In: Massively Parallel Processing Applications and Development (L. Dekker, W. Smit and
J.C. Zuidervaart, eds.), North-Holland, 1994, pp. 389-396.

Efficient performance evaluation of parallel systems

H. Jonkers, A.J.C. van Gemund, G.L. Reijns

Delft University of Technology, Faculty of Electrical Engineering
P.O. Box 5031, 2600 GA Delft, The Netherlands
{h.jonkers, a.vgemund, g.l.reijns}@et.tudelft.nl

For the effective development of applications running on massively parallel systems,
efficient but reliable performance predictions are required. However, existing performance
evaluation formalisms are either not directly suitable for modelling parallel applications, or
are too computationally expensive. To alleviate these problems, two novel methodologies
have recently been introduced, one based on fast deterministic predictions and one based
on traditional probabilistic performance modelling (queueing theory). This paper for the
first time compares these two methodologies to each other, based on a distributed-memory
case study. Both turn out to have their own merits, and depending on the purpose of the
performance predictions the most appropriate methodology can be chosen.

Keywords: Performance evaluation, distributed-memory computing, case study, re-
source contention, serialization analysis, closed queueing networks.

1. INTRODUCTION

Given the need to integrate performance analysis at various stages of the parallel ap-
plication design process, a performance modelling methodology which combines low cost
with a high-reliability prediction becomes a critical factor in exploiting the potential of
high-performance computing. In performance modelling, a trade-off exists between predic-
tion reliability and efficiency of analysis, resulting in a performance prediction hierarchy.
In case of parallel processing, traditional performance modelling techniques are either
unreliable or entail prohibitive evaluation cost. Although many extensions have been pro-
posed and a large number of application-specific models have been developed, no unified

Source code Object code (VIRTUAL)
COMPILER
PROGRAM MACHINE

Inner fiaedback Program
oop ok
Outer feedback description
loop | PERFORMANCE
‘ PREDICTOR Machine description

Figure 1. Parallel programming environment with performance feedback

methodologies have yet emerged. In order to alleviate these problems two new modelling
methodologies have been introduced separately, PAMELA and Glamis, each representing a
different position on the trade-off. Given a parallel application development environment
with performance feedback, as shown schematically in figure 1, PAMELA is most eligible
for the inner feedback loop (compile-time optimization), while Glamis is more appropriate
for the outer feedback loop.

Within the PAMELA methodology [2] the emphasis is on static prediction which inher-
ently yields fast but relatively inaccurate performance models. While current compile-time
estimation techniques do not account for contention, PAMELA features an approxima-
tive contention analysis method (serialization analysis) which introduces a fundamentally
higher prediction reliability without cost penalty. Due to the static approach, PAMELA
models are typically symbolic, thus allowing for a full parameter study without recompi-
lation.

Glamis [4], on the other hand, extends probabilistic performance modelling techniques
(in particular queueing networks), yielding more accurate (although often numerical in-
stead of closed-form) predictions at the expense of somewhat higher analysis costs, which
however are still polynomial as opposed to some alternative probabilistic techniques. Con-
trary to standard queueing models, Glamis allows for the specification and analysis of
certain kinds of condition synchronization.

Both PAMELA and Glamis exploit inherent replications in parallel systems to further
reduce the analytical complexity of the models. An additional advantage of this approach
is that it results in models that are scalable. This is of particular importance for massively
parallel systems, which generally exhibit a very high degree of replication. While the
principles of both methodologies have been published separately, and case studies of
shared-memory applications have been reported, this paper compares the results of the
two methodologies to each other, based on a distributed-memory (MPP) case study.
Because of space limits, we refer to the previous publications for an overview of PAMELA
and Glamis.

The remainder of this paper is organized as follows. In section 2, the case study is
introduced. Section 3 presents the PAMELA model and serialization analysis, while in
section 4 the Glamis model and its analysis are treated. Section 5 present the results of
the different prediction methods and compares them to simulations. These results are
discussed in section 6. Finally, in section 7 some conclusions are drawn.

2. CASE STUDY: MATRIX-VECTOR UPDATE

Consider a matrix-vector update y < y + Az, carried out on a distributed-memory
architecture with P processing nodes interconnected in a unidirectional point-to-point
ring topology. The architecture (for P = 6) is shown in figure 2.

