HIT-OR-JUMP: AN ALGORITHM FOR
EMBEDDED TESTING
WITH APPLICATIONS TO IN SERVICES

Ana Cavalli* David Lee** Christian Rinderknecht*
Fatiha Zaidi*

*Institut National des Telecommunications

9 rue Charles Fourier

F-91011 Evry Cedex, France

Email : {Ana.Cavalli, Christian.Rinderknecht, Fatiha.Zaidi}@Qint-evry.fr
“*Bell Laboratories, Lucent Technologies

600 Mountain Avenue

Murray Hill, NJ 07974, USA

Email : lee@research.bell-labs.com

Abstract This paper presents a new algorithm, Hit-or-Jump, for embedded
testing of components of communication systems that can be modeled by com-
municating extended finite state machines. It constructs test sequences effi-
ciently with a high fault coverage. It does not have state space explosion, as
is often encountered in exhaustive search, and it quickly covers the system
components under test without being “trapped”, as is experienced by random
walks. Furthermore, it is a generalization and unification of both exhaustive
search and random walks; both are special cases of Hit-or-Jump. The algorithm
has been implemented and applied to embedded testing of telephone services
in an IN architecture, including the Basic Call Service (BCS) and five supple-
mentary services: Originating Call Screening (OCS), Terminal Call Screening
(TCS), Call Forward Unconditional (CFU), Call Forward on Busy Line (CBL)
and Automatic Call Back (ACB).

Keywords: conformance testing, embedded testing, communicating extended
finite state machines, IN.

1 Introduction

With the advanced computer technology and the increasing demand from the users for
sophisticated services, communication protocol systems are becoming more complex yet
less reliable. Conformance testing, which ensures correct protocol implementations, has

become indispensable for the development of reliable communication systems. Traditional
testing methods tend to test these systems as a whole or to test their components in
isolation. Testing these systems as a whole becomes difficult due to their formidable size.
On the other hand, testing system components in isolation may not be always feasible due
to the interactions among the system components. Embedded testing or testing in context
has become one of the main focuses of conformance testing research in recent years. The
goal of embedded testing is to test whether an implementation of a system component
conforms to its specification in the context of other components. It is generally assumed
that the tester does not have a direct access to the component under test; the access is
obtained through other components of the system. According to the standard: ”if control
and observation are applied through one or more implementations which are above the
protocol to be tested, the testing methods are called embedded” [10].

Different approaches for embedded testing have been proposed in the published liter-
ature. They are based on fault models [15], on reducing the problem to testing of com-
ponents in isolation [16], on test suite minimization [12, 13, 18], on fault coverage [19],
and on the test of systems with semicontrollable and uncontrollable interfaces [4]. Most
of these approaches resort to reachability graphs to model the joint behaviors of all the
system components, and are exposed to the well-known state space explosion.

Communication systems can be properly modeled by communicating extended finite
state machines (CEFSM). We propose a general procedure for embedded testing of CEFSM’s.
The reason that we choose the CEFSM model is for the clarity of presentation; our algo-
rithm can be easily adapted to other mathematical models such as Transition Systems,
Labeled Transition Systems, and Petri Nets.

Our goal is to test pre-specified parts of a system component that is embedded in a
complex communication system. The pre-specified parts are determined by practical needs
or by system certification requirements. For instance, for a given system component, we
may want to test all the transitions or certain boundary values of system variables. We
can first construct a reachability graph, which is the Cartesian product of all the system
components involved, and then derive a test that covers all the pre-specified parts of the
component under test. Unfortunately, this exhaustive search technique is often impractical;
it is impossible to construct a reachability graph for practical systems due to the state space
explosion. To avoid this problem random walks have been proposed; at any moment we
only keep track of the current states of all the components and determine the next step
of test at random. This approach indeed avoids the state space explosion but it may
repeatedly test covered parts and take a long time to move on to the untested parts.

We propose a new technique: Hit-or-Jump. It is a generalization and unification of both
the exhaustive search technique and random walks, yet it does not have the drawbacks of
the two approaches. The essence of our approach is as follows. At any moment we conduct
a local search from the current state in a neighborhood of the reachability graph. If an
untested part is found (a Hit), we test that part and continue the process from there.
Otherwise, we move randomly to the frontier of the neighborhood searched (Jump), and
continue the process from there. This procedure avoids the construction of a complete
system reachability graph. As a matter of fact, the space required is determined by the

user - the local search, and it is independent of the systems under consideration. On
the other hand, a random walk may get “trapped” at certain part of the component under
test [12]. Our algorithm is designed to “jump” out of the “trap” and pursue the exploration
further.

The algorithm has been implemented and drives the Object GEODE tool, taking ad-
vantage of some of its functionalities, such as the construction of a searched neighborhood
of the reachability graph that is used to produce the test scenarios in case of a Hit or to
determine a Jump otherwise.

The Hit-or-Jump algorithm has been applied to the embedded testing of services on a
telephone network. This case study is on a real system that has been specified using the
SDL language. It describes telephone services in an Intelligent Network (IN) architecture.
In addition to the Basic Call Services (BCSs), five other services are included: Originating
Call Screening (OCS), Terminating Call Screening (TCS), Call Forward Unconditional
(CFU), Call Forward on Busy Line (CBL) and Automatic Call Back (ACB).

The paper is organized as follows. Section 2 introduces the basic concepts and testability
of embedded components. Section 3 describes the test generation algorithm Hit-or-Jump
for embedded components. In Section 4, the software tool of Hit-or-Jump in conjunction
with Object GEODE is presented. Section 5 reports the experimental results, and section 6
concludes this paper.

2 Basics

In this work we use extended finite state machines to model system components: the
environment, the components under test and their implementations. It is only for the
convenience of presentation; our technique can be adapted to other mathematical models,
such as Transition Systems [14], Petri Nets [17] and Labeled Transition Systems [2].

