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2 Notation and de�nitionsMuch of the notation will be presented as we go along. Here we just note that the inner product of twosquare integrable functions f; g 2 L2(IR) is de�ned ash f; g i = Z +1�1 f(x) g(x)dx;and that the Fourier transform of a function f 2 L2(IR) is de�ned asf̂(!) = Z +1�1 f(x) e�i!x dx:We shall also use the Poisson summation formula in the following two forms,Xl f(x� l) = Xk f̂(2k�) ei2k�x;and Xl h f; g(� � l) i e�i!l = Xk f̂(! + k2�) ĝ(! + k2�):If no bounds are indicated under a summation sign, 2 ZZ is understood.A countable set ffng of a Hilbert space is a Riesz basis if every element f of the space can be writtenuniquely as f =Pn cn fn, and positive constants A and B exist such thatA kfk2 �Xn jcnj2 � B kfk2:3 A short history of waveletsWavelet theory involves representing general functions in terms of simpler, �xed building blocks at dif-ferent scales and positions. This has been found to be a useful approach in several di�erent areas. Forexample, we have subband coding techniques, quadrature mirror �lters, pyramid schemes, etc., in signaland image processing, while in mathematical physics similar ideas are studied as part of the theory ofCoherent States. Wavelet theory represents a useful synthesis of these di�erent approaches.In abstract mathematics it has been known for quite some time that techniques based on Fourierseries and Fourier transforms are not quite adequate for many problems and Littlewood-Paley techniquesare often e�ective substitutes. These techniques were initially developed in the 30's to understand, forexample, summability properties of Fourier series and boundary behavior of analytic functions. However,in the 50's and 60's they developed into powerful tools for understanding other things such as solutions ofpartial di�erential equations and integral equations. It was realized that they �t into so called Calder�on{Zygmund theory, an area of harmonic analysis which is still very heavily researched.One of the standard approaches, not only in Calder�on-Zygmund theory but in analysis in general, isto break up a complicated phenomenon into many simple pieces and study each of the pieces separately.2



In the 70's, sums of simple functions, called atomic decompositions [28], were widely used, especially inHardy space theory. One method used to establish that a general function f has such a decompositionis to start with the \Calder�on formula": for a function f , holds thatf(x) = Z +10 Z +1�1 ( t � f)(y) ~ t(x� y) dy dtt :The � denotes convolution. Here  t(x) = t�1 (x=t), and similarly for ~ t(x), for appropriate �xedfunctions  and ~ . In fact, as we shall see below, this representation is an example of a continuouswavelet transform. In the context of trying to further understand Hardy spaces, as well as other spacesused to measure the size and smoothness of functions, and showing very deep, but also very abstract,functional analytic properties, the �rst orthogonal wavelets were discovered by Str�omberg [104]. A discreteversion of the Calder�on formula had also been used for similar purposes in [74] and long before this therewere results by Haar [68], Franklin [56], Ciesielski [20], Peetre [93], and others.Independently from these developments in harmonic analysis, Alex Grossmann, Jean Morlet, andtheir coworkers studied the wavelet transform in its continuous form [65, 66, 67]. The theory of \frames"[41] provided a suitable general framework for these investigations.In the early to mid 80's there were several groups, perhaps most notably the one associated withYves Meyer and his collaborators, that independently realized, with some excitement, that some ofthe tools that had been so e�ective in Calder�on-Zygmund theory, in particular the Littlewood-Paleyrepresentations, had discrete analogs and could be used both to give a uni�ed view of many of theresults in harmonic analysis and also, at least potentially, could be e�ective substitutes for Fourierseries in numerical applications. (The �rst named author of this paper came to this understandingthrough the joint work with Mike Frazier [57, 58, 59].) As the emphasis shifted more towards therepresentations themselves, and the building blocks involved, the name also shifted: Yves Meyer andJean Morlet suggested the word wavelet for the building blocks, and what earlier had been referred to asLittlewood-Paley theory now started to be called wavelet theory.Pierre-Gilles Lemari�e and Yves Meyer [80], independently of Str�omberg, constructed new orthogonalwavelet expansions. With the notion of multiresolution analysis, introduced by St�ephaneMallat and YvesMeyer, a systematic framework for understanding these orthogonal expansions was developed [85, 86, 87].It also provided the connection with quadrature mirror �ltering. Soon Ingrid Daubechies [37] gave aconstruction of wavelets, non-zero only on a �nite interval and with arbitrarily high, but �xed, regularity.This takes us up to a fairly recent time in the history of wavelet theory. Several people have madesubstantial contributions to the �eld over the past few years. Some of their work and the appropriatereferences will be discussed in the body of the paper.4 The continuous wavelet transformSince we are going to be brief, let us start by pointing out that more detailed treatments of the continuouswavelet transform can be found in [14, 65, 64, 70]. As mentioned above, a wavelet expansion consistsof translations and dilations of one �xed function, the wavelet  2 L2(IR). In the continuous wavelet3



transform the translation and dilation parameter vary continuously. This means that we use the functions a;b(x) = 1pjaj  �x� ba � with a; b 2 IR; a 6= 0:These functions are scaled so that their L2(IR) norms are independent of a. The continuous wavelettransform of a function f 2 L2(IR) is now de�ned asW(a; b) = h f;  a;b i : (1)Using the Parseval identity we can also write this as2�W(a; b) = h f̂ ;  ̂a;b i : (2)where  ̂a;b(!) = apjaj e�i!b  ̂(a!):Note that the continuous wavelet transform takes a one-dimensional function into a two-dimensionalone. The representation of a function by its continuous wavelet transform is redundant and the inversetransform is possibly not unique. Furthermore, not every function W(a; b) is the continuous wavelettransform of a function f .We assume that the wavelet  and its Fourier transform  ̂ are functions with �nite centers �x and �!and �nite radii �x and �! . The latter quantities are de�ned as�x = 1k k2L2 Z +1�1 x j (x)j2 dx;�2x = 1k k2L2 Z +1�1 (x� �x)2 j (x)j2 dx;and similarly for �! and �!. Although the variable x typically represents either time or space, we shallrefer to it as time. From (1) and (2) we see that the continuous wavelet transform at (a; b) essentiallycontains information from the time interval [b + a�x � a�x; b + a�x + a�x] and the frequency interval[(�! � �!)=a; (�! + �!)=a]. These two intervals determine a time-frequency window. Its width, heightand position are governed by a and b. Its area is constant and given by 4�x�!. Due to the Heisenberguncertainty principle the area has to be greater then 2. These time-frequency windows are also calledHeisenberg boxes.Suppose that the wavelet  satis�es the admissibility conditionC = Z +1�1 j ̂(!)j2! d! <1:Then the continuous wavelet transformW(a; b) has an inverse given by the relationf(x) = 1C Z +1�1 Z +1�1 W(a; b) a;b(x) da dba2 : (3)4



From the admissibility condition we see that  ̂(0) has to be 0, and, hence,  has to oscillate. Thistogether with the decay property gave  the name wavelet or \small wave" (French: ondelette). Other,more e�cient inverse transforms exist that only useW(a; b) for positive values of a in the reconstruction,or even only use W(a; b) at discrete values of a [38].This transform can be used to analyze signals and this was done successfully e.g. in geophysics.The transform is often graphically represented as two two-dimensional images with color or grey valuecorresponding to the modulus and phase of W(a; b).The continuous wavelet transform is also used in singularity detection and characterization [57, 82]. Atypical result in this direction is that if a function f is H�older (Lipschitz) continuous of order 0 < � < 1,so that jf(x + h) � f(x)j = O(h�), then the continuous wavelet transform has an asymptotic behaviorlike W(a; b) = O(a�+1=2) for a! 0:In fact, the converse is true as well. The advantage of this characterization compared to the Fouriertransform is that it does not only provide information about the kind of singularity, but also about itslocation in time. There is also a corresponding characterization of H�older (Lipschitz) continuous functionsof higher order � � 1; the wavelet must then have a number of vanishing moments greater than �, i.e.Z +1�1  (x)xp dx = 0 for 0 � p � � and p 2 ZZ:So the number of vanishing wavelet moments limits the order of smoothness that can be characterized.Example: A classical example of a wavelet is the so-called Mexican hat, (x) = (1� 2x2)e�x2:This is the second derivative of a Gaussian and it has thus two vanishing moments.5 Multiresolution analysis5.1 The scaling function and the subspaces VjThere are at least two ways to introduce wavelets: one is through the continuous wavelet transform asin the previous section, another is through multiresolution analysis. Here we shall start by introducingthe concept of multiresolution analysis and then point out the connections with the continuous wavelettransform.A multiresolution analysis of L2(IR) is de�ned as a sequence of closed subspaces Vj of L2(IR), j 2 ZZ,with the following properties [37, 85]:1. Vj � Vj+1,2. v(x) 2 Vj , v(2x) 2 Vj+1, 5



