
Communication, Collaboration and Cooperation in Software
Development - How Should We Support Group Work in Software

Development?

Motoshi Saeki
Dept. of Computer Science

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

Abstract
Sopware development is essentially cooperative

work which is collaboratively performed by zrarious
roles of persons and tools. CommunicationS among the
,members of a development team, e.g. conversation,
an.d among tools is on,e of the most important char-
acteristics for these collaborative work. To make our
software development environment more eflective an,d
comfortable, we sh,ould observe what comm,unication,
collaboration and cooperation are actually made in de-
velopm,ent processes and what styles are suitable to us.
In the paper, several case studies and analytic results
in software development are suraeyed, and I discuss
what kinds of tools are required to support seamless2y
group work in software development.

1 Introduction
Software activities are essentially cooperative and

performed a collaboration of a team. In such cooper-
ative situation, different roles of workers such as cus-
tomers, users, analysts, designers, managers, and so
on, actually participate in the activities and commu-
nicate with each other.

Conventional CASE tools for supporting software
development [21] are for a single developer. Thus it
seems to be difficult to apply effectively the existing
CASE tools to the activities which are performed by
a team. The members cooperate, collaborate, coordi-
nate, and communicate with each other to develop an
artifact.

Providing the support tools for cooperative work
is the main problem in CSCW (Computer Supported
Cooperative Work) and Software Engineering commu-
nities. They have studied this topic independently and
produced research results. CSCW community focuses
on the tools only for general purpose, e.g. electronic
meetings, decision making support, collaborative edit-
ing, and so on. However they are for general cooper-
ative work and the community does not consider spe-
cial applications such as software development yet. As

Curtis pointed out in[9], specialization to the applica-
tion of software development allows us to have more
effective supporting tool.

Recent research in Software Engineering commu-
nity, especially Software Process community has pro-
duced process-centered software develop environments
(SDES), e.g. Merlin[29] and Marvel[l]. Supporting co-
operative work in them is mainly concurrency control
of multiple access to a product to maintain consistency
and to avoid interference. That is to say, the CSCW
community and the Software Engineering community
don’t have much intersection both on researchers and
on research directions. In this paper, I report the cur-
rent status of research results of CSCW and discuss
their applicability to software engineering field.

The organization of the paper is as follows. In the
next section, I report the technique to observe and
analyze practical cooperative activities and then il-
lustrate empirical case studies done by software en-
gineering community. Observing and analyzing “ac-
tual” cooperative activities are very important to clar-
ify their characteristics. Cooperation style or charac-
teristics depends on each phase of software develop-
ment, e.g. requirements elicitation, specification de-
velopment (analysis & design), coding, testing phases
and so on. Thus to develop effective supporting tools
in a phase, you should observe the actual activities in
the phase and extract its characteristics such as obsta-
cles to cooperation. The past failure of applying the
existing groupware resulted from less empirical studies
on the actual and practical software development pro-
cesses. Section 3 surveys groupware tools in CSCW
community. The overview of SDE supporting tools
developed by software engineering community is re-
ported in the next section. In addition, I introduce the
examples of applying the research results of CSCW to
software development support, including our current
study. In the final section, I discuss the current issues
and the future directions in the two communities.

12
O-8186-7171-8/95 $04.00 Q 1995 IEEE

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

2 Observing and Analyzing Activities
2.1 Techniques for Observation and Anal-

ysis
The aim of CSCW is to clarify cooperative activ-

ities of members in the group that has a goal to be
achieved and how to support them with computer
technology, while groupware denotes a computer-based
system supporting cooperative activities. Researchers
from various fields, e.g. psychology, sociology, lin-
guistics, cognitive science, ethnography and, needless
to say, computer science, are involved in CSCW. Al-
though the final goal of CSCW research is computer
support for human cooperative activities, many of
them focus on human behavior under group environ-
ments, e.g. how to communicate and negotiate with
other members, awareness among the members and so
on. As I mentioned before, clarifying human coopera-
tive activities is very important to achieve an effective
support. What kind of work a group perform varies
its cooperative activities. For example, the activities
in software development are different from in program
committee meetings of an academic conference such
as APSEC’95. Thus we need empirical and analytic
studies of actual cooperative activities in our specific
domain.

