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A data-driven sparse GLM for fMRI analysis using
sparse dictionary learning with MDL criterion

Kangjoo Lee, Sungho Tak, and Jong Chul Ye

Abstract— We propose a novel statistical analysis method for
functional MRI to overcome the drawbacks of conventional data-
driven methods such as the independent component analysis
(ICA). Although ICA has been broadly applied to functional
MRI due to its capacity to separate spatially or temporally
independent components, the assumption of independence has
been challenged by recent studies showing that ICA does not
guarantee independence of simultaneously occurring distinct
activity patterns in the brain. Instead, sparsity of the signal
has been shown to be more promising. This coincides with
biological findings such as sparse coding in V1 simple cells,
electrophysiological experiment results in the human medial
temporal lobe, and etc. The main contribution of this paper is,
therefore, a new data driven fMRI analysis that is derived solely
based upon the sparsity of the signals. A compressed sensing
based data-driven sparse generalized linear model is proposed
that enables estimation of spatially adaptive design matrix as
well as sparse signal components that represent synchronous,
functionally organized and integrated neural hemodynamics.
Furthermore, an MDL based model order selection rule is shown
to be essential in selecting unknown sparsity level for sparse
dictionary learning. Using simulation and real fMRI experiments,
we show that the proposed method can adapt individual variation
better compared to the conventional ICA methods.

Index Terms—Sparse generalized linear model, sparse dic-
tionary learning, K-SVD, statistical parametric mapping, data-
driven fMRI analysis, compressed sensing, MDL principle

I. INTRODUCTION

STATISTICAL parametric mapping (SPM) is a widely ac-
cepted mass-univariate approach for voxel-wise statistical

analysis of brain activity using functional magnetic resonance
imaging (fMRI) [1–5]. It uses general linear model (GLM)
and random field theory to analyze and make inferences
about regional brain activities. This hypothesis-driven method
employs a canonical hemodynamic response function (HRF)
and its various derivatives to construct regressors in the
design matrix for the general linear model by convolving
them with the stimulus function. The canonical HRF is the
basis of a parametric model that estimates changes in the
fMRI blood oxygen level-dependent (BOLD) signal evoked
by an instantaneous burst of activation. The major problem
in the aforementioned hypothesis-driven method is, however,
the non-adaptivity of the canonical HRF [5]. Specifically,
the canonical HRF does not fully consider individual and
experimental variance or unpredicted phenomena during the
task period, thereby reducing the sensitivity of detection.
Furthermore, commonly used forms of the canonical HRF
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including initial dip [6–8] and post undershoot [9–11] are still
controversial within the neuroscience community [12–17].

To overcome these drawbacks, a variety of data-driven
methods have been suggested, including principal component
analysis (PCA) [18, 19] and independent component analysis
(ICA) [20–22]. Although the time-series of BOLD are mea-
sured at each voxel, the signals related to the experimental
paradigm are usually localized on a small set of regions,
and are mixed with other simultaneous time-varying effects
[23]. Accordingly, these approaches isolate functional spa-
tial patterns that contain spatially localized neural dynamics.
Moreover, since they do not require any prior knowledge
about the paradigm, these methods can be applied to a resting
state analysis of functional connectivity MRI (fcMRI) [24,
25], which does not have a predefined paradigm. Note that
PCA finds components that are uncorrelated, while ICA finds
components that are spatially- (spatial ICA) or temporally-
independent (temporal ICA) [26, 27].

Currently, the ICA has become the main tool for data-
driven fMRI analysis. More specifically, let the observed
vector y = [y1, y2, . . . , ym]T be a mixture of the source vector
x = [x1, x2, . . . , xn]T , as follows:

y = Ax (1)

where A ∈ Rm×n is a mixing matrix. The ICA then aims
to find an unmixing matrix W ∈ Rn×m such that output
vector s = [s1, s2, . . . , sn]T = Wy provides estimates of all n
spatially or temporally independent source signals. Currently,
there are two ICA approaches for fMRI: temporal ICA (tICA)
[28] and spatial ICA (sICA) [29, 30]. In sICA, a measure-
ment matrix Y ∈ Rm×N is formed by collecting temporal
time courses of length m across the voxels. 1 The resulting
matrix X = WY ∈ Rn×N of ICs then contains n-spatially
independent components. Here, the W−1 matrix contains n-
task related time series corresponding to the n-spatial ICs (see
Figure 1(a)). On the other hand, the measurement matrix for
tICA is collected as Y ∈ RN×m where N is the number of
voxel and m is the length of the time series. In this case,
the estimated IC matrix X ∈ Rn×m contains n-temporally
independent components as shown in Figure 1(b). Using the
extracted independent time series, the ‘HYBICA’ approach
[29] and the unified ‘SPM-ICA’ method [28] were recently
proposed to combine ICA with a parametric approach such
as SPM. The major difference between these methods is
that ‘HYBICA’ uses spatial ICA while the unified ‘SPM-

1Rather than using whole voxel N , major principle components are often
used to reduce the complexity.
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Fig. 1. Pictorial description of (a) sICA (spatial ICA), and (b) tICA (temporal
ICA)

ICA’ uses temporal ICA to separate the task-related temporal
components. As data-driven fMRI is attracting greater interest
recently, many ICA algorithms such as Infomax [31] and
FastICA [32] are being implemented for group analysis of
fMRI, and are now available in group ICA of fMRI Toolbox
(GIFT) software package [30] or in Multivariate Exploratory
Linear Optimized Decomposition into Independent Compo-
nents (MELODIC) equipped in the FSL package [33].

However, the popularity of ICAs has been challenged re-
cently by a number of studies showing that independence
is not adaptive for blind source separation in fMRI [26,
34]. Also, it was shown that the most influential factor for
the success rate of the ICA algorithm is sparsity of the
components, rather than independence. Furthermore, many
hemodynamics are rarely independent from each other due to
interconnections between biological neural networks as well
as preprocessing steps such as smoothing, normalization, and
realignment. Due to the assumption of a low level additive
noise signal, the performance of ICA is very sensitive to noise.
Thus, a more effective decomposition approach that overcomes
the drawbacks of the ICA is required for a data-driven fMRI
analysis.