3. v(x) 2 V0 , v(x+ 1) 2 V0,4. +1[j=�1 Vj is dense in L2(IR) and +1\j=�1 Vj = f0g,5. A scaling function � 2 V0 with a nonvanishing integral exists such that the collection f�(x � l) jl 2 ZZg is a Riesz basis of V0.Let us make a couple of simple observations related to this de�nition. Since � 2 V0 � V1, a sequence(hk) 2 l2(ZZ) exists such that the scaling function satis�es�(x) = 2Xk hk �(2x� k): (4)This functional equation is also called the re�nement equation, dilation equation or two-scale di�erenceequation. Here we will use the �rst choice. The collection of functions f�j;l j l 2 ZZg, with �j;l(x) =p2j �(2jx� l); is now a Riesz basis of Vj .We also note that a multiresolution analysis allows us to approximate a given function f by a functionfj in each of the spaces Vj . We call fj the approximation at resolution j and a possible way to �nd itis projection. Since the union of all the Vj is dense in L2(IR), we are guaranteed that there are suchapproximations converging to the original function, or f = limj!+1 fj .By integrating both sides of (4) and using the fact that the integral of � does not vanish, we see thatXk hk = 1: (5)The scaling function is, under very general conditions, uniquely de�ned by its re�nement equationand the normalization [42], Z +1�1 �(x) dx = 1:In many cases, no explicit expression for � is available. However, there are fast algorithms that use there�nement equation to evaluate the scaling function � at dyadic points (x = 2�jk, j; k 2 ZZ) (see, forexample, [8, 12, 37, 42, 43, 102]). In many applications, we never need the scaling function itself; insteadwe may often work directly with the hk.To be able to use the collection f�(x� l) j l 2 ZZg to approximate even the simplest functions (suchas constants), it is natural to assume that the scaling function and its integer translates form a partitionof unity, or, in other words, 8x 2 IR : Xk �(x� k) = 1:This is also used to prove that a given � generates a multiresolution analysis. By Poisson's summationformula, the partition of unity relation is (essentially) equivalent with�̂(2�k) = �k for k 2 ZZ: (6)6



By (4), the Fourier transform of the scaling function must satisfy�̂(!) = H(w=2) �̂(!=2); (7)where H is a 2�-periodic function de�ned byH(!) = Xk hk e�ik!:Since �̂(0) = 1, we can apply (7) recursively. This yields, at least formally,�̂(!) = 1Yj=1H(2�j!):The convergence of this product is examined in [21, 37]. The product formula for �̂ is nice to have inmany situations. For example, it can be used to construct �(x) from the hk. Using (6) and (7), we seethat we obtain a partition of unity ifH(�) = 0 or Xk (�1)k hk = 0:We also see that (5) can be written as H(0) = 1:Examples of scaling functions:� A well known family of scaling functions is the set of cardinal B{splines. The cardinal B{splineof order 1 is the box function N1(x) = �[0;1](x). For m > 1 the cardinal B{spline Nm is de�nedrecursively as a convolution, Nm = Nm�1 �N1:These functions satisfy Nm(x) = 2m�1Xk � mk �Nm(2x� k);and N̂m(!) = �1� e�i!i! �m :� Another classical example is the Shannon sampling function,�(x) = sin(�x)�x with �̂(!) = �[��;�](!):We may take H(!) = �[��=2;�=2](!) for ! 2 [��; �];and, consequently, h2k = 1=2 �k and h2k+1 = (�1)k(2k + 1)� for k 2 ZZ:7



For the remainder of this paper, it will be useful to de�ne the following 2�-periodic function,F (!) = Xk j�̂(! + k2�)j2:The fact that � and its translates form a Riesz basis corresponds to the existence of positive constants Aand B such that 0 < A � F (!) � B <1:Using (7) and rearranging the even and odd terms, we haveF (2!) = Xk j�̂(2! + k2�)j2= Xk jH(! + k�)j2 j�̂(! + k�)j2= Xk jH(! + k2�)j2 j�̂(! + k2�)j2 + jH(! + � + k2�)j2 j�̂(! + � + k2�)j2= jH(!)j2 F (!) + jH(! + �)j2 F (! + �): (8)5.2 The wavelet function and the detail spaces WjWe will use Wj to denote a space complementing Vj in Vj+1, i.e. a space that satis�esVj+1 = Vj �Wj ;where the symbol� stands for direct sum. This means that the spaceWj contains the \detail" informationneeded to go from an approximation at resolution j to an approximation at resolution j+1. Consequently,Mj Wj = L2(IR):Note that de�ned this way, the space Wj is not unique.A function  is a wavelet if the collection of functions f (x � l) j l 2 ZZg is a Riesz basis of W0.The collection of wavelet functions f j;l j l; j 2 ZZg is then a Riesz basis of L2(IR), where  j;l is de�nedsimilarly to �j;l. Since the wavelet  is an element of V1, a sequence (gk) 2 l2(ZZ) exists such that (x) = 2Xk gk �(2x� k): (9)Also here we require the wavelet to have a vanishing integral, orZ +1�1  (x)dx = 0: (10)The Fourier transform of the wavelet is given by ̂(!) = G(!=2)  ̂(!=2); (11)8



where G is the 2�-periodic function G(!) = Xk gk e�ik!:From (9) and (10) we have Xk gk = 0 or G(0) = 0:Each space Vj and Wj has an L2(IR) complement denoted by V cj and W cj , respectively. We have:V cj = 1Mi=j Wi and W cj = Mi6=j Wi:We de�ne Pj and Qj as the projection operators onto Vj and Wj and parallel to V cj or W cj , respectively.A function f can now be written asf(x) = Xj Qjf(x) = Xj;l �j;l  j;l(x):This can be seen as a discrete version of the inverse continuous wavelet transform (3). The mapping fromthe function f to the coe�cients �j;l is usually referred to as the discrete wavelet transform. How thecoe�cients �j;l are found will become clear in the following sections.6 Orthogonal waveletsA particularly interesting class of wavelets are the orthogonal wavelets. We start their construction byintroducing an orthogonal multiresolution analysis. This is a multiresolution analysis where the waveletspaces Wj are de�ned as the orthogonal complement of Vj in Vj+1. Consequently the spaces Wj withj 2 ZZ are all mutually orthogonal, the projections Pj and Qj are orthogonal, and the expansionf(x) = Xj Qjf(x)is an orthogonal expansion. A su�cient condition for a general multiresolution analysis to be an orthog-onal multiresolution analysis is W0 ? V0;or h ; �(� � l) i = 0 l 2 ZZ;since the other conditions simply follow from scaling. Using the Poisson summation formula, we see thatthis condition is (essentially) equivalent with8! 2 IR : Xk  ̂(! + k2�) �̂(! + k2�) = 0: (12)9



