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Abstract—We investigate ultrashort pulse generation based [14], [15] in cavities optimized for self-starting. Even then, the
on the fundamental soliton generation that is stabilized by a measured mode-locking build-up time is in the order of several

saturable absorber. The case of an absorber with a recovery ijiceconds. Thus, usually separate starting mechanisms are
time much longer than the pulsewidth of the generated soliton required [4], [16]

is investigated in detail. Based on soliton perturbation theory ]
we derive equations for the soliton variables and the continuum  In order to generate the shortest pulses, the modulation
generated in a mode-locked laser. Analytic criteria for the tran- depth of the absorber has to be maximum. In a KLM laser
fété%ﬁ‘tsfrg?msgﬁg{?attz ltji‘?gtgglsesiz(i)l:::t;gfglj?rzrsi[é)or? p?l:lesgegrglnegétTigre] the generated artificial, saturable absorption and the self-phase
by a slow saturable absorber only. The theoretical results are mOdUI"_’ltlor_] have the same origin: the intensity depen_deqt
compared with experiments. We generate pulses as short as 13 trefractive index. Recent measurements of the beam waist in

using only semiconductor saturable absorbers. KLM lasers suggest, that the self-phase modulation (SPM) in
sub-10-fs lasers is overdriven and might limit further pulse
. INTRODUCTION shortening.

glid-state lasers can generate ultrashort solitonlike pulses

femtosecond pulses has been achieved. Colliding qué de-locked onlv b | turable absorber. B
mode-locked lasers, producing pulses as short as 27 fs wifen mode-locked only Dy a slow saturable absorber. by a

replaced by the Kerr-lens-mode-locked (KLM) Ti:sapphird . . . .
Iagers [2]_[)2]_ This new solid state Iasef mat)erial topgpethg?covery time much longer than the final pulsewidth [18]. This

with KLM allows for a routine production of 10-fs pulses's a regime Of_ mode-locl_<ing,_ where Fhe pulse is completely
and lower [5]-[8], if the higher order dispersion is carefully?h@P€d by soliton formation, i.e., the interplay between nega-
controlled [9], [10]. Due to the nonresonant nature of thd/€ group-delay dispersion (GDD) and SPM. The absorber

Kerr effect in crystals, KLM can be used to mode-lock laseflynamics only stabilizes the soliton against the growth of
from the visible to the near infrared without any additiondfackground radiation. In the final stage of pulse formation, it
intracavity elements. Despite its success, KLM has also soffighe solitonlike pulse shaping that locks the modes together.
disadvantages. KLM is based on the generation of an artifici4fith this method we can generate pulses, which are consider-
fast saturable absorber effect due to the self-focusing ti@tly shorter than the recovery time of the absorber. Therefore,
occurs inside the laser crystal [11] for subpicosecond puls¥é call this scheme soliton mode-locking stabilized by a slow
To enhance self-focusing one usually operates the cavity clg&urable absorber.
to the stability limit, so that the cavity is sensitive to small It is well known that solitonlike pulse shaping, due to SPM
additional intracavity lensing effects [11], [12]. Thus, KLmand GDD generates pulses that are both shorter and more
interrelates the laser modes with the laser dynamics. This le&ble [5], [9], [19], [20]. Both mechanisms are the ingredients
to a complex spatio-temporal laser dynamics [13] and resultsf@f the existence of average, or guiding center solitons [21]
a restricted cavity design. Furthermore, very short pulse lasétsmode-locked lasers. These solitons are governed by a
based on a fast saturable absorber alone, have an intrif¥¢turbed nonlinear Scbdinger equation [22] as long as the
problem to self-start from a continuous-wave (CW)-operatioghanges of the pulse in the nonlinear elements per round-trip
This is simply due to the fact, that the peak intensity changage small [23], [24]. However, the traditional mode-locking
by about six orders of magnitude when the laser switches fr@@hemes [25] rely either on a fast saturable absorber, as is
CW-operation, where the pulse energy is distributed over abdbe case for additive-pulse or KLM mode-locked systems
10 ns, to a 10-fs pulse. Thus, nonlinear effects which are 0], [26], [see Fig. 1(a)] or on the interplay between a slow
the order of one in pulsed operation are of the order of®lif  saturable absorber and gain saturation, as is the case with
CW-operation, if the absorber is not completely oversaturatdgle lasers [27], [28], [see Fig. 1(b)]. The two mechanisms
when it reaches steady-state pulsing. Currently, self-startiogen a net gain window in time so that only the pulse itself
KLM lasers have been demonstrated down to about 50 gperiences gain per round-trip. This permits the system to
Manuscript received September 11, 1996; revised January 10, 1997. ﬂ@criminate against noise that may grow outside the net
paper was supported by the Swiss National Science Foundation. gain window, and therefore the pulse is kept stable against
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Il. BASIC MODEL OF SOLITON MODELOCKING
WITH SATURABLE ABSORBERS

In this section, we set up the basic model for a laser mode-
locked with a saturable absorber and derive the governing
equations that describe the mode-locking process. The laser
pulse that builds up in the cavity will experience changes over
one round-trip due to GDD, SPM, gain, loss, filter action due
to the finite gain, output coupler and mirror bandwidth, a time
dependent absorption and phase change due to the absorber
(see Fig. 2). Following the master equation approach of Haus
[31], we obtain for the equation of motion of the laser pulse

Fig. 1. Pulse-shaping and stabilization mechanisms owing to gain and "f\?eraged over one round-trip
dynamics in a mode-locked laser in case of using: (a) a fast saturable absorber,

(b) a slow saturable absorber plus slow gain saturation, and (c) a slow saturable 8A(T, t)

(b)

absorber plus soliton formation. R T
A
does not close immediately after passage of the pulse, [see - _'LDW +i6]A[°A
Fig. 1(c)]. This is possible in the soliton regime because, for 92
the soliton, the nonlinear effects due to SPM and the linear +|9—1+ Dy s 912 q(T’, )| AT, ). 1)