The observation that sparsity is more effective than indepen-
dency in determining neural activity [26, 34] is supported by
biological findings of sparse coding in the brain. For example,
for simple- cells in the primary visual cortex (V1), Olshausen
et al [35] showed that a set of receptive fields learned by
maximizing sparseness in the output of a neural network model
is spatially localized, oriented, and selective to spatial structure
at a specific scale, similar to cortical simple cells. This
finding effectively models the inference on retinal images with
signals coming from optic nerve fibers, which deliver sparsely
distributed events from activated neurons. This is based on
the observation of the singular property of neurons, which are

activated when the input stimulus is similar to the receptive
features of each neuron. Similarly, the medial temporal lobe
(MTL) neuron fires selectively to visual stimuli. Analyzing the
neural responses of neurons from the hippocampus, amygdata,
entorhinal cortex, and parahippocampal gyrus using implanted
depth electrodes in the human MTL, it was shown that a single
unit in the right anterior hippocampus fired with a frequency
up to 20Hz by pictures of the actor Steve Carell while there
were no statistically significant responses during presentation
of other faces or at the baseline level [36]. A similar result
was obtained in a study where a single neuron in the left
posterior hippocampus was activated by different views of
the actress Jennifer Aniston, but not by other pictures [37].
More interestingly, the authors reported that MTL neurons
selectively respond to pictures of different views or draw-
ings (pencil sketches, caricatures, coloured photographs with
different backgrounds) of individuals, even to letter strings
with their names, as well as to landmarks or objects. These
results suggest that a sparse set of neurons encode specific
concepts rather than responding to every input. These findings
support the idea of sparsity of the neural response, which
coincides with numerical findings using data-driven fMRI
analysis methods.

Motivated by ICA analyses and biological findings, we
develop a new data driven fMRI analysis method solely based
on the sparsity of underlying hemodynamic signals. In this
method, the BOLD signal at a specific voxel may be regarded
as a combination of a sparse set of dynamic components,
where each component has different time-series signal pat-
terns. Assuming that the components for each voxel are sparse
and the neural integration of the dynamics is linear, applying
the sparse dictionary learning algorithm [38–40] would be
reasonable to identify each component. However, the problem
of applying simple sparse dictionary learning technique in
fMRI is that the dictionary size is usually too big to be used as
a design matrix. The main contribution of the present article
is, therefore, a novel data-driven sparse GLM framework for
a maximum likelihood (ML) estimation of spatially adaptive
design matrices and sparse response signals. More specifically,
a maximum likelihood framework is formulated based on the
observation of sparse coding in the brain. This formulation
results in spatially adaptive design matrices as a subset of
atoms acquired from a learned global dictionary using a sparse
dictionary learning algorithm. However, the sparse dictionary
learning algorithm is usually sensitive to assumed sparsity
level. Therefore, another important contribution of this paper
is to show that the unknown sparsity level can be automatically
estimated by minimum description length principle (MDL)
[41]. The MDL principle is known to balance the trade-offs
between goodness-of-fit on the data and the complexity of the
model. Our results show that MDL can adapt sparsity level
for each individual data effectively.

Additional features of the proposed algorithm are: (i) it is
individually adaptive since the global dictionary is obtained
by a fully data-driven decomposition; (ii) it does not require
any knowledge of a paradigm and is appropriate for event-
related or resting state functional connectivity MRI (fcMRI);
and (iii) similar to HYBICA, the algorithm can be easily



3

incorporated within a SPM framework, and thus a statistically
rich analysis is feasible using hypothesis testing, random field
theory, etc [5]. Using extensive simulation and experiments
with block and event-related paradigms, we show that the
proposed hybrid method can adapt individual variation better
and the activation maps are tightly localized in the target areas
of the brain more sensitively compared to the conventional
spatial and temporal ICA methods such as Infomax and
FastICA algorithms, respectively.

The remaining parts of the paper are organized as follows.
The theory of the data-driven sparse GLM model and the
resulting sparse dictionary learning is presented in Section II,
followed by a description of the methods used in this paper
in Section III. Section IV provides experimental results, and
Section V provides a conclusion and discussion.

II. THEORY

A. Notation

Throughout the paper, xi and xj correspond to the i-th row
and the j-th column of matrix X, respectively. When S is an
index set, XS and AS correspond to a submatrix collecting
corresponding rows of X and columns of A, respectively; xS

denotes a subvector collecting the corresponding elements of
X.

B. Data-driven Sparse GLM

Let Y = [y1, . . . ,yN ] ∈ Rm×N and E = [ε1, . . . , εN ] ∈
Rm×N , where yi ∈ Rm and εi ∈ Rm represent samples of
a BOLD signal and the corresponding noise at the i-th voxel,
respectively. SPM assumes the following generalized linear
model (GLM) [5]:

yi = Dxi + εi, i = 1, . . . , N , (2)

where D ∈ Rm×n denotes the regressors, and xi ∈ Rn denotes
the corresponding response signal strength at the i-th voxel.
The noise covariance matrix from the fMRI signal is usually
modeled as being independent to each voxel [5]:

C = E[εiε
T
j ] = σi

2Λδ[i− j] , (3)

where Λ denotes the common temporal correlation matrix for
all voxels [5], σi

2 denotes the unknown variance at the i-
th voxel and δ[·] denotes a discrete delta function. Since the
correlation structure Λ is common for all voxels, we can apply
the same whitening filter Λ−1/2 for all yi [5]; hence, without
losing generality, Λ can be assumed as identity matrix Im ∈
Rm×m.