In CSCW research, with the aid of social scientists
and cultural ones, several methodologies for empiri-
cal and analytic studies have been applied to the ac-
tual human activities. First of all, we should observe
them and clarify how to do, i.e. what characteris-
tics in them we focus on. From engineering sense, we
preferably try to find the obstacles that prevent co-
operative activities and reduce productivities. Almost
of all existing studies in CSCW community observed
commm~icatron among the group members, especially
conversation made by them. In a face-to-face meeting,
which is a typical example of the forms of cooperative
activities, the participants spend almost all of meet-
ing time in verbal conversation. As this fact suggests,
verbal conversation can be considered as a key factor
to clarify cooperative activities.

Conversational analysis is one of the techniques to
analyze conversation records. This technique captures
conversation as a sequences of utterances, and focuses
on the syntactic characteristics of the sequence to ex-
plore its structure rather than on the contents of the
utterances. For example, to extract turn taking, i.e.
changes of topics being discussed, the technique sug-
gests that emphasis should be on time interval of si-
lence between a temporal adjacent pair of utterances.

The representative techniques based on the con-
tents of utterances are content an,alysis and speech
act theory[36]. In th ese techniques, the analysts clas-
sify utterances into pre-defined semantical categories
based on the contents of utterances. Understanding
completely the utterances to be analyzed is needed
and it leads to huge time-consumption for analysis.

analyze the same utterance record. The re
the human utterances contain semantical
That is to say, this type of analysis has the
of getting unstable results.
2.2 Empirical Case Studies in Softw

Development

Walz, Elam and Curtis analyzed series of the m
ings to design an object management servers[9,
This design phase contained 19 meetings in and
of these meetings were seminars by outside expert
acquire technical knowledge. It ceased in four
and ail the meetings were videotaped. A
manger, eight designers and a customer gro
involved in the design meetings. However all
did not always participate in the meetings.
lyzing the utterances in the meetings, the par
spent much time in developing the common m

four development projects[28]. Ea
several meetings - from two to five
time from an hour to two hours
seven persons were involved in. They VI
meetings and coded, i.e. classified the utterances 1
some categories based on their contents. Their fi
ings are that 40% of th
direct discussion of desi
tion and 20% in team coordination.

The term “participatory design” recently
reach our ears and it means that users (and
stakeholders such as customers) work together
designers in software design processes. In the de
opment using Prototype, the users and customers
always involved in the phase
prototype. Some empirical
fits and shortfalls of user and
requirements elicitation and
phases[25]. Requireme
were originally the ta
not perform but developer did. The aim of the stu
is to clarify what impacts the cooperation of the u
with the developers have and the emphasis is on ro
the participants in the tasks. The useful findings
be obtained increasingly as we have more experie

13 I

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

among the utterances and the artifacts, i.e require-
ments specification[18]. They had an assumption that
the utterances denoting conclusions should appear in
some part of the artifact and they tried to relate the
videotaped utterances to a part of the artifact. They
found that about 30% of the utterances denoting con-
clusions lacked for the artifacts. Furthermore they an-
alyzed typical patterns of utterance occurrences which
often caused the lack of the conclusions in the arti-
facts.

As computer networks spread wider, E-mails as a
communication tool become popular and are used in
software development. The advantages and deficien-
cies in using E-mails in software design phase is ex-
plored from empirical studies[35]. The software de-
signers in this experiment found the deficiencies in the
following :

1. Text in the mails, who was composed by the oth-
ers, might be not comprehensive to the readers.

2. Conclusion to which the members came might be
ambiguous in the electronic discussion, or it might
be unclear where the conclusion was in the set of
the mails.

3. All of the members did not discuss a topic very
much but the discussions might be one-to-one.

4. It is often delayed to read the messages. Delayed
readers might be left behind or out of the discus-
sions.

Furthermore it reported that the contents of the E-
mails that the designers passed were classified as
shown in Table 1.