An orthogonal scaling function is a function � such that the set f�(x� l) j l 2 ZZg is an orthonormalbasis, or h�; �(� � l) i = �l l 2 ZZ: (13)With such a �, the collection of functions f�(x � l) j l 2 ZZg is an orthonormal basis of V0 and thecollection of functions f�j;l j l 2 ZZg is an orthonormal basis of Vj . Using Poisson's formula, equation(13) is (essentially) equivalent with8! 2 IR : Xk j�̂(! + k2�)j2 = F (!) = 1: (14)From equation (8) we now see that,8! 2 IR : jH(!)j2 + jH(! + �)j2 = 1; (15)or Xk hk hk�2l = �l=2 for l 2 ZZ:The last two equations are equivalent but they provide only a necessary condition for the orthogonalityof the scaling function and its translates. This relationship is investigated in detail in [77].Now, an orthogonal wavelet is a function  such that the collection of functions f (x� l) j l 2 ZZg isan orthonormal basis of W0. This is the case ifh ; (� � l) i = �lAgain these conditions are (essentially) equivalent with8! 2 IR : Xk j ̂(! + k2�)j2 = 1;and, using a similar argument as above, a necessary condition is given by8! 2 IR : jG(!)j2 + jG(! + �)j2 = 1:Since the spacesWj are mutually orthogonal, the collection of functions f j;l j j; l 2 ZZg is an orthonormalbasis of L2(IR).The projection operators Pj and Qj can now be written asPjf(x) = Xl h f; �j;l i�j;l(x) and Qjf(x) = Xl h f;  j;l i j;l(x):They are the best L2(IR) approximations of the function f in Vj and Wj respectively. For a functionf 2 L2(IR) we now have the orthogonal expansionf(x) = Xj;l �j;l  j;l(x) with �j;l = h f;  j;l i :10



Again, this can be viewed as a discrete version of the continuous wavelet transform. Examples of orthog-onal wavelets are given in section 10.Using equation (14) we can write condition (12) as8! 2 IR : G(!)H(!) +G(! + �)H(! + �) = 0:From this last equation we see that a possible choice for the function G(!) isG(!) = �e�i!H(! + �):For this choice the orthogonality of the wavelet immediately follows from the orthogonality of the scalingfunction. This means we can derive an orthogonal wavelet from an orthogonal scaling function by choosinggk = (�1)k h1�k: (16)In [78] an orthonormalization procedure to �nd orthonormal wavelets is proposed. It states that if afunction � and its integer translates form a Riesz basis of V0, then an orthonormal basis of V0 is givenby �orth and its integer translates with �̂orth(!) = �̂(!)pF (!) : (17)The fact that we started from a Riesz basis guarantees that F (!) is strictly positive. We see that � nowindeed satis�es the orthogonality condition (14). Note that if � is compactly supported, �orth will ingeneral not be compactly supported.Now, from condition (15) and the fact that H(0) = G(�) = 1 and G(0) = H(�) = 0, we see thatH(!) essentially represents a low pass �lter for the interval [0; �=2] and G(!) represents a band pass �lterfor the interval [�=2; �]. Then, from (7) and (11) we conclude that the main part of the energy of �̂(!)and  ̂(!) is concentrated in the intervals [0; �] and [�; 2�], respectively. This means that the waveletexpansion essentially splits the frequency space into dyadic blocks [2j�; 2j+1�] with j 2 ZZ.7 Biorthogonal waveletsThe orthogonality property puts a strong limitation on the construction of wavelets. For instance, thereare hardly any wavelets that are compactly supported, symmetric and orthogonal. Hence, the general-ization to biorthogonal wavelets has been introduced. Here, a dual scaling function ~� and a dual wavelet~ exist who generate a dual multiresolution analysis with subspaces ~Vj and ~Wj such that~Vj ?Wj and Vj ? ~Wj ; (18)and consequently, ~Wj ?Wj0 for j 6= j0:The dual multiresolution analysis is not necessarily the same as the one generated by the primary func-tions. An equivalent condition for (18) ish ~�; (� � l) i = h ~ ; �(� � l) i = 0:11



Moreover, the dual functions also have to satisfyh ~�; �(� � l) i = �l and h ~ ; (� � l) i = �l:Again using a scaling argument we have now thath ~�j;l; �j;l0 i = �l�l0 l; l0; j 2 ZZ (19)and h ~ j;l;  j0 ;l0 i = �j�j0�l�l0 l; l0; j; j0 2 ZZ: (20)where ~�j;l and ~ j;l are de�ned similarly to �j;l and  j;l. Note that the role of the primary (i.e. the � and ) and dual functions can be interchanged. Using the same Fourier techniques as in the previous section,the biorthogonality conditions are (essentially) equivalent with8! 2 IR : 8>>>>>>>>>><>>>>>>>>>>: Xk ~̂�(! + k2�) �̂(! + k2�) = 1Xk ~̂ (! + k2�)  ̂(! + k2�) = 1Xk ~̂ (! + k2�) �̂(! + k2�) = 0Xk ~̂�(! + k2�)  ̂(! + k2�) = 0: (21)As they de�ne a multiresolution analysis, the dual functions satisfy~�(x) = 2Xk ~hk ~�(2x� k) and ~ (x) = 2Xk ~gk ~�(2x� k): (22)If we de�ne the functions ~H and ~G similar to H and G, then necessary conditions are again given by,8! 2 IR : 8>><>>: ~H(!)H(!) + ~H(! + �)H(! + �) = 1~G(!)G(!) + ~G(! + �)G(! + �) = 1~G(!)H(!) + ~G(! + �)H(! + �) = 0~H(!)G(!) + ~H(! + �)G(! + �) = 0;or 8! 2 IR : � ~H(!) ~H(! + �)~G(!) ~G(! + �) � � H(!) G(!)H(! + �) G(! + �) � = � 1 00 1 �or ~M(!)M t(!) = 1; (23)where M(!) = � H(!) H(! + �)G(!) G(! + �) � ;and similarly for ~M . By interchanging the matrices on the left hand side of (23), we get8! 2 IR : � H(!) ~H(!) + G(!) ~G(!) = 1H(!) ~H(! + �) + G(!) ~G(! + �) = 0: (24)12



Note that the orthogonal case corresponds to M being a unitary matrix. Cramer's rule now states that~H(!) = G(! + �)�(!) (25)and ~G(!) = �H(! + �)�(!) ; (26)where �(!) = detM(!):The projection operators take the formPjf(x) = Xl h f; ~�j;l i�j;l(x) and Qjf(x) = Xl h f; ~ j;l i j;l(x):From the equations (19), (20), and (22) we see that~hk�2l = h ~�(x� l); �(2x� k) i and ~gk�2l = h ~ (x� l); �(2x� k) i :In particular by writing �(2x� k) 2 V1 in the bases of V0 and W0 we obtain�(2x� k) =Xl ~hk�2l �(x� l) +Xl ~gk�2l  (x� l): (27)Since primary and dual functions are interchangeable, we also have~�(2x� k) =Xl hk�2l ~�(x� l) +Xl gk�2l ~ (x� l): (28)The fact that the scaling function and wavelet are not orthogonal does not necessarily mean thatthe multiresolution analysis is not orthogonal. In fact, a biorthogonal scaling function and wavelet aresemiorthogonal if they generate an orthogonal multiresolution analysis [14]. Also the name pre-waveletis used in this context. Since the Wj subspaces are mutually orthogonal we have thatWj ? ~Wj0 and Wj ?Wj0 for j 6= j0:Consequently, Wj = ~Wj and thus Vj = ~Vj . Hence primary and dual functions generate the same(orthogonal) multiresolution analysis. A dual scaling function can now be found by letting~̂�(!) = �̂(!)F (!) :We see that the �rst equation of (21) is now satis�ed and, since F is a bounded, 2�-periodic functionthat does not vanish, the translates of � and ~� will generate the same space. This corresponds to~H(!) = H(!)F (!)F (2!) :13