Now, for the noise vector εi ∼ N(0, σ2
i Im), the pdf of the

measurement yi is given by

f(yi) =
1

(2π)
m
2 σm

i

exp
(
− 1

2σ2
i

(yi −Dxi)T (yi −Dxi)
)

.(4)

Assuming that noise at each voxel is independent of each other,

the joint probability density function can be represented as:

L(y1, . . . ,yN )

=
N∏

i=1

f(yi) (5)

= (2π)−
mN
2

N∏

i=1

σ−m
i

· exp

(
−

N∑

i=1

1
2σ2

i

(yi −Dxi)T (yi −Dxi)

)
. (6)

Then, the log-likelihood function in terms of unknown param-
eters is given by

l (D,X,Λ) = −m

2

N∑

i=1

log(2πσ2
i )

−1
2

N∑

i=1

1
σ2

i

(yi −Dxi)T (yi −Dxi). (7)

Unlike the standard GLM model that uses a pre-defined matrix
D as a design matrix [5], the proposed data-driven sparse
GLM model assumes D as an unknown global dictionary,
of which atom is assumed to indicate a principally dominant
neural response in a small set of synchronous neural dynamics.
Accordingly, to describe the BOLD signal at each voxel as a
sparse combination from the global dictionary, our data-driven
sparse GLM model assumes that the signal contribution is
sparse, i.e. ‖xi‖0 ≤ k. Then, the maximization of the log-
likelihood under the sparsity constraint can be formulated by
introducing an unknown support set {Ii}N

i=1 into the log-
likelihood function:

l
(
D,X,Λ, {Ii}N

i=1

)
= −m

2

N∑

i=1

log(2πσ2
i )

−1
2

N∑

i=1

1
σ2

i

(yi −DIixIi,i)
T (yi −DIixIi,i) (8)

where xIi,i denotes a subvector of xi collected from elements
in the index set Ii. Now, the maximum likelihood formulation
is given by

max
D,X,Λ,{Ii}N

i=1

l
(
D,X,Λ, {Ii}N

i=1

)
. (9)

Since Eq. (9) is a complicated non-convex nonlinear optimiza-
tion problem, we address the problem by using alternative
maximization. Specifically, we first assume that Λ is known
and start estimating D and X. Then, Λ can be updated using
the new estimates of D and X. This procedure is repeated until
convergence. More specifically, if Λ is known, we represent an
equivalent optimization problem for the maximum likelihood
estimation problem Eq. (9) with respect to D,X:

min
D,X

∥∥∥YΛ− 1
2 −DXΛ− 1

2

∥∥∥
F

subject to ‖xi‖0 ≤ k, (10)

where ‖·‖F denotes the Frobenius norm, the pseudo-norm
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‖x‖0 denotes the number of nonzero-elements, and

Λ
1
2 =




σ1 O · · · O
O σ2 · · · O
...

...
. . .

...
O O · · · σN


 . (11)

Note that the estimation problem Eq. (10) can be addressed
by using sparse dictionary learning algorithm [38–40]. Sparse
learning algorithms recently have been extensively investigated
within the context of compressed sensing, which asserts accu-
rate reconstruction from a limited number of measurements if
the underlying signal is sparse and if the sensing matrix is suf-
ficiently incoherent [42–44]. Among the various methods, the
sparse decomposition method known as the K-SVD algorithm
[38] is widely used in image processing fields such as image
compression [45], denoising [46], etc. This is a generalized
K-means clustering process, which effectively decomposes
signals into a sparse linear combination of dictionary atoms.
Specifically, given a set of m-by-N training signals, we search
the best possible dictionary D for the sparse representation
of the measurement using Eq. (10). The K-SVD algorithm
includes a two-step process per iteration: (i) sparse coding,
where we find the best coefficient matrix X with a fixed D, and
(ii) codebook update stage, wherein we change the columns
of D sequentially and the corresponding coefficients. More
specifically, for a dictionary estimate D̂, the sparse coding
step solves the following for i = 1, · · · , N :

min
xi

∥∥∥∥
yi

σi
− D̂

xi

σi

∥∥∥∥
2

2

, subject to ‖ xi ‖0≤ k. (12)

The sparse coding stage can then be solved using basis persuit
(BP) [47, 48], or orthogonal matching pursuit (OMP) [49, 50],
and etc. As it will be shown later, simple thresholding based on
correlation [51] is computationally efficient, and more robust
in finding F -contrast activation map. Hence, we calculate the
square of correlation between the measurement vector yi and
the atom dj ;

Cyi(j) =
||yT

i dj ||22
σ2

i ||dj ||22
, j = 1, · · · , n . (13)

Then, the active index set Ii can be estimated by collecting
indices that correspond to the k-largest coefficients from
{Cyi(j)}n

j=1. The corresponding sparse coding for the signal
estimate x̂Ii,i is then given by

x̂Ii,i =
(
DT

Îi
DÎi

)−1

DT
Îi
yi . (14)

Note that in Eq (13), σ2
i does not influence the active set

estimate Ii since it is common to every dj .

With estimated X and Λ, K-SVD puts in question only one
column in the dictionary, dj , and the corresponding coefficient
xj , the j-th row of X. This can be solved using singular value
decomposition (SVD) with sparsity constraint. Specifically, we
first define new matrices

Ỹ = YΛ− 1
2 (15)

and

X̃ = XΛ− 1
2 . (16)

Then, for each p = 1, 2, · · · , n, the K-SVD does the following:
(i) define the index set ωp corresponding to non-zero indices
of x̃p, (ii) compute Ep = Ỹ−∑

j 6=p djx̃j , (iii) define Ωp as
a diagonal matrix with ones for the indices corresponding to
ωp and zeros elsewhere, (iv) choose a subset ERp = EpΩp,
(v) take SVD to the restricted ERp ,

ERp = UΛVT =
J∑

j=1

σjujvT
j (17)

and (vi) update d̂p = u1, x̂p
R = σ1vT

1 . Even though all of
the dictionary elements can be estimated by data, a fixed atom
needs be included to account for measurement error. Notably,
the temporal variation of BOLD signal usually drifts due to
vaso-motion, breathing, etc. Hence, a constant dictionary atom
d1 = [1, . . . , 1]T ∈ Rm is used to account for DC-bias and
drift. In this case, the dictionary update step is modified in
order not to update the fixed atom.

