
HIT-OR-JUMP: AN ALGORITHM FOREMBEDDED TESTINGWITH APPLICATIONS TO IN SERVICESAna Cavalli� David Lee�� Christian Rinderknecht�Fatiha Za��di��Institut National des Telecommunications9 rue Charles FourierF-91011 Evry Cedex, FranceEmail : fAna.Cavalli, Christian.Rinderknecht, Fatiha.Zaidig@int-evry.fr��Bell Laboratories, Lucent Technologies600 Mountain AvenueMurray Hill, NJ 07974, USAEmail : lee@research.bell-labs.comAbstract This paper presents a new algorithm, Hit-or-Jump, for embeddedtesting of components of communication systems that can be modeled by com-municating extended �nite state machines. It constructs test sequences e�-ciently with a high fault coverage. It does not have state space explosion, asis often encountered in exhaustive search, and it quickly covers the systemcomponents under test without being \trapped", as is experienced by randomwalks. Furthermore, it is a generalization and uni�cation of both exhaustivesearch and random walks; both are special cases of Hit-or-Jump. The algorithmhas been implemented and applied to embedded testing of telephone servicesin an IN architecture, including the Basic Call Service (BCS) and �ve supple-mentary services: Originating Call Screening (OCS), Terminal Call Screening(TCS), Call Forward Unconditional (CFU), Call Forward on Busy Line (CBL)and Automatic Call Back (ACB).Keywords: conformance testing, embedded testing, communicating extended�nite state machines, IN.1 IntroductionWith the advanced computer technology and the increasing demand from the users forsophisticated services, communication protocol systems are becoming more complex yetless reliable. Conformance testing, which ensures correct protocol implementations, has1

become indispensable for the development of reliable communication systems. Traditionaltesting methods tend to test these systems as a whole or to test their components inisolation. Testing these systems as a whole becomes di�cult due to their formidable size.On the other hand, testing system components in isolation may not be always feasible dueto the interactions among the system components. Embedded testing or testing in contexthas become one of the main focuses of conformance testing research in recent years. Thegoal of embedded testing is to test whether an implementation of a system componentconforms to its speci�cation in the context of other components. It is generally assumedthat the tester does not have a direct access to the component under test; the access isobtained through other components of the system. According to the standard: "if controland observation are applied through one or more implementations which are above theprotocol to be tested, the testing methods are called embedded" [10].Di�erent approaches for embedded testing have been proposed in the published liter-ature. They are based on fault models [15], on reducing the problem to testing of com-ponents in isolation [16], on test suite minimization [12, 13, 18], on fault coverage [19],and on the test of systems with semicontrollable and uncontrollable interfaces [4]. Mostof these approaches resort to reachability graphs to model the joint behaviors of all thesystem components, and are exposed to the well-known state space explosion.Communication systems can be properly modeled by communicating extended �nitestate machines (CEFSM). We propose a general procedure for embedded testing of CEFSM's.The reason that we choose the CEFSM model is for the clarity of presentation; our algo-rithm can be easily adapted to other mathematical models such as Transition Systems,Labeled Transition Systems, and Petri Nets.Our goal is to test pre-speci�ed parts of a system component that is embedded in acomplex communication system. The pre-speci�ed parts are determined by practical needsor by system certi�cation requirements. For instance, for a given system component, wemay want to test all the transitions or certain boundary values of system variables. Wecan �rst construct a reachability graph, which is the Cartesian product of all the systemcomponents involved, and then derive a test that covers all the pre-speci�ed parts of thecomponent under test. Unfortunately, this exhaustive search technique is often impractical;it is impossible to construct a reachability graph for practical systems due to the state spaceexplosion. To avoid this problem random walks have been proposed; at any moment weonly keep track of the current states of all the components and determine the next stepof test at random. This approach indeed avoids the state space explosion but it mayrepeatedly test covered parts and take a long time to move on to the untested parts.We propose a new technique: Hit-or-Jump. It is a generalization and uni�cation of boththe exhaustive search technique and random walks, yet it does not have the drawbacks ofthe two approaches. The essence of our approach is as follows. At any moment we conducta local search from the current state in a neighborhood of the reachability graph. If anuntested part is found (a Hit), we test that part and continue the process from there.Otherwise, we move randomly to the frontier of the neighborhood searched (Jump), andcontinue the process from there. This procedure avoids the construction of a completesystem reachability graph. As a matter of fact, the space required is determined by the2

user - the local search, and it is independent of the systems under consideration. Onthe other hand, a random walk may get \trapped" at certain part of the component undertest [12]. Our algorithm is designed to \jump" out of the \trap" and pursue the explorationfurther.The algorithm has been implemented and drives the ObjectGEODE tool, taking ad-vantage of some of its functionalities, such as the construction of a searched neighborhoodof the reachability graph that is used to produce the test scenarios in case of a Hit or todetermine a Jump otherwise.The Hit-or-Jump algorithm has been applied to the embedded testing of services on atelephone network. This case study is on a real system that has been speci�ed using theSDL language. It describes telephone services in an Intelligent Network (IN) architecture.In addition to the Basic Call Services (BCSs), �ve other services are included: OriginatingCall Screening (OCS), Terminating Call Screening (TCS), Call Forward Unconditional(CFU), Call Forward on Busy Line (CBL) and Automatic Call Back (ACB).The paper is organized as follows. Section 2 introduces the basic concepts and testabilityof embedded components. Section 3 describes the test generation algorithm Hit-or-Jumpfor embedded components. In Section 4, the software tool of Hit-or-Jump in conjunctionwith ObjectGEODE is presented. Section 5 reports the experimental results, and section 6concludes this paper.2 BasicsIn this work we use extended �nite state machines to model system components: theenvironment, the components under test and their implementations. It is only for theconvenience of presentation; our technique can be adapted to other mathematical models,such as Transition Systems [14], Petri Nets [17] and Labeled Transition Systems [2].De�nition 1. An extended �nite state machine (EFSM) is a quintuple M = (I; O; S; ~x; T)where I, O, S, ~x, and T are �nite sets of input symbols, output symbols, states, variables,and transitions, respectively. Each transition t in the set T is a 6-tuple:t = (st; qt; at; ot; Pt; At)where st, qt, at, and ot are the start (current) state, end (next) state, input, and output,respectively. Pt(~x) is a predicate on the current variable values and At(~x) de�nes an actionon variable values.Initially, the machine is in an initial state s(0) 2 S with initial variable values: ~x(0).Suppose that the machine is at state st with the current variable values ~x. Upon input at,if ~x is valid for Pt, i.e., Pt(~x) = TRUE, then the machine follows the transition t, outputsot, changes the current variable values by action ~x := At(~x), and moves to state qt.For each state s 2 S and input a 2 I, let all the transitions with start state s and inputa be: ti = (s; qi; a; oi; Pi; Ai), 1 � i � r. In a deterministic EFSM the sets of valid variablevalues of these r predicates are mutually disjoint, i.e., XPi \ XPj = ;, 1 � i 6= j � r.3