The term “work structure” means the division of
work in a group and Bendifallah and Scacchi inves-
tigated the work structures in software specification
development[2]. They found four types of work struc-
tures; negotiative, integrative, delegative, and replica-
tive work structures and typical patterns of the shift
of work structures in actual specification development
processes. In the case of negotiative one, a group con-
centrates on negotiation such as making a plan and a
schedule and it produces products with the consensus
of the group members. In the integrated work struc-
ture, the final product is an integration of subprod-
ucts that the members produced. In the delegative
work structure, an individual of a group is delegated
to produce a final product. Replicative work structure
includes redundant and duplicated activities. More
than one member perform the same task in the struc-
ture.

As I introduced above, empirical studies in software
development field just started and I hope that this
type of researches increase and we have more findings
in actual cooperative activities. The techniques that

these researches adopted is 1) recording human activ-
ities with videotapes, 2) making transcriptions from
the utterance records, 3) classifying the transcriptions
into some categories based on their contents, i.e. cod-
ing transcriptions, and 4) extracting their characteris-
tics. One of the difficulties is the complexity of analyz-
ing videotaped records of human activities. Although
we ignore gestures and movement and only focus on
utterances, we should listen to large volume of utter-
ances and make transcriptions. And it may be difficult
to keep stability of coding. To assess and increase the
objectivity of coding, we can adopt more than ana-
lysts who code the same transcription and integrate
their results by using some principle such as majority.
The problem of complexity is serious because practi-
cal software development processes go in a long term.
We should reconsider the granularity of the activities
to be analyzed. However the significance of observing
and analying cooperative activities in practical soft-
ware processes will never be reduced.

3 What Does Groupware Support?
The next point is the question what is groupware,

which part groupware can support. In the section,
we look back the evolution process of human cooper-
ative activities beginning with simple communication
between human. Next, we will consider which part
modern groupware supports

3.1 Evolution of Groupware
Human cooperative activities begin with communi-

cation among the partners. Communication is made
by verbal conversation, letters, telephone, fax, E-mails
through computer network and so on. Recently soft-
ware for sending video and audio such as NV and VIC
on computers through computer network has been de-
veloped. In this level, we just send and receive various
kinds of information such as text, voice and figures to
our partners. Note that we have two types of com-
munication - synchronous communication and asyn-
chronous one. In synchronous communication such as
verbal conversation and telephone, the message that
you sent can be immediately read by the receiver,
while the messages you sent are stored in mail boxes
and the receivers may be delayed to read it in asyn-
chronous communication such as letter and E-mails.
Furthermore the order of reading messages is not al-
ways the same as the order of sending out them.

To perform tasks communicating with the partners,
a memory for storing intermediate artifacts is needed.
The second stage in the evolution is adding a private
workspace for each participant to communication fa-
cility. The participant accesses and updates his or
her private workspace which is invisible to the others.
The participant decides what communication should
be made by investigating his or her workspace. As
more complex task group members should perform or
more larger artifact they should produce, they need

14

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

Table 1: Contents of E-mail Communications

Content
Discussion about Modification of Decided Matters
Comments & Response
Discussion about Undecided Matters
Notification of Progression, Schedule Negotiation
Confirmation of Decided Matters
Terminology Definition & Confirmation
Others

-%
25
23
15
11
6
6
14

Total number of Mails : 71 Period : 14 days

the workspace where they perform the task coopera-
tively. It also stores intermediate artifacts leading to
a final artifact. This workspace is shared by the mem-
bers and all of them can access and update it. This
form can be considered as modern groupware. That
is to say, communication facility, private workspaces
and a shared workspace constitute groupware. Figure
1 illustrates this evolution, i.e. from communication
support to collaboration and caoperation support.
3.2 Architectural Structure of Group-

ware
Architectural structure of groupware is shown in

Figure 2. It adopts layered architecture based on the
evolution process mentioned in the previous subsec-
tion.

