violation probability is large.

APPENDIX
A. Proof of Lemmall
1) When J;(6;) # J2(02), the continuity is obvious since there is no pole to the dqnaf23). Consider

J1(01) = J2(05). We can see that

YACAE —J1(01)Dmax _ Ji(61)e” J2(62) Dmax

li H(J1(02), J2(62)) = li 50
h(@)fﬁ(el), (S1(62), J2(62)) J2(92)E2(91), Jo(03) — J1(61) (50)
_ hm e—JQ(ng)Dmax J2<92)€ (Jl (91) J2(92 Dmax — ,]1 (91) (51)

J2(02)—J1(01)— JZ(QZ) - Jl(el)

1 — ¢~ (J1(61)=J2(02)) Dmax
= li —J2(62) Dmax (1 + Jo (6 ) 52
J2(92)1>I=r]ll(91)7 ‘ 2(62) J1(6h) — J2(0-) (52)
— 6—]2(92)Dmax (1 + J2(92)Dmax) (53)
Similarly, we can show that

lim ’19(J1(92), JQ(@Q)) = E_Jl(gl)Dmax (1 + Jl (el)Dmax) . (54)

J2(92)—>J1(91)+
From (15), we can see that &t(6,) = J2(62), ¥(J1(02), J2(02)) is continuous, i.e./2(0s) = ©(J1(6;))
is continuous, and froni_(16), we should have

(1 + J1(01) Dmay) e~ 7100 Dmax < ¢ (55)

which gives us[(25) immediately by solving the above equatiith equality.
2) Taking the partial derivative of(.J;(6,), J2(62)) in J1(6;) and noting that the right-hand-side (RHS)

of (23) is constant, we have

90(J1(61), Jo(6s)) |
0J1(0)  (Ja(02) — J1(61))?

+ J1(9)]2(92)Dmax€_J2(62)Dmax) (J2(02) — J1(6h)) — (j2(92) -1)

((j2(9)6_J1(91)Dmax _ J2(92)Dmax€—J1(61)Dmax N 6_J2(92)Dmax

% (Ja(Oz)e MO — ], (6))e _Jz(ez)Dmax)) =0 (56)
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which, after combining the coefficients 65(92) and rearrangement, gives us

J2(02) (12(02)-101)) D (2(02) = J1(61)) Dina + €~ (20270 P — 1

2UAE) = 1(82) = T (Jo(02) = J1(01)) D - 1 — e~ =500 1)

In the following, we will show thatb(.J;(6;)) < 0. Denotex = (J»(62) — J1(61))Dmax, and define

r+e -1

S ey (58)
Then, we can rewrité(J,(0)) as
. . T (0
O(J1(61)) = Ja(62) = %ew’ﬂ—*””)me:c)- (59)

Note that%e(h("?)—h(91>)Dmax is positive. Taking the first derivative of(x), we obtain

oy A=2(e e ) a(e” —e™)
ve) = (41— ev)? (60)

We can show that(z) > 0. Supposer > 0. Considering the numerator of above equation, we have

4=2("+e ) va(ef —e ) =—2(e2 — 6_5)2 + (2 —e7F) (eF +e7F) (61)
_ (e§ _ 6_5) (_2 (65 — 6_5) 1 (e% + 6_020)) (62)
_ et (€5 — %) (”3‘2er+1) (63)

>0 (64)

where i—;gem > —1 is incorporated since it is an increasing functionagfand its value atr = 0
is -1. Thereforey(z) > 0 for x > 0, i.e., v(z) is increasing forr > 0. In a similar way, we can
show thaty(x) > 0 for x < 0. Additionally, we can showim,_,,(x) = 0 by considering the Taylor
expansions ot ande* atz = 0 and noting that the numerator goes to O in an ordef) while the

denominator goes to 0 in the orderof (detail is omitted since it is trivial). Therefore,is increasing
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3)

in z. Meanwhile,

—_q | — e
lim v(z) = lim 2C — % i —— ¢ —, (65)

T—00 z—oo x4+ 1 — et z—oo | — ef

Hence,v(x) < 0, which in turn, tells us tha®(.J,(6;)) < 0 in (9). Therefore,/,(6;) = ®(J;(6,)) is
strictly decreasing in/;(0).