Otherwise, the machine is nondeterministic. In a deterministic EFSM there is at most onetransition to follow at any moment, since at any state and upon each input, the associatedtransitions have disjoint valid variable values for their predicates and, consequently, currentvariable values are valid for at most one predicate. On the other hand, in a nondeterministicEFSM there may be more than one possible transition to follow. In this paper we onlyconsider deterministic EFSM's.There are two types of communications among the system components: (1) Synchronouscommunication by rendez-vous [6] without channels between; and (2) Asynchronous com-munication with channels between system components. Channels can be bounded or un-bounded and both can be modeled by EFSM's. The interactions between the channelsand system components are synchronous. On the other hand, we can use an additionalvariable to \encode" di�erent system components. Therefore, we can model the wholeenvironment, including the channels to and from the system component under test, as oneEFSM 1 which communicates with the system component synchronously.From now on we use the following notation : C is the environment EFSM, A is thespeci�cation EFSM under test, and B is the implementation of A. Machine C and A(B)communicate synchronously. We represent A in the context of C by the following notation: C � A.We want to test the conformance of B to A in the context of C where C and A areknown and B is a "black-box". It should be noted that C � A may not be minimized orstrongly connected even if C and A are. Also they can be partially (incompletely) speci�ed.In general, it is not always possible to test for isomorphism of embedded components,even in the case of FSM's. Assume that A and B are FSM's. Denote machine isomorphismby A �= B. Then we have:Proposition 1. B �= A implies C � B �= C � A. However, the converse is not true ingeneral.The �rst part of the proposition is trivial. We show the second part by an example.Example 1.1As a matter of fact, extended �nite state machine has a same computing power as Turing machine.

4

C:

a,b/x t/0

u/1

A:

x,y/t

B:

x/t

y/u

Figure 1:In Figure 1, a and b are external inputs, 0 and 1 are external outputs, and x; y; t; u areinternal input/outputs. Obviously C�B �= C�A. But B 6�= A. Therefore, it is impossibleto test A �= B in the context of C.In practice, what we want is that B "behaves correctly" in the context of C. Thatis, C � B �= C � A. Therefore, the problem is reduced to testing if C � B �= C � A.However the real goal is to test the component A, assuming that the environment machineC is correctly implemented. Suppose that we test A in isolation. Then we may wantto test all the transitions of A. That is, we want to obtain a testing sequence such thatall the transitions of A are exercised. Similarly, in embedded testing we want to obtaintest sequences (with external inputs) such that all the transitions of the component A areexercised. Speci�cally, we want to derive tests for C � A such that all the transitions ofA are tested. We may want di�erent coverage of A than testing all the transitions. Forinstance, we often want to test the boundary values of the variables. In general, we wantto obtain a test sequence for C � A, i.e., for testing the component A in the context ofC, such that the component machine A is covered according to a pre-speci�ed criterion.On the other hand, we do not worry about the coverage of C, since it is assumed to becorrectly implemented.Note that systems may or may not have reset. We can consider EFSM's with resettransitions as a special case by inserting a reset edge from each state to the initial state,independent of the variable values. For clarity, from now on we only consider machineswithout reset.A livelock in C � A is a loop without external inputs, and it is reachable from theinitial state. When the system C � A gets into a livelock, it will loop around inde�nitelywithout any external inputs and may or may not produce external outputs. Under suchcircumstances, C�A can "move-on" by itself without any external control, and the externaltester cannot drive the system C �A further to ful�ll the testing task. This is undesirablesystem behavior in terms of embedded testing. Another undesirable system behavior isdeadlock. During test generation, if we �nd a sink node (no outgoing transition) in C�A,we abort the process and declare a deadlock detected. As a matter of fact, both livelock anddeadlock are to be checked for system designs, and are well studied in protocol validationand veri�cation research [8]. We shall not digress here and proceed with our discussion oftesting with an assumption that the system under consideration C � A is free of livelock5