effects owing to the negative GDD are in balance. In contrast,
the noise or instabilities that would like to grow are notlere, A(7, t) is the slowly varying field envelopelr the
intense enough to experience the nonlinearity and are therefé@¥ity round-trip time, D the intracavity GDD, D, ; =
spread in time. However, when they are spread in time thgy$2; -+ 1/} the gain and intracavity filter dispersiof, and
are even absorbed by a slowly recovering absorber. Thédy, are the HWHM gain and filter bandwidth, respectively. The
the instabilities experience less gain per round-trip than tf&M-coefficients is given byé = (2r/AoAL)n2fr, where
soliton and they decay with time. We verified this theoreticatz IS the intensity dependent refractive index of the laser
prediction experimentally, by showing that a semiconduct6fyStal, Ao the center wavelength of the pulse ard and
saturable absorber with a 10-ps response can generate pulsés 48€ effective mode area in the laser crystal and length of
short as about 300 fs [29]. Meanwhile, based on this principf@€ light path through the laser crystal within one round-trip,
we can generate pulses as short as 13 fs by using brotggpectively. The frequency independent Igsses per round-trip
band semiconductor saturable absorbers [30]. This is clearl® denoted by, g = go/[1 + W/(PLTr)] is the saturated
regime which was previously only possible by KLM. But ind@n, o the small signal gain, ané;, the saturation power.
addition to KLM-lasers our pulses are self-starting with modé? 1S the pulse energy
locking build-up times in the 20@s regime. Since, we use Tr/2
real absorbers we can independently optimize the self-phase W= |A(T, t)| dt. 2)
modulation and the saturable absorption so that the laser self- ~Tr/2
starts reliably without overdriving the SPM when reachingve assume a gain medium with a long relaxation time and a
steady-state pulsed operation. The use of real absorbers #sge saturation energy. Therefore, the gain is only appreciably
has drawbacks: the absorber can be damaged due to dhrirated by a series of successive pulses traveling through
deposited heat and the absorber has to be designed fahe gain medium, i.e., we neglect the gain saturation during
broad bandwidth if short pulses have to be achieved. Howeveach individual pulseg(T’, ¢) is the response of the saturable
as will be demonstrated by the experimental results, this absorber due to an ultrashort pulse. We assume that the pulse
manageable. is much longer than the transverse relaxation time of the
The paper is organized as follows. First we set the theorebsorber, i.e., the absorber is broad band, so that we can
ical treatment presented in [18] on a firm foundation and als®glect coherent effects in the absorber. Then the absorber
include refractive index changes due to the absorber, whidinamics is described by the simple rate equation
seem to become very important when using semiconductor
absorbers. Then, we use soliton perturbation theory to derive (T t) = 1=D_ AT, I q. (3)
stability relations against the growth of background radiation. ot 7A Es
Based on these relations, we derive limits with respect Here, 74 denotes the relaxation time anH, the satura-
pulsewidth that can be achieved with a given absorber. fion energy of the absorber. If the absorber is a two level
Section V, we compare the theoretical results with experimeraissorber, driven at resonance, with a transverse relaxation
and show that self-starting lasers in the 10-fs range can tile much shorter than the pulsewidth, the associated change
constructed using only semiconductor saturable absorbers andhe refractive index can be neglected. However, in the
soliton mode-locking. In Section VI, we perform numericatase of semiconductor absorbers the free carriers generated
simulations, which demonstrate that the experimental resultsisdhe material contribute to the refractive index. Because the
far achieved can be understood within the theoretical modsksturation of the absorption and the refractive index change
discussed in this paper. are related to the excited carrier density, we assume that they
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To find an approximate solution of the master equation (1) we
Fig. 2. Schematic of the laser model described by the master equation oﬁl later use soliton perturbation theory.

mode-locking.

. o . Ill. ABSORBER RESPONSE
are proportional to each other like in semiconductor lasers.

The refractive index change is then implemented in the masteft 1S instructive for the following sections, to solve the
equation (1) by a complex saturable absorption saturable absorber equation for a sech-shaped pulse

(T, ) — q(T, t)(1 + i) (4) As(t) = Aosech (;) (10)

where thex-parameter, often called the linewidth enhancemeftd asech-shaped pulse with a small perturbatigdm
factor, is the ratio between the amplitude absorption and the

refractive index changes [33]. Note, that thgparameter used Asp(t) = Aosech < ) + AA( )

here is twice the value usually used in literature since (1)

describes the dynamics of the field amplitude and not of tietroducing the normalized time = ¢/7 (3) reads with (11)

(11)

field intensity. up to the first order in the perturbation
The basic equation (1) is a generalized Ginzburg—Landauaq(x)
equation describing an enormous wealth of physical phenom-W =—¢(q - qo)
ena in nonequilibrium phase transitions in general [32] and AA 4+ AA*
; . . . . Y 2 +
fluid flow [34], [35] in particular. No analytic solutions to = 5 q|sech’(z) + A—OseCh(w) - (12)

the full master (1) are known. Without the dissipative terms _ _ _
due to gain and loss, (1) reduces to the nonlinear@&tihger Here,e = 7/7,4 is the ratio between the pulsewidth and the
equation that has the following fundamental soliton soluticibsorber recovery time and= W/E, is the ratio between

in case of negative GDD [22] the pulse energy and the saturation energy of the absorber. This
‘ differential equation is linear iy and, therefore, its solution
A (T, t) = Agsech [z(T, t)]e#Tt) (5) up to first order in the perturbation is given by
where q(z) = qs(z) — / da”
1 - y

= = (t+2DpoT — to) 6) . exp { (@ = a") = % [tanh () - tanh (a:”)]}
is a retarded time normalized to the soliton widthThe total % {AA(“UN) +Aa4" (@) y as(z") sech(a:”)} d”
phase is given by Ao 2

(13)
1 T
0 = —pot — D<; ) Tn + o. (7)  whereg, is the solution to theech-shaped pulse only
Yet, the collective variables of the soliton, i.e., its amplitude, qs(x) = qoe / exXp { e(x —a')
phase, center frequency, and timing shift are not fixed. There- y e
fore, we have introduced in addition, a frequency offsgt — 5 [tanh (z) — tanh (wl)]} dx’. (14)

from the assumed carrier frequency, a timing shiftand a
initial phasef,. The energy contained in the soliton is relate
with its amplitude via

Ip the case of an infinitely slow absorber, i.e.= 0, the
unperturbed absorption is explicitly given by

s, e=0(x) = qo exp {—%[1 + tanh (a:)]} (15)

W = / ST, 1) dt
For the case of a fast absorber—~ co, we obtain
= 2A07'. (8) E.
(Is,e—wo(x) = qTA|2 ; where PA = -4 (16)
The FWHM of the soliton is given byrwunv = 1.767. The 1+ 5= 74
A

soliton is a consequence of the balance between GDD and
SPM. This balance is achieved when the chirp introduced Is/the saturation power of the absorber. Fig. 3 shows the pulse
GDD is compensated by the nonlinear phase shift due to SRi¥d the unperturbed absorber response for different values of
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with

a(x) = Asech (z),
and

T
T = 1 t+2D / p(TYdT' —to (19)
T 0

(x)zuoes

where a. is the continuum contribution. The phase is deter-
mined by

- D T 1 ! !
Normalized Time, x 0(T) = 0o(T) - Tr /0 [W —p(T )2} ar’  (20)

Fig. 3. Response of a saturable absorber for different ratios betwqg;hereby we always assume that the relation between the

pulsewidth and absorber recovery time Fast absorber limitt = oo . . . . . .
slow absorber limite = 0. soliton energy and soliton width is maintained
|D| _ SA(T)?

the normalized absorber recovery time but a fixed pulse energy 7(T)? 2
five times the saturation energy of the absorbes 5. In the  Appjication of soliton perturbation theory using the notation

case of a nonsaturated absorber the pulse and the Cha”gﬁe%loped in [38] gives the following set of coupled differ-

absorption overlap completely. If the absorber is also fast, {gja| equations for the soliton parameters and the continuum
absorption change is a picture of the pulse shape itself erated:

therefore becomes symmetric. A fast absorber also saturates

with the pulse intensity rather than W|th_ the pulse energyr, 8_W :2[9 _— Dg,Qf - D, fp2 _ q}(W)}W