C. Minimum Description Length Principle For Sparsity Level

The K-SVD algorithm is often sensitive to the choice
of sparsity level k. Since the sparsity k affects the whole
performance of dictionary learning, a criteria to determine the
optimal k needs to be investigated. This problem corresponds
to a model order selection problem that finds the optimal k hav-
ing the best trade-off between filedity and model complexity.
Examples of effective model order selection include minimum
description length (MDL) suggested by Rissanen [41], Akaike
information criterion (AIC) [52] and Schwartz information
criterion (SIC) [53]. Among these, we chose the MDL method
due to its asymptotic consistency [41]. According to MDL
principle, the best choice of model order n0 to explain the
data y is the one which minimizes

MDL(n0) = L(y|n0) + L(n0), (18)

where L(y|n0) is the goodness-of-fit of y when encoded with
n0, and L(n0) is the code length in bits to encode the model
itself. In our problem, k number of regressors are distinctly
selected for each voxel, so the total model order becomes n0 =
kN .

In order to apply MDL, we first need to calculate the value
of log likelihood. This can be done by applying ML estimate
of D,X,Λ, {Ii}N

i=1. Since D,X, {Ii} are estimated using K-
SVD, the remaining unknown parameter is Λ. This value can
be calculated by

∂

∂σ2
i

l(D,X,Λ, {Ii}) = 0, (19)

resulting in

σ2
i =

1
m

(yi −DIixIi,i)
T (yi −DIixIi,i). (20)

By plugging the ML estimate Eq (14) into Eq (20), we have

σ2
i =

1
m

yT
i P⊥DIi

yi (21)
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where P⊥DIi
denotes the projector associated with the orthog-

onal complement of the range space of DIi . Therefore, the
code length for the goodness-of-fit becomes

L(y|n0) = − log2(P(y|n0))

=
m

2

N∑

i=1

log2(2πσ̂2
i )

=
m

2

N∑

i=1

log2

(
2π

m
yT

i P⊥DÎi

yi

)
(bits). (22)

Now, the code length L(n0) for MDL criterion can be
described by the code length for the location of nonzero
coefficient and magnitude as:

L(n0) =
1
2

n0 log2 n + n0 log2 n =
3
2

n0 log2 n, (23)

where n is the number of dictionary atoms. The MDL prior
given in Eq. (23) is often called Saito’s MDL [54].

Note that for a small n0, L(y|n0) becomes large whereas
L(n0) becomes small, and for a large n0, L(y|n0) becomes
small whereas L(n0) becomes large. Hence, the sum of the two
description code lengths can be minimized at an appropriate
n0 value, exhibiting a trade-off between goodness-of-fit and
complexity of the models. Thus, we can solve the optimization
problem Eq. (18) for various n0 values, and choose the n0

value that gives the minimum cost. We are aware that MDL
criterion was also used to estimate the number of independent
components from the aggregate dataset in the group ICA
analysis [30]. They calculated both AIC and MDL estimates
and used the average of the two as the number of components
to utilize the property of statistical consistency of MDL
criterion and lower signal-to-noise ratio advantages of AIC.
However, to our best knowledge, we are not aware of any
prior work that uses MDL for sparsity level selection in sparse
dictionary learning.

D. Activation Detection

So far, we presented a maximum likelihood approach for es-
timating parameters for the proposed data-driven sparse GLM
model. This section presents a statistical test for detecting
activated pixels. In a classical inference, a binary hypothesis
test is performed in which the null hypothesis is tested against
the alternative hypothesis. Ardekani et al [55] describes three
properties that are often required for hypothesis testing in
fMRI. First, it is desirable that a hypothesis test is invariant
to a scale factor for the measurement. Second, the test needs
invariance to a rotation of the response signal in the signal
subspace. Third, the test has to be invariant to an unknown
bias in the nuisance subspace [55].

For example, consider a given GLM model

yi = Dxi + εi = [A B]xi + εi (24)

where A and B denotes submatrices of response signal
subspace (to test) and nuisance subspace, respectively. In case
the response and nuisance subspace are orthogonal, Ardekani
et al shows that the only test that satisfies aforementioned

properties is in the following form [55]

Fi =
yT

i PAyi

yi(I−PA −PB)yi
. (25)

If the response and nuisance subspace are not orthogonal, (i.e.
AT B 6= 0), the corresponding test is given by [55],

Fi =
yT

i PA′yi

yi(I−PA′ −PB)yi
, (26)

and A′ is a projection of A onto orthogonal complement of
B:

A′ = P⊥BA. (27)

Note that we are interested in testing whether a specific
temporal dynamics from a global dictionary D is present in
a specific voxel. In most of the cases, we do not know the
sign of the dynamics, so t-test is not appropriate. Usually, the
neural dynamics we want to test is a specific atom from a
global dictionary that have learned all the temporal dynamics
from all voxels using sparse dictionary learning. Hence, at
each voxel, a binary hypothesis test is performed in which the
null hypothesis H0 : θi = 0 is tested against the alternative
hypothesis H1 : θi 6= 0, where θi is the response signal from

yi = zθi + DIi\zxIi,i + εi (28)

where z denotes an atom from the global dictionary D that
contains a neural dynamics of interest, and DIi\z denotes a
reduced size local design matrix made by removing atom z
from DIi (If z is not an atom of the local design matrix DIi ,
then DIi\z = DIi). We can easily see when z does not belong
to the set of atoms from DIi , θi = 0. Hence, H0 holds. In
other cases, using Eq (26), we have

Fi =
yT

i PP
D⊥

Ii\z
zyi

yT
i P⊥DIi

yi

m− k

q1

=
yT

i (P⊥DIi\z
−P⊥DIi

)yi

yT
i P⊥DIi

yi
(m− k) (29)

where P⊥DIi
,P⊥DIi\z

denote the projection on the orthogonal
complement on the range space of Di and DIi\z, respectively.
We use the projector update rule PDIi

= PP
D⊥

Ii\z
z +PDIi\z

,

and the constants come from the degree of freedom, i.e.
m− rank(D) = m− k and q1 = rank(PD⊥

Ii\z
z) = 1. Since

the main purpose of the proposed model is to extract time-
series components which represent synchronous, functionally
related neural hemodynamics, we can test different atoms from
a global dictionary D (which are trained by sparse learning
algorithm) to identify where the specific temporal dynamic
signal, represented by the atom z, is originated from. For
example, in the case of the analysis of block-paradigm or
event-related task experiments, we can select the atom z by
choosing the atom which has the highest correlation with the
original stimulus function or predefined HRF. In case of resting
state analysis, the original stimulus is not known, and each
atom from the trained global dictionary D needs to be tested to
identify activated regions that have similar temporal dynamics.
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These identified and separated regions can be used as network
nodes for functional connectivity MRI [56].