and deadlock.3 Test Generation Methods for Embedded TestingWe now present our Hit-or-Jump algorithm. We �rst briey survey three commonly usedand related methods and then present our procedure, which is a generalization and uni�-cation of all these three procedures.In the discussion, we aim at covering all the transitions of the component machineunder test. This is a commonly used criterion. Our technique can be easily modi�ed togenerate tests for di�erent coverages; it is only a marking issue. We shall further elaborateon this issue when describing the algorithm.3.1 A Structured AlgorithmFrom the initial state we want to generate a test sequence such that all the transitions ofcomponent machine A are covered at least once. The algorithm includes three steps: (1)Assign a distinct color to each transition of A; (2) Construct a reachability graph of C�Awhere each edge of C�A is marked with a color from A if it is derived from that transitionof A; (3) From the initial node of C �A, �nd a path of minimal length such all the colorsare covered at least once.We can reduce the Rural Postman problem to this covering path problem. Therefore theproblem is NP-hard [5]. There are various heuristic procedures for solving this problem.However, these algorithms require the construction of the reachability graph of C � A.It is often impossible in practice due to the state explosion. Consequently, unstructuredalgorithms such as random walks are considered, which do not require the construction ofreachability graphs.3.2 Random WalkStarting from the initial node (s(0)C ; s(0)A ; ~x(0)) where s(0)C ; s(0)A and ~x(0) are the initial state ofC and A and initial variable values, respectively. Among all the possible outgoing edgesin the reachability graph from the initial node, we select one uniformly at random, andfollow that edge to the next node in the reachability graph. Suppose that after k steps wearrive at a node (s(k)C ; s(k)A ; ~x(k)). We examine all the outgoing edges from this node andselect one uniformly at random to follow. Meanwhile, if there are colors associated withthe chosen edges that have not been marked (exercised), we mark them o�. We repeat theprocess until all the colors are marked o�. During the walk, we only keep track of: (1)The current node (s(k)C ; s(k)A ; ~x(k)); (2) The colors that have not been marked o�; and (3)The edges that have been walked through with the associated external I=O sequence, andthat is the test sequence obtained from this walk. Obviously, there is no need to constructa whole reachability graph of C � A. 6

3.3 Guided Random WalkThe procedure is the same as the random walk in Section 3.2 except for the following. Whenwe arrived at a node (s(k)C ; s(k)A ; ~x(k)) among all the possible outgoing edges, we classify them:(1) With transitions of A involved, some of which are not marked; (2) With transitions ofA involved and all of them are marked; and (3) Without any transitions of A involved. Ifthe set (1) is not empty, we select one uniformly at random and follow that edge; else if(2) is not empty, we select one uniformly at random and follow that edge; and, �nally, ifnone of the above is true, (3) must be non-empty, and we select one uniformly at randomand follow that edge.Guided random walks favor transitions of the embedded component under test, andamong them give �rst priority to the transitions that have not been tested.3.4 Hit-or-Jump AlgorithmThe problems with random walks are: (1) To be "trapped" in a small neighborhood; (2)With a low probability to cross a "narrow bridge" to test the parts beyond the bridge; and(3) To miss the unmarked transitions of A even if them are nearby (more than one stepfrom the current node). The Hit-or-Jump algorithm is designed to avoid these problemsyet without the construction of a reachability graph. It does not require a construction ofa reachability graph of C � A either, and performs better than pure random walks [12].ALGORITHM HIT-OR-JUMPinitial condition. The environment machine C is in an initial state s(0)C , the componentmachine under test A is in an initial state s(0)A , and the system variables have initial values~x(0). 2termination. The algorithm terminates when all the colors (transitions) of A have beenmarked o�.execution.1. HitFrom the current node (s(k)C ; s(k)A ; ~x(k)) conduct a search (Depth-�rst or Breadth-�rst)in C � A until:(a) Reach an edge which is associated with unmarked colors (transitions) of thecomponent machine A � a Hit. Then :i. Include the path from the current node to the edge (inclusive) in the testsequence under construction;ii. Mark o� the newly exercised colors (transitions) of A;2Here the initial states and variable values refer to the information known to the tester, and they arenot necessarily the states and variable values after a system reset, which is often hard to obtain in practice.7

iii. Arrive at a node (s(k+1)C ; s(k+1)A ; ~x(k+1));iv. Erase the searched graph;v. Repeat from 1.or(b) Reach a search depth or space limit without hitting any unmarked colors (tran-sitions) of A. Then move to 2.2. Jump(a) We have constructed a search tree, rooted at (s(k)C ; s(k)A ; ~x(k)).(b) Examine all the leaf nodes of the tree, and select one uniformly at random.(c) Include the path from the root to the selected leaf node in the test sequence.(d) We arrive at the selected leaf node (s(k+1)C ; s(k+1)A ; ~x(k+1)) � a Jump.(e) Repeat from 1.3.5 Remarks on Hit-or-Jump AlgorithmFor clarity we have presented one version of the Hit-or-Jump algorithm. There are variousvariations and generalizations. It is indeed a generalization and uni�cation of the seeminglydi�erent algorithms: structured algorithms, random walks and guided random walks. Wealso comment on the space requirement, fault models and coverages.(1) Guided Hit-or-Jump. For clarity we have presented a straightforward version of Hit-or-Jump algorithm. It has a number of variations and generalizations, and their implemen-tations are simple modi�cations of the version presented. We briey describe one here.For a Jump we select uniformly at random a leaf node of the locally searched graph(tree) and proceed from there. Instead, we can enforce certain priorities in selecting the leafnodes as in a Guided Random Walk [12] (Section 3.3). For instance, we can examine theoutgoing edges from each leaf node and classify them with the priority: (A) With transitionsof A involved, some of which are not marked; (B) With transitions of A involved and allof them are marked; and (C) Without any transitions of A involved. We then conduct a\Guided Jump" according to the leaf node priorities as in a Guided Random Walk.(2) Generalization and Uni�cation of Structured Algorithms, Random Walks and GuidedRandom Walks. Suppose that the local search depth is set to one. Then, obviously, Hit-or-Jump becomes a Random Walk. If we enforce priorities then it becomes a Guided RandomWalk. On the other hand, if we do not set any bound on the local search depth then8