In contrast, a slow absorber saturates with the pulse energy 97 37

and shows a strong asymmetric response. Thus only the front + (P |(R+Rp)a.) (22)
wing of the pulse experiences absorption. If the absorber is gy, 4D, 5 @

strongly saturatedy > 1 and in the case of a slow absorber Tr 5r = =3 — 57 P + (W) + (;7|(R + Rp)a.) (23)
or y/e > 1, the absorption change and the pulse do not dto

Saturable Absorption q(x} / g

(21)

overlap any more. This is important, because then the responde 5 = (W) + (£ (R + Rp)a.) (24)
of the absorber onto a perturbed pulse, [see (12) and (13)], 9 P T

no matter whether the absorber is fast or slow, goes to thg, =0 :éS(W) + e/ <2 / DpdT” +TRt0>

first order independent of the perturbation. This means, that or 0

the absorber response mostly depends on the pulse energy + (féﬂl(R—l—RD)ac)- (25)

and not on the detailed shape in contrast to an unsaturated

fast saturable absorber. Later, we will focus on the case A$ has been shown in [38] the continuum can be written as
strongly saturated absorbers. For a pulse much shorter than 00 _

the recovery time of the absorber the response of the absorber a. = / dk[g(k)[f > +g(E)|fr >] (26)
is essentially independent of the pulse shape and is roughly

given by ¢,(¢) = qo — ¢ exp[—t/74] for ¢ > 0 assuming the where the spectra of the continuusf&) andg(k) are related

pulse arrives at = 0. The depth of the modulation is given byby

— o0

g(k) = g(—k)*. 27
g:q0<1—exp {_EED an | | 9 )' 9(=Fk) (27)
A The continuum is determined by the spectrum through
and depends only on the pulse energy and the saturation energy 9?G(x) 9G(x)
EL e ==""5 5 + 2 tanh (z) Ba
— tanh? (2)G(x) + G*(x) sech?(x) (28)
V. SOLITON DYNAMICS STABILIZED whereG(z) is Gordon’s associated function [36], which is the
BY A SATURABLE ABSORBER inverse Fourier transform of the spectrum
Application of soliton perturbation theory to (1) gives o0
equations for the four collective variables of the soliton and G(z) = / g(k)e™*™ dk. (29)
the continuum generated by the perturbations on the soliton. -

We assume that the solution of the full master equation (1) Therefore, we obtain for the time evolution of the continuum
a soliton with time dependent soliton parameters, amplitude, dg(k)
center frequency, phase and timing plus a small continuurd’z 9T
contribution

= —i[®o 4 Pok? + 2B okpT]

+ <f15+)|(R + RD)ac> + <f£+) |Ra($)e—ipt>
AT, 1) = a(@)e™ " + a (T, )] (18) (30)
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with the redefined phase shift per round-trip The auxiliary functionsh,,, hy, hg, andh, are defined by
. 90 Ot 5 P (e,
by :(I)O+TR8_19 +‘I>0(p7‘)2—TRp ﬁ (31) ( yl) o
= ﬂ gs(€ v) sech? (z)dx (42)
0 J—00

Here, we have introduced the following abbreviations. The
continuum vectora, is given by (a., aX) and the soliton hp(e, y)

C

\_/ecto_ra is def_ined analpgously. The operaRrdescribes the _ 1 / gs(c, ) tanh () sech? (z) da (43)
linearized action of gain and loss: 9 J_oo
he (e, y)
1 92 l+ia 0 ’ %0
R —g<1 + Q272 @) —l- qS(t)( 0 1- LOé) (32) _ 1 / ¢s(¢, ¥)[1 — x tanh (x)]sech? (z) dz  (44)
90 J—
where ¢,(t) is the absorber response when saturated by thelue (e, ¥)
soliton. This response is given by the solution of (3) with _ 1 /Oo W2 (2)d 45
A(T, t) = as(T, t), as discussed in Section Ill. Note, that g0 J_oo 2(6, y)asedy” () da. (43)

the linearization of the absorber response to first order in tpeth limit of | bsorbere (— 0 btain th

continuum, i.e., the perturbation to the soliton, is negligibl € imit of a very slow absor efe (= 0), we obtain the

for a strongly saturated absorber, as discussed at the grqgly'ucal results

of Section Il and which we will assume for the following. 1

The vectorsff,f’), féJ’), f,§+), and ft(+) project onto the soli- Pl 0, ) = Q [ = exp (=) (46)

ton energy, phase, carrier frequency and timing due to thed

perturbations added to the soliton dynamics. Analogously, 2 Y

the vectorsf ") project onto the continuum contribution. A hp(0, ) = <§> {1 —exp (~y) = 5[1 +eXp(_y)]}'

detailed definition of the projection functions can be found in (47)

[38]. The quantities with a tilde describe the shift in the soliton

variables per round-trip due to the response of the saturablee auxiliary functions are evaluated in Fig. 4(a)—(d). Note, if

absorber excited by the soliton there is only an absorption change associated with the saturable
absorberp = 0, then there is no shift in frequency and phase

G (W) = 1 <f&+)|qs(t)a5(t)<1 J_rig>> (33) of the _solitczn due to the absorbgr. The r_educed Ioss_ seen by

the soliton,g; < ¢o, favors the soliton against the continuum,

. _/eth) 1+ i i.e., the background radiation, which will be the subject of the
ps(W) = <fp |95 (t)as(2) <1 _ La>> (34) next sections. The continuous timing shiftwhich is due to

B 14 ia the fact that during each round-trip only the front part of the
ts(W) = <ft(+)|(J5(t)aS(t) <1 B La>> (35) soliton is absorbed in case of a slow saturable absorber, has

i also a stabilizing function for the soliton, as will be discussed
= e 14 ; detail |
6, (W) = (£, |gs(t)as(t) . . (36) In more detail later on.

1 - If the linewidth enhancement facteris not zero, then there
is an additional frequency shift of the soliton per round-trip

The remaining operatdip describes the additional dynamlcsdue to the response of the absorber. This is the Raman self-

;qggdd;i?gtgsvgzgsas the soliton parameters do not reach tqreéfquency shift (RSFS) as has been observed for ultrashort
pulses in fibers [42], [43]. The Raman shift is due to the
C 9p 1 OW 9 3ty 0 asymmetric response of the refractive index and therefore
Rp =Tk ['Lmﬁ “woartar T ar %} (37) vanishes for a instantaneous Kerr effeet— oc. As we
will see later, the RSFS can have a destabilizing as well as a
With the response of the absorber (14), as discussed siabilizing effect on the soliton.
Section I, we can compute the shifts in the collective vari- Before we start to investigate the soliton stabilization mech-

ables of the soliton per round-trip due to the saturable absorié@isms in more detail, we further simplify the evolution

according to (33)—(36) equations of the soliton variables and the continuum. In [38],
we have shown that the coupling of the continuum to the
G(W) = qohw <e E) (3g) Soliton due to the finite gain and loss bandwidth can be
"E neglected as long as the spectral width of the soliton is much
N aqo %% smaller than the gain and loss bandwidth. In the case of strong
ps(W) = o hp <67 E_A> (39)  saturation of the slow absorbéfl’y > 7 andW > E,), also
~ W the absorber only weakly couples the continuum to the soliton.
0;(W) = —aqohg <e, T ) (40) Therefore, we neglect these coupling terms in the following,