Definition 1. An eztended finite state machine (EFSM) is a quintuple M = (1,0, S,#,T)
where I, O, S, ¥, and T are finite sets of input symbols, output symbols, states, variables,
and transitions, respectively. Each transition ¢ in the set 7" is a 6-tuple:

t= (St7 g, Qt, O, Pt? At)

where s, q;, a;, and o; are the start (current) state, end (next) state, input, and output,
respectively. P,(Z) is a predicate on the current variable values and A;(Z) defines an action
on variable values.

Initially, the machine is in an initial state s(°) € S with initial variable values: it
Suppose that the machine is at state s; with the current variable values Z. Upon input ay,
if # is valid for P, i.e., P,(¥) = TRUE, then the machine follows the transition ¢, outputs
ot, changes the current variable values by action 7 := A,(Z), and moves to state ;.

For each state s € S and input a € I, let all the transitions with start state s and input
a be: t; = (s,q;,a,0;, Py A;), 1 < i <r. In a deterministic EFSM the sets of valid variable
values of these r predicates are mutually disjoint, i.e., Xp, N Xp, = 0,1 <i=#j<r.

0 0)

Otherwise, the machine is nondeterministic. In a deterministic EFSM there is at most one
transition to follow at any moment, since at any state and upon each input, the associated
transitions have disjoint valid variable values for their predicates and, consequently, current
variable values are valid for at most one predicate. On the other hand, in a nondeterministic
EFSM there may be more than one possible transition to follow. In this paper we only
consider deterministic EFSM’s.

There are two types of communications among the system components: (1) Synchronous
communication by rendez-vous [6] without channels between; and (2) Asynchronous com-
munication with channels between system components. Channels can be bounded or un-
bounded and both can be modeled by EFSM’s. The interactions between the channels
and system components are synchronous. On the other hand, we can use an additional
variable to “encode” different system components. Therefore, we can model the whole
environment, including the channels to and from the system component under test, as one
EFSM ! which communicates with the system component synchronously.

From now on we use the following notation : C'is the environment EFSM, A is the
specification EFSM under test, and B is the implementation of A. Machine C' and A(B)
communicate synchronously. We represent A in the context of C' by the following notation
: O x A

We want to test the conformance of B to A in the context of C' where C' and A are
known and B is a ”black-box”. It should be noted that C' x A may not be minimized or
strongly connected even if C' and A are. Also they can be partially (incompletely) specified.

In general, it is not always possible to test for isomorphism of embedded components,
even in the case of FSM’s. Assume that A and B are FSM’s. Denote machine isomorphism
by A = B. Then we have:

Proposition 1. B= A implies C x B = (' x A. However, the converse is not true in
general.

The first part of the proposition is trivial. We show the second part by an example.

Example 1.

! As a matter of fact, extended finite state machine has a same computing power as Turing machine.

abix 4o Xyt X/t
: L :

u/l

Figure 1:

In Figure 1, a and b are external inputs, 0 and 1 are external outputs, and x,y,t, u are
internal input /outputs. Obviously C'x B = C' x A. But B % A. Therefore, it is impossible
to test A = B in the context of C.

In practice, what we want is that B "behaves correctly” in the context of C. That
is, C' x B = C x A. Therefore, the problem is reduced to testing if C' x B = C' x A.
However the real goal is to test the component A, assuming that the environment machine
C is correctly implemented. Suppose that we test A in isolation. Then we may want
to test all the transitions of A. That is, we want to obtain a testing sequence such that
all the transitions of A are exercised. Similarly, in embedded testing we want to obtain
test sequences (with external inputs) such that all the transitions of the component A are
exercised. Specifically, we want to derive tests for C' x A such that all the transitions of
A are tested. We may want different coverage of A than testing all the transitions. For
instance, we often want to test the boundary values of the variables. In general, we want
to obtain a test sequence for C' x A, i.e., for testing the component A in the context of
C, such that the component machine A is covered according to a pre-specified criterion.
On the other hand, we do not worry about the coverage of C', since it is assumed to be
correctly implemented.

Note that systems may or may not have reset. We can consider EFSM’s with reset
transitions as a special case by inserting a reset edge from each state to the initial state,
independent of the variable values. For clarity, from now on we only consider machines
without reset.

A livelock in C' x A is a loop without external inputs, and it is reachable from the
initial state. When the system C' x A gets into a livelock, it will loop around indefinitely
without any external inputs and may or may not produce external outputs. Under such
circumstances, C' X A can "move-on” by itself without any external control, and the external
tester cannot drive the system C x A further to fulfill the testing task. This is undesirable
system behavior in terms of embedded testing. Another undesirable system behavior is
deadlock. During test generation, if we find a sink node (no outgoing transition) in C' x A,
we abort the process and declare a deadlock detected. As a matter of fact, both livelock and
deadlock are to be checked for system designs, and are well studied in protocol validation
and verification research [8]. We shall not digress here and proceed with our discussion of
testing with an assumption that the system under consideration C' x A is free of livelock

and deadlock.

3 Test Generation Methods for Embedded Testing

We now present our Hit-or-Jump algorithm. We first briefly survey three commonly used
and related methods and then present our procedure, which is a generalization and unifi-
cation of all these three procedures.

In the discussion, we aim at covering all the transitions of the component machine
under test. This is a commonly used criterion. Our technique can be easily modified to
generate tests for different coverages; it is only a marking issue. We shall further elaborate
on this issue when describing the algorithm.

3.1 A Structured Algorithm

From the initial state we want to generate a test sequence such that all the transitions of
component machine A are covered at least once. The algorithm includes three steps: (1)
Assign a distinct color to each transition of A; (2) Construct a reachability graph of C' x A
where each edge of C' x A is marked with a color from A if it is derived from that transition
of A; (3) From the initial node of C' x A, find a path of minimal length such all the colors
are covered at least once.

We can reduce the Rural Postman problem to this covering path problem. Therefore the
problem is NP-hard [5]. There are various heuristic procedures for solving this problem.
However, these algorithms require the construction of the reachability graph of C' x A.
It is often impossible in practice due to the state explosion. Consequently, unstructured
algorithms such as random walks are considered, which do not require the construction of
reachability graphs.