1. Communication : In this layer, communication
tools and media are supported. Suppose that we
use E-mail system on Internet. Network hardware
such as Ethernet and ISDN, and software for com-
munication protocol such as TCP/IP support our
communication by E-mail. What kind of infor-
mation you send, i.e. message structure depends
on the layer; In the case that you send video im-
ages, this layer supports the coding techniques for
data compression such as MPEGZ and H.261 etc.
Synchronism of communication, i.e. synchronous
communication or asynchronous, also depends on
the communication tools and media you selected.

2. Private Workspace Management : The private
workspace is used for storing messages from the
partners and for composing messages. In the
case of E-mail system, mail holders are a private
workspace. It reflects the internal state of the
worker and the worker can decide what action he
or she should do from the state of his or her pri-
vate workspace.

3. Shared Workspace Management : While a pri-
vate workspace is invisible to others, a shared
workspace can be accessed by all of the group
members. In this situation, concurrency control

(b) Private Workspace

(c) Shared and Private Workspaces

Figure 1: Conceptual Evolution of Groupware

15

?
lace

a

a

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

Personal Process 1 Methods such as OMT
support

1 Revison Contro1 Sharedz;;t Avoidance of Access Conflict

Private Workspace
Structured E-mail System

Communication
Media
E-mail Telephone
TCPIIP,
Ether Net, FDDI, ATM,

Figure 2: Architectural Structure of Groupware

of multiple access to a workspace is very impor-
tant to maintain consistency and to avoid in-
terference. Conventional locking techniques in
database area such as two phase locking and
check-in St check-out may not be suitable for man-
agement of a shared workspace.

4. Personal Process Support : We have many
methods for software development, e.g. Struc-
tured Analysis/Design[lO, 401, Object-Oriented
Analysis/Design[32, 7, 37, 41 and Jackson Sys-
tems Development[lG]. These methods should be
supported in the layer.

5. Group Process Support : Before starting software
development, a project leader makes a project
plan. The plan includes development schedule,
resource allocation and assignment of workers.
After starting the development, the leader moni-
tors the progress and may change the plan when
the deviation is encountered. This type of coordi-
nation is called project management and should
be supported in the layer.

3.3 Groupware Developed in CSCW
Communication :

VAT (Visual Audio Tool), NV (Net Video) and WB
(White Board) are used for sending presentations in
multicast way through MBone on Internet. Further-
more we have other tools to sending video and voice
for desktop conferences.
Private Workspace Management :

Object Lens (currently its enhanced version Oval
is developed) is a structured E-mail system and we
can specify what action the system performs when an
E-mail is received by a rule in template form[l9]. For
example, you can specify the rules so that the received
E-mails are automatically stored in the corresponding
mail folders according to the values of their “From”

and/or “subject” slots. That is to say, it can support
automatic classification and filing of the received E-
mails.

Coordinator[39] is an E-mail system based on
speech act theory and for making a commitment be-
tween two persons. E-mails sent in this system have
type related to speech acts such as requests, promises,
decline, counter-offer and so on. A state transition
machine specifies which type of E-mails the receiver
should reply when he or she receives a type of E-mails,
i.e. legal conversation moves (e.g. after a requests is
issued, a promise, a counter-offer or a decline can be
made).
Shared Workspace Management :

Co-authoring systems or group editors such as
Grove[l3] and Quilt[S] focus on the shared workspace
management, i.e. concurrency control of multiple ac-
cess to maintain consistency. The simple solution may
be locking to achieve mutual exclusion. The part
which a person is editing should be locked so that
others cannot access it. However, in fact it is not
a simple solution. How large grains should we lock
- a paragraph, a sentence, a word, a character or a
key stroke level? When should we lock - moving a
cursor or updating a character? Grove is for simul-
taneously editing an outline by a group and has no
specific locking mechanism. The members can view
any part of the text and update it at any time. It
adopts cloud-burst model to inform the others which
part a member is editing. When a member inputs the
text, it appears in bright blue on the editor screen. It
gradually changes black as the time passes by. While
a member modifies the text, it is covered with a cloud
on the screens of the other members. They know that
someone are modifying the text by noticing the cloud.
Of course, the member that initiates the modification
can view the text, i.e. the cloud does not appear on
his or her screen. The emphasis of Grove is on aware-
ness of what the others do. Members themselves de-
cide what they should do by seeing what the others
is doing. This mechanism is very simple and it avoids
adopting complex locking mechanisms. Furthermore
this kind of awareness plays an important role on good
cooperation among persons from the social viewpoint.