We will show the convexity ofb by consider the branches fok(6,) > J1(61) and J»(0s) < J1(61),
respectively.

For J1(01) < Ju(€), we know thatJ,(6y) > J;(6;,). Consider

Jo(6) = J2(02) (12(62)-11(01)) D (2(02) = J1(01)) Dmax + e 0 =) e — 1 (66)
22 (6y) (Jo(03) — J1(61)) Dmax + 1 — e=(2(02)=J1.(61)) Dmax
Jo(6-)
= v 67
7,00)° v(z) (67)

Jo(62)
Jq (91)

where againt = (J2(02) — J1(01)) Dmax. NOte that asc increases should increase sincé (6,)
decreases and,(f,) increases. From the above discussion, we kndw) < 0, for z > 0. Define
n(z) = e"v(z), n(x) < 0 for z > 0. Then if we can show thaj(z) is decreasing as increases, then
Jo(02) = ®(J1(6,)) will decrease withz, since a decreasing minus value multiplying an increasing
positive value will lead to smaller minus value. Taking thstfderivative ofp(x), we have

2 _ (px —x
242 — (e +2 ) (68)
(x4+1—e")

i(x) = et (v(z) +v(z)) = e

Note that the numerato? + 2> — (e* + ¢*) can be shown to be less than O fer> 0. More
specifically, consider that its second derivative- (¢* + ¢~ *) is less than O forr > 0 and the first
derivative2z — (e — e~ ) atx = 0 is 0, and hence its first derivative is always less than 0, lhic
tells us that it is a decreasing functioninwith the maximum value at = 0 as 0. Thereforey < 0.
Hence,J5(6,) < 0 is decreasing ad, (0;) decreases fod; (6,) < Ju(e), i.e., ®(Ji(6y) > 0. Similarly,
we can show thab(.J;(6;)) > 0 for J;(6;) > Jy,(€). Together, we know thab(.J;(6;)) > 0, and hence

Ja2(02) = ®(J1(0,)) is a convex function in/; (6,).
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4) Let J1(0) go to infinity, we can see that

lim 19(,]1 ((9), ,]2<8)) = lim €_J2(92)Dma>< — e—JODmax (69)

J1(0)—o00 J1(0)—o00

which indicatedim j, (9)—o J2(f2) = Jo. On the other hand, if we lef;(¢) go to infinity, we can show

that lim ,(9)—0 J1(01) = Jo. Together, we obtain the result in the lemma. O

B. Proof of Lemmal2
a) This property can be readily seen by evaluating the fanditd = 0.
b) The first derivative of/ with respect ta# can be evaluated as

E, {0

J(0) = E. {e-0C}

> 0. (70)

Then, J(0) can be obtained by evaluating the above equatioh-=at.

c) The second derivative of with respect taf can be expressed as

1

J) = ———
) (E. {e=0¢})?

(EZ [ePCC?VE, 7€) — (E. {e?¢C})" ) . (71)

By Cauchy-Schwarz inequality, we know tha{ X2 E{Y?} > (E{XY})*. Then, denoting
X = Ve 9CC? andY = ve~7C, we easily see thaf(9) < 0 for all 6. Thus, J() is a concave function.

d) Note that as long a§' # 0, limg_,. e ¢ = 0, and whenevet’ = 0, ¢’“ = 1. Therefore, we have

Jim .o {e7“} =0. (72)
Thenlimg_,, J(0) = limy_,, — log (E#o{e_ec} + Ezzo{l}) = —log Pr{C = 0}. O

C. Proof of Theoreral3

With the delay tradeoff specified in Lemrnh 1, we can see thaetls potential improvement of effective
capacity by adjusting the statistical delay constraintosga to the queues at the source and the relay nodes.