The N x N matrix A is block-partitioned over the processors, in an intentionally sub-
optimal column-wise way in order to emphasize the role of interprocessor communication.
Every processor owns b = N/P columns (b is the block size), assuming P|N. The SPMD-
(pseudo)code is listed in figure 3. In this code, SEND(p/, u) (synchronously) moves a data
element « from node p to node p’, while RECV(p’) returns a data element sent by node p'
to node p.

node(p):
myl=0b*p; myu=>bx*(p+1)—1;
for:=0...myl—1
do for j = myl... myu
do SEND(i/b, Al j]);
for : = myu+1...N —1
do for j = myl... myu
do SEND(i/b, Al j]);
for ¢« = myl... myu
do {
for j = myl...myu
do yli] := y[i] + Afz, 5] * 2[];
for j=0...myl—1
do y[i] := ylil+RECV (j/b)raljl;
for j=myu+1...N—1
do y[i] := ylil+RECY (j/b)raljl;

Figure 2. Ring architecture

Figure 3. SPMD code of matrix-vector update

In the example, we use the following parameter settings: the duration of one floating-
point operation is {; = 0.200 time units, the access time of a link is ¢; = 0.025 time units,

N =60, and P ranges from 1 to 60 with P|N.

3. PAMELA MODEL AND SERIALIZATION ANALYSIS

Corresponding to the procedural modelling paradigm, condition synchronizations are
ignored in the PAMELA model. Furthermore, we only model the SEND statements and
floating-point operations, assuming that the RECV operation only accounts for synchro-
nization and local data transfers. The resulting PAMELA model is

L=par(p=0...P—-1){
seq(1=0...bp—1)seq (j=0bp...b(p+1)—1) send(i/b);
seq (1 = b(p—l— 1)...N—1)seq (j=bp...b(p+1) —1) send(i/b);
seq (1=0bp...b(p+1)—1){

seq (j =bp...b(p+1)— 1) { flop; flop; }

seq (j =0.. bp— 1) { flop; flop; }

seq (j = b(p+1)...N —1) { flop; flop; }

The machine model associated with the ring architecture is simply:
flop = delay(ty)
send(p’) = seq (k=0... K —1) use(l(y4r)moar, 1)
where K = (P + p’ — p) mod P denotes the number of links involved in the transmission
(forwarding costs are ignored). Thus, the links are assumed to be the only sources of
contention.

According to the serialization transformation (transformation 2) introduced in [1], the
PAMELA prediction for the completion time T}, equals

Tpam — maX{Tcpl)m Umax}
where Tipix is the completion time obtained with complexity analysis (ignoring link con-
tentions) and opax is the maximum workload on a link. Complexity analysis makes use
of the following model of send

send(p’) =seq (k=0... K — 1) delay(¢;) = delay(K,)

with K = (P + [i/b] — p) mod P. Traditional analysis yields

bp—1b—1 N-1 —
Tcplx—max 01 (Z Z[th—l- Z Z[th) —I-QbNtf

1=0 j=0 i=b(p+1) 7=0
which eventually reduces to

P(P—
2

1
Tcplx — bz)tl + QbNtf

In order to derive the link workloads needed for serialization analysis, we consider the
visit count V; on links ly...[p_;. From the structure of I and send it immediately follows

P—1 [bp—1b-1K-1 N-1 b-1K-1
=T (EEE e ¥ EY
=0 \ i=0 j=0 k=0 i=b(p+1) 7=0 k=0
where
=[(p+ k) mod P=1I] and K = (P + [i/b] —p) mod P

This formula eventually reduces to
P(P—1)

2

Thus, for each link the workload .« 1s equal and given by
P(P—1)
2

By the above transformation it holds
P(P—1) bQP(P - 1)
2 " 2

which implies that serialization yields the following execution time, which is equal to the
result of complexity analysis:

P-1 2
Toorm = CX:NQ(t —t)
P pl op Tt pls

For a more complete derivation of these expressions we refer to [1].

V=0

2
Omax = b tl

Tham = max {62 1+ ZbNtf}

4. Glamis MODEL AND ANALYSIS

Again, we will assume that the links are the only sources of contention. Therefore,
every link is modelled by a single queueing centre. Other work is local to a processor, and
is modelled by a delay centre. A regular queueing model is shown in figure 4, where the
circles labelled D represent a delay centre.