(see Appendix A). Furthermore, for the stability considerations
(W) =7qohy <67 E) (41) later on, we will always assume that the system of equations is
E close to equilibriumdW/dT ~ dp/dT” ~ 0. Thus, terms like
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Fig. 4. (a) Normalized energy loss, (b) normalized phase shift, (c) normalized timing, and (d) normalized frequency shift per round-trip dueatea satu
absorber for different ratios between pulsewidth and absorber recoveryetime

dW /dTa. can be considered as higher order terms and will beBy inverse Fourier transformation of (54) we obtain for
neglected in the following. This simplifies the operaRyp to  Gordons associated function

L 9G(T, 1)
dtg 9 R
Rp = Tg =0 ——. (48) orT )
9T 70z L 0
= g_l_Z(I)O—i_tg’ca_t—i_Da_tQ_qs(t) G(T,t)
Using the approximations derived in Appendix A, the evolu- e .
tion equations for the soliton variables are +F {<fk [Ra(z)e™™” >} (55)

whereD = D, ;—iD is the complex dispersion in the system

Tr %—I;/ =2lg-1- gg’; - Dy p* — (W)W (49) andt, . =T, .7, the group delay mismatch between soliton
5 4D 4 and continuum due to the nonlinearity.
Th gy ==5 — 5 p+5:(W) (50) | |
5 T A. Stationary Solution
Tr a—TO =ts(W) (51)  Equations (49) and (50) imply that the laser reaches steady
00y ~ state when the saturated gain equals the losses experienced by
TR 5 =0:(W). (52)  the solitary pulse
Dy ¢ .
Introducing th.e normalized group delay mismatéh . be- g=1+ %TQ + Dy, 195 + 4 (Wo) (56)
tween the soliton and the continuum with
e 90
= 57
T, . = 2Bopr — t(W) (53) L ®7)
? + I
£y
we obtain for the time evolution of the continuum, and 5 2
.
po=—- Ds(Wo). (58)
99(k) _ g 2 (+) 4 Dy, 5
TR - _L[(I)O + (I)Ok + Tg,Ck] + <fk |Rac>
or Here, W, and pg are the steady-state pulse energy and cen-

+ (f,£+)|Ra(a:)e_iPt>. (54) ter frequency of the soliton, respectively. Together with the
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relation between soliton width and energy= 4|D|/§Wo, 9r _ ﬂfzyQ o 3 as hyley) (62)
(56) and (58) determine the steady-state pulse enéfgwand at’ 3 4 f y
center frequencyy,. We eliminate the Raman self-frequency

shift from (56) via (58) and obtain an equation that determin#4dth the normalized saturated gagn(y) = g/1 = r/(1+xy).
the steady-state pulse energy directly The normalization reduces the number of free parameters. The

l g:f
g —

- %] 2 .
52 T 16 Dg,fpS(WO) + G (Wo).

(59) Filter Strength:

Usually one uses very moderate amounts of saturable absorp-

. . OF 5
tion to mode-lock a laser, e.gg = 1% and total linear = QD0
lossesl ~ 10%. As we will see later the filter losses of the ] ! _| |_
pulse are smaller than the maximum modulation depth of thirmalized Saturable Absorption:
absorber,D, /37 < go. If there is no excessive linewidth

enhancement factor the pulse energy is then approximately s=2 (64)
determined by

(63)

Saturation Factor:

__ 9  _
7= —1 (60) .
Er X = £, (65)
L

If the saturable absorptiop is comparable with the frequencyPump Parameter:
independent los$, or if the absorber has a large linewidth

enhancement factor one has to solve (59) numerically and ] (66)
it can possess multiple solutions. In general, these solutions I

depend in a complex way on the system parameters and they

will be studied in more detail elsewhere. Normalized Ratio Between Absorber Recovery Time and

Equations (51) and (52) indicate that the timing and phaggisewidth:
shifts increase with the additional ratés and 6,. As we
will see later, the timing shift is important for the stability

of the continuum. Once the soliton energy and momentum are ¢ =ey

fixed one can compute from (55) the steady-state continuum =T Y

contribution which we assume to remain small even in steady A

state. However, this is only true if the values for the soliton - ﬂ (67)
parameters and the continuum are stable. TAOE 4

. ) _ The filter strengtty is the ratio between the change in the pulse
B. Stability of the Stationary Solution spectrum, if the pulse energy is increased by the saturation
As we have seen in the preceding sections the couplingefergy of the absorber and the available laser bandwgtith,
the continuum back to the soliton due to gain dispersion aifithe normalized saturable absorptienis the ratio between
saturable absorption can be neglected. Therefore, the equatitwes saturable and the nonsaturable losses in the laser. The
of motion for the soliton variables are decoupled from thgaturation factor is the ratio between the saturation energy
continuum, i.e., background radiation, so that we can study the absorber and the gain medium. The pump parameter
the stability of the four soliton variables and the continuum describes how many times the laser is above threshold in
separately. the absence of the saturable absorber. Thus the stationary
1) Stability of the Soliton VariablesWWe consider the dy- normalized frequency shift, is given by
namics in the subspace of the four soliton variables according

to (49) and (50). Since the timing and phase shifts of the soliton h <§ )

. . D Y
do not couple back to energy and momentum of the soliton, it _ 4 as Y (68)
is enough to investigate the stability of energy and momentum 3 f Y

of the soliton. To keep the discussion short we consider the .
case where we can neglect the finite gain bandwidth so t@uaﬂon (68) shows that the Raman_ self-frequency - shift
the laser bandwidth is completely determined by the bandwi fcomes large for low filter strength. Fig. 5 shows the nor-

of an intracavity filter, which can be the finite bandwidth oimalim(,j steady-state frequency shift as a function_ of the
the cavity mirrors, i.e.D, ; = Dy = 1/930_ We introduce normalized pulse energy for different normalized ratios be-

the normalized soliton energy = W/E, and momentum tween absorber recovery time and pulsewidthThus, for a

« = py/D,. 1/l and rewrite the dynamics on a time scale Oﬁast absorber, i.e., largé, the laser shows no RSFS. However,
the cavitygaecay time’ = T-1/Th or a slow absorber, i.e., smadl, a considerable RSFS can

occur.
dy Instead of solving the remaining equation (61) for the
ot

1
=2[gn(y) — 1 — shw(e, y) — = f2? — 22 61 o
[92.(9) shu(e ) 3 Py =y (61) missing steady-state energy, we can express the necessary
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Fig. 5. Normalized steady-state frequency shift as a function of normalizegy. 6. Necessary pump parameter as a function of the normalized pulse
pulse energy for different values of the normalized ratio between absorkgfergy fors = 1, a constant produats/f = 20, ande’ = 1 for different
recovery time and pulsewidth . filter strengthf.

pump parametery,, as a function of the steady-state pulsésses is not too large. By partial derivation of the stationary
energy equations (61) and (62), it can be shown
Irs _ 14xy