As a start point, we considef (6;) = J2(6-). According to the LemmaA]2 and the subsequent discussions,
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we can always find); ¢, and 6,4, for Jy,(e) defined in [(25). Now, with the values @ ;, and6,,,, we
have different behaviors of the effective capacity depegdin the conditions indicated in Theorém 2. We
seek to find the optimal,(0,) and J,(6,) with (6,,0;) € Q. to maximize the effective capacity, whefk
is defined in[(34).

Case |: Assumet; i, = 02 4p,.

For this case, we should have

J (€ Ji (€
R (1, Oon) = By = 209 _ IO _ (73)
G o

We assert that this value is the effective capacity of the-lhap system, i.e.,

Re<€7 Dmax) = sup RE(91, 92) = RE(el,tha ‘92,th)- (74)
(61,02)€Q

We can show this by contradiction. From Lemfda 3, we know thatéffective capacity is a decreasing
function in 6. Suppose that there exists somRe> Rp (61, 624,) that can be supported by the two-hop
system with#; and 6,. With Lemmal38, we must havé, < 0,,,. Then J,(6,) < Ji(01.). According to
the statistical delay tradeoff shown in Lemina 1, we can see #(62) > J2(624,), which tells us that

6> > 054, according to Lemmal2, sincé(0) is increasing ind. Now from the Propositiofil1, we obtain

= Rg(61.n, 02.4n) (75)

R< min{Jl(el) J2(92)} _ J2(602) _ Jo(02.01,)

o " 0 02 02,tn

which leads to a contradiction.
Case |I: Assumet 4, > 03 4,.

In this case, we can see that

_ Jl(el,th) _ Jth(e) < Jth(e) _ J2(92,th) — R,. (76)
01¢n 01,¢h 02 th 02.1h

Ry

The effective capacity associated with,, 0 ., specializes int€ase | of Theorem 2. Therefore?g (6, 41, 02.1n) =
min{ Ry, Ry} = R;. Obviously, the queueing constraint imposed at the soweeare stringent. To achieve

better performance, we should try to relieve the queueimgttaints at the source, i.e., decreégeor J; (6,)
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equivalently. Correspondingly, from Lemma.(6,) should increase, and we havyg ) > Jy,(e) > J1(601).
In the following, we will provide a characterization 6f as we iterate oved, 6,) € €. to find the optimal
pair that maximizes the effective capacity.

First, noting that as/;(¢,) decreases from,,(¢) to .J;, we can see that, decreases fror, ;, to some
finite valueé, o, which is the solution to/;(#) = J,. To the opposited, increases frond, ,;, < 6, 4, to oo.
Clearly, from the continuity of/y(6,) = ®(J1(6;)), 6, and 6, should be continuous as well. Hence, there

must be one pointd,, ) € Q. such that

Ql = Q27 (77)

and for allg; < 6,, we will havef, > 6, = 6, > 6,. According to Lemmal2, we know () and J,() are

increasing functions of. Therefore, at this point, we have

Ry = D) hOw) _Iale) _ BOsn) B8 BB 78)
81 Ql Ql Ql

That is, the queue at the source is still the bottleneck oftthehop system. We can further relieve the
gueueing constraint at the source.

Now, asf; further decreased); < 6,. Consequently, the effective capacity associated ithd,) now
specializes intaCase || of Theoren{R. As can be seen from[16, Lemma 2], the queue atthag will not
affect the performance as long ésand ¢, satisfy the following inequality given by

1

logE,, {c ¥} < — L (10g E=, {e®} + logE., {e® )} ). (79)
91 61

Note that ag); decreases from, to 6, ,, the LHS of the above inequality increases frdi:gfl—) to 6{—00 On
the other hand, a#; = 0,, we haved, = 0,, and the value of the RHS of the above inequalityt 0,)

is given by

RHS= 2222 5 12U (80)
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As 0, — 9170, or J1(91) — Jy, we know that

lim RHS= lim —ei < logE,, {6_9202} + logE., {6(92—91)01} )
1

J1(01)—Jo J1(01)—Jo
b 1 1
= 1 —<—~—1 E., {e?%} — —logE,, {®#) ). 81
J1(9111)11>Jo 61 62 08 Bz {e } 92 08 B {e } ( )