3.2 Random Walk
0) (0 - 0) _(0)

Starting from the initial node (s, sy, #?) where s, sy’ and #© are the initial state of
C and A and initial variable values, respectively. Among all the possible outgoing edges
in the reachability graph from the initial node, we select one uniformly at random, and
follow that edge to the next node in the reachability graph. Suppose that after k steps we
arrive at a node (s(clf), s(:),f(k)). We examine all the outgoing edges from this node and
select one uniformly at random to follow. Meanwhile, if there are colors associated with
the chosen edges that have not been marked (exercised), we mark them off. We repeat the
process until all the colors are marked off. During the walk, we only keep track of: (1)
The current node (sgc), s(f),f(k)); (2) The colors that have not been marked off; and (3)
The edges that have been walked through with the associated external I/O sequence, and
that is the test sequence obtained from this walk. Obviously, there is no need to construct
a whole reachability graph of C' x A.

3.3 Guided Random Walk

The procedure is the same as the random walk in Section 3.2 except for the following. When
we arrived at a node (s(clf), s(:), #*)) among all the possible outgoing edges, we classify them:
(1) With transitions of A involved, some of which are not marked; (2) With transitions of
A involved and all of them are marked; and (3) Without any transitions of A involved. If
the set (1) is not empty, we select one uniformly at random and follow that edge; else if
(2) is not empty, we select one uniformly at random and follow that edge; and, finally, if
none of the above is true, (3) must be non-empty, and we select one uniformly at random
and follow that edge.

Guided random walks favor transitions of the embedded component under test, and

among them give first priority to the transitions that have not been tested.

3.4 Hit-or-Jump Algorithm

The problems with random walks are: (1) To be "trapped” in a small neighborhood; (2)
With a low probability to cross a "narrow bridge” to test the parts beyond the bridge; and
(3) To miss the unmarked transitions of A even if them are nearby (more than one step
from the current node). The Hit-or-Jump algorithm is designed to avoid these problems
yet without the construction of a reachability graph. It does not require a construction of
a reachability graph of C' x A either, and performs better than pure random walks [12].

ALGORITHM HIT-OR-JUMP
initial condition. The environment machine C' is in an initial state sg)), the component

machine under test A is in an initial state sf), and the system variables have initial values

70, 2

termination. The algorithm terminates when all the colors (transitions) of A have been
marked off.

execution.

1. Hit
From the current node (sgf), s®),) conduct a search (Depth-first or Breadth-first)
in C' x A until:

(a) Reach an edge which is associated with unmarked colors (transitions) of the
component machine A — a Hit. Then :

i. Include the path from the current node to the edge (inclusive) in the test
sequence under construction;

ii. Mark off the newly exercised colors (transitions) of A;

2Here the initial states and variable values refer to the information known to the tester, and they are
not necessarily the states and variable values after a system reset, which is often hard to obtain in practice.

: k1) (k+1)
iii. Arrive at a node (9(C+), S(A+),x(k“));

iv. Erase the searched graph;

v. Repeat from 1.
or

(b) Reach a search depth or space limit without hitting any unmarked colors (tran-
sitions) of A. Then move to 2.

2. Jump

(a) We have constructed a search tree, rooted at (sgc), s®), k).,

(b) Examine all the leaf nodes of the tree, and select one uniformly at random.
(c) Include the path from the root to the selected leaf node in the test sequence.
(d) We arrive at the selected leaf node (s(gﬂ), 5(:“), D) — a Jump.

(e) Repeat from 1.

3.5 Remarks on Hit-or-Jump Algorithm

For clarity we have presented one version of the Hit-or-Jump algorithm. There are various
variations and generalizations. It is indeed a generalization and unification of the seemingly
different algorithms: structured algorithms, random walks and guided random walks. We
also comment on the space requirement, fault models and coverages.

(1) Guided Hit-or-Jump. For clarity we have presented a straightforward version of Hit-or-
Jump algorithm. It has a number of variations and generalizations, and their implemen-
tations are simple modifications of the version presented. We briefly describe one here.
For a Jump we select uniformly at random a leaf node of the locally searched graph
(tree) and proceed from there. Instead, we can enforce certain priorities in selecting the leaf
nodes as in a Guided Random Walk [12] (Section 3.3). For instance, we can examine the
outgoing edges from each leaf node and classify them with the priority: (A) With transitions
of A involved, some of which are not marked; (B) With transitions of A involved and all
of them are marked; and (C) Without any transitions of A involved. We then conduct a
“Guided Jump” according to the leaf node priorities as in a Guided Random Walk.

(2) Generalization and Unification of Structured Algorithms, Random Walks and Guided
Random Walks. Suppose that the local search depth is set to one. Then, obviously, Hit-or-
Jump becomes a Random Walk. If we enforce priorities then it becomes a Guided Random
Walk. On the other hand, if we do not set any bound on the local search depth then

we construct a reachability graph in the worse case; Hit-or-Jump becomes a structured
algorithm. Therefore, Hit-or-Jump is a generalization of Random and Guided Random
Walks and also the structured algorithm. Furthermore, this technique unifies these three
seemingly quite different approaches.

(3) Space Requirement. Often the environment machine C' (and also A) is very large. It
is impossible to construct a reachability graph of C, A, or C x A. Our algorithm does not
need any of them. For each Hit or Jump step, we construct a local search graph on-line,
which is a subgraph of C' x A. This can be easily done by a Depth-first search, for instance.
The size of the subgraph, hence the space requirement, is determined by the users, and is
independent of the machines A and C.

When constructing a search tree on-line, we can compress internal transitions of C' x A
[13] to further save space.

(4) Fault Models. Several approaches [16], [15] use fault models. We have a general
procedure, independent of any fault models. We are interested in covering the component
machine A, and our procedure can also be used for test generation associated with fault
models.