= — ) 78
oy = (o109 — po0va1) (78)

rs = (1 +xy)q 1+ shy <£, y) + % 2y Equation (78) shows, that for a given pump parameter in
4 Fig. 6, only those values for the pulse energy can be stable
(and, therefore, physically accessible), which are on the posi-
€ 2 tive slope of the curve. This behavior may lead to a suppression
9 | as hP( ) of short pulses, and a hysteresis in the output power versus
— | . (69) ; ;
16| f y pump parameter curve, see Fig. 6. The phase modulation due
to a slow refractive index change can effectively prohibit self-
starting mode-locking, if the laser can not be pumped strong
Fig. 6 shows the necessary pump parametersfor 1, a €nough to overcome the RSFS.
constant productvs/f = 20 and ¢ = 1 for different filter 2) Stability of the ContinuumHowever, for a successful
strength. The parameter range where a large RSFS ocdide-locked operation, additional conditions arise from the
requires a very high pumping rate since a possible pul§kbility of the continuum. The continuum is stable, if all the
is shifted into the wing of the filter. The RSFS leads to §igenmodes of the evolution operator of the homogeneous part
maximum overshoot of the pump parameter for a pulsewid@ (55) experience net loss per round-trip. Thus, we have to
of the order of the absorber recovery time where it is strongegidy the eigenvalue problem

Linearization of (61) to (62) results in - 8
MnGr(t) = |g—1—ido +t4,c =
Th — = allAy + a2 Az (70) _ 52
A +D o5 = ()L i) | Ga(h)- (79
TR — =21 Ay + an Az (71) , , . .
ar The real part of the eigenvalue, is the gain and the imaginary
where the coefficients,;; are given by part is the phase shift per round-trip experienced by the
nth eigenmode. The continuous timing shiff . describes
_q dgn Y 2 5 72 the difference in group delay between the soliton and the
R I T w¥) =3 [y (72) " continuum. This timing shift can be removed by the following
as transformation
iz =—3 hp(y) (73) :
Gn(t) = H,(t -2t 80
az = —3afs[hp(y) + ki (y)y] (74) ®) (1) exp { 2D } (80)
az =—3 fy°. (75)  which results in the new eigenvalue problem

2
The stationary values are stable, if the trace of the coefficient A H, (t) = {ﬁ % — () (1 + m)} H,(t) (81)
t

matrix is negative and its determinant is positive

. with the total eigenvalue
) a4+ a2 <0 (76) 5

. t -
i) airag —agpan > 0. (77) An=g—1-— 4%: + A (82)

The coefficientass is always negative. Also the coefficientThe mathematical elimination of the first-order term in (79)
ar11 IS negative if the ratio between saturable and nonsaturabdsults in the additional loss term in (81). Physically, this
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means that the group delay mismatch between the continuum . 10 ; I I 5 1.0
and the soliton leads to an additional loss for the contin- g ,lg“ ,
uum eigenmodes since the continuum once generated drifts § 08 i sech(x) 27 o8
continuously away from the window of minimum loss. This - ¥ V - Approximation
mechanism leads to a stabilization of the soliton against the 2 06~ /," =+ 0.6
continuum by introducing the additional continuum loss S
P g 04 — 0.4
lc, shift :Re{ 4515 } % 0.2 L /' ; | 02
2 c.% ; : ) Exp. l— Approxlimation
= (83) %0s 0 5 w0 15 2000

T 4D, ((1+ D2y

The importance of this stabilization mechanism becomes o'p_— 7 Different imations for the absorb

. . . . ren r m n r roer r nse.
vious when we compare the additional continuum loss due td frierent approximations fof the absorber response
shifting between soliton and continuum, with the soliton loss

Normalized Time, x

due to bandwidth limitation. We obtain with (53) ii) by an exponential response:
t
le,s0e37% _ 3 o <Tg,c>2 as(t) =qo — Go exp {—a} ,
= 5 ,
Doy 4 5+ <DL2JC> do for t > 0 andgq for ¢ < 0. (86)
T
3 2 7 \2 1) V-Shaped Responsé&or the V-shaped approximation
= 9 5 <2p07'— _5> of the response we obtain from (81) a standard eigenvalue
4 P2+ <Dg, f) PoT problem for a Schirdinger operator with complex coefficients.
0 72 According to the perturbation theory for linear operators
3 3 the eigenvalues have a unique analytic continuation into the
3 D 2 complex plain. The V-potential is a standard problem solved
P+ ;’Q’f> in [49]. We obtain with the eigenvalue for the ground state

2 ~

. |:20éhp(6, y) — % he(e, y)} . (84) Ao =—(1+ia) <(]0 - éo{l — 2.338
0

Soliton perturbation theory is only a good approximation if D 1/3

the phase shift per rour_1d—trip is much bigger than the filtgr [7@0(1 +ioc)¢i}

loss and the pulse shaping due to the saturable absorber, i.e.,

$o > D, ¢/7%. Thus, we can approximate (84) by

Dy % 2 =—(1+ia)| go— Go{ 1 —2.338
Ic, shift ~ 2 |:p07_ - T% h’t(67 y) . (85)
Equation (85) shows that the continuum loss induced due to the I A
group delay mismatch between the soliton and the continuum D, T —2/3 87
can be as large as the filter loss experienced by the soliton. ) (1+ia)? Wa (87)

The effect is maximum if we saturate the absorber such that
the RSFS and the timing shift due to the front absorption of
the soliton add up. Fig. 4(c) and (d) show that this is the cat
for a pulse energy about 2-3 times the saturation energy of Ta \/g

ere

the absorber, i.ey = 2 — 3. Furthermore, the two effects add WA= (88)

up if the linewidth enhancement factaris negative, i.e., the
refractive index change is negative. denotes the normalized absorber recovery time. For the case

Before we discuss the continuum loss due to the group delefya strongly saturated absorbép, = go, we obtain for the
mismatch between soliton and continuum in further detail, wess of the most unstable continuum mode normalized to the
complete the study of the stability issues involved with th@aximum saturable absorption
continuum by investigating the eigenvalue spectrum of the I 5
reduced continuum (81) in two different approximations, (see -t _ _Re{_o}

Fig. 7). qo qo
. . 1 1/3
) by a V-shaped response: —2.338 KD_n + L) (1+ ia)Q} w33 (89)
s t) = ] — =1 ’ . . . .
%) =0+ qo(m ) Fig. 8 shows the normalized continuum losses as a function

fort > 0 andoo for ¢ < 0. of the normalized recovery time 4 for a vanishing linewidth
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Fig. 8. Normalized continuum losses as a function of the normalized recdvig. 9. Variation of the factof(«r, Dy,) which scales the continuum losses
ery timew 4 for vanishing linewidth enhancement facter= 0 and different as a function of the normalized dispersion and the linewidth enhancement
values of the normalized dispersion. For small values of the normalizéattor a.

recovery time the calculated normalized continuum loss becomes larger than

one, which is an artifact of the infinite V-potential approximation.