we construct a reachability graph in the worse case; Hit-or-Jump becomes a structuredalgorithm. Therefore, Hit-or-Jump is a generalization of Random and Guided RandomWalks and also the structured algorithm. Furthermore, this technique uni�es these threeseemingly quite di�erent approaches.(3) Space Requirement. Often the environment machine C (and also A) is very large. Itis impossible to construct a reachability graph of C;A; or C �A. Our algorithm does notneed any of them. For each Hit or Jump step, we construct a local search graph on-line,which is a subgraph of C�A. This can be easily done by a Depth-�rst search, for instance.The size of the subgraph, hence the space requirement, is determined by the users, and isindependent of the machines A and C.When constructing a search tree on-line, we can compress internal transitions of C�A[13] to further save space.(4) Fault Models. Several approaches [16], [15] use fault models. We have a generalprocedure, independent of any fault models. We are interested in covering the componentmachine A, and our procedure can also be used for test generation associated with faultmodels.(5) Coverage. We have been focused on covering all the transitions of A. The algorithmcan be easily extended to: (A) Covering some (not necessarily all) transitions of A, whichare speci�ed by users or the testers; (B) Covering some states of A; and (C) Covering sometransitions and states of A along with speci�ed variable values such as boundary values.We can assign a distinct color to each entity to be covered, and run Hit-or-Jump until allthe colors are covered.(6) Local Testing. Local testing [15] is a search in a component machine with very restrictiveassumptions, basically reducing to testing isolated machines. Hit-or-Jump conducts a localsearch within C � A without any assumption on A or C.4 Implementation of Hit-or-JumpIn this section we describe the implementation of Hit-or-Jump. We develop a softwaretool, which also drives the ObjectGEODE simulator.4.1 ObjectGEODE FeaturesThe simulation in exhaustive mode was used for our implementation. We needed to takeinto account the advantages and limitations of the ObjectGEODE simulator. The followingis a list of the main features and limitations:1. A simulation in exhaustive mode can be stopped on a condition. A stop condition isa boolean expression. If during the simulation it becomes true, then the simulator9

stops. In this case we can get two �les: one containing the partially deployed automa-ton and another one with the scenario (in a �le whose extension name is .b1.scn). Ifthe simulation is actually completed, these two �les are available too.2. A stop condition may be a disjunction of other stop conditions (thus modeling a setof conditions). In case it becomes true in the middle of simulating, the verdict (theresult) will not point out all the conditions in the disjunction that has become true.3. A scenario is a series of signal inputs (a sequence) �red by the simulator from theinitial state, aiming at achieving the exhaustive simulation of the speci�cation. EachSDL state from which the input is accepted by the SDL process is given in thescenario.4. A deployed automaton corresponds to the contents of the �le associated to the sim-ulator's variable "edges dump" in an exhaustive mode. This automaton is logicallyan FSM, and contains hooks to the SDL speci�cation (and to the scenarios), andthe SDL values (local variables and signal arguments) have been instantiated, eitherpartially (interrupted simulation) or fully (exhaustive running).5. Each simulation in exhaustive mode produces a new deployed partial automaton;when an interrupted simulation is resumed a new partial automaton is produced,which generally has nothing to do with the previous one. Nevertheless the newlyproduced scenario includes the previous one: this property along the simulations willbe our Ariadne's clue.6. It is possible to make the exhaustive simulation to be a depth-�rst search (DFS) ora breadth-�rst search (BFS) in the SDL speci�cation, and to stop it on a depth limitvalue. In this last situation, we do not get any scenario.4.2 Implementation of Hit-or-JumpThe aim is to get a unique sequence in the fully deployed automaton, corresponding toa path starting at the initial state, that contains all the transitions of the embeddedcomponent under test yet without constructing the fully deployed automaton.4.2.1 InterfaceOur tool needs the following command-line options:� -sdl SPEC.prThis input �le is the protocol speci�cation in SDL textual syntax. It must not beempty.� -stop SPEC.stopThis input �le contains a disjunctive stop condition, modeling the set of the embedded10

system component transitions. It de�nes the embedded system and hence must notbe empty.� -depth-lim lThe given positive integer l is a depth limit that will be passed to the simulator; westop when a search (DFS or BFS) reaches a depth of l.� -feed SPEC.feedThis input �le only contains the inputs that the simulator can �re from the envi-ronment in order to stimulate the whole system. Hence no input of the embeddedcomponent appears in this �le. It may be empty only if SPEC.scn is not (see below).� -init SPEC.initThis input �le only contains protocol-dependent variable initializations for the sim-ulator ("let" clauses). It may be empty.� -scn SPEC.scnThis input �le contains an initial scenario only made of to-be-�red transitions for theembedded systems (in order to directly stimulate them, since they have no connectionwith the environment and hence have no associated feed clauses). It may be emptyonly if SPEC.feed is not (see above).� -seq SPEC.seqThis output �le contains a test sequence for the embedded system component. Thesequence is a series of pairs of inputs and outputs.4.2.2 Con�gurationThe �rst step of our tool is to con�gure and produce three start-up �les that will be usedto drive the simulator.1. main.startupIt loads SPEC.feed, the initial conditions (SPEC.init), the current scenario, and spec-i�es the exhaustive and DFS mode, together with the depth limit value (l).2. stop search.startupIt is devoted to the identi�cation of the stop condition in the disjunction (initiallyin SPEC.stop) that actually interrupted the simulation, and thus work around thelimitation of ObjectGEODE we mentioned in 4.1, item 2.3. �nal.startupIt loads SPEC.feed and replays the �nal scenario we got after hitting all the colors(transitions) of the embedded system component in order to make ObjectGEODEoutput a SPEC.log �le, from which we extract the test sequence (into SPEC.seq).11

4.2.3 SimulationWe start the simulation with the main.startup �le. There are two possible situations:1. The simulator outputs a SPEC.b1.scn �le.This �le is output if and only if we Hit an uncovered transition of the embeddedsystem (see section 4.1, item 1) - a Hit.We then run again the simulator with the stop search.startup �le in order to identifythe stop condition that corresponds to the Hit transition among the current disjunc-tion (i.e., the set of uncovered transitions). This start-up drives a dichotomous searchin the following way.Let E be the set of the candidate stop conditions. There are only two possible cases:� E is a singleton.Then there is no ambiguity. We have successfully completed the Hit-or-Jumpprocess.We run the simulator with the �nal.startup �le (see section 4.2.2) and extractfrom the SPEC.log the test sequence. Exit.� E has at least two elements.We divide E into two non empty sets E1 and E2 with approximatively the samecardinality.We undo one step in the current scenario and start a simulation with E1 in BFSmode with a depth limit of two. The idea is that we want the simulator to buildall the transitions starting at the previous state where it stopped. Only twocases can occur:{ The simulator stops at depth 1This means that it Hits again the transition of the component under testbecause it did not try to build the deployed automaton until depth two(and we did know that the transition we were looking for was at depthone). Thus the transition to be Hit belongs to the subset E1. We resumethe search with E1 instead of E.{ The simulator stops at depth 2This means that it built the deployed automaton till depth two - thereforewithout encountering the transition to be Hit (we did know that it was atdepth one). Therefore, the transition we have been looking for does notbelong to E1. We resume the search with E2 instead of E.Note: The cost of this dichotomous search is logarithmic in the number of stopconditions in the disjunction.2. The simulator does not output a SPEC.b1.scn �le.This means that the simulator stopped after reaching the depth limit l - a Jump isto be made. 12