Since �(! + �) = ��(!), we can choose � as�(!) = e�i! F (2!);such that G(!) = �e�i! ~H(! + �)F (2!) = �e�i!H(! + �)F (! + �);and ~G(!) = �e�i! H(! + �)F (2!) :If � is a compactly supported function, this construction guarantees that  is compactly supported too.However, in general the dual functions will not be compactly supported.8 Wavelets and polynomialsThe moments of the scaling function and wavelet are de�ned as:Mp = Z +1�1 xp �(x)dx and Np = Z +1�1 xp  (x)dx with p � 0:Of course, these integrals only make sense if � and  have su�cient decay. The scaling function hasM0 = 1. Recursion formulae to calculate these moments are derived in [10, 105]. The number ofvanishing wavelet moments is denoted by ~N where ~N is at least 1:Np = 0 for 0 � p < ~N and N ~N 6= 0:This is equivalent with  ̂(p)(0) = 0 for 0 � p < ~N;and, since �̂(0) =M0 6= 0, also withG(p)(0) = 0 for 0 � p < ~N:The sequence (gk) thus has also ~N vanishing discrete moments. The number of vanishing moments ofthe dual wavelet is denoted by N and similar statements can be made for the dual functions by addingor omitting the tilde. Since this is true for other statements in this section as well we will not mentiontheir dual equivalents explicitly. At this point it might seem more logical to switch the notations ~N andN around, but our choice will become clear in a moment. Using equation (26) we see that~G(p)(0) = 0 for 0 � p < N:is equivalent to H(p)(�) = 0 for 0 � p < N:This means we can factor H as H(!) = �1 + e�i!2 �N K(!);14



with K(0) = 1 and K(�) 6= 0. This factorization together with the (bi)orthogonality conditions is usedas a starting point for construction of compactly supported wavelets [24, 37]. We also have thatip�̂(p)(2k�) = �kMp for 0 � p < N; (29)and, by the Poisson summation formula, thatXl (x� l)p �(x� l) = Mp for 0 � p < N:By rearranging the last expression we see that any polynomial with degree smaller than N can be writtenas a linear combination of the functions �(x� l) with l 2 ZZ. The coe�cients in the linear combinationthemselves are polynomials in l. Or, stated in another way, if �p denotes the set of polynomials of degreep, 8A 2 �N�1; 9B 2 �N�1 : A(x) = Xl B(l)�(x� l): (30)The fact that B is indeed a polynomial can easily be seen fromB(l) = Z A(x) ~�(x� l) dx = Z A(x+ l) ~�(x) dx:Also A(x) = Xl B(x� l)�(l);which is true because left and right hand side are polynomials that match at every integer.We already saw that the number of vanishing wavelet moments is important for the characterizationof singularities. It also de�nes the convergence rate of the wavelet approximation for smooth functions[55, 102, 103], since if f 2 CN , thenkPjf(x)� f(x)k = O(hN) with h = 2�n:In fact, the conditions (29) are usually referred to as the Strang{Fix conditions, and these conditionswere established long before the development of wavelet theory.An asymptotic error expansion in powers of h, which can be used in numerical extrapolation, is derivedin [106]. There it is also proved that the wavelet approximation of a smooth function interpolates thefunction in almost twice the number of points as compared to the number of basis functions.The exponent N in the factorization of H also plays a role in the regularity of �. The regularity isN � 1 at most, but in many cases it is smaller due to the in
uence of K. The regularity of solutions ofre�nement equations is studied in detail in [32, 42, 43, 54, 95].9 The fast wavelet transform 15



~H~G HG# 2# 2 LPHP " 2" 2 +

This article was processed using LaTEX with SHAPE.sty modi�ed from LMAMULT

Figure 1: The subband coding scheme............................................................................................... ................................................................................................................................................. ...................... .............................................................................................. ................................................................................................................................................. ......................�n;l �n�1;l�n�1;l �n�2;l�n�2;l : : : .............................................................................................. ................................................................................................................................................. ...................... �1;l�1;l .............................................................................................. ................................................................................................................................................. ...................... �0;l�0;l

This article was processed using LaTEX with SHAPE.sty modi�ed from LMAMULT

Figure 2: The decomposition scheme�0;l�0;l �1;l�1;l �2;l�2;l : : : .............................................................................................. ................................................................................................................................................. ...................... �n�1;l�n�1;l.............................................................................................. ................................................................................................................................................. ...................... �n;l

This article was processed using LaTEX with SHAPE.sty modi�ed from LMAMULT

Figure 3: The reconstruction scheme.
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Since Vj is equal to Vj�1 �Wj�1, a function vj 2 Vj can be written uniquely as the sum of a functionvj�1 2 Vj�1 and a function wj�1 2Wj�1:vj(x) = Xk �j;k �j;k(x) = vj�1(x) +wj�1(x)= Xl �j�1;l �j�1;l(x) +Xl �j�1;l  j�1;l(x):There is a one-to-one relationship between the coe�cients of these functions. The decomposition formulaecan be found using (22): �j�1;l = h vj ; ~�j�1;l i = p2 h vj ;Xk ~hk�2l ~�j;k i= p2Xk ~hk�2l �j;k; (31)and, similarly, �j�1;l = p2Xk ~gk�2l �j;k: (32)The reconstruction step involves calculating the �j;k from the �j�1;l and the �j�1;l. Using (27) we have�j;k = p2Xl hk�2l �j�1;l +p2Xl gk�2l �j�1;l: (33)When applied recursively, these formulae de�ne a transformation, the fast wavelet transform [85, 86].In signal processing this technique is known as subband coding or more speci�cally as quadrature mir-ror �ltering. Quadrature mirror �lters were originally studied before wavelet theory. The decompositionstep consists of applying a low-pass ( ~H) and a band-pass ( ~G) �lter followed by downsampling (# 2) (i.e. retaining only the even index samples), see �gure 1. The reconstruction consists of upsampling (" 2)(i.e. adding a zero between every two samples) followed by �ltering and addition. One can show that theconditions (24) correspond to the exact reconstruction of a subband coding scheme. More details can befound in [96, 108, 109, 110].An interesting problem is: given a function f , determine, with a certain accuracy and in a computa-tionally favorable way, the coe�cients �n;l of a function in the space Vn which are needed to start thefast wavelet transform. A trivial solution could be�n;l = f(l=2n):Other sampling procedures, such as (quasi-)interpolation and quadrature formulae were proposed in[73, 100, 105, 111]An implementation of a fast wavelet transform in pseudo code is given in the appendix.10 Examples of waveletsNow that we have discussed the essentials of wavelet multiresolution analysis, we shall take a look atwhich properties of wavelets are important. 17



Orthogonality: If the wavelets are orthogonal, the fast wavelet transform has perfect numerical condi-tion and stable numerical computation is ensured. If the multiresolution analysis is orthogonal (rememberthat this includes semiorthogonal wavelets), the projection operators onto the di�erent subspaces yieldoptimal approximations in the L2(IR) sense.Compact support: If the scaling function and wavelet are compactly supported, the �lters H andG are �nite impulse response �lters, which is of use in implementations. If they are not compactlysupported, a fast decay is desirable so the �lters can be approximated reasonably well by �nite impulseresponse �lters.Rational coe�cients: For computer implementations it is of use if the �lter coe�cients hk and gk arerationals or, even better, dyadic rationals. Dividing by a power of two on a computer just correspondsto shifting bits.Symmetry: If the scaling function and wavelet are (anti-)symmetric, then the �lters have generalizedlinear phase. If they don't have this property, this can lead to phase distortion.Smoothness: Smoothness is of importance in compression applications. Compression is usually achievedby setting coe�cients �j;l to zero and this corresponds to leaving out a component �j;l  j;l(x) from theoriginal function. If the original function represents e.g. an image and the wavelet is not smooth, the errorcan easily be caught by the human eye. From this simple argument we also conclude that the smoothnessof the primary functions is more important to this aspect than that of the dual. Also more smoothnesscorresponds to better frequency localization of the �lters. Finally, smooth basis functions are desired inapplications to numerical analysis where derivatives are involved.Number of vanishing moments: As we saw this can be important in singularity detection andcharacterization of smoothness spaces and it determines the convergence rate of wavelet approximationsof smooth functions. We also mentioned that the number of vanishing moments is connected to thesmoothness of the wavelet.Analytic expressions: As already mentioned, there is in general no analytic expression for a scalingfunction or wavelet. In some cases an analytic expression is available and is nice to have. In harmonicanalysis, analytic expressions of the Fourier transform are particularly useful.Interpolation: If the scaling function satis�es�(k) = �k for k 2 ZZ;then it is trivial to �nd the function of Vj that interpolates data sampled on a grid with spacing 2�j, asthe coe�cients are just the sample values. 18