2.5 T T I

enhancement factore = 0, and different values of the
normalized dispersion. For small values of the normalized
recovery time the calculated normalized continuum loss be-
comes larger than one, which is of course an artifact of
the infinite V-potential approximation. For large normalized
recovery times, the real parts of the eigenvalues lay deep in
the V-potential, and therefore the used approximation gives
the right asymptotic behavior for large,. Thus, we see, that
even for a normalized recovery time as large as 40 almost
20% of the available saturable absorption is still left over
as continuum losses which can stabilize a soliton against the
continuum. Fig. 9 shows the variation of the forefactor

Ic.stat/ qO

1/3
f(a, D,) = 2.338 [(i + L) (14 m)ﬂ (90)
D,
which scales the continuum losses as a function of the nor-
malized dispersion and the linewidth enhancement faator
The influence of the normalized dispersion onto the continuum
loss is rather small if it is not chosen to be excessively large,
as it is possible in actively mode-locked systems [38]. The
analytic result (90) shows, that the continuum losses scale
with the inverse third root of the normalized dispersion. This
explains the weak dependence on the normalized dispersion.
However, a phase modulation due to a nonvanishing linewidth ®)
enhancement factor is important. The forefactor (90) scaldg- 10. Normalized continuum losses for a fully saturated absorber that
; ; - ] . . recovers with an exponential response as a funtion of the normalized recovery
with the power 2/3, aImOSt linearly. A positive I'n_ew"_jthtime and the linewidth enhancement factar(a) for a normalized dispersion
enhancement factor, which corresponds to a refractive index = 1 and (b) for a normalized dispersiaf,, = 10.
increase during saturation, leads to a destabilization of the
continuum. This can be understood by the modulational in-
stability that exists in a medium with negative dispersion and 2) Exponential Responsefhe analytic solution of the
positive Kerr effect in the presence of a pump [39]. Her@igenvalue problem for the complex exponential response
the pump is the soliton. If the linewidth enhancement factis presented in Appendix B. Fig. 10(a) and (b) show the
is negative, which corresponds to a negative Kerr effect, mesulting normalized continuum losses for a fully saturated
modulational instability is present. In this case, the additionabsorber as a function of the normalized recovery time for
phase modulation leads to an additional spreading of thweo different values of the normalized dispersion. Comparison
continuum in the frequency domain and therefore pushes thih the results obtained for the V-potential shows that the
continuum into the region of higher filter losses which resulig-approximation and the results for the exponential potential
in additional continuum losses. Therefore, an ideal absorber tmree rather well for a normalized recovery time larger than
good mode-locking behavior should have a negative linewidi®. Again, the continuum loss only weekly depends on the
enhancement factor. normalized dispersion. Fig. 10 clearly demonstrates again that

Ic,stat/ qO
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Fig. 13. Spreading of the continuum in the net gain window due to disper-

Fig. 11. Gain and loss balance in a laser mode-locked by a fast saturagiten.

absorber only.

Normalized Time, x

the absorber recovery time, and the pulse energy is ten times
the saturation energy. During saturation of the absorber, the

1.0
& soliton experiences already 10% of the absorber losses per
é 0.8 - round-trip. According to Fig. 10 the continuum experiences
g up to 30% of the available absorption as loss, even if the
% 0.6 - = absorber has a vanishing linewidth enhancement factor. Then,
S one can use almost all of the remaining 20% of the absorption
L 04F = to overcome the bandwidth limitation and to provide still
2 some stability against the growth of continuum. Thus, there is
g 021 filter loss] a considerable open net gain window when compared with the
3 WA T\ saturation fast saturable absorber mode-locking scheme but the pulse is
10 0 10 20 still stable against the growth of continuum. This is possible

in a soliton mode-locked laser, because the pulse is shaped by

a balance between negative GDD and SPM. In contrast, the
Fig. 12. Gain and loss balance in a soliton mode-locked laser stabilized\;@éak background radiation, the continuum, only experiences
a slow saturable absorber. . ] . N .

the linear effects, especially the dispersion, (see Fig. 13).

a negative linewidth enhancement factor increases stability. Discussion of Different Stabilization
With an absolute value for the linewidth enhancement factghd Pulse Cleaning Mechanisms

as large as 5 the effective contin_uum_ Ioss: increases almosfn total, we obtain for the round-trip gain of the continuum
?ayc:) rfseu;tg O;:S'ijgc?olrag(z;e%at:‘:arTﬁg'g;iszzalcfnm&ﬁtﬁ real part of the eigenvalue of the most unstable continuum
P ' pie, g Mode, from (56), (79), (80), and (85)

GaAs [46]-[48] for quasi-CW excitation. The normalize

recovery timew4 is not simply the ratio between the absorber Re{lo} =1, -1, (91)
recovery time and the pulsewidth but is in addition multiplied
by the square root of the ratio between saturable absorpti¥Rere
and the nonlinear phase shift. As we will see later the D -
2 I =220 + Dy + G:(Wo) (92)

nonlinear phase shift can be as large as 0.5 whereas the 37

saturable absorption is typically on the order of 0.5%—5% the soliton loss due to the finite laser bandwidth, the RSFS

Therefore, the normalized recovery time, can be a factor 4 the saturable absorber. The round-trip loss of the most
of 3-10 smaller than the actual value of/7. Thus, we can ynstable continuum mode is given by

still use a large fraction of the saturable absorber action

to overcome the bandwidth limitation in a mode-locked le =lc snite + e, stat

laser while we use a saturable absorber with a relaxation Dy, 90 2
time 10-30 times longer than the pulsewidth achieved. This %7 DoT — 260 hi(e, y)
is the most striking feature of soliton-mode-locked lasers.

Traditional laser models [25] provide stability for the singldhe soliton is stable, if the lowest order continuum mode
pulse solution by dissipative mechanisms that generated@cays, R¢Ao} < 0, i.e.,
short net gain window in time that supports only the pulse.

Fig. 11 shows the gain and loss balance for the fast saturable

absorber mode-locking model. The gain and loss curves crddee first part of the continuum loss is due to the group delay
each other exactly at the full width half maximum pointsmismatch between soliton and continuum, and the second part
In contrast, Fig. 12 shows the situation for a soliton modelue to the finite gain bandwidth and the saturable absorption.
locked laser, where the pulsewidthis ten times shorter than If we neglect for the moment the direct timing shift due to

+ lc, stat- (93)

I, <. (94)
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Spectrum of the soliton mode-locked pulse, reflectivity of the
and the measured fluorescence of Ti:sapphire.

the slow saturable absorption, (92) to (93) indicate that tﬁs‘%}olrg'
losses for the soliton due to the RSFS are as large as the
additional losses experienced by the continuum due to the 8
difference in group delay via the RSFS. Thus, a RSFS is of no
help in stabilizing the soliton against the continuum. However,
the direct shift of the soliton due to the slow absorption
leads to a continuous retardation of the soliton against the
continuum generated by the perturbations onto the soliton.
Once separated from the soliton the continuum is absorbed by
the unsaturated absorber is now in front of the soliton. This is
an additional pulse stabilization and cleaning mechanism not
present in a fast saturable absorber. The mechanism is very
similar to the sliding frequency filter technique invented by
Lmn. Mollenauer. There, the Center_frequency of the filter Il§| . 16. Measured interferometric autocorrelation trace of the 13-fs soliton
continuously shifted, so that the soliton can follow the centef{gde_bcked pulse.