Note further that/,(6,), and hence),, approaches to infinity ad;(6;) — J,. The first term inside the
parenthesis goes to the minimum rateRof- D link, i.e., T'Blog, (1 + SNRy22 min) and the second term goes
to the largest rate of the lin8 — R, i.e.,T'Blog,(1 + SNR; 21 max)- SO as long as the smallest rateRf- D

is less than the largest rate of the liBk— R, the limit in (81) goes to-co. It is important to note that if

the highest rate 08 — R can be supported by the linR — D, i.e.,
TBlog, (1 + SNRy2a min) > T'Blogy (1 4+ SNRy 21 max), (82)

then there is no congestion at the relay node at all. In thég,da can take any value greater than 0, and
the only delay caused is the queue at the source. Theref@eartival rates are limited by tHe — R link,
and to satisfy the statistical delay constraints, we have

Jo

Joo 83
7o (83)

RE<€7 Dmax) =

Now, we consider the case wheén|(82) is not satisfied. In susbsga — oo as J,(f;) — oco. From the
continuity of the functions, we know that there must be sd@fed,) € ). such that the above inequality in
(79) is satisfied with equality. Denote the smallésias 51. Then, for allf; < 51, (79) cannot be satisfied.

Moreover, consider Lemmd 3, we know és decreaseslz; increases from’gl’i—fz) to 6{—00 At the same
time, asf, approaches to infinityR, decreases fronif;% to T'Blog, (1 + SNRyzmin). Therefore, there must

be some value such that

—R= — R, (84)
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with the associated statistical queueing constraints téenasd, and6,, respectively. Fof; < 6, we have

_ Jl(ﬁl) > Jg(eg)

Fa 0, 0,

= R,. (85)

In the following, we can establish the comparison betwéeand 51 as
6, < 6. (86)

Note here that if%?O < T'Blog,(1 + SNRryzmin), there is nad; for (84) to be satisfied, and hence we can set
6, to be 0, which satisfies the above claim obviously. Suppoaeé§h> #,. Since atf,, the condition for

Case |l of Theoreni 2 can be satisfied, we immediately see that

o o J 9
R, ) = 200 (87)
th
However, according to Propositioh 1 and](85), we have
RE(51>52) < min J1£91)> JZEQZ) = J2£92) < Jlgel) (88)
01 65 65 01

leading to contradiction. A numerical result provides asaigzation of the aforementioned discussiongon
51, andé,. We consider the the delay constraint given (byDma) = (0.05, 1) in Rayleigh fading channel.
We assume thadNr, = 0 dB, sSNR, = 3 dB, 7' =1 ms, andB = 180 kHz. We obtaind, ;,;, = 0.0178, and
62+, = 0.011. Now, ash, decreases withife., we plot the values of; andé, in Fig.[12(a), the LHS and RHS
of (Z9) in Fig.[I2(D), and the values @, and R, in Fig.[12(c). We can obtaifi, = 0.0142, 51 = 0.0131,
andd, = 0.0109. Obviously, we can see thé{ < 6, < 6,. Note that we havér{z, = 0} = Pr{z = 0} = 0
for Rayleigh fading channel, and hendg#;) — oo asfy — co. Note also that; max = co and zo min = 0
for Rayleigh fading channels.

Proposition 2: The effective capacity in this case is given by

o o J 0
Rc(€, Dmax) = sup Rg(01,02) = Rp(0,,02) = 15 1>'
(61,02)€Q 0,

(89)
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Proof: In order to prove the proposition, we have to show that thereoi other arrival rate larger than
the value specified above that can be supported by the twdihiopvhile satisfying the statistical delay

constraint. We know that for all; > 64,

o

J1(91) < J1(91)

01 51

Rp(601,02) <

= RE(€7 Dmax)> (90)

due to Lemmad]3. Suppose that there exiBts- RE(51,52) can be supported by the two-hop system with
#, andf,. Then,0; < 51. As shown above, fof, < 51, the inequality defined if (79) cannot be satisfied,
and henceRy(6,,6,) falls into Case |11 of Theorem 2. In addition, with the previous charactermatin
(71), we knowby > 0, =6, > 51.