The next point is the structure of shared workspace.
What data does the shared workspace holds? What
structure should we use to hold the data? Some re-
searches address that group activities are recorded
to decide the next activities of the group. QOC
(Questions Options and Criteria)[22], gIBIS[8] and
SYBIL[20] specify the structure of discussion activities
for design tasks. For example, the discussion activities
are classified into three categories - Issue, Position and
Argument in gIBIS model. By analyzing the records
that are stored following the model, we can extract
decision rationale and find the issues that we have not
discussed yet. Structuring the activity records is use-

16

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

Figure 3: Typical Pattern of Speech Act Transition

ful for decision support. However, the members are
forced to discuss anything following the model and it
may restrict the members’ activities. Thus we should
construct the model natural to human behavior.

4 Applying Groupware to SE
This section introduces groupware or supporting

tools developed by Software Engineering community.
These tools support specific phrases in software devel-
opment - requirements elicitation, specification de-
velopment, coding, review, test and maintenance.

4.1 Requirements Elicitation
As I mentioned in the previous section, it is impor-

tant to hold the discussion records in a structural way.
The point is what structure we adopt as a database
schema. Potts et al. proposed the requirements elici-
tation could be be considered as a inquiry-answer cycle
between customers and developers[30]. They formu-
lated a model expressing this cycle based on speech
act theory and developed a tool for storing and ac-
cessing discussion records by using hyper text.

It is a problem whether such a model fits to human
activities. In our study[34], we focused on the face-
to-face meetings where a customer explains his or her
requirements to the developers and construct a speech
act transition model as shown in Figure 3. We inves-
tigated actual meetings and we could see that 84 % of
the utterance transitions follow the typical patterns
of Figure 3. This result leads to the feasibility of con-
structing speech act based model to hold the meeting
activities in structural way. And this record is useful
to develop requirements specification and to manage

its modification[l4]. Requirement elicitation may h;
several phases - the phase where the customers
plain their requirements to the developers, the ph,
where the developers (the analysts) present their
lutions to the customers, the phase where the part
pants discuss the solutions to come to agreement, i
phase for negotiating development schedule, and so (
Thus the models should depend on the phases and
should develop the models in the other phases. H
we should extract speech acts from the utterance2
a problem. To label the utterances with speech ac
we focused on the keywords that characterize spet
acts.

Next, how we use the records of the activities? ?
resolution of requirements conflicts among the c
tomers’ side and developers’ is one of the import:
applications. Boehm et al. considered requireme;
elicitation as negotiation and renegotiation proces,
among the stakeholders such as users, customers a
developers, called Win-Win Spiral Processes[3]. In t
processes, each stakeholder captures his or her desiI
objective called win conditions at first. Next the stal
holders detect the conflicts between the win conditic
and their specifications. And then they try to find t
agreement conditions which satisfy the stakeholde
win conditions. The process to resolve the con%
and to find the agreements is formalized with a st;
transition diagram and the supporting tool WinWir
has been developed. Robinson also proposed the tee
nique for support negotiation processes of developc
and customers[31]. Similarly to the Boehm’s work, :
quirements from the customers and the developers 2
recorded as a dependency graph, which expresses t
positive dependency relationships and negative or
(the relationships expressing conflicts or mutually 6
elusions) among the requirements. This graph is use
to reason the impacts to the other requirements wh
a group accepts or rejects a requirement.

4.2 Specification Development
We have many methods to develop specification

However all of them are not for a group but for
individual worker. We need construct methods a
the supporting tools suitable for group work or j
the development organizations. Method engineeri
provides the framework to compose a method frc
the method fragments pre-stored in a database call
method base[l5, 331.