frequency of the filter but the continuum cannot. Then, the

continuum is on the average absorbed in the stop band of the . L ,
filter. In the case of a slow saturable absorber this happdfl€ @Psorber is moved. This is in sharp contrast to operation of

in the time domain, (see Fig. 14). Due to the continuodlge laser in KLM mode, when the absorber mirror is replaced
retardation of the soliton with respect to the continuum, tHith @ normal high reflector. Then the laser shows only mode-
continuum experiences an average additional loss given I8§k_|ng over a very small fraction of the stability range of the

the term in (93). If the ratio between the absorption and tf&v/lY- o
nonlinear phase shift is not larger than one, which is hardly "€ Pulse spectrum has a FWHM of about 73 nm with its

the case, the soliton shifting cannot provide much stability f&#Nter frequency at 810 nm. The pulse spectrum extends from

the pulse and the pulse stability is mainly determined by tf{a€ @bsorption edge at 870 nm to about 770 nm, where it can
real part of the eigenvalue in the stationary poteritiala:. saturate the absorber most efficiently and where the absorption

is flat over the wavelength. Fig. 17 shows the pump-probe
response of the LT-GaAs semiconductor absorber mirror at 810
V. EXPERIMENTAL RESULTS nm when excited with 10-fs pulses with a pulse energy fluence

The main result of the previous section is, that we caimilar to the intracavity fluences when used to mode-lock the
stabilize pulse formation in a mode-locked laser by a saturalideser. The pump-probe trace well resolves the 60-fs carrier
absorber with a response time about 10-20 times longer thibarmalization time for undoped GaAs as measured previously
the pulsewidth. With a given amount of saturable absorptidty Knox [45] with differential transmission measurements.
one achieves almost the same performance as with an id€alis the pulse is about four times shorter than the fastest
fast saturable absorber due to soliton formation. Recenthgcovery time of the absorber. The pulse could not be tuned
we demonstrated experimentally the soliton mode-lockirtg shorter wavelength without broadening or breaking up into
principle. We achieved pulses about 30 times shorter thamultiple pulses. Nevertheless, this is a pulsewidth which was
the response time of the absorber. In this section, we prespraviously only achievable by KLM. Fig. 18 shows the mode-
experimental results on the shortest pulses achieved so l&king build-up behavior of the laser. First the laser starts
with this technique. CW-running. After about 20Qus, the pulses build up and

We used a standard Ti:sapphire laser [30] with a 2-meaturate the absorber. Therefore, the average output power
Ti:sapphire crystal and a 40-cm fused silica prism sequenedmost doubles. Thus, the laser is truly self-starting. Further
To make the absorber broad band, we processed a LT-Gafwimization of the absorber and a better understanding of the
absorber layer on a silver mirror [30]. With this setup, weaturation behavior, phase effects and possible coherent effects
achieved pulses as short as 13 fs, (Figs. 15 and 16) over [#@], [41] in this absorber on a ten femtosecond time scale will
full stability range of the cavity, when the mirror supportincghelp to improve these first results.

13fs
pulse

Interferometric Autocorrelation

H| H | ¥

0 20 40
Time, fs
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6 TABLE |
2 PARAMETERS USED FOR NUMERICAL SIMULATIONS
= 5
T Parameter Value
o 4
5 s ! 0.025
Tg" — measured 90 0.07
2 oL | /- double exponential fi: w(ith ) 1 Py, 3.2W
< time constants 61 fs (23% [9) 2r. 43 THz
- d 734 fs (77% g
B o1 and 734 1s (77%) s 0.4/MW
0 ] ] 1 ] 1 qo,1 0.01
0.0 0.2 0.4 0.6 0.8 1.0 TAy 1 60 fs
Time, ps Exq 4nd
q0,2 0.02
Fig. 17. Pump-probe trace of the LT-GaAs semiconductor absorber mirror Ta o 734 fs
at 810 nm with 10-fs pulses. The pump-probe trace well resolves the 60-fs EA‘ ‘) 4nJ
carrier thermalization time for undoped GaAs. e
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Fig. 18. Measured mode-locking buildup behavior of the 13-fs soliton __- 16fs
mode-locked pulse. 10" | |
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NUMERICAL SIMULATIONS

VI.
. . Fig. 20. Intensity and saturable absorption for increasing prism insertion.
Since we extracted the most important absorber parametg?g simulation is with the parameters listed in Table | and an additional

by independent pump-probe measurements, we can compaegidth enhancement factor ef = —2 for both absorbers.
the experimentally achieved results with the numerical simula-

tions on the basis of the master equation (1). The simulatiogjiton to the continuum, i.e., increased soliton losses. Finally
are done using the split-step Fourier transform method, whefg,, the bandwidth limitation due to the finite mirror and gain

the SPM and the total intracavity dispersion per round-trip i$yngwidth introduces soliton losses which limits the shortest
applied in one step very much as it occurs in the real laser. Thgses achievable, even if the higher order dispersion can be

semiconductor absorber dynamics is modeled by two satura] fiy eliminated and the SPM is reduced. Fig. 19(c) shows

absorbers obeying (3) with the parameters collected in Tablgie corresponding spectra. The spectra look very much like

The reflectivity of the mirrors, the transmission of the outpuyj sech-square until the continuum takes over, which consists
couplers and the actual group delay dispersion due to th€jong pulses, therefore, narrow spectral components appear
prismS is included in the simulation. The laser is Simulatqﬁ the pu|Se Spectrum_ Note, the simulated pu]se Spectra are
for different prism insertions, which results in different valuegentered around a much shorter wavelength, close to the peak
for the dispersion and also higher order dispersion, Fig. 19(é¥.the gain of Ti:Sapphire, in contrast to the experiment. This

Fig. 19(a) shows the absorber response when saturated byj¢h€asily understood, because we neglect in the simulation, the
pulse, which stays very much the same for all simulations. QVavelength dependent losses occurring in the absorber. The
top of the absorber response, the pulse power is shown fesses of the absorber are clearly wavelength dependent, see

the different runs. With increasing prism insertion, the amoupig. 15, which pushes the spectrum to longer wavelength in
of negative dispersion is reduced and the pulse gets initiallye experiment.

shorter, down to about 14 fs at FWHM. Then, in the window We performed the same simulations with a linewidth en-
of net gain, the continuum starts to grow as expected. Thiancement factor af = —2. Fig. 20 shows the corresponding
leads to the formation of a pulse pedestal as shown mangensity profiles of the steady-state pulses for increasing prism
clearly in the autocorrelation traces of Fig. 19(b). Reducirigsertion. We achieve now pulses as short as 12.5 fs and one
the amount of negative dispersion even further, does not legdarly recognizes the much better continuum suppression for
to shorter pulses. Instead more and more energy flows into these even shorter pulses when compared with Fig. 19(a). This
continuum for different reasons. First the impact of the thircconfirms that a negative linewidth enhancement factor of the
order dispersion and also the discrete nature of the SPM aiuborber leads to additional losses for the continuum as derived
the dispersion in the cavity leads to an energy flow from thbeoretically in Section IV-B-2.
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Fig. 19. (a) Intensity and saturable absorption for increasing prism insertion, (b) autocorrelation traces, (c) corresponding pulse sghatet, intrddavity
prism dispersion. The parameters used in the simulation are listed in Table I.