Recall that in K-SVD sparse coding stage, any pursuit algo-
rithm can be used to obtain the k-sparse vector xi. However,
we found that simple thresholding detection was better than
OMP for sparse dictionary learning from our experimental
results. This can be explained as follows. If z is an atom of the
design matrix DÎi

and z ∼= P⊥DIi\z
, the square of correlation

of the i-th column vector yi with an atom z in Eq. (13) can
be rewritten as

Cyi(j) =
||yT

i z||2
σ̂2

i ||z||2
=

yT
i Pzyi

yiP⊥DÎi

yi

'
yT

i (P⊥DIi\z
−P⊥DIi

)yi

yT
i P⊥DIi

yi
. (30)

due to the projector update rule. Hence, it selects atoms
that have the highest F -values under this situation. The
orthogonality is often observed when the dynamic signal
varies with an alternating pattern whereas the slow varying
background and/or DC components make up the nuisance
space. In addition, as shown in the following section, the
complexity of K-SVD with simple correlation is much lower
than that of K-SVD with OMP. Therefore, we prefer to use a
simple thresholding scheme for dictionary learning.

E. Complexity analysis

Note that the most time consuming part of the algorithm
is the K-SVD dictionary learning step. Hence, we conducted
a complexity analysis of the K-SVD step with a simple
thresholding algorithm and OMP using the number of required
multiplication [57] 2. For the analysis, we consider a signal
yi ∈ Rm and a dictionary D ∈ Rm×n with sparsity level
k. In OMP implementation, the operation at the k-th iteration
includes multiplication of DT with residual (TDT number of
multiplications), update of the coefficient vector, and a back-
substitution to update the residual. Hence, according to [57],
the total number of multiplication of the OMP summing over
all k iterations is therefore

TOMP ≈ k3 + k · TDT = k3 + 2kmn. (31)

The main difference of thresholding compared to OMP is that
the support set is estimated once using the square of correlation
of the residual with the global dictionary D, and then the
coefficients are calculated using matrix inversion. Hence, the
number of multiplication is

TThr ≈ k3 + TDT = k3 + 2mn. (32)

The remaining part, the dictionary update step, is then applied
as follows. The dominant operations in a single K-SVD
iteration include sparse-coding, atom updates, and coefficient
updates. The main difficulty in calculating the complexity is
that the atom update complexity depends on the number of
signals using it [57]. However, with an elegant cumulative

2We assume that the complexity of finding the k-largest coefficient for the
case of thresholding is negligible compared to the multiplication since k ¿ n.

(a) (b)

(c) (d)

Fig. 2. Simulated activation patterns for (a) temporally and spatially
uncorrelated events, (b) spatially dependent events, (c) temporally dependent
events, and (d) temporally and spatially dependent events. The visual patterns
used in each temporal combination are shown on left side of the temporal
dynamics.

analysis, Rubinstein et al [57] show that the total computa-
tional complexity of K-SVD with OMP is given by

TK−SV D(OMP )

= N · TOMP + mn2 + 4mNk + 4Nkn + 4mn2

= N · (k3 + 2kmn + 4mk + 4kn
)

+ 5mn2. (33)

Similarly, we can calculate the K-SVD with thresholding as:

TK−SV D(Thr)

= N · TThr + mn2 + 4mNk + 4Nkn + 4mn2

= N · (k3 + 2mn + 4mk + 4kn
)

+ 5mn2. (34)

Hence, the computational complexity is proportional to the
voxel size and the complexity with thresholding is much
smaller than the one with OMP.

In addition, due to computational complexity of K-SVD for
large number of voxels (N À 1), we made the following
two approximations. First, rather than using all N voxels for
K-SVD algorithm, we downsampled the number of voxels.
The down-sampling factor we used for the experiment was
64. Second, rather than successively applying K-SVD using
Eq. (10) with newly updated Λ, we assumed a constant Λ
value and performed K-SVD algorithm for sparse dictionary
learning only once. Even though the proposed simplification
makes the algorithm sub-optimal in theory, we found that the
overall performance of the algorithm was basically similar
according to our experiments.

III. METHOD

We used the proposed method on four different fMRI
datasets: (i) simulation data, (ii) block-paradigm auditory
stimulus task dataset of a single subject (SPM open-dataset:
http://www.fil.ion.ucl.ac.uk/spm/), (iii) block-paradigm RFT
task dataset of four subjects, and (iv) event-related RFT task
dataset of four subjects.
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(a)

(b)

(c)

Fig. 3. Experimental paradigms for (a) auditory stimulus tasks, (b) block
paradigm right finger tapping tasks, and (c) event-related right finger tapping
tasks.

A. Simulation method

We generated simulated data to test the validity of the
proposed method in comparison to sICA, tICA, and PCA.
Two pairs of temporal waveforms were created containing
similar paradigms as used in the simulation by Calhaun et al
[58]. The temporal paradigms were each 360 sec and visual
patterns comprised of box signals were repeated as shown in
Figure 2. Three different visual patterns of 10×10 voxels were
created, with amplitudes of 1 in {2, . . . , 6} × {2, . . . , 6} for
pattern A, {8, 9}×{8, 9} for pattern B, {1, . . . , 5}×{1, . . . , 5}
for pattern C, and 0 elsewhere. Additionally, random white
Gaussian noise with N (0, 0.11) was added. The spatial pat-
terns and the corresponding time series in Figure 2 represent
four different scenarios: temporally and spatially uncorrelated
events (Figure 2(a)), spatially dependent events (Figure 2(b)),
temporally dependent events (Figure 2(c)), and temporally and
spatially dependent events (Figure 2(d)). These four datasets
were analyzed using the proposed method, sICA, tICA and
PCA. For the proposed method, we used 1-sparsity (k = 1)
and the dictionary size of 3 (n = 3), which was learned using
K-SVD algorithm with 20 iterations. During the sparse coding
stage, simple thresholding algorithm based on the square of
correlation was employed. We used FastICA software toolbox
for sICA and tICA [32]. Prewhitening and dimension reduction
into 3 components were implemented simultaneously using
a principle component analysis (PCA). Three independent
components were then learned for both ICA methods with
‘pow3’ nonlinearity function.