In other words, it did not �nd any transition that satis�es one of the stop conditionsin the disjunction.We nevertheless got a �le, containing the partially deployed automaton (see sec-tion 4.1, item 4), as a result of the interrupted simulation (see section 4.1, item 6),but we know neither the current state in the EFSM (SDL speci�cation), nor the pathfrom the initial state (see section 4.1, item 3).Thus we parse the deployed automaton and conduct a DFS on it. We choose uni-formly at random a leaf node and �nd a (shortest) path for the current state to theselected leaf node. We append the path at the end of the constructed scenario andresume the simulation.5 Case Study: IN Telephone ServicesIn this section we report experimental results of applying the Hit-or-Jump test genera-tion technique to Intelligent Network (IN) telephone services. The service integrates thesupplementary services: Originate Call Screening (OCS), Terminal Call Screening (TCS),Call Forward Unconditional (CFU), Call Forward on Busy Line (CBL) and AutomaticCall Back (ACB). The system has been described using the SDL language [11] as far ascall treatment, service invocation and user management are concerned [3]. It is located atthe Global Functional Plane (GFP), taking some concepts of the Distributed FunctionalPlane (DFP). It consists of di�erent functional entities that are represented by the Networkblock. The Network block is composed by two blocks: the Basic Service, which representsthe Basic Call Service (BCS) and a Features Block (FB) that represents the services. TheBCS block contains three processes: the Call Manager (deals with the management ofa call); the Call Handler (which takes in charge the call itself) and the Feature Handler(which allows to access to services). The FB block is composed of �ve processes that rep-resent the services: Black List which is instantiated twice in order to obtain a black list oncalls start, the OCS service, and a black list at calls arrival, the TCS. The other servicesare CFU, CBL and ACB as mentioned above. This block includes also a process: FeatureManager (which establishes a link between the Feature Handler and the services). Thearchitecture of this speci�cation is depicted in Figure 2.

13

Feature Handler

Call Handler

Call Manager

Users(5,5)

OCS(2,2)

Feature Manager

ACB

CFB

CFU

System

Network

FeaturesBasic Call Service

Users

Figure 2: Global architectureThe model is described in such a way that it allows the execution of di�erent calls inparallel and also calls initiated by the network.The environment, i.e., the users, are also modeled as SDL process instances that com-posed the Users Block. The user process represents a combination of a phone line, aterminal and a user. It is relatively complete with respect to the service-usage life-cycle,with user-activations, deactivations, updates and invocations all modeled.In order to provide a general idea of the complexity of the SDL system speci�cations,we present in Figure 2 the global architecture of the system and in Figure 3 some relevantmetrics. The global system was simulated using exhaustive simulation in a mood to obtainthe complete reachability graph. Figure 4 gives some information concerning the numbersof states, transitions, etc, obtained after a manual stop of the exhaustive search/simulation.It is impossible to construct the whole reachability graph due to the formidable state spacerequirement.5.1 Embedded Testing of the OCS ModuleIn this paper we only report results on test generation of OCS service module. It is asystem component that is embedded in the Features block and does not possesses any linkwith the environment. For the embedded testing of this module, we want to traverse atleast once each of its branches. Stop conditions are used to represent the characteristicsof each branch. To distinguish each branch of the component, we hand-crafted the stopconditions. Figure 6 illustrates the stop conditions of OCS module.14

Lines 3098Blocks 4Process 9Procedures 12States 88Signals 50Macro de�nition 12Timers 0Figure 3: Metrics of the service speci�ca-tion
Number of states 674814Number of transitions 2878800Maximum depth reached 28Duration 43 mn 49 sTransition coverage rate 46.07 %States coverage rate 70.37 %Figure 4: Partial simulation of the com-plete speci�cation

process BLACKLIST(2,2)

started_bl

ready_for_featops

invoke(feat,
n1, n2,

pid_user, dp)

added dp as a
paramter
(acb_12_d_140295
).

blacktable
(n1)(n2)

true

clear_call

-

false

continue

-

update(feat
, n1,

pid_user)

ready TO
pid_user

update

update

add_list_elmnt
(n2)

blacktable
(n1)(n2)

true

msg_info
(already_in_list
) TO pid_user

false

blacktable
(n1)(n2)
:=true

feature_op_ok
TO

pid_user

update

cut_connection

cut_connect_ack

ready_for_featops

Figure 5: Blacklist processIn order to perform the simulation of the system we con�gure a startup that plays therole of the environment: it starts each process by �ring the �rst transition. We initializesome variables and some services: the subscribers that invocate the services and actionseach subscribers can do (eg. hangups, activations, disactivations, normal dialing). Forthis case study, and the results obtained, we have set this variables around 80 actions foreach users.
15