For Case I11.b of Theorenl2, if[(4D) cannot be satisfied, i.e.,

Ja(0) - Ji(02)

91
we know from Lemma 3 that the effective capacity is decrapginy, and as a result
B(6) () 0)  L(0) (0
R0y, 00) = 20 L 20D W) HB) KO g Dy 92)
92 92 Qz Q1 91

wherefy, > 0, =6, > 51 IS incorporated.
For Case I11.a of Theorem 2, if [4D) is satisfied, there existse (6;,0,) such thatd* is the smallest

solution to [42). With the assumptioR > RE(51,52) and Lemmd1, we must havg < 0 < 51, and

henceJ,(0;) < J1(67) < Jl(él). Considering the statistical delay tradeoff characterize Lemmall, we

must have the associateld(0y) > Jy(05) > Jg(ég), and hence), > 05 > 52. Note that with [16, Lemma

2], we can obtain the following inequality

1 0 * 1 O*
_; logE., {6—9101} = _E (log E., {6_9202} +logE., {6(92_91)Cl}> (93)
1
1 N N* O
< == (log E., {6_9202} +logE., {6(92_91)01 }) (94)
1

since the RHS of {93) is always greater than the LHS fof all [0, 6,] with givend:. That is, the condition
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in (Z9) is satisfied at;, . This violates the definition 051, which is the smallest solution t6 (]79).
Combining the above discussions, we arrive at the congaiusiat there is no othet; that can achieve
higher effective capacity thamn (89). Hence, it is indeed ldrgest achievable constant arrival rate in this
case. |
The aforementioned discussions show the existence of theigoto (47) under the statistical delay
constraints. To show the uniqueness, we need the followamgrha.

Lemma 4:Consider the function
£(01) = Jo(02) — Ji(6:) — logE,, {@Y for 6, <0, (95)

where(6,,0:) € ., and(¢,,60,) is defined in[(77). If the following condition

dJ(6)
db

_ dh(0)
T

(96)

0=0, 0=0,
is satisfied, thery(6,) is increasing ir;.
Proof: Following the proof in AppendiX A, we view, as a function of);. Now taking the first derivative

of f overd;, we have

df(0)  dh(B)dA(6)  dn6) Ea 0 (22 1)

)
B B 7
o, dJi(6,) do, dbs E. {e@ 0001} (97)
dB)E {0} dg,E {000
~dJi(6)) E, {e G} 6, E., {01}
E, (02—61)C1 C E. —0.C4 C
+ 1 {e 1} 1 {6 1} (98)

B, (000} B, {00}

dJi(61) Ezl{efelclcl}
db, - IEZ1{876101}

First, similar to Lemmdl2, we can show that the functigl,) = logE., {e®2=%)1} is convex infs,

where is substituted into[(98).

i.e., £9%) > . This tells us that the derivative f6) is increasing ird,, and
2

dg(ﬁg) _ Ezl {6_610101}
dbs |- E., {e-h&} -

(99)
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Therefore,

E, (92—91)010 E. —91010
e IS (ailcr) Sy (100)
B, (=000 K, {00

Considering the definition oft,, 0,) in (74), we know that for alh; < 6,, we haved, > 0,. Note that
J1(61) and Jy(6,) are concave functions according to Lemima 2, i.e., their diesivatives decreases with

andd,, respectively. Therefore, we have

dJy(6) dJy(9)
>
do |,y — db 9=Q17 (101)
do |, — db e:g;
which, after combining with the assumption [n{96), gives us
dJy(01) S CU2(92). (103)

o, — db,

Next, recalling the statistical delay tradeoff charaaedi in Lemmall, we can see thél, < 0 for

de, > 0, i.e., 6, decreases as we increage Then, we can get froni (103) that

dby _ dJy(6s)
o, = dJ.(6,)