(5) Coverage. We have been focused on covering all the transitions of A. The algorithm
can be easily extended to: (A) Covering some (not necessarily all) transitions of A, which
are specified by users or the testers; (B) Covering some states of A; and (C) Covering some
transitions and states of A along with specified variable values such as boundary values.
We can assign a distinct color to each entity to be covered, and run Hit-or-Jump until all
the colors are covered.

(6) Local Testing. Local testing [15] is a search in a component machine with very restrictive
assumptions, basically reducing to testing isolated machines. Hit-or-Jump conducts a local
search within C' x A without any assumption on A or C'.

4 Implementation of Hit-or-Jump

In this section we describe the implementation of Hit-or-Jump. We develop a software
tool, which also drives the ObjectGEODE simulator.

4.1 ObjectGEODE Features

The simulation in exhaustive mode was used for our implementation. We needed to take
into account the advantages and limitations of the Object GEODE simulator. The following
is a list of the main features and limitations:

1. A simulation in exhaustive mode can be stopped on a condition. A stop condition is
a boolean expression. If during the simulation it becomes true, then the simulator

stops. In this case we can get two files: one containing the partially deployed automa-
ton and another one with the scenario (in a file whose extension name is .bl.scn). If
the simulation is actually completed, these two files are available too.

. A stop condition may be a disjunction of other stop conditions (thus modeling a set
of conditions). In case it becomes true in the middle of simulating, the verdict (the
result) will not point out all the conditions in the disjunction that has become true.

. A scenario is a series of signal inputs (a sequence) fired by the simulator from the
initial state, aiming at achieving the exhaustive simulation of the specification. Each
SDL state from which the input is accepted by the SDL process is given in the
scenario.

. A deployed automaton corresponds to the contents of the file associated to the sim-
ulator’s variable "edges_dump” in an exhaustive mode. This automaton is logically
an FSM, and contains hooks to the SDL specification (and to the scenarios), and
the SDL values (local variables and signal arguments) have been instantiated, either
partially (interrupted simulation) or fully (exhaustive running).

. Each simulation in exhaustive mode produces a new deployed partial automaton;
when an interrupted simulation is resumed a new partial automaton is produced,
which generally has nothing to do with the previous one. Nevertheless the newly
produced scenario includes the previous one: this property along the simulations will
be our Ariadne’s clue.

. It is possible to make the exhaustive simulation to be a depth-first search (DFS) or
a breadth-first search (BFS) in the SDL specification, and to stop it on a depth limit
value. In this last situation, we do not get any scenario.

Implementation of Hit-or-Jump

The aim is to get a unique sequence in the fully deployed automaton, corresponding to
a path starting at the initial state, that contains all the transitions of the embedded
component under test yet without constructing the fully deployed automaton.

Interface

Our tool needs the following command-line options:

e -sdl SPEC.pr
This input file is the protocol specification in SDL textual syntax. It must not be
empty.

e -stop SPEC.stop
This input file contains a disjunctive stop condition, modeling the set of the embedded

10

system component transitions. It defines the embedded system and hence must not
be empty.

e -depth-1im [
The given positive integer [is a depth limit that will be passed to the simulator; we
stop when a search (DFS or BFS) reaches a depth of [.

e -feed SPEC feed
This input file only contains the inputs that the simulator can fire from the envi-
ronment in order to stimulate the whole system. Hence no input of the embedded
component appears in this file. It may be empty only if SPEC.scn is not (see below).

e -init SPEC.init
This input file only contains protocol-dependent variable initializations for the sim-
ulator ("let” clauses). It may be empty.

e -scn SPEC.scn
This input file contains an initial scenario only made of to-be-fired transitions for the
embedded systems (in order to directly stimulate them, since they have no connection
with the environment and hence have no associated feed clauses). It may be empty
only if SPEC feed is not (see above).

e -seq SPEC.seq
This output file contains a test sequence for the embedded system component. The
sequence is a series of pairs of inputs and outputs.

4.2.2 Configuration

The first step of our tool is to configure and produce three start-up files that will be used
to drive the simulator.

1. main.startup
It loads SPEC.feed, the initial conditions (SPEC.init), the current scenario, and spec-
ifies the exhaustive and DFS mode, together with the depth limit value (I).

2. stop_search.startup
It is devoted to the identification of the stop condition in the disjunction (initially
in SPEC.stop) that actually interrupted the simulation, and thus work around the
limitation of Object GEODE we mentioned in 4.1, item 2.

3. final startup
It loads SPEC feed and replays the final scenario we got after hitting all the colors
(transitions) of the embedded system component in order to make ObjectGEODE
output a SPEC.log file, from which we extract the test sequence (into SPEC.seq).

11

4.2.3 Simulation

We start the simulation with the main.startup file. There are two possible situations:

1. The simulator outputs a SPEC.b1.scn file.

This file is output if and only if we Hit an uncovered transition of the embedded
system (see section 4.1, item 1) - a Hit.

We then run again the simulator with the stop_search.startup file in order to identify
the stop condition that corresponds to the Hit transition among the current disjunc-
tion (i.e., the set of uncovered transitions). This start-up drives a dichotomous search
in the following way.

Let E be the set of the candidate stop conditions. There are only two possible cases:

e F is a singleton.
Then there is no ambiguity. We have successfully completed the Hit-or-Jump
process.
We run the simulator with the final.startup file (see section 4.2.2) and extract
from the SPEC.log the test sequence. Exit.

e I has at least two elements.
We divide F into two non empty sets E; and E5 with approximatively the same
cardinality.
We undo one step in the current scenario and start a simulation with F; in BFS
mode with a depth limit of two. The idea is that we want the simulator to build
all the transitions starting at the previous state where it stopped. Only two
cases can occur:

— The simulator stops at depth 1
This means that it Hits again the transition of the component under test
because it did not try to build the deployed automaton until depth two
(and we did know that the transition we were looking for was at depth
one). Thus the transition to be Hit belongs to the subset £,. We resume
the search with E; instead of E.