B. Behavior protocol and data acquisition

1) Auditory stimulus task: Auditory stimulus task datasets
of a single subject were used to compare the results of the

proposed method with the results of conventional methods. As
shown in Figure 3(a), a total of 96 acquisitions (TR= 7 sec),
giving sixteen 42 sec blocks, were used for the analysis except
for the first ‘dummy’ 4 scans. The condition for successive
blocks alternated between rest and auditory stimulation, start-
ing with rest. Auditory stimulation was with bi-syllabic words
presented binaurally at a rate of 60 per minute. Whole brain
BOLD/EPI images were acquired on a modified 2T Siemens
MAGNETOM Vision system. Each acquisition consisted of
64 contiguous slices, with a matrix size of 64 × 64 and in-
plane resolution of 3 mm× 3 mm× 3 mm. The data set was
obtained from an open-dataset in the SPM5 software pack-
age (Wellcome Department of Cognitive Neurology, London,
UK)(http://www.fil.ion.ucl.ac.uk/spm/).

2) Block-paradigm right finger tapping task: The proposed
method was also applied to a block-paradigm right finger
tapping (RFT) task to evaluate the performance. A 15 sec task
period alternated with a 72 sec resting period was repeated 4
times for each subject followed by an additional 30 sec of
rest as illustrated in Figure 3(b). The total recording time was
480 sec. During the task period, subjects were instructed to
perform right finger flexion, and to focus on a fixed point
in the resting time to minimize eye movement, thinking,
and so on. A total of 4 healthy right-handed subjects were
examined (mean age = 25.4 ± 2.3 years). A 3.0T funtional
MRI system (ISOL, Republic of Korea) was used to measure
the BOLD response. During the experiment with the blocked
task paradigm, the echo planar imaging (EPI) sequence was
used with TR/TE = 3000/35 ms, flip angle = 80◦, 35 slices,
and 4 mm slice thickness. Each acquisition consisted of 35
continuous slices, with a matrix size of 64× 64 and in-plane
resolution of 3.44 mm×3.44 mm×4 mm. In the subsequent
anatomical scanning session, T1-weighted structural images
were acquired. Four dummy scans were also discarded.

3) Event-related right finger tapping task: We also used
an event-related RFT task. The BOLD responses and T1-
weighted structural images were acquired using the same
scanner. A total of 4 healthy subjects were examined (mean
age = 25.7 ± 2.2 years). The EPI sequence was used with
TR/TE = 2000/35 ms, flip angle = 80◦, and 4 mm slice
thickness. Each acquisition consisted of 24 contiguous slices,
with a matrix size of 64 × 64 and in-plane resolution of
3.44 mm × 3.44 mm × 3.44 mm. The total recording time
was 650 sec. After a dummy scan of 30 sec, the right finger
tapping task period and resting period were repeated 40 times
followed by an additional 30 sec of rest (see Figure 3(c)). For
the resting period immediately after the task, the interstimulus
interval (ISI) ranged between 4 and 20 sec with an average ISI
period of 12 sec. Fifteen dummy scans were also discarded.

C. Signal Processing

1) Preprocessing for SPM: The images were first spatially
realigned to correct changes in signal intensity over time,
which can arise from within-subject head motion during the
scanning session. The maps were then spatially normalized
to a standard Talairach space and resampled to 2 mm ×
2 mm × 2 mm voxels. The preprocessed data were used as
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Fig. 4. Block diagram of the proposed method.

a measurement in the GLM model. Spatial smoothing was
then applied with a 8 mm× 8 mm× 8 mm full-width at half
maximum (FWHM) Gaussian kernel.

2) Data-driven sparse GLM: The BOLD time-series data
was arranged as a matrix Y ∈ Rm×N , where m is the
number of time points and N is the number of the voxels.
The data was then down-sampled 8 times along the spatial
direction to reduce the computation time in K-SVD learning.
We used a discrete cosine transform (DCT) basis set with
a cutoff frequency of 1/128 Hz to eliminate low frequency
drifts, and thereby to improve the signal-to-noise ratio. After
detrending, the data were temporally smoothed using 1.5 sec
full-width at half maximum of the Gaussian kernel to remove
high frequency noise. The data were then decomposed using
the K-SVD algorithm, where correlation based thresholding
method was used in the sparse coding stage. We first initialized
the dictionary by the data elements, and the first atom in the
dictionary was set to be the DC component in order to capture
the remaining drift signal. A total of 30 iterations of K-SVD
learning were performed for every dataset. The maximum
number of sparsity (k) was determined using MDL criterion
by varying k from 1 to 10, whereas the number of dictionary
elements to train (n) was set to 40. After the dictionary
learning with the optimal sparsity k at each voxel, the nonzero
k atoms are used as a local design matrix. Then, F -map was
calculated using Eq. (29) offline, and the resulting F -map
and degree of freedom were imported to SPM5 to obtain the
activation map for a given p-value. Random field correction
was used. The above process is illustrated in Figure 4.

3) Independent component analysis: We used the GIFT
software package [30] to separate spatially independent

sources from the data. Prewhitening and dimension reduction
to 40 components were simultaneously conducted using prin-
ciple components analysis (PCA). The output of the PCA was
used to estimate 40 independent components, which is the
same as the size of the dictionary yielded by K-SVD learning.
This number provided a fairly reasonable separation within the
estimates for previous results [30, 58] when considering data
size. We used Infomax [31] and FastICA [32] with a pow3
nonlinearity function to compare the results with the proposed
method. Spatially independent images and the corresponding
time courses were obtained to construct the regressors in a
GLM analysis. In addition, we conducted tICA using the
FastICA algorithm [58]. In tICA, we downsampled the data
4 times in the slice direction, and implemented the FastICA
algorithm for each slice. In this case, 10 temporal ICs were
learned for each slice and collected. After we captured time
courses from sICA or tICA, we computed the correlation
coefficient of learned ICs with canonical HRF. We selected
the most correlated time-series components as a design matrix
to implement a GLM analysis through the SPM5 software
package. We also calculated the F -map to show the activation
maps.