As could be expected, it will not be possible to construct wavelets that have all these properties andthere is a trade-o� between them. So we will have to settle for a compromise. We will take a look atseveral solutions.Examples of orthogonal wavelets:� Two simple examples of orthogonal scaling functions are the box function �[0;1](x) and the Shannonsampling function sinc(�x). The orthogonality conditions are trivial to verify here either in time orfrequency space. The corresponding wavelet for the box function is the Haar wavelet Haar(x) = �[0;1=2](x)� �[1=2;1](x);and the Shannon wavelet is  Shannon(x) = sin(2�x)� sin(�x)�x :These two, however, are not very useful in practice, since the �rst has very low regularity and thesecond has very slow decay.� A more interesting example is the Meyer wavelet and scaling function [88]. These functions belongto C1 and have faster than polynomial decay. Their Fourier transform is compactly supported.The scaling function and wavelet are symmetric around 0 and 1=2 respectively and the wavelet hasan in�nite number of vanishing moments.� The Battle-Lemari�e wavelets are constructed by orthogonalizing B{spline functions using (17) andhave exponential decay [7, 78]. The wavelet with N vanishing moments is a piecewise polynomialof degree N � 1 that belongs to CN�2.� Probably the most commonly used orthogonal wavelets are the original Daubechies wavelets [37, 40].It is a family of orthogonal wavelets indexed by N 2 IN, whereN is the number of vanishing waveletmoments. They are supported on an interval of length 2N � 1. A disadvantage is that, except forthe Haar wavelet (which has N = 1), they cannot be symmetric or antisymmetric. Their regularityincreases linearly with N and is approximately equal to 0:3N . In [39] three variations of this family,all three with orthogonal and compactly supported functions, are constructed:1. The previous construction does not lead to a unique solution for �xed N and support length2N � 1, and there is a family where for each N the solution with closest to linear phase (orclosest to symmetry) is chosen. In fact it turns out that the original family corresponds tochoosing the extremal phase.2. Another family has more regularity at the price of a slightly larger support length (2N + 1).3. In a third family also the scaling function has vanishing moments (Mp = 0 for 0 < p < N).This is of use in numerical analysis applications where inner products of arbitrary functionswith scaling functions have to be calculated very fast [10]. Their construction was asked byRonald Coifman and Ingrid Daubechies therefore named them coi
ets. They are supportedon an interval with length 3N � 1. 19



wavelet compact support analytic expression symmetry orthogonality compactfamily primary dual primary dual semi full support ~ a x x o o o x x ob x x x o x o o oc x o x x x x o od o o o o x x x xe o o x x x x x oa: Daubechies' orthogonal waveletsb: biorthogonal spline-waveletsc: semiorthogonal spline-waveletsd: Meyer wavelete: orthogonal spline-waveletsTable 1: A quick comparison of wavelet families.Examples of biorthogonal wavelets:� Biorthogonal wavelets were constructed by Albert Cohen, Ingrid Daubechies and Jean-ChristopheFeauveau in [21, 24]. Here �(!) is chosen equal to e�i!, and thusG(!) = �e�i! ~H(! + �) and ~G(!) = �e�i!H(! + �):The scaling functions are the cardinal B-splines and the wavelets too are spline functions. Allfunctions including the dual ones have compact support and linear phase. Moreover, all �ltercoe�cients are dyadic rationals. A disadvantage is that for small �lter lengths, the dual functionshave very low regularity.� Examples of semiorthogonal wavelets are the ones constructed by Charles Chui and JianzhongWang in [17, 18, 19]. The scaling functions are cardinal B{splines of order m and the waveletfunctions are splines with compact support [0; 2m � 1]. All primary and dual functions still havegeneralized linear phase and all scaling and wavelet parameters are rationals. A powerful featurehere is that analytic expressions for the wavelet, scaling function, and dual functions are available.A disadvantage is that the dual functions do not have compact support but instead have exponentialdecay. The same wavelets, but in a di�erent setting, were also derived by Akram Aldroubi, MurrayEden and Michael Unser in [107].� Other semiorthogonal wavelets can be found in [75, 90, 91, 94].Some of these families and properties are summerized in table 1.Examples of interpolating scaling functions:� The Shannon sampling function �Shannon = sin(�x)�x ;20



is an interpolating scaling function. It is bandlimited but has very slow decay.� An interpolating scaling function, whose translates also generate V0, can be found by letting�̂interpol(!) = �̂(!)Xl �(l)e�i!l ;provided that the denominator does not vanish [111]. Even if � is compactly supported, �interpol isin general not compactly supported. The cardinal spline interpolation functions of even order areconstructed this way [99].� An interpolation scaling function can also be constructed from a pair of biorthogonal scaling func-tions as �interpol(x) = Z +1�1 �(y + x) ~�(y)dy:The interpolation property immediately follows from the biorthogonality condition. In the case ofan orthogonal scaling function this is just its autocorrelation function. The interpolating functionand its translates do not generate the same space as � and its translates. This construction, startedfrom the Daubechies orthogonal or biorthogonal wavelets, yields a family of interpolating functionswhich were studied by Gilles Deslauriers and Serge Dubuc in [45, 46]. These functions are smoothand compactly supported. More information can also be found in [50, 98].11 Wavelets on closed setsSo far we have been discussing wavelet theory on the real line (and its higher dimensional analogs). Formany applications the functions involved are only de�ned on a compact set, such as an interval or asquare, and to apply wavelets then requires some modi�cations.11.1 Simple solutionsTo be speci�c, let us discuss the case of the unit interval [0; 1]. Given a function f on [0; 1], the mostobvious approach is to set f(x) = 0 outside [0; 1], and then use wavelet theory on the line. However, fora general function f this \padding with 0's" introduces discontinuities at the endpoints 0 and 1; considerfor example the simple function f(x) = 1, x 2 [0; 1]. Now, as we have said earlier, wavelets are e�ectivefor detecting singularities, so arti�cial ones are likely to introduce signi�cant errors.Another approach, which is often better, is to consider the function to be periodic with period 1,f(x + 1) = f(x). Expressed in another way, we assume that the function is de�ned on the torus andidentify the torus with [0; 1]. Wavelet theory on the torus parallels that on the line. In fact, note that iff has period 1, then the the wavelet coe�cients on a given scale satisfy h f;  j;k i = h f;  j;k+2j i , k 2 ZZ,j � 0. This simple observation readily allows us to rewrite wavelet expansions on the line as analogous21



ones on the torus, with wavelets de�ned on [0; 1]. A periodic multiresolution analysis on the interval [0; 1]can be constructed by periodizing the basis functions as follows,��j;l(x) = �[0;1](x)Xm �j;l(x+m) for 0 � l < 2j and j � 0: (34)If the support of �j;l(x), is a subset of [0; 1], then ��j;l(x) = �j;l(x). Otherwise �j;l(x) is chopped intopieces of length 1 which are shifted onto [0; 1] and added up, yielding ��j;l(x). Similar de�nitions hold for �j;l, ~��j;l and ~ �j;l. The algorithm in the appendix uses this periodic fast wavelet transform . This \wraparound" procedure is satisfactory in many situations (and certainly takes care of functions like f(x) = 1,x 2 [0; 1], for example). However, unless the behavior of the function f at 0 matches that at 1, then theperiodic version of f will have singularities there. A simple function like f(x) = x, x 2 [0; 1], gives a goodillustration of this.A third method, which works if the basis functions are symmetric, is to use re
ection across the edges.This preserves continuity, but introduces discontinuities in the �rst derivative. This solution is sometimessatisfactory in image processing applications.11.2 Meyer's boundary waveletsWhat really is needed then are wavelets intrinsically de�ned on [0; 1]. Such wavelets were recently givenby Yves Meyer [89], and we shall sketch his construction next. We start from the Daubechies waveletsand a scaling function with 2N non-zero coe�cients:�(x) = 2 2N�1Xk=0 hk �(2x� k): (35)It easy to see that closfx : �(x) 6= 0g = [0; 2N � 1], and, as a consequence,Bj;k = closfx : �j;k(x) 6= 0g = [2�jk; 2�j(k + 2N � 1)]: (36)This implies that for su�ciently small scales 2�j, j � j0, say, a function �j;k can only intersect at mostone of the endpoints 0 or 1. Let us restate this in a di�erent way. De�ne the set of indicesSj = fk : Bj;k \ (0; 1) 6= ;g:We de�ne three subsets of this set containing the indices of the basis functions at the left boundary, inthe interior, and at the right boundary:S(1)j = fk : 0 2 B�j;kgS(2)j = fk : (0; 1) � B�j;kgS(3)j = fk : 1 2 B�j;kg:Here E� denotes the interior of the set E. The sets S(1)j and S(3)j are disjoint for su�ciently large j. Wealso have that Sj = S(1)j [ S(2)j [ S(3)j ;22



