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Abstract

The extraction of “Level 2” detail — ridge terminations,
ridge bifurcations, bridges etc. — from digitised images of
fingerprints requires an accurate segmentation of the image
into ridges and valleys. Small breaks and irregularities in
the ridge pattern occur as a result of imperfections in the
print capture process that, if not rectified, give rise to many
false level 2 features at later stages of the analysis.

We propose a method for enhancing the ridge pattern by
applying a process of oriented diffusion, which is an adap-
tation of anisotropic diffusion. This acts to smooth the im-
age only in the direction parallel to the ridge flow. The re-
sult is an image in which intensity varies smoothly as one
traverses along the ridges or valleys, with most of the small
irregularities and breaks removed, but with the identity of
the individual ridges and valleys preserved. The method
offers the advantage of requiring no prior estimate of the
ridge frequency.

Results show improved performance by comparison with
the method of enhancement using frequency-tuned filters,
which sometimes performs well but may produce erroneous
results if the filter is tuned to a frequency that does not
match the actual ridge frequency.

1 Introduction

1.1 Fingerprint feature extraction

Identification of an individual via fingerprint analysis
has traditionally relied on having a fixed number of point
matches based on the ridge pattern. A point match is a sin-
gle minutia (level 2 feature), such as a ridge termination or
a ridge bifurcation, that is identified in both the input print
and in the data print to which it is being matched. Clearly
it is desirable to automate the process as much as possible,
provided this can be done reliably.

A typical feature extraction algorithm begins by extract-
ing the ridge orientation at each point. A ridge representa-

tion is then generated by refining the ridges to eliminate im-
perfections such as small gaps and jagged edges; this step
is sometimes termed “purification”. Some kind of binari-
sation is then done to segment the image into ridges and
valleys. In some cases a thinning algorithm is used to cre-
ate a “skeleton image” of the ridges. The binary ridge map,
or sometimes the skeleton image, is then analysed to iden-
tify the location and orientation of the minutiae, which then
form the basis for comparing one fingerprint with another.

It is the step of refining the ridges that is the subject of
this paper.

1.2 Ridge enhancement

A minutia is defined as a point where a ridge terminates
or bifurcates 1. There is more than one way to define the
boundary between valleys and ridges; one way is to use an
intensity threshold, possibly one that varies from one part
of the image to another.

In most fingerprint images, the ridges appear as dark
lines on a lighter background. Errors in generating the
binary ridge map therefore result from abnormally bright
points within a ridge, or abnormally dark points within a
valley. These may be due to dust or dirt on the fingerprint
itself, noise in the image capture process, cuts, abrasions
or wrinkles on the fingertip (which interrupt the flow of the
ridges), irregular deposition of ink (in inked prints) and the
fine structure of the ridges themselves, eg. the location of
sweat pores, or irregularities of the ridge edges. Whatever
the source, unless the effect of these artifacts is reduced or
eliminated, the final binary ridge map will contain many
unwanted features such as small gaps in the ridges, tiny “is-
land ridges” within a valley, or tiny spurs branching off from
the ridges. These features give rise to many false minutiae,
since a minutia is recognised as a ridge termination or a
ridge bifurcation (which is equivalent to a valley termina-

1Various subspecies of minutia, eg. spurs, bridges, islands etc. are re-
ferred to in the classification literature, but they can all be expressed in
terms of combinations of the two main types: ridge terminations and ridge
bifurcations.
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tion).
The traditional method of reducing noise in a digital im-

age is to apply some kind of smoothing, using for example
a 2-dimensional Gaussian filter. In the case of fingerprint
images, however, the typical spacing between the ridges is
about 0.5mm [1, pp 63-64] :[5, p 83]), which in a standard
500d.p.i. image equates to approximately 10 pixels. This
limits the amount of smoothing that can be carried out us-
ing omnidirectional filters. What is required is a method of
iteratively smoothing the image in the direction of the ridge
orientation but not in the perpendicular direction, thereby
preserving the identity of the ridges and valleys.