- Ok
Larar

Figure 4. Queueing model (P = 6)

Figure 5. Glamis machine model

In the Glamis model, the symmetries present in the queueing model are exploited in
order to reduce the complexity. All the delay centres can be merged into one infinite
server centre. Although for every processor separately the workload on all of the links is
different (the link nearest to the processor, in the transmission direction, is most frequently
accessed), all links experience the same total workload. In order to keep the model
tractable, an even distribution is assumed. Because the average workload per processor
is the same for every link, this assumption does not significantly violate the real situation
(especially when a probabilistic, exponentially distributed, service time is used, which
more or less accounts for the variation in the service demands). The number of links
is equal to the number of processors, so that the queues representing the links can be
combined into one block of equivalent queueing centres. The optimized Glamis queueing
model is shown in figure 5, or in tuple notation (I(ts), Q?(¢;)). The time needed to receive
a message is assumed to be incorporated in the floating-point times, and is not explicitly
modelled.

The program consists of one parallel section of P tasks, every task executing the SPMD-
program once. Every task performs 2N?/P floating-point operations and (N/P)*(P —1)
SENDs. The number of link accesses (“hops”) during a SEND ranges from 1 to p— 1, every
number of hops occurring with the same frequency. This results in an average link visit
count of $(N/P)*(P — 1). The resulting program model is

P (2N*/P,(N/P)*(P —1)/2)

In this case, the assumption made in MVA that the order of the resource usages is irrele-
vant will lead to an under-estimation of the contention delay. This is due to the fact that
the SENDs are completely concentrated in the beginning of the tasks and the floating-
point operations in the end of the tasks. Especially for a small number of processors
this effect is notable. Because of the total separation of the SENDs and the floating-point
operations, the tasks can be split in two, as shown in figure 6 (the shaded areas denote

communications, the open areas computations). The resulting graph does not have an
SPS-structure (sequence of parallel sections [4]), but its structure is approximately SPS, so
that approximate results can be obtained by inserting a barrier synchronization. A trace
of the simulation results shows that there is hardly any overlap of communications and
computations. Therefore, the approximations are expected to be good. In tuple notation

SCLER

Figure 6. Insertion of barrier synchronization in the task graph

the “split” program model becomes
P (2N?/P.0); P {0, (N/P)*(P —1)/2)

The models can be analysed in a straightforward manner using regular single-class MVA,
both for the original program model and the program model with split tasks. In the latter
case the exact solution can be expressed in closed-form because of the total separation of
floating-point operations and link accesses (SENDs). The duration of the 2N?/P floating-
point operations is simply (2N?)/Pt;, or with the given parameter settings 7200/ P time
units. The total throughput of the block of queues representing the links (QF(¢;)) with P
jobs is X(P) = P/((2P — 1)t;) [4], which results in a response time (i.e. duration of one
link access) of R(P) = P/X(P) = (2P — 1)t;, which with a total of N*(P —1)/(2P?) link
accesses gives a completion time of N?(P—1)(2P—1)t;/(2P?), or with the given parameter
settings 360(P — 1)(2P — 1)/ P? time units. This yields a total program completion time
of

7200 360(P —1)(2P —1) 360(2P% + 17P +1)
Tsplit(P) = Iz + P2 = p2

In the original situation (without splitting the tasks) a closed-form expression exists for
the Bard/Schweitzer approximate solution. Given the general equation for a delay centre
and m identical queueing centres derived in [3], and the chosen parameter settings, this

results in a completion time of

_ 180(2P% 4+ 17TP + 1 + \/APT — 12P% 1 453P% — 46P + 1)
_ =

Torig(P)

5. RESULTS

The results of our models in terms of speedup (i.e. T(1)/T(P)), are shown in figure 7.
The predictions are compared to simulation results, which may be considered to be the
real (“measured”) values, given our aim to evaluate analysis techniques rather than actual
modelling accuracy. The speedups are lower than those that are usually achieved with a

matrix-vector update on an actual ring architecture, due to the intentional sub-optimal
data partitioning. In the simulations, all the delays are deterministic. The simulation
program has been written in C, making use of the VOP concurrent simulation library [5].
Also the predictions obtained with (parallel) complexity analysis (disregarding link con-
tentions, but including link delays) are included in the picture.