IV. EXPERIMENTAL RESULTS

A. Simulation results

Figure 5 illustrates the results from the analysis of simulated
experiments. The time courses are given by a trained dictio-
nary (data-driven sparse GLM), pseudo-inverse of the unmix-
ing matrix W−1 (sICA), temporally independent components
(tICA), and principal component (PCA), respectively.
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(a)

(b)

(c)

(d)

Fig. 5. Simulation results for the activation scenario given in Figure 2. Extracted time series and the corresponding z-maps are shown according to the
following order: (a) temporally and spatially uncorrelated events, (b) spatially dependent events, (c) temporally dependent events and (d) temporally and
spatially dependent events.

Note that PCA failed to resolve the two activations for all
the simulated scenarios. When two activation areas are not
spatially overlapped as shown in Figs. 5(a)(c), both sICA and
tICA successfully decomposed the two times series which
are uncorrelated (Fig. 5(a)) and correlated (Fig. 5(c)). When
activation areas are significantly overlapped as in Figs. 5(b)(d),
neither sICA nor tICA are successful and the resulting z-maps
were erroneous.

However, in all the simulation scenarios, the time course
extracted using the proposed method closely followed the orig-
inal temporal responses, confirming that the proposed method
can effectively extract the sparse components. Moreover, the
activation map by z-contrast follow the ground-truth accu-
rately. This coincides with the box simulation result in [34],
which showed that the success of separation using sparsity is
less sensitive to overlapped region than using independency.

B. Auditory stimulus task results

Figure 6 illustrates the surface projection of F -statistics
maps from a fMRI individual analysis of the auditory stimulus
task at a random field correction p < 0.001. The regressors
in the design matrix for a GLM analysis are constructed by:
(a) canonical HRF, (b) data-driven sparse GLM, (c) sICA
(Infomax), (d) sICA (FastICA), (e) tICA (FastICA), and (f)
PCA, as shown in the right side of the maps. The maxi-
mum number of sparsity (k) was chosen as 2 according to
our MDL criterion. The correlation coefficients of the most
correlated atom in each dictionary with the canonical HRF
are: (b) 0.8214, (c) 0.8072, (d) 0.6045, (e) 0.7430, and (f)
0.5778, which showed that the extracted time course by the
proposed algorithm is the most correlated. When we use the
signal components that are the most correlated with canonical
HRF, the results show that the neural activation in auditory
area are correctly identified, except for sICA using FastICA.
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Fig. 6. F -statistics activation maps for auditory stimulus dataset of single
subject at a random field correction p < 0.001 using design matrices
constructed by (a) a canonical HRF, (b) data-driven sparse GLM, (c) sICA
using Infomax algorithm, (d) sICA using FastICA algorithm, (e) tICA using
FastICA algorithm, and (f) PCA, respectively. The dotted lines correspond
to the canonical HRF convolved with experimental paradigm, and the solid
lines correspond to the individual task-related components extracted using
each data-driven decomposition methods.

(a) (b) (c)

(d) (e) (f)

Fig. 7. F -statistics activation maps with a random field correction p <
0.001 for auditory task dataset with respect to various non-task related signal
components.

Even though a ground truth of activation is not available to
quantitatively compare the spatial response pattern, the data
set we used is a standard dataset for validation of hypothesis-
driven methods, and thus a close match with the canonical
HRF confirms the validity of the algorithm. In Figure 7,
we also show the F -statistics maps corresponding to other
non-task related signal atoms at a random field correction
p < 0.001. In this case, the regressor z is determined as
z = Dc where c is a given contrast. We used the elementary
contrast vector, i.e. c = ei ∈ Rn that has zeros except

for 1 element at the i-th location, where the i-index varies
depending on the neural dynamics of interest. As discussed
before, the voxels corresponding to each global dictionary
atom are assumed as neural dynamics which are activated
and localized in a small set of area. Hence, by varying c,
we can test the hypothesis that a specific neural dynamics
z is originated from a specific voxel. These maps indicate
sparsely distributed patterns of task-related signals, nontask-
related signals and etc. The activations from motor cortex and
somatosensory cortex are shown with secondary visual cortex
in Figure 7(a). Similarly, we can observe activation at the
visual cortex in Figure 7(b), prefrontal area in Figure 7(c),
parietal lobe in Figures 7(d),(e) and (f), and etc, which are
obtained by changing the contrast vector.

C. Block-paradigm right finger tapping task

We employed our approach to block-paradigm RFT task
data. Figure 8 illustrates the surface projections of F -statistics
maps from four fMRI individual data analysis at a random field
correction p < 0.001. The regressors in the design matrix for
the GLM analysis are constructed by canonical HRF, data-
driven sparse GLM with K-SVD, sICA using Infomax, sICA
using FastICA, and PCA. The proposed MDL criteria selected
the optimal sparsity as k = 2, 2, 2 and 3 for each subjects,
respectively. The most correlated atom with the canonical HRF
and DC components are used as regressors in the design matrix
for sICA, tICA and PCA, as suggested in [26, 58]. In the
proposed method, we used a contrast vector for F -map to
identify an atom that was the most correlated with canonical
HRF for activation detection. Our method clearly localized
activations in the target region related to the task.

In Figure 9, the task-related components of 4 subjects are
superimposed to compare the reliability of the algorithms. The
mean time course extracted by the proposed method resembles
that of the canonical HRF, showing consistent results of task-
related activity across the 4 task cycles. This shows that the
proposed method reliably detects neural activation.