One popular approach to ridge enhancement [5, P 107]
is to use a bank of contextual filters tuned to a specific ridge
frequency. The image is smoothed by selecting the appro-
priate filter at each point, based on the known ridge orien-
tation and on some estimate of the ridge frequency.. For
example, O’Gorman and Nickerson [6] employed a bank of
oriented filters that were elongated in the direction of the
ridge orientation and cosine tapered in the direction at right
angles to the ridges. Hong, Wan and Jain [4] employ a bank
of oriented Gabor filters. A problem with these kinds of
filter however is that, since they are tuned to specific fre-
quencies, they require a preliminary estimate of the ridge
frequency. Frequency may vary significantly across the im-
age, and inaccuracies in this point-wise frequency estimate
may degrade the performance of the contextual filters, as
shown by the results of applying oriented Gabor filtering to
a test image (see Figure 1). Moreover, one might expect
the frequency estimate to be unreliable near the ridge termi-
nations and bifurcations, which are precisely the regions of
most interest.

Our method of ridge enhancement using oriented diffu-
sion seeks to overcome this problem by applying directional
smoothing. The method depends on first finding an accurate
map of the ridge orientation, but no prior knowledge or es-
timate of the ridge frequency is needed.

2 Obtaining the ridge orientation

Notation: In this paper the symbol λT is used to de-
note the image distance in pixels that corresponds to a typ-
ical ridge pattern wavelength. The typical inter-ridge dis-
tance is about 0.5mm (section 1.2); our text images have
a resolution of 500d.p.i., so that this distance corresponds
in our images to about ten pixels. For this work we use
λT = 9.84 pixels, which corresponds to exactly 0.5mm.

There are two inputs to our ridge enhancement process:
the orientation field, and an input image that will be en-
hanced to produce the final ridge map.

To derive the orientation map we use the standard tech-
nique of Principal Component Analysis as described by
Bazen and Gerez [2]. Additionally, we propose a postpro-

Figure 2. Portion of a fingerprint showing two
extraneous linear features (encircled). Ob-
taining an accurate orientation map requires
correction for such features.

cessing stage to overcome the effect of isolated lines that
cross the ridges but are not part of the ridge pattern. Figure 2
shows a fingerprint image containing two such features.

These lines may result from:

• Hand-drawn markings or ruled lines — these are nor-
mally dark.

• Scars or wrinkles on the fingertip — these show as
breaks in the ridges and therefore appear as light in
colour.

Such features, because they are highly linear, may distort
the orientation field in their vicinity. If this is not corrected,
ridge enhancement will produce erroneous results, because
the diffusion will take place along the wrong direction.

Firstly, to minimise the likelihood of our orientation esti-
mate being confused by highly directional features that are
not part of the ridge pattern, we apply a frequency bandpass
filter. The reason for using a filter of this nature is that we
have some a priori knowledge of the ridge frequencies on
the fingertips (section 1.2). By setting the frequency cutoff
values fmin and fmax respectively to half and double the
average ridge frequency 1/λT , we ensure that the estimate
of ridge orientation will be based only on features with a
realistic periodicity.

Principal Component Analysis is then carried out by
sampling a small neighbourhood of each point in the im-
age and determining the direction in which the greatest vari-
ability in the image intensity is observed. The measure of
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(a) Test image. Actual ridge frequency is
0.1 (i.e. the wavelength is 10 pixels).

(b) Output, filter frequency = 0.1.
The corrupting feature is well handled.
Degradation is noticeable near the centre,
but tolerable.

(c) Output, filter frequency = 0.07. Sig-
nificant degradation is apparent near the
location of the corrupting feature, and
also near the centre where the central
intensity maximum has become a mini-
mum.

(d) Output, filter frequency = 0.15. Sig-
nificant degradation is apparent.