stop if output continue from blacklist # 1or output clear call from blacklist # 2or output ready from blacklist # 3or input add list elmnt to blacklist and output feature op ok from blacklist # 4or trans blacklist : from update input cut connection # 5or input add list elmnt to blacklist and output msg info from blacklist # 6Figure 6: Stop conditions of the Blacklist processThe results are shown in Figure 7. Note that in the worst case, when �nding the stopcondition input add list elmnt to blacklist and output msg info from blacklist (stop # 6),the simulator only passed through 103 transitions. It clearly shows that Hit-or-Jumpalgorithm e�ectively �nds untested transitions without constructing the reachability graph.Furthermore, the total test sequence is short. Note that the time corresponds to the CPUreal user time (Sun Sparc Ultra-1).Stop #1 Stop #2 Stop #3 Stop #4 Stop #5 Stop #6Number of states 12 66 96 4 5 104Number of transitions 11 65 95 3 4 103Max depth reached 11 50 50 3 4 50Duration (seconds) 2.5 4.4 6.7 8.6 10.4 11.1Figure 7: Stop conditionsOnce all the transitions of the embedded component OCS module have been traversed,we obtain a single test sequence, which corresponds to the total path that has been tra-versed from the environment to the last transition of the module. The obtained sequenceis of length 150; we only need to take 150 transitions to cover the whole OCS module inthe context.The segment of the sequence in Figure 8 exhibits the invocation of services.(50,"dial tone/dialed[2]",51)(51,"dialed[2]/net trigger[addressed,1,2]",52)(52,"net trigger[addressed,1,2]/invoke[ocs,1,2,user(1),addressed]",53)(53,"invoke[ocs,1,2,user(1),addressed]/invoke[ocs,1,2,user(1),addressed]",54)(54,"invoke[ocs,1,2,user(1),addressed]/continue",55)(55,"continue/continue",56)Figure 8: Invocation of servicesFigure 9 shows a series of transitions, which allow us to reach the transition of theembedded module in the case of the stop output ready (stop #3).16

(137,"line free/user ack",138)(138,"user ack/cm ack",139)(139,"cm ack/handler exit[call handler(4)]",140)(140,"handler exit[call handler(4)]/schedule user[true]",141)(141,"schedule user[true]/o�hook",142)(142,"o�hook/dial tone",143)(143,"dial tone/feature op[ocs,updat]",144)(144,"feature op[ocs,updat]/user trigger[ocs,updat,1,1]",145)(145,"user trigger[ocs,updat,1,1]/update[ocs,1,user(1)]",146)(146,"update[ocs,1,user(1)]/update[ocs,1,user(1)]",147)(147,"update[ocs,1,user(1)]/ready",148)Figure 9: Finding the stop condition readyThe complete test sequence of 150 transitions that cover the whole embedded OCSservice module is in Appendix.We have exercised a Random Walk (see section 3.2) and got a test sequence of 1402transitions. It is clear that Hit-or-Jump produces a test sequence with a same fault coverageas a Random Walk but is an order of magnitude shorter.We have also performed experiments on the embedded testing of the service CFU.Moreover we have also applied the Hit-or-Jump algorithm to the process Responder ofthe INRES protocol[7]. We have also obtained various test sequence lengths with di�erentmode of search, BFS (Breath-�rst-search), DFS (Depth-�rst-search), Merge (a DFS andthen a BFS), and a Random Walk. The following �gures contain the results.Module OCSMode DFS BFS Merge RWalkDepth 50 50 50Stops 6 6 6 6Sequence 834 150 167 1402Jumps 18 1 0Figure 10: Module OCS
Module CFUMode DFS BFS Merge RWalkDepth 100 100 100Stops 6 6 6 6Sequence deadlocks 137 261 586Jumps < 70 0 0Figure 11: Module CFUModule INRESMode DFS BFS Merge RWalkDepth 100 100 100Stops 4 4 4 4Sequence 368 36 101 6856Jumps 4 0 0Figure 12: Module Responder
Module INRESMode DFS BFS Merge RWalkDepth 100 100 100Stops 5 5 5 5Sequence stopped 44 186 stoppedJumps 0 0Figure 13: Module Responder17

6 ConclusionWe have presented a new algorithm to perform testing of components that are embeddedin a complex communication system. It is a natural generalization and also a uni�cation ofrandom walk and guided random walk algorithms and structured search algorithms. Yetit does not have the state space explosion problem as is encountered by the structuredalgorithms, and it generates high coverage test sequences that are much shorter than thatfrom random walks.For convenience, we present the algorithm using extended �nite state machine model.The algorithm can be adapted to other mathematical models such as transition systemsand labeled transition systems. For a similar reason, we conducted experiments on INwith SDL [10] speci�cation because of its availability. Due to the simplicity and generalityof the algorithm, we believe that it can also be adapted to embedded testing of systemsspeci�ed by other languages such as LOTOS [1] and ESTELLE [9]).The algorithm has been implemented and drives the ObjectGEODE tool. It has beenapplied to embedded testing of services of Intelligent Networks (IN). The experimentalresults are promising. It avoids the construction of a complete reachability graph, whichis impossible for IN; it conducts a local search only with a space requirement independentof the systems under test. It e�ectively covers the whole embedded components of the INservices under test with a rather short test sequence of only 150 transitions, which is anorder of magnitude shorter than that from random walks.We have presented a basic version of the Hit-or-Jump algorithm, and have describedbriey a generalization - Guided Hit-or-Jump. Other variations or generalizations can alsobe explored. For instance, if there has been no Hit for a large number of Jumps, one might\backtrack" to the previous Hit, and Jump to a di�erent node to proceed with testing.Even though in our experiments with IN we have not encountered such problem, it mightnot be a surprise for testing components that are embedded in a complex system.We have not speci�ed the depth of local search for a Jump in case there is no Hit. For INwe tested on a few depth values, i.e., 50 and 100. Intuitively, a larger depth value increasesthe probability of hitting an uncovered part of the component under test. However, itrequires more space and time for each step. Furthermore, a long \Jump" implies a longersubsequence in the test for this step. We believe that it depends on the system under testto choose a good depth value. As indicated earlier, one can always choose a depth valuethat is within the limit of a�ordable memory space.We have tested both Breadth-�rst-search and Depth-�rst-search for the local search fora Hit or Jump. Breadth-�rst-search seems to perform better; it is \unbiased" and makesan \equi-distance" random Jump.References[1] T. Bolognesi and E. Brinksma. Introduction to the iso speci�cation language lotos.In Computer Networks and ISDN Systems, volume 14(1), 1987.18