— The simulator stops at depth 2
This means that it built the deployed automaton till depth two - therefore
without encountering the transition to be Hit (we did know that it was at
depth one). Therefore, the transition we have been looking for does not
belong to E;. We resume the search with Fy instead of E.

Note: The cost of this dichotomous search is logarithmic in the number of stop
conditions in the disjunction.

. The simulator does not output a SPEC.b1.scn file.
This means that the simulator stopped after reaching the depth limit [- a Jump is
to be made.

12

In other words, it did not find any transition that satisfies one of the stop conditions
in the disjunction.

We nevertheless got a file, containing the partially deployed automaton (see sec-
tion 4.1, item 4), as a result of the interrupted simulation (see section 4.1, item 6),
but we know neither the current state in the EFSM (SDL specification), nor the path
from the initial state (see section 4.1, item 3).

Thus we parse the deployed automaton and conduct a DFS on it. We choose uni-
formly at random a leaf node and find a (shortest) path for the current state to the
selected leaf node. We append the path at the end of the constructed scenario and
resume the simulation.

5 Case Study: IN Telephone Services

In this section we report experimental results of applying the Hit-or-Jump test genera-
tion technique to Intelligent Network (IN) telephone services. The service integrates the
supplementary services: Originate Call Screening (OCS), Terminal Call Screening (TCS),
Call Forward Unconditional (CFU), Call Forward on Busy Line (CBL) and Automatic
Call Back (ACB). The system has been described using the SDL language [11] as far as
call treatment, service invocation and user management are concerned [3]. It is located at
the Global Functional Plane (GFP), taking some concepts of the Distributed Functional
Plane (DFP). It consists of different functional entities that are represented by the Network
block. The Network block is composed by two blocks: the Basic Service, which represents
the Basic Call Service (BCS) and a Features Block (FB) that represents the services. The
BCS block contains three processes: the Call Manager (deals with the management of
a call); the Call Handler (which takes in charge the call itself) and the Feature Handler
(which allows to access to services). The FB block is composed of five processes that rep-
resent the services: Black List which is instantiated twice in order to obtain a black list on
calls start, the OCS service, and a black list at calls arrival, the TCS. The other services
are CFU, CBL and ACB as mentioned above. This block includes also a process: Feature
Manager (which establishes a link between the Feature Handler and the services). The
architecture of this specification is depicted in Figure 2.

13

System
Network
Basic Call Service Features

Feature Manager

Users

Users(5,5)

Figure 2: Global architecture

The model is described in such a way that it allows the execution of different calls in
parallel and also calls initiated by the network.

The environment, i.e., the users, are also modeled as SDL process instances that com-
posed the Users Block. The user process represents a combination of a phone line, a
terminal and a user. It is relatively complete with respect to the service-usage life-cycle,
with user-activations, deactivations, updates and invocations all modeled.

In order to provide a general idea of the complexity of the SDL system specifications,
we present in Figure 2 the global architecture of the system and in Figure 3 some relevant
metrics. The global system was simulated using exhaustive simulation in a mood to obtain
the complete reachability graph. Figure 4 gives some information concerning the numbers
of states, transitions, etc, obtained after a manual stop of the exhaustive search/simulation.
It is impossible to construct the whole reachability graph due to the formidable state space
requirement.

5.1 Embedded Testing of the OCS Module

In this paper we only report results on test generation of OCS service module. It is a
system component that is embedded in the Features block and does not possesses any link
with the environment. For the embedded testing of this module, we want to traverse at
least once each of its branches. Stop conditions are used to represent the characteristics
of each branch. To distinguish each branch of the component, we hand-crafted the stop
conditions. Figure 6 illustrates the stop conditions of OCS module.

14

Lines 3098

Blocks 4

Process 9 Number of states 674814

Procedures 12 Number of transitions 2878800

States 88 Maximum depth reached 28

Signals 50 Duration 43 mn 49 s

Macro definition || 12 Transition coverage rate 46.07 %

Timers 0 States coverage rate 70.37 %
Figure 3: Metrics of the service specifica- Figure 4: Partial simulation of the com-
tion plete specification

process BLACKLISTZY)

started_bl

cut_connectign

iparamter ready for_featops

N2, g | |
pid_user, d “i(ach_12.d 140295 | pid_user msg_info Blacktable
= D (already_in_list (n1)(n2)
) TO pid_use =true

pid_user

(e) (fase)

clear_call continue

Figure 5: Blacklist process

In order to perform the simulation of the system we configure a startup that plays the
role of the environment: it starts each process by firing the first transition. We initialize
some variables and some services: the subscribers that invocate the services and actions
each subscribers can do (eg. hangups, activations, disactivations, normal dialing). For
this case study, and the results obtained, we have set this variables around 80 actions for
each users.

15

stop if output continue from blacklist #1
or output clear_call from blacklist # 2
or output ready from blacklist #3
or input add_list_elmnt to blacklist and output feature_op_ok from blacklist | # 4
or trans blacklist : from_update_input_cut_connection #5
or input add_list_elmnt to blacklist and output msg_info from blacklist #6

Figure 6: Stop conditions of the Blacklist process

The results are shown in Figure 7. Note that in the worst case, when finding the stop
condition input add_list_elmnt to blacklist and output msg_info from blacklist (stop # 6),
the simulator only passed through 103 transitions. It clearly shows that Hit-or-Jump
algorithm effectively finds untested transitions without constructing the reachability graph.
Furthermore, the total test sequence is short. Note that the time corresponds to the CPU
real user time (Sun Sparc Ultra-1).

Stop #1 | Stop #2 | Stop #3 | Stop #4 | Stop #5 | Stop #6
Number of states 12 66 96 4 5 104
Number of transitions 11 65 95 3 4 103
Max depth reached 11 50 50 3 4 50
Duration (seconds) 2.5 4.4 6.7 8.6 10.4 11.1

Figure 7: Stop conditions

Once all the transitions of the embedded component OCS module have been traversed,
we obtain a single test sequence, which corresponds to the total path that has been tra-
versed from the environment to the last transition of the module. The obtained sequence
is of length 150; we only need to take 150 transitions to cover the whole OCS module in
the context.