(e) Binarised output, filter frequency =
0.07

(f) Binarised output, filter frequency =
0.15

Figure 1. Result of applying oriented Gabor filters to a test image designed to show the behaviour in
image regions containing bands with varying curvature, overlain by a corrupting linear feature. The
image consists of concentric periodic rings with frequency 0.1, overdrawn by a dark horizontal band
4 pixels in width. In each case the filter spread in both the parallel and perpendicular directions was
equal to the tuned wavelength.

Significant degradation occurs for filters tuned to the wrong frequency. Overlaid circles in (c) and
(d) indicate the location of intensity peaks in the original image, showing that the intensity maxima
appear displaced from the correct positions. This has led to the appearance of false endings and
bifurcations in the binarised outputs.
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variability is the mean square of the intensity gradient along
that direction. The ridges are then expected to be aligned at
right angles to this direction of maximum variability.

For any subregion of the image, it can be shown that the
direction θmax for which the weighted mean squared gradi-
ent of image intensity is a maximum is given by:

2θmax = atan2(P, D) (1)

where:

• P = 2gxgy

• D = g2
x − g2

y

• gx is the image gradient in the x direction,

• gy is the image gradient in the y direction,

• g2
x, g2

y etc. refer to the weighted means of these quan-
tities over the image subregion.

For our work we take the weighted means by applying a
2-dimensional Gaussian filter. The spread σ of the filter
defines the size of the subregion and hence the resolution of
the orientation estimate; in our case we set σ equal to λT .

For each point in the image, equation (1) gives two val-
ues of θmax (differing by 180◦) for which the mean squared
gradient is a maximum; the two directions at right angles to
these therefore give the orientation of the ridges.

Next, in order to reduce and hopefully eliminate the ef-
fect of isolated linear features that are not part of the ridge
pattern, a postprocessing is performed on the orientation
map as follows:

1. Find areas where the anisotropic energy terms D and P
vary rapidly as one moves in a direction perpendicular
to the orientation.

2. In these regions, replace the values of P and D that
were used in equation (1) by new values of P and D
derived by using a smoothing filter to interpolate P and
D from the surrounding regions.

3. Derive a revised orientation map by applying equa-
tion (1), using the new values of P and D.

In carrying out the first of the above steps, it is not suf-
ficient to simply observe the variation of D and P ; these
quantities are determined by local image intensity as well
as the ridge orientation, so that a large rate of change in D
or P may simply reflect a rapid variation in image bright-
ness or contrast. To overcome this problem we define the
dimensionless quantity U at each image point as:

U =
Z

|Z| (2)

where
Z = D + iP (3)

Here |Z| refers to the weighted mean of |Z| obtained by
applying a Gaussian filter with spread equal to λT . The
resultant quantity U is a complex number whose phase is
determined by the ridge orientation and whose magnitude
is close to 1 except near a flow singularity, where the value
falls smoothly to zero 2. The threshold condition is then
expressed as a constraint on the magnitude of the second
derivative of U taken in the direction θ perpendicular to the
ridges:

|U ′′
θ | < T (4)

for some threshold T . A value for T of 0.5/λ2
T is found

to eliminate most of the problematic line features; since
U

′′
θ has units of 1/(pixels)2, the division by λ2

T makes this
threshold condition independent of the image resolution..

3 Ridge enhancement

We wished to perform a ridge enhancement that did not
require an a priori estimate of the frequency field. We em-
ploy a methodology that we term oriented diffusion.

The concept underlying diffusion is that a system is al-
lowed to evolve over time, with the state at any point be-
ing modified at any given time according to the states of its
neighbours. Price et al. [8], for example, take the reaction-
diffusion equation as used in chemistry and adapt the con-
cept to processing various kinds of images, making brief
mention of its use in enhancing a fingerprint image. Chen
and Dong [3] apply anisotropic diffusion to the task of im-
proving their estimate of the orientation field in a finger-
print image. Firstly an initial estimate is generated via the
gradient-based method as used in the present work, then
the orientation field is smoothed by diffusion in successive
stages. The diffusion coefficient is allowed to vary over the
image, being smaller in regions of high curvature.