[2] E. Brinksma. A theory for the derivation of tests. In Proc. IFIP WG6.1 8th Int.Symp. on Protocol Speci�cation, Testing and Veri�cation. Horth-Holland, 1988.[3] P. Combes and B. Renard. Service validation, tutorial. In SDL Forum'97, France,1997.[4] M. A. Fecko, U. Uyar, A. S. Sethi, and P. Amer. Issues in conformance testing: Multi-ple semicontrollable interfaces. In Proceedings of FORTE'97, Paris, France, November1998.[5] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theoryof NP-Completeness. W. H. Freeman and Company, New York, 1979.[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, New York, 1985.[7] D. Hogrefe. Osi formal speci�cation case study: the inres protocol and service, revised.Technical report, Institut f�ur Informatik Universit�at Bern, may 1992.[8] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, NewJersey, 1991.[9] International Standards Organization. ISO/IEC 9074(E), Estelle: a Formal Descrip-tion Technique based on a �nite state machine transition model, 1997.[10] ISO. Information Technology, Open Systems Interconnection, Conformance TestingMethodology and Framework, International Standard IS-9646., 1991.[11] ITU. Recommendation Z.100 : CCITT Speci�cation and Description Language (SDL),1992.[12] D. Lee, K. Sabnani, D. Kristol, and S. Paul. Conformance testing of protocols speci�edas communicating �nite state machines - a guided random walk based approach. InIEEE Transactions on Communications, volume 44, No.5, May 1996.[13] L. P. Lima and A. Cavalli. A pragmatic approach to generating test sequences forembedded systems. In Proceedings of IWTCS'97, Cheju Island, Korea, September1997.[14] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cli�s, NewJersey, 1989.[15] A. Petrenko, N. Yevtushenko, and G. V. Bochmann. Fault models for testing incontext. In Proceeding of FORTE, Kaiserslatern, Germany, October 1996.[16] A. Petrenko, N. Yevtushenko, and G. V. Bochmann. Testing faults in embeddedcomponents. In Proceedings of IWTCS'97, Cheju Island, Korea, September 1997.[17] A. A. Petri. Kommunikation mit Automaten. Ph. D. thesis, Universitat Bonn, 1962.19

[18] N. Yevtushenko, A. Cavalli, and L. P. Lima. Test suite minimization for testing incontext. In IWTCS'98, Tomsk, Russia, August 1998.[19] J. Zhu and S. T. Vuong. Evaluation of test coverage for embedded system testing. InIWTCS'98, Tomsk, Russia, August 1998.AppendixA complete test sequence of 150 transitions that cover the whole embedded OCS servicemodule in IN:des(0,150,151)(0,"NULL/started_acb",1)(1,"NULL/started_cfb",2)(2,"NULL/started_cfu",3)(3,"NULL/started_bl",4)(4,"NULL/started_bl",5)(5,"started_acb/NULL",6)(6,"started_cfb/NULL",7)(7,"started_cfu/NULL",8)(8,"started_bl/NULL",9)(9,"started_bl/user_started",10)(10,"NULL/user_started",11)(11,"NULL/user_started",12)(12,"NULL/user_started",13)(13,"NULL/user_started",14)(14,"user_started/user_started_ack",15)(15,"user_started/user_started_ack",16)(16,"user_started/user_started_ack",17)(17,"user_started/user_started_ack",18)(18,"user_started/user_started_ack",19)(19,"user_started_ack/NULL",20)(20,"user_started_ack/NULL",21)(21,"user_started_ack/NULL",22)(22,"user_started_ack/NULL",23)(23,"user_started_ack/schedule_user[true]",24)(24,"schedule_user[true]/offhook",25)(25,"offhook/dial_tone",26)(26,"dial_tone/feature_op[ocs,updat]",27)(27,"feature_op[ocs,updat]/user_trigger[ocs,updat,1,1]",28)(28,"user_trigger[ocs,updat,1,1]/update[ocs,1,user(1)]",29)(29,"update[ocs,1,user(1)]/update[ocs,1,user(1)]",30)(30,"update[ocs,1,user(1)]/ready",31)20

(31,"ready/add_list_elmnt[1]",32)(32,"add_list_elmnt[1]/feature_op_ok",33)(33,"feature_op_ok/onhook",34)(34,"onhook/cut_connection",35)(35,"cut_connection/cut_connect[ocs]",36)(36,"cut_connect[ocs]/cut_connection",37)(37,"cut_connection/cut_connect_ack",38)(38,"cut_connect_ack/cut_ack",39)(39,"cut_ack/cut_connect_ack",40)(40,"cut_connect_ack/net_trigger[o_end_call,1,1]",41)(41,"net_trigger[o_end_call,1,1]/resume_call[o_end_call,disconnecting,1,1]",42)(42,"resume_call[o_end_call,disconnecting,1,1]/end_leg[1,1]",43)(43,"end_leg[1,1]/line_free",44)(44,"line_free/user_ack",45)(45,"user_ack/cm_ack",46)(46,"cm_ack/handler_exit[call_handler(1)]",47)(47,"handler_exit[call_handler(1)]/schedule_user[true]",48)(48,"schedule_user[true]/offhook",49)(49,"offhook/dial_tone",50)(50,"dial_tone/dialled[2]",51)(51,"dialled[2]/net_trigger[addressed,1,2]",52)(52,"net_trigger[addressed,1,2]/invoke[ocs,1,2,user(1),addressed]",53)(53,"invoke[ocs,1,2,user(1),addressed]/invoke[ocs,1,2,user(1),addressed]",54)(54,"invoke[ocs,1,2,user(1),addressed]/continue",55)(55,"continue/continue",56)(56,"continue/resume_call[addressed,connecting,1,2]",57)(57,"resume_call[addressed,connecting,1,2]/net_trigger[analysed,1,2]",58)(58,"net_trigger[analysed,1,2]/invoke[cfu,1,2,user(1),analysed]",59)(59,"invoke[cfu,1,2,user(1),analysed]/invoke[cfu,1,2,user(1),analysed]",60)(60,"invoke[cfu,1,2,user(1),analysed]/proceed[3]",61)(61,"proceed[3]/proceed[3]",62)(62,"proceed[3]/resume_call[analysed,completing,1,3]",63)(63,"resume_call[analysed,completing,1,3]/phonestat_req[1,3]",64)(64,"phonestat_req[1,3]/called_isfree[user(3)]",65)(65,"called_isfree[user(3)]/ringback_tone",66)(66,"ringback_tone/user_ack",67)(67,"user_ack/ring_start",68)(68,"ring_start/user_ack",69)(69,"user_ack/net_trigger[completion,1,3]",70)(70,"net_trigger[completion,1,3]/resume_call[completion,ringing,1,3]",71)(71,"resume_call[completion,ringing,1,3]/action[false]",72)(72,"action[false]/user_ack",73)(73,"user_ack/action[false]",74) 21