. (104)

Note that both% and 6”2—(92; are negative values. Considering the expression_ih (98)ave have

dJy (6
(62—61)C1 —01Cq
df(0) o (1 _ d(02)) (B fe Gif B {20 (105)
db, dJq (91) Ez1 {6(62_91)01} Ezl {6_9101}
That is, f(6,) is an increasing function if;. [

Note that after eliminating the denominator of both sideshef equation[(47), and moving the LHS of
the obtained equation to the right side, we can obtain thetiimm given in [95), which is increasing i
for 0, < 6,. Therefore, the solution to the equatidnl(47) is unique.

Case |11: Assumet; 4, < 02 4.
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For this case, af, ;;,, we know that

R, = J1(91,th) _ Jth(€) > Jth(ff) _ J2(92,th) — R,. (106)
01t O th 02t 2.1

The queue at the relay becomes the bottleneck. We need tadfelc@bout the effective capacity in this
case. To improve the system performance, we may insteagaserthe queueing constrafhtat the source,
and correspondingly, the queueing constrdinat the relay can be less. Actually, decreasing the queueing
constraint at the source node will not improve the perforceams will be justified later.

First, according to Lemm@l 2, we can see that/a®,) increases fromJ,,(¢) to oo, #; increases from
61 4, 10 co. To the opposite behaviof, decreases fror, ,, to some finite valud, o, which is the solution

to J»(0) = Jo. Therefore, from the continuity of, andd,, we again have one poirié,, d,) such that
0, = 5. (107)

and for all ¢, < 6,, we haved, < 0, = 6, < 0,. Also, we know thatR, decreases fromglh—fz) to
T Blogy(1 + SNR; 21 min), While R, increases from% to some finite value,;g—oo. Therefore, there must be

a value such that

N0 g 2B _ (108)
0, 0,

R, =

with the associated statistical queueing constraints téeinasf, and -, respectively. For alp, < 6;, we
have

_ D0 _ (6)

Fa 0, 0y

= R,. (109)

Note that the above result implicitly assume tiigs log, (1 + SNRy 21 min) < foo If this condition does not
hold, thend, can take any value, and the only delay is introduced by thei@a the relay node. Hence,
the effective capacity under the statistical delay comdtia given by

Jo

RE(E, Dmax) = 9—
1,0

(110)
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Consider the queue stability conditidn [27), this is pdssibhen the average rate & — D link is larger
but has more severe fading conditions.

Now, as a stark difference from the previous case, we shoave h
6, > 0,. (111)

Suppose tha#; < 6,, we can show the following contradiction. First, &t from the definition ofé, in

(107), we have

According to the definition of); in (I08), we can obtain

Si(6h) _ ngz) — Ji(Bh) < Jo(By). (113)

1 2

On the other hand, according to Lemma 1, we should have
J1(é1) > Jl(‘gl,th) = Ju(e) = J2<82,th) > Jz(éz) (114)

leading to contradiction.

Sinced; > 6,, with (I07), we can see that
0, >0, =0, > 0. (115)

Now, the effective capacityz(6;,60,) specializes intcCase | of Theoreni2, we have

RE(91,92) = min {%, %} = Jlgél) = Jzééz). (116)

Next, we can show the following result.
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Proposition 3: The effective capacity in this case is given by

S Jo (0 Ji(0
RE(€7 Dmax) = Ssup RE(‘917‘92) = RE(‘91782) = 2§ 2) = 1§ 1)- (117)

(01,02)€Q 9 01

Proof: From Proposition]1, we know that

R < min Jl(el), J(02) | (118)
th 0
Now, for #; > 6, we can see from Lemma 3 that
Ry= 20 IO b (119)
‘91 81
and forf, < 6,, we haved, > 6,, and hence
Ry = P00 PO D, (120
92 92
Therefore,R. (¢, Dmax) in (117) is the largest achievable constant rate in this.case [ |
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