Perona and Malik [7] note that the traditional means of
smoothing by convolving with Gaussian filters is analogous
to diffusion, with successive smoothing stages correspond-
ing to successive points in time during the diffusion process.
They use the term “anisotropic diffusion” to describe their
methodology of edge detection, in which they allow the dif-
fusion coefficient to vary in accordance with the current es-
timate of proximity to a region boundary, being smaller near
the boundaries.

In the present work however we do not seek to minimise
diffusion at the boundaries of the ridge and valley regions;
rather, we wish the amount of smoothing to be the same

2Since |Z| is never negative, and is zero only at points located precisely
at a singularity, the spatially averaged value |Z| is always non-zero even at
or near a singularity.
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Figure 3. Illustrating that the difference be-
tween the mean of a function and the value at
the mid-point is related to the second deriva-
tive of the function.

right across the ridge, but for the diffusion to take place
along one direction only.

To show how this can be achieved, first consider the case
of a 1-dimensional signal (Figure 3).

For a smoothly varying function, the mean over an in-
terval differs from the function value at the interval’s mid-
point by an amount that is determined by the degree of con-
cavity or convexity of the function, i.e. by the second deriva-
tive. More formally, if the function in the neighbourhood of
the point x0 can be expressed as the summation of a Taylor
series:

f(x) = f(x0)+ (x−x0)f
′
(x0)+

1
2
(x−x0)2f

′′
(x0)+ . . .

(5)
then a weighted mean of f centred on x0 is given by:

f(x) = f(x0) +
1
2
(x − x0)2f

′′
(x0) + . . .

= f(x0) + kf
′′
(x0) + . . . (6)

where k = 1
2 (x − x0)2 is a constant whose value depends

on the size of the chosen interval and on the nature of the
weighting function used in taking the means, but not on the
behaviour of f itself. (Note that the mean displacement
from x0 is zero, so that the first-order derivative term van-
ishes, as do all the higher odd-order derivative terms.) If
the weighted mean is taken by convolving with a Gaussian
filter of spread σ, then k is simply equal to σ2/2.

This illustrates that rather than taking a weighted mean
using a 1-dimensional smoothing filter, an alternative is to
make use of equation (6) by estimating the second deriva-
tive, multiplying by an appropriate constant k, and adding
this to the value at the reference point.

This becomes useful when we consider functions over
a 2-dimensional domain, because the second derivative
f

′′
θ (x, y) along an axis forming an angle θ with the x-axis is

given by:

f
′′
θ (x, y) =

∂2f

∂x2
cos2 θ +

∂2f

∂y2
sin2 θ + 2

∂2f

∂x∂y
cos θ sin θ

(7)
Accordingly, we perform oriented smoothing in an iter-

ative fashion as follows:

1. The raw image is preprocessed using a bandpass fil-
ter similar to that used in determining the ridge ori-
entation, but with a much lower minimum cutoff fre-
quency (fmin = 0.1/λT ). Exclusion of these very low
frequencies means that the intensity across the image
is roughly constant when averaged over scales greater
than 10λT . This normalised image becomes the input
for the first iteration.

2. At each iteration:

• Obtain the three second-order partial derivatives
over the image. 3

• Set θ to be the ridge orientation, and use equa-
tions (6) and (7) to obtain the directionally
smoothed value at each point.

• The output at each stage then becomes the input
image for the following stage.

The same orientation map is used at every stage.

The degree of improvement at each stage may be as-
sessed by taking the sum over the whole image of the
changes from one iteration to the next, disregarding the sign
of the changes. If we denote this quantity by Σ(∆), it is
found that at first the value of Σ(∆) falls of in approxi-
mately exponential fashion, as might be expected if the pro-
cess is converging to a well smoothed image. Eventually
however the rate of decrease of Σ(∆) with each iteration
slows down markedly, suggesting that little further improve-
ment (even in relative terms) is possible from then on (Fig-
ure 4). This point of diminishing returns depends on the
quality of the original image, but usually occurs somewhere
between 50 and 100 iterations. For this reason 100 itera-
tions was decided upon as an appropriate point at which to
terminate the process.