16
14 ¢
12+
a 10 ¢
)
i
|
»
Simulation ——
4+ 7 Glamis (orig.) ——
4 Glamisgspht rrrrrrrrr
2 PAMELA/ Complexity
0

0 10 20 30 40 50 60
NR. OF PROCESSORS

Figure 7. Speedup of matrix-vector update

6. DISCUSSION

Both Glamis models are able to predict the speedup well. However, the results of the
modified model (with split tasks and barrier synchronization) are slightly more accurate.
The original model under-estimates the completion times (and hence over-estimates the
speedup values, because the prediction for P = 1 is exact), while the modified model
over-estimates the completion times. For increasing P both predictions converge to the
simulation value, in contrast to complexity analysis. This is due to the fact that the
influence of link contentions grows as P increases.

As mentioned in the section 3, in this particular example the PAMELA predictions co-
incide with those of complexity analysis, which indicates that the effects of contention do
not dominate the performance. This is due to the number of (link) resources scaling lin-
early with the number of processors, thus maintaining balance (note that this is also true
for many other distributed-memory architectures, e.g. meshes). Yet, the predictions still
considerably over-estimate the simulated speedup. However, the analysis technique can
only partly be accounted for this, because scheduling non-determinism can have a large
impact on the effects of contention. In this case it even turns out that the communication
schedule of the algorithm can be modified in such a way that a completely conflict-free
execution is obtained (in which case the prediction is correct). Thus, PAMELA predictions
provide diagnostic information indicating the feasibility to optimize the implementation.
However, the fact that PAMELA predicts a better performance than that is actually mea-
sured, does not in all cases guarantee that a better implementation is possible.

7. CONCLUSIONS

This paper presents a first comparison between the two parallel application performance
modelling methodologies PAMELA and Glamis, based on a simple distributed-memory case
study. Although one example does not allow for a thorough comparison, it does show the
main advantages and drawbacks of the two methodologies with respect to each other and
to related methodologies.

Both methodologies provide a theoretical framework for modelling and analysing the
performance of parallel and distributed systems. When contention dominates, PAMELA’s
serialization analysis, by accounting for the effects of contention, outperforms traditional
static compile-time reduction approaches, at a negligible increase of cost At the expense
of a somewhat higher (but still polynomial) analysis cost, Glamis enables the analysis
of additional dynamic (non-deterministic) aspects, and offers the possibility to generalize
over classes of machines and programs. While PAMELA always gives closed-form predic-
tions, analysis in Glamis is generally numerical (although in the case study presented in
this paper also Glamis gives closed-form expressions).

Opposed to some other performance modelling methods frequently applied to predict
the performance of parallel systems (e.g. Timed Petri Nets), the key target of PAMELA
and Glamis is efficiency of analysis, which is of crucial importance for the performance
evaluation of massively parallel systems. However, their modelling power is still kept
sufficiently high to obtain reliable predictions. The way in which our methodologies treat
replications (both at the machine level and the program level) results in models that
are easily scalable. Another important aspect is the reusability of machine models and
program models, which is achieved through a clean separation of the two (in PAMELA
machine influences are incorporated in a program model by substitution, while in Glamis
the separation is accomplished by the definition of a mapping from instructions to visit
counts). In the case study presented in this paper, the Glamis predictions better approach
the actual performance, while PAMELA predicts that it might be possible to construct a
better (even totally contention-free) implementation.

REFERENCES

1. A.J.C. van Gemund, “On the analysis of PAMELA models,” Tech. Rep. 1-68340-
44(1993)05, Delft University of Technology, Delft, The Netherlands, Dec. 1993.

2. AJ.C. van Gemund, “Performance prediction of parallel processing systems: The
PAMELA methodology,” in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo,
Japan, July 1993, pp. 318-327.

3. H. Jonkers, “Queueing models of shared-memory parallel applications,” in Proc. UK
Performance Engineering Workshop for Computer and Telecommunication Systems,
Loughborough, U.K., July 1993.

4. H. Jonkers, “Queueing models of parallel applications: The Glamis methodology,” to
appear in Proc. 7th Int. Conf. on Modelling Techniques and Tools for Comp. Perf.
Fuval., Vienna, Austria, May 1994.

5. R.Pulleman, “Simulation of VOP models,” Tech. Rep. 92 TPD-ZP 938, TNO Institute
for Applied Physics, Delft, The Netherlands, Sept. 1992.