The segment of the sequence in Figure 8 exhibits the invocation of services.

(50," dial_tone/dialed[2]",51)

(51," dialed[2]/net_trigger[addressed,1,2]",52)

(52," net_trigger[addressed,1,2] /invoke[ocs,1,2,user(1),addressed]”,53)
(53,"invoke[ocs,1,2,user(1),addressed]/invoke[ocs,1,2,user(1),addressed]”,54)
(54," invoke[ocs,1,2,user(1),addressed]/continue” ,55)

(55,” continue/continue” ,56)

Figure 8: Invocation of services

Figure 9 shows a series of transitions, which allow us to reach the transition of the
embedded module in the case of the stop output ready (stop #3).

16

The complete test sequence of 150 transitions that cover the whole embedded OCS

[= N SR
A DA W W W
= O O 00

— s =
B o D
D O W

AN TN TN TN TN TN TN TN TN N N
— —
e S
~ N

,"line_free/user_ack”,138)

,"user_ack/cm_ack”,139)
,"cm_ack/handler_exit[call_handler(4)]",140)
,"handler_exit[call_handler(4)]/schedule_user[true]",141)
,"schedule_user[true] /offhook”,142)

," offhook/dial_tone”,143)

," dial_tone/feature_op[ocs,updat]”,144)
,"feature_op[ocs,updat]/user_trigger[ocs,updat,1,1]”,145)
," user_trigger[ocs,updat,1,1]/update[ocs,1,user(1)]",146)
,"update[ocs,1,user(1)]/update[ocs,1,user(1)]",147)
,"update[ocs,1,user(1)]/ready”,148)

Figure 9: Finding the stop condition ready

service module is in Appendix.

We have exercised a Random Walk (see section 3.2) and got a test sequence of 1402
transitions. It is clear that Hit-or-Jump produces a test sequence with a same fault coverage

as a Random Walk but is an order of magnitude shorter.

We have also performed experiments on the embedded testing of the service CFU.
Moreover we have also applied the Hit-or-Jump algorithm to the process Responder of
the INRES protocol[7]. We have also obtained various test sequence lengths with different
mode of search, BFS (Breath-first-search), DFS (Depth-first-search), Merge (a DFS and
then a BFS), and a Random Walk. The following figures contain the results.

Module OCSs Module CFU
Mode DFS | BFS | Merge | RWalk Mode DFS BFS | Merge | RWalk
Depth 50 50 50 Depth 100 100 100
Stops 6 6 6 6 Stops 6 6 6 6
Sequence | 834 | 150 167 1402 Sequence | deadlocks | 137 261 586
Jumps 18 1 0 Jumps <70 0 0

Figure 10: Module OCS Figure 11: Module CFU
Module INRES Module INRES
Mode DFS | BFS | Merge | RWalk Mode DFS BFS | Merge | RWalk
Depth 100 | 100 100 Depth 100 100 100
Stops 4 4 4 4 Stops 5 5 5 5
Sequence | 368 | 36 101 6856 Sequence | stopped | 44 186 | stopped
Jumps 4 0 0 Jumps 0 0

Figure 12: Module Responder

Figure 13: Module Responder

17

6 Conclusion

We have presented a new algorithm to perform testing of components that are embedded
in a complex communication system. It is a natural generalization and also a unification of
random walk and guided random walk algorithms and structured search algorithms. Yet
it does not have the state space explosion problem as is encountered by the structured
algorithms, and it generates high coverage test sequences that are much shorter than that
from random walks.

For convenience, we present the algorithm using extended finite state machine model.
The algorithm can be adapted to other mathematical models such as transition systems
and labeled transition systems. For a similar reason, we conducted experiments on IN
with SDL [10] specification because of its availability. Due to the simplicity and generality
of the algorithm, we believe that it can also be adapted to embedded testing of systems
specified by other languages such as LOTOS [1] and ESTELLE [9]).

The algorithm has been implemented and drives the ObjectGEODE tool. It has been
applied to embedded testing of services of Intelligent Networks (IN). The experimental
results are promising. It avoids the construction of a complete reachability graph, which
is impossible for IN; it conducts a local search only with a space requirement independent
of the systems under test. It effectively covers the whole embedded components of the IN
services under test with a rather short test sequence of only 150 transitions, which is an
order of magnitude shorter than that from random walks.

We have presented a basic version of the Hit-or-Jump algorithm, and have described
briefly a generalization - Guided Hit-or-Jump. Other variations or generalizations can also
be explored. For instance, if there has been no Hit for a large number of Jumps, one might
“backtrack” to the previous Hit, and Jump to a different node to proceed with testing.
Even though in our experiments with IN we have not encountered such problem, it might
not be a surprise for testing components that are embedded in a complex system.

We have not specified the depth of local search for a Jump in case there is no Hit. For IN
we tested on a few depth values, i.e., 50 and 100. Intuitively, a larger depth value increases
the probability of hitting an uncovered part of the component under test. However, it
requires more space and time for each step. Furthermore, a long “Jump” implies a longer
subsequence in the test for this step. We believe that it depends on the system under test
to choose a good depth value. As indicated earlier, one can always choose a depth value
that is within the limit of affordable memory space.

We have tested both Breadth-first-search and Depth-first-search for the local search for
a Hit or Jump. Breadth-first-search seems to perform better; it is “unbiased” and makes
an “equi-distance” random Jump.

References

[1] T. Bolognesi and E. Brinksma. Introduction to the iso specification language lotos.
In Computer Networks and ISDN Systems, volume 14(1), 1987.

18

2]

[14]

[15]

[16]

[17]

E. Brinksma. A theory for the derivation of tests. In Proc. IFIP WG6.1 8th Int.
Symp. on Protocol Specification, Testing and Verification. Horth-Holland, 1988.