In specification development by a group, ea
worker may develop a part of the specification by t
methods different from the others. For example,
worker uses a data flow diagram while the other o
develops a state transition diagram. In this case, hc
to integrate the specification parts th$ the differe
workers developed into one and how to check into
sistency occurring in the integration are a problem
be solved[27].

17

re
K-
3e
3-
:i-
ke
n.
7e
W
is

SI

be
3-
1t
1s
:S
d
Le
d
:-
LS
.e
3’
;s
,e
1
L-
'S
:-
‘e
e
!S
:-
11
n

h
e
a
e
B
t
.-
0

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

4.3 Coding
In coding phase, the groupware that we often use is

group editors. Unsimilar to the other work, in software
development, there are workers responsible for the de-
composed sub tasks. Only the responsible worker can
develop and modify his or her software modules. Thus
the concurrency control of accessing a source file can
be achieved by the management of responsibility and
the tools that do not show the modules to irresponsi-
ble workers[l7].
4.4 Review and Inspection

Review and code inspection are usually performed
in face-to-face meetings. Some researches on review
and inspection by teleconference and by desktop con-
ference were reported[6, 11, 241. They suggested that
teleconference and desktop conference are as effec-
tive as face-to-face meetings in review and inspection
phase. However some devices for floor control mecha-
nism such as FIFO might be needed to reduce network
load and to have efficient meetings.

Almost all of the tools for review and code inspec-
tion have the functions that the others can annotate
to a code on the screens of their terminals. In small
teams, these tools are effective. However as the par-
ticipants increase, the developer responsible for the re-
viewed or inspected codes would bother with the man-
agement of the annotations which were made from the
different persons but had the same meanings.
4.5 Debug and Test

Individual workers who have responsibility the
tested modules are involved at their sites in their tasks,
i.e. debug and unit test of the modules. To dis-
cuss the detected bugs or the test result, they may
communicate with the others, e.g. the reviewers who
had reviewed and commented to their modules. To
enhance communication, the communication mecha-
nism should be integrated to the debuggers and test-
ing tools. For example, MShell of Flesco are used for
multi users, and they can enter the commands to the
tool interleavingly and share the responses to the com-
mands entered by them[ll]. It allows all of the par-
ticipants to see the bugs or the test results that the
tools output.

After approving the results of unit tests, the mod-
ules are sent to and collected at the site where inte-
gration tests will be performed. As all of the persons
responsible for modules can participate in the work,
supporting tools for synchronous communication such
as teleconference tools or desktop conference tools are
preferably integrated to the tools for integration test.
4.6 Maintenance

Modifying software modules causes the problem of
multiple access and updating, and it leads to incon-
sistency of the modules. In [23], revisioning modules
is notified to the other workers by changing a color of
the module on the screen of the tool which displays

the structure of versions. Awareness among workers,
i.e. notifying to the others what I do, is a simple but
very powerful technique to avoid the multiple access
in software development environments. However it is
just useful for small groups.

There is another approach for supporting revision
control. The developer that would like to change the
module should propose it to the related persons at
first. The change cannot be made until the proposal
is approved by them. This mechanism is called “Lazy”
consistency[26] and the tool supports the communica-
tion for proposal-and-approval protocol.

5 Summary and Future Directions
Table 2 summarizes the key technologies which are

and will be very important for software development.
They come from both groupware technologies and
software engineering ones.

As I mentioned before, characteristics of group
work in software development vary on the develop-
ment phases. We should clarify the characteristics
through empirical studies, establish the key technolo-
gies mentioned in Table 2, and develop the tools suit-
able for each phase. It is infeasible to support a single
tool thoughout software development processes. That
is to say, like Flesco[ll], our tool may be an integra-
tion of the individual tools that support a phase, i.e.
integrated groupware. To integrate the tools, it should
have open architecture. A tool that generates group-
ware tools, so called meta groupware, may be needed.
The technique to compose a suitable groupware from
groupware tool fragments stored in a database, group-
ware tool base also becomes important. To achieve this
goal, the study of the conceptual model or meta model
of groupware such as [12] is one of our directions.