Once the directionally smoothed fingerprint image is ob-
tained, it still remains to perform a binary segmentation into
ridge and valley regions. We do this applying a very narrow
2-D Gaussian smoothing filter (σ = 0.3λT ), and then ex-
amining the sign of the second derivative in the direction at
right angles to the ridges. This recognises the fact that the
second derivative of a a smoothly varying function is posi-
tive in the neighbourhood of a local minimum and negative

3The first order derivatives are estimated by taking finite differences,
eg. ∂f/∂x ≈ [f(x+1)−f(x−1)]/2. Similarly, second order derivatives
are estimated by taking finite differences of the first order derivatives.
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Figure 4. Absolute values of change summed
over the entire image (logarithmic scale) at
each iteration of oriented diffusion, shown
for several typical fingerprint images.

near a local maximum. This quantity is obtained by again
applying equation (7), but replacing θ by θ + π/2.

4 Results

The oriented diffusion process was applied to the circu-
lar ridges test image shown in Figure 1(a). The quality of
the resultant output (Figure 5) is comparable to that from
a bank of oriented Gabor filters tuned to the correct fre-
quency, and markedly superior to the outputs obtained from
filters whose frequency differs from the correct frequency
by a factor of 1.5, which were shown in Figure 1. Ridge
frequency variations of this order within a single print, and
between prints, are not uncommon. While the diffusion pro-
cess did not completely remove the corrupting feature, it
should be noted that the broad dark band in the test image is
an extreme example of the kind of corruption that could be
encountered in real images. The important thing to note is
that, unlike the contextual filters, the diffusion process did
not degrade the regions near the band, which were initially
free of corruption.

Figure 6 shows the results of applying the method of ori-
ented diffusion to a typical fingerprint.

For purposes of comparison, the oriented Gabor filter
technique was applied to the same image (Figure 7). The
orientation field used for selecting the appropriate filter was
the same as the orientation field used in applying the ori-
ented diffusion. The actual ridge frequency in this image
varied between 0.08 and 0.1; results are shown for contex-
tual filtering at each of these tuning frequencies. Note in
particular the degradation in the top left corner of the image,

Figure 5. Output from the application of ori-
ented diffusion to the test image. Little
degradation is apparent even after 100 iter-
ations.

where insufficient smoothing along the ridges has resulted
in the appearance of many spurious breaks and joins.

There is a region in the lower left corner of the image (be-
low the lower of the two cores) where neither the oriented
diffusion method nor the Gabor filter enhancement gave a
clear pattern; this occurred because the image quality at this
point was too poor to give a realistic estimate of orientation
(Figure 6(b)). Such regions are easily identified by virtue
of the fact that the anisotropic energy is small compared to
the total energy, avoiding the detection of false minutiae in
these regions.

5 Conclusion

The method of oriented diffusion, when used in conjunc-
tion with a reliable ridge orientation map, is an effective
way of improving the clarity of the ridge pattern. Perfor-
mance shows improvement over the method of contextual
smoothing filters, which require having at hand a realistic
frequency estimate as well as an accurate orientation field.

The availability of such enhanced ridge images should
facilitate the task of the human fingerprint examiner, as well
as being useful as input to the later stages of automated fin-
gerprint feature extraction, viz. the location and classifica-
tion of the minutiae.
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(a) Portion of the original fingerprint image. Note the corrupting
feature consisting of a heavy vertical line at lower left.

(b) Original image with orientation field overlaid.

(c) Directionally smoothed image. (d) Binarised smoothed image.

Figure 6. Output at various stages of oriented diffusion
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(a) Result of smoothing, filter frequency =
0.08.

(b) Result of binarisation of Figure 7(a). (c) As for figure 7(b), but using a filter fre-
quency of 0.1.

Figure 7. Output from smoothing with a bank of oriented Gabor filters, presented for comparison.
Note the poor performance in the upper left region and in the area below and to the right of the lower
core.
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