P. Combes and B. Renard. Service validation, tutorial. In SDL Forum’97, France,
1997.

M. A. Fecko, U. Uyar, A. S. Sethi, and P. Amer. Issues in conformance testing: Multi-
ple semicontrollable interfaces. In Proceedings of FORTE’97, Paris, France, November
1998.

M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, New York, 1985.

D. Hogrefe. Osi formal specification case study: the inres protocol and service, revised.
Technical report, Institut fiir Informatik Universitat Bern, may 1992.

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, New
Jersey, 1991.

International Standards Organization. ISO/IEC 9074 (E), Estelle: a Formal Descrip-
tion Technique based on a finite state machine transition model, 1997.

ISO. Information Technology, Open Systems Interconnection, Conformance Testing
Methodology and Framework, International Standard 15-9646., 1991.

ITU. Recommendation Z.100 : CCITT Specification and Description Language (SDL),
1992.

D. Lee, K. Sabnani, D. Kristol, and S. Paul. Conformance testing of protocols specified
as communicating finite state machines - a guided random walk based approach. In
IEEFE Transactions on Communications, volume 44, No.5, May 1996.

L. P. Lima and A. Cavalli. A pragmatic approach to generating test sequences for
embedded systems. In Proceedings of IWTCS 97, Cheju Island, Korea, September
1997.

R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989.

A. Petrenko, N. Yevtushenko, and G. V. Bochmann. Fault models for testing in
context. In Proceeding of FORTE, Kaiserslatern, Germany, October 1996.

A. Petrenko, N. Yevtushenko, and G. V. Bochmann. Testing faults in embedded
components. In Proceedings of IWTCS’97, Cheju Island, Korea, September 1997.

A. A. Petri. Kommunikation mit Automaten. Ph. D. thesis, Universitat Bonn, 1962.

19

[18] N. Yevtushenko, A. Cavalli, and L. P. Lima. Test suite minimization for testing in
context. In IWT(CS’98, Tomsk, Russia, August 1998.

[19] J. Zhu and S. T. Vuong. Evaluation of test coverage for embedded system testing. In
IWTCS’98, Tomsk, Russia, August 1998.

Appendix

A complete test sequence of 150 transitions that cover the whole embedded OCS service
module in IN:

des(0,150,151)

(0,"NULL/started_acb",1)
(1,"NULL/started_cfb",2)
(2,"NULL/started_cfu",3)
(3,"NULL/started_bl",4)

(4,"NULL/started_bl",5)
(5,"started_acb/NULL",6)
(6,"started_cfb/NULL",7)
(7,"started_cfu/NULL",8)
(8,"started_bl/NULL",9)
(9,"started_bl/user_started",10)
(10,"NULL/user_started",11)
(11,"NULL/user_started",12)
(12,"NULL/user_started",13)
(13,"NULL/user_started",14)
(14,"user_started/user_started_ack",15)
(15,"user_started/user_started_ack",16)

(16, "user_started/user_started_ack",17)
(17,"user_started/user_started_ack",18)

(18, "user_started/user_started_ack",19)

(19, "user_started_ack/NULL",20)

(20, "user_started_ack/NULL",21)
(21,"user_started_ack/NULL",22)

(22, "user_started_ack/NULL",23)

(23, "user_started_ack/schedule_user[true]",24)
(24,"schedule_user[true] /offhook",25)

(25, "offhook/dial_tone",26)
(26,"dial_tone/feature_opl[ocs,updat]",27)
(27,"feature_oplocs,updat] /user_trigger[ocs,updat,1,1]",28)
(28, "user_trigger[ocs,updat,1,1]/updatelocs,1,user(1)]1",29)
(29, "update[ocs,1,user(1)]/updatelocs,1,user(1)]",30)
(30, "update[ocs,1,user(1)]/ready",31)

20

(31,"ready/add_list_elmnt[1]",32)
(32,"add_list_elmnt[1]/feature_op_ok",33)

(33, "feature_op_ok/onhook",34)

(34, "onhook/cut_connection",35)

(35, "cut_connection/cut_connect[ocs]",36)

(36, "cut_connect[ocs]/cut_connection",37)
(37,"cut_connection/cut_connect_ack",38)

(38, "cut_connect_ack/cut_ack",39)

(39, "cut_ack/cut_connect_ack",40)
(40,"cut_connect_ack/net_trigger[o_end_call,1,1]1",41)
(41,"net_trigger[o_end_call,1,1]/resume_call[o_end_call,disconnecting,1,1]",42)
(42,"resume_call[o_end_call,disconnecting,1,1]/end_leg[1,1]",43)
(43,"end_leg[1,1]/1ine_free",b44)

(44 ,"line_free/user_ack",45)

(45, "user_ack/cm_ack",46)

(46,"cm_ack/handler_exit[call_handler(1)]",47)
(47,"handler_exit[call_handler(1)]/schedule_user[true]",48)
(48,"schedule_user[true] /offhook",49)

(49, "offhook/dial_tone",50)

(50,"dial_tone/dialled[2]",51)
(61,"dialled[2]/net_trigger[addressed,1,2]",52)
(52,"net_trigger[addressed,1,2]/invoke[ocs,1,2,user(1),addressed]",53)
(53, "invoke[ocs,1,2,user(1),addressed]/invoke[ocs,1,2,user (1) ,addressed]",54)
(54,"invoke[ocs,1,2,user(1) ,addressed]/continue",55)

(55, "continue/continue",56)

(56, "continue/resume_call [addressed, connecting,1,2]",57)
(67,"resume_call[addressed,connecting,1,2]/net_trigger[analysed,1,2]",58)
(68, "net_trigger[analysed,1,2]/invoke[cfu,1,2,user(1) ,analysed]",59)

(69, "invoke[cfu,1,2,user(1) ,analysed]/invoke[cfu,1,2,user (1) ,analysed]",60)
(60, "invoke[cfu,1,2,user (1) ,analysed]/proceed[3]",61)

(61, "proceed[3]/proceed[3]",62)