(74,"action[false]/offhook",75)(75,"offhook/call_completed",76)(76,"call_completed/conv_caller",77)(77,"conv_caller/call_completed",78)(78,"call_completed/conv_called",79)(79,"conv_called/net_trigger[acceptance,1,3]",80)(80,"net_trigger[acceptance,1,3]/resume_call[acceptance,call_in_progress,1,3]",81)(81,"resume_call[acceptance,call_in_progress,1,3]/call_switch",82)(82,"call_switch/schedule_user[true]",83)(83,"schedule_user[true]/offhook",84)(84,"offhook/dial_tone",85)(85,"dial_tone/dialled[1]",86)(86,"dialled[1]/net_trigger[addressed,5,1]",87)(87,"net_trigger[addressed,5,1]/resume_call[addressed,connecting,5,1]",88)(88,"resume_call[addressed,connecting,5,1]/net_trigger[analysed,5,1]",89)(89,"net_trigger[analysed,5,1]/resume_call[analysed,completing,5,1]",90)(90,"resume_call[analysed,completing,5,1]/phonestat_req[5,1]",91)(91,"phonestat_req[5,1]/called_isbusy[user(1)]",92)(92,"called_isbusy[user(1)]/net_trigger[occupation,5,1]",93)(93,"net_trigger[occupation,5,1]/resume_call[occupation,disconnecting,5,1]",94)(94,"resume_call[occupation,disconnecting,5,1]/busy_tone",95)(95,"busy_tone/onhook",96)(96,"onhook/net_trigger[o_end_call,5,1]",97)(97,"net_trigger[o_end_call,5,1]/resume_call[o_end_call,disconnecting,5,1]",98)(98,"resume_call[o_end_call,disconnecting,5,1]/end_leg[5,1]",99)(99,"end_leg[5,1]/line_free",100)(100,"line_free/user_ack",101)(101,"user_ack/cm_ack",102)(102,"cm_ack/handler_exit[call_handler(3)]",103)(103,"handler_exit[call_handler(3)]/schedule_ch",104)(104,"schedule_ch/action[true]",105)(105,"action[true]/onhook",106)(106,"onhook/net_trigger[t_end_call,1,3]",107)(107,"net_trigger[t_end_call,1,3]/resume_call[t_end_call,disconnecting,1,3]",108)(108,"resume_call[t_end_call,disconnecting,1,3]/busy_tone",109)(109,"busy_tone/onhook",110)(110,"onhook/net_trigger[o_end_call,1,3]",111)(111,"net_trigger[o_end_call,1,3]/resume_call[o_end_call,disconnecting,1,3]",112)(112,"resume_call[o_end_call,disconnecting,1,3]/end_leg[1,1]",113)(113,"end_leg[1,1]/line_free",114)(114,"line_free/user_ack",115)(115,"user_ack/cm_ack",116)(116,"cm_ack/end_leg[3,1]",117) 22

(117,"end_leg[3,1]/line_free",118)(118,"line_free/user_ack",119)(119,"user_ack/cm_ack",120)(120,"cm_ack/handler_exit[call_handler(2)]",121)(121,"handler_exit[call_handler(2)]/schedule_user[true]",122)(122,"schedule_user[true]/offhook",123)(123,"offhook/dial_tone",124)(124,"dial_tone/dialled[3]",125)(125,"dialled[3]/net_trigger[addressed,1,3]",126)(126,"net_trigger[addressed,1,3]/invoke[ocs,1,3,user(1),addressed]",127)(127,"invoke[ocs,1,3,user(1),addressed]/invoke[ocs,1,3,user(1),addressed]",128)(128,"invoke[ocs,1,3,user(1),addressed]/clear_call",129)(129,"clear_call/clear_call",130)(130,"clear_call/resume_call[addressed,disconnecting,1,3]",131)(131,"resume_call[addressed,disconnecting,1,3]/busy_tone",132)(132,"busy_tone/onhook",133)(133,"onhook/net_trigger[o_end_call,1,3]",134)(134,"net_trigger[o_end_call,1,3]/resume_call[o_end_call,disconnecting,1,3]",135)(135,"resume_call[o_end_call,disconnecting,1,3]/end_leg[1,1]",136)(136,"end_leg[1,1]/line_free",137)(137,"line_free/user_ack",138)(138,"user_ack/cm_ack",139)(139,"cm_ack/handler_exit[call_handler(4)]",140)(140,"handler_exit[call_handler(4)]/schedule_user[true]",141)(141,"schedule_user[true]/offhook",142)(142,"offhook/dial_tone",143)(143,"dial_tone/feature_op[ocs,updat]",144)(144,"feature_op[ocs,updat]/user_trigger[ocs,updat,1,1]",145)(145,"user_trigger[ocs,updat,1,1]/update[ocs,1,user(1)]",146)(146,"update[ocs,1,user(1)]/update[ocs,1,user(1)]",147)(147,"update[ocs,1,user(1)]/ready",148)(148,"ready/add_list_elmnt[1]",149)(149,"add_list_elmnt[1]/msg_info[already_in_list]",150)

23