Acknowledgements
The author would like to thank Prof. Koichiro

Ochimizu of JAIST, Prof. Keijiro Araki of NAIST and
the members of the research group BUN3 for their in-
valuable discussions and suggestions to my work. The
empirical studies described in the section were sup-
ported by Dr. H. Kaiya, N. Miura, W. Kuo and K.
Matsumura and my thanks also go to them.

References
[l] N.S. Barghouti. Supporting Cooperation in

the MARVEL Process-Centered SDE. In SIG-
SOFT’92 : PTOC. of the Fifth ACM SIGSOFT
Symposium on Software Development Environ-
ments, pages 21-31, 1992.

[2] S. B en i a a and W. Scacchi. Work Structures d f 11 h
and Shifts ; An Empirical Analysis of Software
Specification Teamwork. In Proc. of iith ICSE,
pages 260-270, 1989.

18

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

Table 2: Groupware Support in Software Development

Phase
Requirements Elicitation

Specification Development
Coding

Review & Inspection
Debug 6r; Test

Maintenance
Project Management

Key Technologies
Group Decision Support, Conflict Resolution, Recording Activi-
ties based on Speech Act Theory
Method Engineering (Method for Group), Consistency Checking
Group Editing, Awareness
Teleconferencing, Desktop Conferencing
Integration of Communication Tools to Debuggers and Testing
Tools
Revision Control with Conflict Resolution, Awareness
Group Decision Sunnort. Awareness

[3] B. Boehm, P. Bose, E. Horowitz, and M. Lee.
Software requirements Negotiation and Renego-
tiation Aids : A Theory-W Based Approach. In
Proc. of 17th ICSE, pages 243 - 253, 1995.

[4] G. Booth. Object-Oriented Development. IEEE
Bans. on Soft. Eng., 12(2):211-221, 1986.

[5] U. Borghoff and G. Teege. Application of Collab-
orative Editing to Software-Engineering Projects.
In ACM SIGSOFT, Software Engineering Notes,
number 3, pages A56-A64, 1993.

[6] L. Brothers, V. Sembugamoorthy, and M. Muller.
ICICLE : Groupware for Code Inspection. In
Proc. of CSCW’SO, pages 169 -- 181, 1990.

[7] P. Coad and E. Yourdon. Object-Oriented Anal-
ysis. Prentice Hall, 1990.

[8] J. Conklin and M. Begeman. gIBIS: A Hypertext
Tool for Exploratory Policy Discussion. ACM
Trans. on Ofice Information Systems, 6(4):303-
331, 1988.

[9] B. Curtis. Implication from Empirical Studies
of the Software Design Process. In Proc. of Int.
Conf. by IPSJ to Commemorate the 90th, An-
niversary.

[lo] T. DeMarco. Structured Anulysis and System
Specification. Yourdon Press, 1978.

[ll] P Dewan and J. Riedl. Toward Computer-
Supported Concurrent Software Engineering.
IEEE Computer, 26(1):17-26, 1993.

[12] C. Ellis and J. Wainer. A Conceptual Model of
Groupware. In Proc. of CSCW’9,#, pages 79-88,
1994.

[13] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware
: Some Issues and Experiences. Comm.un. ACM,
34(1):38-58, 1991.

.9

[14] 0. Gotel and A. Finkelstein. Contribution Str
tures. In Proc. of Second IEEE Internatio:
Symposium on Requirements Engineering, pal
100-107, 1995.

[15] F. Harmsen and S. Brinkkemper. Compu
Aided Method Engineering. In Proc. of
4th Workshop on the Next Generation of CA
Tools, pages 125-140, 1993.

[16] M.A. Jackson. System Dezrelopment. Prent5
Hall, 1983.