D. Event-related right finger tapping task

Event-related RFT task fMRI data were also studied.
Figure 10 illustrates the surface projection of F -statistics
maps from 4 individual analysis at a random field correction
p < 0.001. The regressors in the design matrix for the
GLM analysis are constructed by the canonical HRF, data-
driven sparse GLM with K-SVD, sICA using Infomax, sICA
using FastICA, and PCA. Our MDL criterion selected the
optimal sparsity level k = 6, 6, 9 and 7 for each subject,
respectively. The contrast vector for F -map was again selected
to identify the most correlated atom with canonical HRF. The
trained dictionary using our method extracts clearly localized
activation in the target region related to the task, outperforming
the conventional data-driven methods with event-related fMRI.
Unlike the ICA, our algorithm was able to separate the motor
area from other areas such as the auditory cortex for all of
the individuals. In Figure 11, we also show the F -statistics
maps using contrast vector to select atoms that correspond
to non-task related atoms of subject 2 at a random field
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Fig. 8. F -statistics activation maps for block-paradigm right finger tapping
task dataset of 4 subjects at a random field correction p < 0.001 using
the design matrices constructed by (a) canonical HRF, (b) data-driven sparse
GLM, (c) sICA using Infomax, (d) sICA using FastICA, and (e) PCA.

Fig. 9. Reliability of task-related temporal trace of 4 subjects using: (a) data-
driven sparse GLM, (b) sICA using Infomax, and (c) sICA using FastICA.
The bold line is the mean time course of each task-related component used
in individual analysis for 4 subjects. The maximum and minimum values at
each time points are shown above and below.

correction p < 0.001. The proposed method extracted parietal
lobe and secondary frontal area in Figures 11(a) and (b).
Furthermore, the results showed activations from the visual
cortex in Figure 11(c), right motor cortex in Figure 11(d),
prefrontal area in Figure 11(e), and etc. The maps in Fig-
ure 11(f) may be due to subject head movement, since similar
motion artifacts were obtained from previous ICA results
[26, 59]. Considering complex interconnection of the brain
network during the experiments, it is expected that the areas

Fig. 10. F -statistics activation maps for event-related right finger tapping task
dataset of 4 subjects at a random field correction p < 0.001 using the design
matrices constructed by (a) canonical HRF, (b) data-driven sparse GLM, (c)
sICA using Infomax, (d) sICA using FastICA, and (e) PCA.

(a) (b) (c)

(d) (e) (f)

Fig. 11. F -statistics activation maps with a random field correction p <
0.001 for event-related right finger tapping task dataset of subject 2 with
respect to various non-task related signals.

may be activated during information processing with distinct
temporal dynamics. Our results clearly identify such dynamics
by changing the contrast vector for F -map.

E. Choice of k
In order to show the effectiveness of our MDL criteria for

sparsity level selection, we illustrated the results by varying
sparsity level in Figure 12 to show the sensitivity of the K-
SVD sparse dictionary learning with respect to sparsity. Note
that the results are dependent upon the sparsity level k. The
optimal k decided by MDL were (a) 2, (b) 3, and (c) 6,
respectively, which clearly show the best trade-off between
sensitivity and specificity. Extensive experiments with other
dataset also confirm the accuracy of the MDL based sparsity
selection.

F. OMP vs Simple thresholding
We also performed the comparative study of OMP and

simple thresholding analysis in the sparse coding stage (See



12

Fig. 12. Activation maps acquired by varying sparsity level: (a) auditory
stimulus dataset, (b) block paradigm RFT task, and (c) event-related RFT
task. The optimal k determined by MDL were 2,3 and 6, respectively. Box
indicates the images corresponding to the optimal sparsity level.

Fig. 13. Comparison of OMP and thresholding for the data-driven sparse
GLM: the activation maps from auditory stimulus dataset in (a), block
paradigm RFT task in (b) and (c), and event-related RFT task in (d) are
shown. The optimal k determined by MDL were 2, 2, 3 and 6, respectively.

Figure 13). Although the optimal k determined by MDL were
the same for both methods, the ability of separating the source
signal from the data was somewhat different. In Figure 13(a)
and (b), OMP as well as the simple thresholding method
successfully extract the task-related dictionary atom. However,
OMP failed in extracting correct activation map in Figure 13(c)
and (d). Similar behaviors were obtained in other dataset.
Therefore, we chose simple thresholding for our study.

V. CONCLUSION AND DISCUSSION

In order to decompose a BOLD time-series that represents
distinct brain dynamics including task-related and non-task-

related signal components, we presented a novel data-driven
sparse GLM framework that combines statistical parametric
mapping with sparse dictionary learning for a data-driven brain
fMRI analysis. We showed that a maximum likelihood esti-
mation framework with sparsity constraint provides spatially
adaptive design matrices as a subset of learned dictionary
acquired from sparse dictionary learning algorithm.

Various ICA studies such as ‘SPM-ICA’ consider the com-
ponent time course showing greatest correlation with the
experimental task reference function as a consistently task-
related (CTR) component and note that exactly one CTR
component have a time course that is highly correlated with the
reference function [26, 28]. Considering the autocorrelations
between areas, ‘HYBICA’ uses a metric based on the predicted
sum of squares statistic (PRESS) to select the best number
of spatially independent components, and sequentially com-
bines them into one hybrid task-related component to utilize
in a GLM framework. Even though this approach reduces
collinearity among the task-related regressors by combining all
task-related regressors, a more correlated component can pos-
sibly contain a time-course that is related to a distinct neural
signal. Unlike the ICA, the proposed method operates under
a sparse distribution of task-related activation and spatially
adaptive design matrix, whose sparsity level is determined by
MDL criterion. Hence, it obtains a finer decomposition and
better adapts to individual and spatial variation.

In summary, we have proposed a new data-driven analysis
for a brain fMRI analysis using data-driven sparse GLM,
which decomposes BOLD signals into sparse dictionary atoms.
This method overcomes the limitations of ICA by exploiting
sparsity of the components instead of independence. Further-
more, the unknown sparsity level can be estimated by MDL
criterion. We show that this approach extracts individually
adaptive activation patterns more accurately than spatial and
temporal ICA, by a simulation and task-evoked experimental
results.
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