and the sets on the right are all pairwise disjoint. It is easy to write down what these sets are moreexplicitly: S(1)j = fk : �2N + 2 � k � �1gS(2)j = fk : 0 � k � 2j � 2N + 1gS(3)j = fk : 2j � 2N + 2 � k � 2j � 1g:Note, in particular, that the sets S(1)j and S(3)j contain 2N � 2 functions, independently of j. We now letV [0;1]j denote the restriction of functions in Vj :V [0;1]j = ff : f(x) = g(x); x 2 [0; 1]; for some function g 2 Vjg:Clearly, since the Vj 's form an increasing sequence of spaces,V [0;1]j � V [0;1]j+1 ;and V [0;1]j , j � j0, form a multiresolution analysis of L2([0; 1]). It is also obvious that the functions inf�(x� l)j[0;1] : l 2 Sjg span V [0;1]j . Here g(x) j[0;1] denotes the restriction of g(x) to [0; 1]. Not quite asobvious, but still easy, is the fact that the functions in this collection are linearly independent and, hence,form a basis for V [0;1]j . In order to obtain an orthonormal basis, we may argue as follows. As long as thefunction �j;k lives entirely inside [0; 1], restricting it to [0; 1] has no e�ect. In particular, the functions�j;k, k 2 S(2)j are still pairwise orthogonal. A key observation now is that for k 2 S(1)j , l 2 S(2)j [ S(3)j ,h�j;k; �j;l i [0;1] = Z 10 �j;k(x)�j;l(x) dx = Z +1�1 �j;k(x)�j;l(x) dx = 0; (37)and similarly when k 2 S(3)j , l 2 S(2)j [ S(1)j . Hence, we see that the three collections f�(x � l)j[0;1] :l 2 S(1)j g, f�(x� l)j[0;1] : l 2 S(2)j g, and f�(x� l)j[0;1] : l 2 S(3)j g are mutually orthogonal. So, since thefunctions in f�(x� l)j[0;1] : l 2 S(2)j g already form an orthonormal set, there only remains to separatelyorthonormalize the functions in f�(x� l)j[0;1] : l 2 S(1)j g and in f�(x� l)j[0;1] : l 2 S(3)j g. This is easilyaccomplished with a Gram-Schmidt procedure.Now, if we let W [0;1]j denote the restriction of functions in Wj to [0; 1], then we have thatV [0;1]j+1 = V [0;1]j +W [0;1]j : (38)So, the basis elements in V [0;1]j together with the restriction of the wavelets  j;k to [0; 1] span V [0;1]j+1 .However there are 2j + 2N � 2 wavelets that intersect [0; 1], and since dimV [0;1]j+1 � dimV [0;1]j = 2j wehave too many functions. The restrictions of the wavelets in Wj that live entirely inside [0; 1] are stillmutually orthogonal and, by an observation similar to (37), they are also orthogonal to V [0;1]j . Amongthe 2N � 2 that intersect the endpoints, we use (27) to �nd the redundant ones and remove them. Afterthat we just apply a Gram-Schmidt argument again, and we have an orthonormal basis for W [0;1]j .23



This elegant construction of Yves Meyer has a couple of disadvantages. Among the functions �j;kthat intersect [0; 1] there are some that are almost zero there. Hence, the set f�j;kgk2Sj is almostlinearly dependent, and, as a consequence, the condition number of the matrix, corresponding to thechange of basis from f�j;kgk2Sj to the orthonormal one, becomes quite large. Furthermore, we havedimV [0;1]j 6= dimW [0;1]j which means that there is an inherent imbalance between the spaces V [0;1]j andW [0;1]j , which is not present in the case of the whole real line.11.3 Dyadic boundary waveletsAs we noted earlier (30) all polynomials of degree � N � 1 are in Vj . Hence, the restriction of suchpolynomials to [0; 1] are in V [0;1]j . Since this fact is directly linked to many of the approximation propertiesof wavelets, any construction of a multiresolution analysis on [0; 1] should preserve this. The constructionin [25] uses this as a starting point and is slightly di�erent than the one by Yves Meyer. Let us brie
ydescribe this construction as well. Again we start with the scaling function � from the Daubechiesconstruction with 2N non-zero scaling parameters, and assume that we have picked the scale �ne enoughso that the endpoints are independent as before. By (30) and since the f�j;kg is an orthonormal basisfor Vj , each monomial x�, � � N � 1, has the representation x� =Pk hx�; �j;k i�j;k(x). The restrictionto [0; 1] can then be writtenx�j[0;1] = ( 0Xk=�2N+2+ 2j�2NXk=1 + 2j�1Xk=2j�2N+1) hx�; �j;k i�j;;k(x)j[0;1]:If we let x�j;L = 2j(�+1=2) 0Xk=�2N+2 hx�; �j;k i�j;k(x)j[0;1]and, similarly, x�j;R = 2j(�+1=2) 2j�1Xk=2j�2N+1 hx�; �j;k i�j;k(x)j[0;1];then 2j=2(2jx)�j[0;1] = x�j;L + 2j(�+1=2) 2j�2NXk=1 hx�; �j;k i�j;k(x)j[0;1] + x�j;R:The spaces �Vj , j � j0, that will form our multiresolution analysis of L2([0; 1]), we take to be the linearspan of the functions fx�j;Lg��N�1, fx�j;Rg��N�1, and f�j;kj[0;1]g2j�2Nk=1 :�Vj = fx�j;Lg��N�1 [ f�j;kg2j�2Nk=1 [ fx�j;Rg��N�1Finding an orthonormal basis for �Vj is easy; in fact, the collections fx�j;Lg��N�1, f�j;kg2j�2Nk=1 , andfx�j;Rg��N�1 are mutually orthogonal, and all of the functions in these are linearly independent. We24



thus only have to orthonormalize the functions x�j;L and x�j;R to get our orthonormal basis. Note that,by construction, dim �Vj = 2j and all polynomials of degree � N � 1 are in �Vj . It is also easy to see that�Vj � �Vj+1:To get to the corresponding wavelets we let �Wj be the orthogonal complement of �Vj in �Vj+1. Thewavelets  j;k with 1 � k � 2j � 2N are all in �Vj+1 and live entirely inside [0; 1]. The remaining 2Nfunctions required for an orthonormal basis of �Wj , can be found, for example by using (27) again.This last construction carries over to more general situations [71]; for example, we can also usebiorthogonal wavelets and much more general closed sets than [0; 1].There are also other constructions of wavelets on [0; 1]. In fact, for historical perspective it is interestingto notice that Franklin's original construction [56] was given for [0; 1]. Another interesting one, in thecase of semiorthogonal spline-wavelets, has been given by Charles Chui and Ewald Quak [13]; we refer tothe original paper for details.12 Wavelet packetsA simple, but most powerful extension of wavelets and multiresolution analysis are wavelet packets[29, 31]. In this section it will be useful to switch to the following notation,me(!) = He(!)G1�e(!) for e = 0; 1:The fundamental observation is the following fact, called the splitting trick [16, 22, 88]:Suppose that the set of functions ff(x� k) j k 2 ZZg is a Riesz basis for its closed linear span S, then thefunctions f0k = 1p2f0(x=2� k) and f1k = 1p2f1(x=2� k) for k 2 ZZ:also constitute a Riesz basis for S, wherêfe(!) = me(!=2) f̂(!=2):We see that the classical multiresolution analysis is obtained by splitting Vj with this trick into Vj�1andWj�1 and then doing the same for Vj�1 recursively. The wavelet packets are the basis functions thatwe obtain if we also use the splitting trick on the Wj spaces. So starting from a space Vj , we obtain,after applying the splitting trick L times, the basis functions Le1;:::;eL ;j;k(x) = 2(j�L)=2 Le1;:::;eL (2j�Lx� k);with  ̂Le1;:::;eL(!) = LYi=1mei(2�i!) �̂(2�L!):25