[17] G. E. Kaiser. Rule-Based Modeling of the So
ware Development Process. In Proc. of the ,
International Software Process Workshop, 198

[18] H. Kaiya, M. Saeki, and K. Ochimizu. Design
a hyper media tool to support requirements eli
tation meetings. In Proc. of IEEE Seventh Int,
national Workshop on Comp,uter-Aided Sofiwc
Engineering, 1995.

[19] K. Lai, T. W. Malone, and K. Yu. Object Le
: A Spreadsheet for Cooperative Work. AC
Trans. on Ofice Information Systems, 6(4):33
353, 1988.

1
al
es

er 5 t e
E

de-

1 t-

:
ith

[20] J. Lee. Extending the Potts and Bruns Mot
for Recording Design Rationale. In PTOC. of 11
ICSE, pages 114-125,199l.

Engineering. Van Nostrand Reinhold, 1991.

[22] A. MacLean and R.

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

P4

PI

1261

WI

PI

PI

PO1

WI

WI

P31

P4

V. Mashayeki, J. Drake, W. Tsai, and J. Riedl.
Distributed, Collaborative Software Inspection.
IEEE Software, 10(5):66-75, 1993.

M. Muller and S. Kuhn. Taxonomy of PD Prac-
tices : A Brief Practitioner’s Guide. CACM,
36(4):24-29, 1992.

K. Narayanaswamy and N. Goldman. “Lazy”
Consistency : A Basis for Cooperative Software
Development. In Proc. of CSCW’92, pages 257 -
264, 1992.

B. Nuseibeh, J. Kramer, and F. Finkelstein.
Expressing the Relationships between Multiple
Views in Requirements Specification. In Proc. of
the 15th ICSE, pages 187-196, 1993.

G. Olson, J. Olson, M. Carter, and
M. Storr<sten. Small Group Design Meetings :
An Analysis of Collaboration. Huma- Computer
Interaction, 7(4):347-374, 1992.

B. Peuschel and W. Schafer. Concepts and Im-
plementation of a Rule-based Process Engine. In
Proc. of 14 th ICSE, pages 262-279, 1992.

C. Potts, K. Takahashi, and A. Anton. Inquiry-
Based Requirements Analysis. IEEE Software,
11(2):21-32,1994.

W. Robinson. Negotiation Behavior During Re-
quirement Specification. In Proc. of 12th ICSE,
pages 268 - 276, 1990.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lonrensen. Object- Oriented Modeling and
Design. Prentice-Hall, 1991.

M. Saeki, K. Iguchi, K. Well-yin, and M. Shino-
hara. A Meta-Model for Representing Software
Specification & Design Methods. In Informa-
tion System> Development Process, pages 149-166.
North-Holland, 1993.

M. Saeki, K. Matsumura, and J. Shimoda. Struc-
turing Utterance Records of Requirements Elic-
itation Meetings Based on Speech Act Theory.
Technical report, Tokyo Institute of Technology,
1995.

[35] M. Saeki, S. Sureerat, and K. Yoshida. Support-
ing Dist_ibuted Individual Work in Cooperative
Specification Development. In Lecture Notes in
Computer Science (CISMOD ‘95) to be appeared,
1995.

[36] J.R. Searle. Speech Acts : An Essay in the Philos-
ophy of Language. Cambridge Univ. Press, 1969.

WI

WI

1391

PI

20

S. Shlaer and S.J. Mellor. An Object-Oriented
Approach to Domain Analysis. ACM SIGSOFT
Software Engineering Notes, 14(5):66-77, 1989.

D. Walz, J. Elam, and B. Curtis. Inside A Soft-
ware Design Team: Knowledge Acquisition, Shar-
ing, and Integration. CACM, 36(10):63-77, 1993.

T. Winograd. Where the action is. BYTE,
13(13):256-260, 1988.

E. Yourdon and L.L Constantine. Structured De-
sign : Fundamentals of a Discipline of Com-
puter Program and Systems Design. Prentice-
Hall, 1979.

Proceedings of the 1995 Asia Pacific Software Engineering Conference (APSEC '95)
0-8186-7171-8/95 $10.00 © 1995 IEEE