In total, the analytical and numerical results presented hégth cases. If the absorber shows in addition to the saturable
show that the independently measured pump probe respoabsorption also a negative slow self-phase modulation that
together with the assumption of a small negative linewidtiollows the absorption even better performance with respect
enhancement factor and the soliton mode-locking principle tis continuum suppression can be expected. Based on these
enough to explain the experimental results so far obtained.results, we demonstrated theoretically and experimentally, that

the fast time constants in semiconductor absorbers due to
VIl. CONCLUSION thermalization processes are fast enough to generate pulses
in the 10-fs range, which was previously only possible by
M. In contrast to KLM, we use real absorption and not
ificial absorption generated via self-focusing. Thus, we have
decoupling between the laser modes and the laser dynamics
, therefore, we retain a much larger degree of freedom in

We have shown, that strongly saturated and relatively sl
absorbers can be used to generate pulses much shorter thag
recovery time of the absorber, if solitonlike pulse shaping I
employed. This is a mode-locking principle distinct from th

» . d
traditional schemes, that are based on an ideal fast satur rLecavity design. This is extremely useful for high repetition

absorber, i.e., a fast saturable absorber that never satur & compact and diode-pumped lasers [44]. The slow time
Esll’h or Olr']t the mt((jarpllayk_betweﬁn galnthand l?ss Sstur."’lt'of:bnstant involved in semiconductor saturable absorbers due
N T tscl)l c(;n mobe—tﬁc 'ng sc.belme,ﬁ ? %JSS S 2pgg 5 carrier recombination, leads to a self-starting mode-locking
cc;lmrr)le eylt one by Ie retVﬁ|r3| 'I? etiects de-| all(n 37 rocess and a short mode-locking buildup time [50], [51], even
which results in an almost Hamiltonian mode-locking | or the shortest pulses. In addition, we have full freedom in

that is qnly stabilized by the saturable absorpti_on. The uniq Ssigning the saturable absorption and the strength of the SPM,
properties of soliton systems, where the pulse is shaped by ch might help in the long run to further shorten the pulses

non_lin.ear and the d.ispersive effects, yvhereas the backgro% out overdriving the SPM.
radiation only experiences the dispersive effects allows the use
of slow saturable absorbers. As will be shown in more detail
elsewhere, soliton formation not only allows us to achieve APPENDIX A

pulses about 10-20 times shorter than the recovery time of\PPROXIMATIONS FORSOLITON PERTURBATION THEORY

the absorber but in addition, we can achieve a pulsewidthin this Appendix, we prove the validity of some important
comparable to a laser mode-locked by a fast saturable alpproximations used for the interaction between soliton and
sorber given the same amount of saturable absorption fmmtinuum due to the response of a slow saturable absorber.
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The absorber considered here is defined by (3). The paraméier continuum modes and no coupling between soliton and the

we consider to be small is the ratio between pulsewidth aodntinuum. However, this is not truly the case for the absorber

absorber recovery time = 7/74 < 1. Now, we show to considered in (3), because we obtain

lowest order ine that the response of a slow absorber excited
: . . . Wo 2

by a soliton does not introduce coupling of the continuum to — —~gsech

= (2). (103)
the soliton and that the response is diagonal in the continuum 2k

¢ (ex) = —e(q = o)

G(w)e e du,

representation. The response of the absorber can be writterRgs, only the term due to the absorber recovery scales
g(t) = glex). (95) properly with timg. The saturation dge to the soliton happens
of course on the time scale of the soliton. However, with (103)
The response can also be expressed in terms of its Fouk#s term is proportional to the overlap of the soliton with the
transform nonsaturated absorber. This term never becomes larger than
00 qo, even if the absorber is strongly saturated. Therefore, it
q(ex) :/ (96) is legitimate to neglect this term in comparison with the
e function like diagonal term. In total this shows, that a slow
When computing the matrix elements of the perturbation absorber leads to first order only to a diagonal coupling
the continuum representation we have to evaluate terms likeetween the continuum modes and no coupling between the
o soliton and the continuum. Similar relations have been derived
(féj)|q(ex)|fk2> = / dwg(w)<f,5f)|e—iw“|fk2>, (97) forthe matrix elements of the gain dispersion operator in the
—oo appendix of [38].
From the expression for the continuum eigenfunctions equa-
tion (2.35) from [38] we obtain

APPENDIX B
EIGENVALUES FOR THE COMPLEX EXPONENTIAL POTENTIAL

6—iwea}|fk2 >=|fr, —we > +6wei(k2—we)a;

Here, we give an analytic derivation of the eigenvalues for a
Schibdinger equation with the complex exponential potential

{2[k2 + ¢ tanh (z)] + we} according to (81):

<(1)> > (98)

and, hence, in (97):

[—E g—; +V(#)(1+ ioc)} H,(t)= =)\ H,(t) (104)
(£ |a(em) ) "
WI
= 4@) - <f,§j> 2% {2/ (ex)[ky + i tanh (z)] ,
Vi) =Yoo |-,

(99)

()

where the bar denotes the derivative with respect.t&im-
ilarly, we obtain for
()

(fr, la(ex)|fr,)
_ _<f§j> ¢*2® 193¢/ (ex) [k + 4 tanh (2)]

+q”(6w)}‘ <(1) ) > (100)
and
(5 lalex)lfr,)
- <f£f2,p,t ¢*{2iq/(c)[kz +i tanh (x)
+q”(6w)}‘ <(1)> > (101)

Thus, if the absorber response is slewg 1, the derivatives
are of the order

¢ (ex)

=0(e)
(]//(637) 2

=0(). (102)

for ¢ > 0 andwv,(t) = 0, elsewhere (105)

We transform (104) into Bessel's differential equation by
substitution of

y =274 Vo(l_—i- i) exp [_L} . (106)

Thus we obtain

d? 1d V2 .
[d_y? i <1 - ;)} Hy(y) = \Hn(y)  (107)
with
v = _%A" Ta (108)
for ¢ > 0. The solution of (107) is then given by
H.(y) = AJy(y) + BY.(y). (109)

We require that the solution should stay bounded;fer 0,
i.e., t — oo, thus the constanB has to vanish. In the

In this case, we can safely neglect the higher order termsriagative half space, where the potential vanishes, the solution
(99) and (100) and we obtain only the diagonal coupling @ in general an exponential function. Matching of the two
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solutions and their derivatives at= 0 results in the following [13]
eigenvalue condition
[14]
J,,_l(z) =0
15
with (]
[16]
[17]
(110)
[18]

wherew 4 is the normalized absorber recovery time accordin[gl;g]
to (88). If the laser parameters are fixed, the complex argument
z of the Bessel function is fixed and we have to find thogé%
complex orders/, where the Bessel function vanishes. Sincgy
these values are easily computed for real arguments, we
find it for complex arguments, i.eq, D # 0, by analytic

continuation into the complex plane. We used a homotopy
method that follows the trajectory of the complex roots when
increasing the values ofr, D from zero to their nominal

values, (Fig. 10). [24]

[25]
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