Figure 4: Wavelet packets scheme.So, after L splittings, we have 2L basis functions and their translates over integer multiples of 2L�j as abasis of Vj . The connection between the wavelet packets and the wavelet and scaling functions is� =  L0;:::;0 and  =  L1;0;:::;0:However, we do not necessarily have to split each subspace at every stage. In �gure 4 we givea schematical representation of a space and its subspaces after using the splitting on 4 levels. The toprectangle could e.g. represent the space V4 and each other rectangle then corresponds to a certain subspaceof V4 generated by wavelet packets. The slanted lines between the rectangles indicate the splitting, theleft referring to the �lter m0 and the right to m1. The bold rectangles then correspond to the waveletmultiresolution analysis V4 = V0�W0�W1�W2. The shaded rectangles correspond to a possible waveletpacket splitting and a basis with functions� 11(4x� k);  21;1(2x� k);  30;0;1(x� k);  31;0;1(x� k) j k 2 ZZ	 :For the dual functions, a similar procedure has to be followed.In the Fourier domain the splitting trick corresponds to dividing the frequency interval essentiallyrepresented by the original space into a lower and an upper part. So the wavelet packets allow more
exibility in adapting the basis to the frequency contents of a signal.It is easy to develop a fast wavelet packet transform. It just involves applying the same low andband pass �lters also to the coe�cient of functions of Wj again in a iterative manner. This means thatstarting from M samples we construct a full binary tree with (M log2M) entries. The power of thisconstruction lies in the fact that we have much more freedom in deciding which basis functions we willuse to represent the given function. We can choose to use the set ofM coe�cients of the tree to representthe function that is optimal with respect to a certain criterion. This idea is called best basis selection,and, using the tree structure, it can be implemented in O(M) operations. The criterion is determined bythe application, and which basis functions will end up in the basis depends on the data.Entropy based criteria for applications in image compression, were proposed in [27]. Applications insignal processing can be found in [30, 112].This wavelet packets construction can also be combined with wavelets on closed sets and wavelets inhigher dimensions. 26



13 Multidimensional waveletsUp till now we have focused on the one-dimensional situation. However, there are also wavelets in higherdimensions. A simple way to obtain these is to use tensor products. To �x ideas, let us consider the caseof the plane. Let �(x; y) = �(x)�(y) = �
 �(x; y);and de�ne V0 = ff : f(x; y) = Xk1;k2 �k1;k2 �(x� k1; y � k2); � 2 l2(ZZ2)g:Of course, if f�(x� l) j l 2 ZZg is an orthonormal set, then f�(x� k1; y� k2)g form an orthonormal basisfor V0. By dyadic scaling we obtain a multiresolution analysis of L2(IR2). The complementW0 of V0 inV1 is similarly generated by the translates of the three functions	(1) = � 
  ; 	(2) =  
 �; and 	(3) =  
  : (39)There is another, perhaps even more straightforward, wavelet decomposition in higher dimensions.By carrying out a one-dimensional wavelet decomposition for each variable separately, we obtainf(x; y) = Xi;l Xj;k h f;  i;l 
  j;k i  i;l 
  j;k(x; y): (40)Note that the functions  i;l 
  j;k involve two scales, 2�i and 2�j, and each of these functions are (es-sentially) supported on a rectangle. The decomposition (40) is therefore called the rectangular waveletdecomposition of f while the functions in (39) are the basis functions of the square wavelet decom-position. For both decompositions, the corresponding fast wavelet transform consists of applying theone-dimensional fast wavelet transform to the rows and columns of a matrix.There are also several other extensions to higher dimensions. We mention nonseparable basis functions[23, 44, 94, 101], other lattices corresponding to di�erent symmetries [26], Cli�ord valued wavelets [3],etc. However we leave these topics for now.14 Applications14.1 Data compressionOne of the applications of wavelet theory is data compression. There are two basic kinds of compressionschemes: lossless and lossy. In the case of lossless compression one is interested in reconstructing the dataexactly, without any loss of information. We shall consider here lossy compression. Here we are ready toaccept an error as long as the quality after compression is acceptable. With lossy compression schemeswe potentially can achieve much higher compression ratios than with lossless compression.To be speci�c, let us assume that we are given a digitized image. The compression ratio is de�nedas the number of bits the initial image takes to store on the computer divided by the number of bitsrequired to store the compressed image. The interest in compression in general has grown as the amount27
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Figure 5: Image transform coding.of information we pass around has increased. This is easy to understand when we consider the fact thatto store a moderately large image, say a 512� 512 pixels, 24 bit color image, takes about 0.75 MBytes.This is only for still images; in the case of video, the situation becomes even worse. Then we need thiskind of storage for each frame and we have something like 30 frames per second. There are several otherreasons than just the storage requirement for the interest in compression techniques. However, insteadof going into this, let us now look at the connection with wavelet theory.First, let us de�ne, somewhat mathematically, what we mean by an image. Let us for simplicitydiscuss an L�L grayscale image with 256 grayscales (i.e. 8 bit). This can be considered to be a piecewiseconstant function f de�ned on a squaref(x; y) = pij ; for i � x < i + 1 and j � y < j + 1 and 0 � i; j < L;where 0 � pij � 255 are integers. Now, one of the standard procedures for lossy compression is throughtransform coding, see �gure 5. The most common transform used in this context is the \Discrete CosineTransform" which uses a Fourier transform of the image f . However, we are more interested in the casewhen the transform is the fast wavelet transform.There are in fact several ways to use the wavelet transform for compression purposes [83, 84]. Oneway is to consider compression to be an approximation problem [47, 48]. More speci�cally, let us �x anorthogonal wavelet  . Given an integer M � 1 we try to �nd the \best" approximation of f by using arepresentation fM (x) = Xkl bjk  jk(x) with M non-zero coe�cients bjk: (41)The basic reason why this potentially might be useful is that each wavelet picks up information aboutthe image f essentially at a given location and at a given scale. Where the image has more interestingfeatures, we can spend more coe�cients, and where the image is nice and smooth we can use fewer andstill get good quality of approximation. In other words, the wavelet transform allows us to focus on themost relevant parts of f . Now, to give this mathematical meaning we need to agree on an error measure.Ideally, for image compression we should use a norm that corresponds as closely as possible to the humaneye. However, let us make it simple and discuss the case of L2.So we are interested in �nding an optimal approximation minimizing the error kf � fMkL2 . Becauseof the orthogonality of the wavelets this equals(Xjk j h f;  jk i � bjkj2)1=2: (42)28



A moments thought, reveals that the best way to pick M non-zero coe�cients bjk, making the erroras small as possible, is by simply picking the M coe�cients with largest absolute value, and settingbj;k = h f;  jk i for these numbers. This then yields the optimal approximation foptM .Another fundamental question is which images can be approximated well by using the procedure justsketched. Let us take this to mean that the error satis�eskf � foptM kL2 = O(M��); (43)for some � > 0. The larger �, the faster the error decays as M increases and the fewer coe�cients aregenerally needed to obtain a given error. The exponent � can be found easily, in fact it can be shownthat 0@XM�1(M�kf � foptM kL2)p 1M1A1=p � (Xjk j h f;  jk i jp)1=p (44)with 1=p = 1=2+�. The maximal � for which (43) is valid can be estimated by �nding the smallest p forwhich the right hand side of (44) is �nite. The expression on the right is one of many equivalent normson the Besov space _B2�;pp (Besov spaces are smoothness spaces generalizing the Lipschitz continuousfunctions). The � in the left hand side of (44) is actually not exactly the same as in (43). However, forpractical purposes, the di�erence is of no consequence.14.2 Numerical analysisAs mentioned earlier, interest in wavelets historically grew from the fact that they are e�ective tools forstudying problems in partial di�erential equations and operator theory. More speci�cally, they are usefulfor understanding properties of so-called Calder�on-Zygmund operators.Let us �rst make a general observation about the representation of a linear operator T and wavelets.Suppose that f has the representationf(x) = Xjk h f;  jk i jk(x):Then Tf(x) = Xjk h f;  jk iT jk(x);and, using the wavelet representation of the function T jk(x), this equalsXjk h f;  jk iXil hT jk;  il i il(x) = Xil 0@Xjk hT jk;  il i h f;  jk i1A il(x):In other words, the action of the operator T on the function f is directly translated into the action of thein�nite matrix AT = f hT jk;  il i gil;jk on the sequence f h f;  jk i gjk. This representation of T as thematrix AT is often referred to as the \standard representation" of T [10]. There is also a \nonstandard29