(62, "proceed[3]/resume_call[analysed,completing,1,3]",63)
(63,"resume_call[analysed,completing,1,3]/phonestat_req[1,3]",64)
(64,"phonestat_req[1,3]/called_isfree[user(3)]",65)
(65,"called_isfree[user(3)]/ringback_tone",66)

(66, "ringback_tone/user_ack",67)

(67,"user_ack/ring_start",68)

(68,"ring_start/user_ack",69)

(69, "user_ack/net_trigger [completion,1,3]",70)
(70,"net_trigger[completion,1,3]/resume_call[completion,ringing,1,3]1",71)
(71,"resume_call[completion,ringing,1,3]/action[false]",72)
(72,"action[false] /user_ack",73)

(73,"user_ack/action[false]",74)

21

(74,"action[false]/offhook",75)

(75,"offhook/call_completed",76)

(76,"call_completed/conv_caller",77)

(77,"conv_caller/call_completed",78)

(78,"call_completed/conv_called",79)
(79,"conv_called/net_trigger[acceptance,1,3]",80)
(80,"net_trigger[acceptance,1,3]/resume_call[acceptance,call_in_progress,1,3]",81)
(81,"resume_call[acceptance,call_in_progress,1,3]/call_switch",b82)
(82,"call_switch/schedule_user[true]",83)

(83, "schedule_user[true] /offhook",b84)

(84, "offhook/dial_tone",85)

(85,"dial_tone/dialled[1]",86)

(86,"dialled[1]/net_trigger[addressed,5,1]",87)
(87,"net_trigger[addressed,5,1]/resume_call[addressed,connecting,5,1]",88)

(88, "resume_call[addressed,connecting,5,1]/net_trigger[analysed,5,1]",89)
(89,"net_trigger[analysed,5,1]/resume_call[analysed,completing,5,1]1",90)

(90, "resume_call[analysed,completing,5,1]/phonestat_req[5,1]",91)

(91, "phonestat_req[5,1]/called_isbusy[user(1)]",92)
(92,"called_isbusy[user(1)]/net_trigger[occupation,5,1]",93)
(93,"net_trigger[occupation,5,1]/resume_call[occupation,disconnecting,5,1]1",94)
(94, "resume_call[occupation,disconnecting,5,1]/busy_tone",95)
(95,"busy_tone/onhook",96)

(96, "onhook/net_trigger[o_end_call,5,1]",97)

(97 ,"net_trigger[o_end_call,5,1]/resume_call[o_end_call,disconnecting,5,1]",98)
(98, "resume_call[o_end_call,disconnecting,5,1]/end_leg[5,1]",99)
(99,"end_leg[5,1]/1ine_free",100)

(100,"1line_free/user_ack",101)

(101, "user_ack/cm_ack",102)

(102, "cm_ack/handler_exit[call_handler(3)]",103)

(103, "handler_exit[call_handler(3)]/schedule_ch",104)

(104, "schedule_ch/action[true]", 105)

(105, "action[truel] /onhook",106)

(106, "onhook/net_trigger[t_end_call,1,3]",107)
(107,"net_trigger[t_end_call,1,3]/resume_call[t_end_call,disconnecting,1,3]",108)
(108, "resume_call[t_end_call,disconnecting,1,3]/busy_tone",109)

(109, "busy_tone/onhook",110)

(110, "onhook/net_trigger[o_end_call,1,3]",111)
(111,"net_trigger[o_end_call,1,3]/resume_call[o_end_call,disconnecting,1,3]",112)
(112,"resume_call[o_end_call,disconnecting,1,3]/end_leg[1,1]",113)
(113,"end_leg[1,1]/line_free",114)

(114,"line_free/user_ack",115)

(115, "user_ack/cm_ack",116)

(116, "cm_ack/end_leg [3,1]1",117)

22

(117, "end_leg [3,1]/1ine_free",118)

(118,"line_free/user_ack",119)

(119, "user_ack/cm_ack",120)

(120, "cm_ack/handler_exit[call_handler(2)]",121)

(121, "handler_exit[call_handler(2)]/schedule_user[true]",122)
(122, "schedule_user[true] /offhook",123)

(123, "offhook/dial_tone",124)

(124,"dial_tone/dialled[3]",125)
(125,"dialled[3]/net_trigger[addressed,1,3]",126)

(126, "net_trigger[addressed,1,3]/invoke[ocs,1,3,user (1) ,addressed]",127)
(127,"invokelocs,1,3,user(1) ,addressed]/invoke[ocs,1,3,user(1),addressed]",128)
(128, "invokel[ocs,1,3,user (1) ,addressed] /clear_call",129)
(129,"clear_call/clear_call",130)

(130,"clear_call/resume_call [addressed,disconnecting,1,3]",131)
(131, "resume_call[addressed,disconnecting,1,3]/busy_tone",132)
(132, "busy_tone/onhook",133)

(133, "onhook/net_trigger[o_end_call,1,3]",134)
(134,"net_trigger[o_end_call,1,3]/resume_call[o_end_call,disconnecting,1,3]",135)
(135, "resume_call[o_end_call,disconnecting,1,3]/end_leg[1,1]",136)
(136,"end_leg[1,1]/1line_free",137)

(137,"line_free/user_ack",138)

(138, "user_ack/cm_ack",139)
(139,"cm_ack/handler_exit[call_handler(4)]",140)

(140, "handler_exit[call_handler(4)]/schedule_user[true]", 141)
(141, "schedule_user[truel] /offhook",142)

(142, "offhook/dial_tone",143)
(143,"dial_tone/feature_oplocs,updat]", 144)
(144,"feature_opl[ocs,updat] /user_trigger[ocs,updat,1,1]",145)
(145, "user_trigger[ocs,updat,1,1]/update[ocs,1,user(1)]",146)
(146, "update[ocs,1,user(1)]/updatelocs,1,user(1)]", 147)

(147 ,"updatel[ocs,1,user(1)]/ready",148)
(148,"ready/add_list_elmnt[1]",149)

(149,"add_list_elmnt[1] /msg_info [already_in_list] " 150)

23