representation". For virtually all linear operators there is a function (or, more generally, a distribution)K such that Tf(x) = Z K(x; y)f(y) dy:The nonstandard representation of T is now simply the (two-dimensional) wavelet coe�cients of thekernel K, using the square decomposition fhK;	(j)k1;k2 i g (again, we have more than one wavelet functionin two dimensions), while the standard representation corresponds to the rectangular decomposition.Let us then brie
y discuss the connection with Calder�on-Zygmund operators. Consider a typicalexample. Let H be the Hilbert transform,Hf(x) = 1� Z 1�1 f(s)x� s ds:The basic idea is now that the wavelets  jk are approximate eigenfunctions for this, as well as for manyother related (Calder�on-Zygmund) operators. We note that if  jk were exact eigenfunctions, then wewould have H jk(x) = �jk jk(x), for some number �jk and the standard representation would be adiagonal \matrix": AH = f hH il;  jk i g = f�il h il;  jk i g = f�il�il;jkgThis is unfortunately not the case. However, it turns out that AT is in fact an almost diagonal operator,in the appropriate, technical sense, with the o� diagonal elements quickly becoming small. To get someidea why this is the case, note that for large jxj, we have, at least heuristically,H jk(x) � 1x Z  jk(y) dy:A priori, the decay of the right hand side would thus be O(1=x), which of course is far from the rapiddecay of a wavelet  jk (some wavelets are even zero outside a �nite set). Recall, however, that  jk hasat least one vanishing moment so the decay is in fact much faster than just O(1=x), and the shape ofH jk(x) closely resembles that of  jk(x).So, for a large class of operators, the matrix representation, either the standard or the nonstandard,has a rather precise structure with many small elements. In this representation, we then expect to be ableto compress the operator by simply omitting small elements. In fact, note that this is essentially the samesituation, especially in the case of the nonstandard representation, as in the case of image compression,the \image" now being the kernel K(x; y). Hence, if we could do basic operations such as inversion, andmultiplication, with compressed matrices, rather than with the discretized versions of T , then we maysigni�cant speed up of the numerical treatment. This program of using the wavelet representations forthe e�cient numerical treatment of operators was initiated in [10]. We also refer to [1, 2] for relatedmaterial and many more details.In a di�erent direction, because of the close similarities between the scaling function and �nite el-ements, it seems natural to try wavelets where traditionally �nite element methods are used, e.g. forsolving boundary value problems [72]. There are interesting results showing that this might be fruitful;for example, it has been shown [11, 36, 92, 113]. that for many problems the condition number of theN � N sti�ness matrix remains bounded as the dimension N goes to in�nity. This is in contrast withthe situation for regular �nite elements where the condition number in general tends to in�nity.30



One of the �rst problems we have to address when discussing boundary problems on domains is howto take care of the boundary values and the fact that the problem is closely associated with a �nite setrather than with the entire Euclidean plane. This is similar to the problem we discussed with wavelets onclosed sets, and, indeed, the techniques discussed there can be often used to handle these two problems[4, 5].Wavelets have also been used in the solution of evolution equations [6, 63, 76, 81]. A typical testproblem here is Burgers' equation: @u@t + u @u@x = � @2u@x2 :The time discretization is obtained here using standard schemes such as Crank-Nicholson or Adams-Moulton. Wavelets are used in the space discretization. Adaptivity can be used both in time and space[6]. One of the nice features of wavelets and �nite elements is that they allow us to treat a large class ofoperators or partial di�erential equations in a uni�ed way, allowing for example general pde solvers to bedesigned. In speci�c instances, though, it is sometimes possible to �nd particular wavelets, adapted tothe operator or problem at hand. For example, Stefan Dahlke and Ilona Weinrich constructed waveletsadapted to a pseudo di�erential operator [35, 34]. In [9] Gregory Beylkin develops fast wavelet-basedalgorithms for the solution of di�erential equations.Note: Applications in statistics such as the smoothing of data were investigated by David Donoho andIain Johnstone in [51, 52, 53]AcknowledgementWe would like to thank Gilbert Strang for useful comments and suggestions.References[1] B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin. Wavelet-like bases for the fast solution ofsecond-kind integral equations. SIAM J. Scient. Comp., 14, 1.[2] B. K. Alpert. Wavelets and other bases for fast numerical linear algebra. In C. K. Chui, editor,Wavelets: A Tutorial in Theory and Applications, pages 181{216. Academic Press, 1992.[3] L. Andersson, B. Jawerth, and M. Mitrea. The Cauchy singular integral operator and Cli�ordwavelets. In J. Benedetto and M. Frazier, editors, Wavelets and Applications. CRC Press, 1993.[4] L. Andersson, B. Jawerth, and G. Peters. Wavelet theory on closed sets. In preparation.[5] P. Auscher. Wavelets with boundary conditions on the interval. In C. K. Chui, editor, Wavelets:A Tutorial in Theory and Applications, pages 217{236. Academic Press, 1992.[6] E. Bacry, S. Mallat, and G. Papanicolaou. A wavelet based space-time adaptive numerical methodfor partial di�erential equations. Technical Report 591, Courant Institute of Mathematical Sciences,1991. 31
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[111] G. G. Walter. A sampling theorem for wavelet subspaces. IEEE Trans. on Inf. Theory, 38:881{884,1992.[112] M. V. Wickerhauser. Acoustic signal compression with wavelet packets. In C. K. Chui, editor,Wavelets: A Tutorial in Theory and Applications, pages 679{700. Academic Press, 1992.[113] J.-C. Xu and W.-C. Shann. Galerkin-wavelet methods for two-point boundary value problems.Numer. Math., To be published.Appendix: The periodic fast wavelet transform algorithmWe will give here a pseudo code implementation of the periodic fast wavelet transform. We assume thatlen hp coe�cients hk are non-zero starting with the one with index k = min hp. Similar assumptionshold for the gk, ~hk, and ~gk with lengths len gp, len hd and len gp and starting indices min gp, min hdand min gp respectively. These coe�cients are stored in 4 vectors such thathp[k] = ahk+min hp; gp[k] = a gk+min gp; hd[k] = b ~hk+min hd; and gd[k] = b ~gk+min gd;where a b = 2. We start with 2n coe�cients �n;l of a function of Vn and can thus apply n steps of thealgorithm. These are initially stored in a vector v[l]. The computed wavelet coe�cients are stored in avector w such thatw = � �0;0 �0;0 �1;0 �1;1 �2;0 : : : �2;3 : : : �n�1;0 : : : �n�1;2n�1�1 � :The algorithms are written in such a way to reduce operations in the inner loops. They are however nothighly optimized not to a�ect readability too much. The index notation a (b) c stands for a, a+ c, : : : , band the operator 
oor(a) rounds a to the nearest integer towards minus in�nity.
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for j  n� 1 (�1) 0w[0 (1) 2j+1 � 1] 0for l 0 (1) 2j � 1i (2 � l+min hd) mod 2j+1for k  0 (1) len hdw[l]  w[l] + hd[k] � v[i]i  (i+ 1) mod 2j+1end fori (2 � l+min gd) mod 2j+1ls l+ 2jfor k  0 (1) len gdw[ls]  w[ls] + gd[k] � v[i]i  (i+ 1)mod 2j+1end forend forv  w[0 (1) 2j � 1]end for
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for j  1 (1) nv[0 (1) 2j � 1] 0for k  0 (1) 2j � 1i (
oor((k �min hp)=2))mod 2j�1lb (k �min hp) mod 2for l lb (2) len hpv[k]  v[k] + hp[l] �w[i]i  (i� 1) mod 2j�1end fori (
oor((k �min gp)=2)) mod 2j�1lb (k �min gp) mod 2for l lb (2) len gpv[k]  v[k] + gp[l] �w[i + 2j+1]i  (i� 1) mod 2j�1end forend forw[0 (1) 2j � 1] = vend forBj�orn JawerthUniversity of South CarolinaDepartment of MathematicsColumbia, SC 29208USAWim SweldensKatholieke Universteit LeuvenDepartment of Computer ScienceCelestijnenlaan 200AB 3001 LeuvenBelgiumandUniversity of South CarolinaDepartment of Mathematics 40


