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ABSTRACT: In many cases of composite processing by liquid matrix impregnation, the
fiber reinforcement is compressed when it comes in contact with the liquid and then relaxes
as the matrix flows within its pores. This phenomenon can be analyzed in terms of local
fluid flow, mass conservation and mechanical equilibrium. A model is proposed to simu-
late the kinetics of impregnation, and the evolution of the fiber volume fraction profile as
the resin front progresses, as well as after the front has reached the end of the mold. The
analysis is then applied to the case of infiltration of needled glass fiber preforms by a poly-
propylene matrix, used in the production of Glass Mat Thermoplastic blanks. A quantifica-
tion of the effects of applied pressure and fluid viscosity on total process time is provided. It
is shown that the time for preform relaxation after the fluid has filled the preform may be
much larger than that for impregnation. As a result, an apparently well impregnated part
may exhibit an inhomogeneous distribution of the reinforcement, in turn inducing a modi-
fication of the mechanical behavior and residual stress distribution.

KEY WORDS: liquid composite molding, thermoplastic composite processing, com-
pressible porous media, glass mat thermoplastics.

INTRODUCTION

IN MOST COMPOSITE processing techniques, the resin in liquid form (molten ther-
moplastic or still uncured thermoset) must penetrate into a fiber assembly in or-

der to produce a sound material. Matrix and reinforcement sizings are generally
designed to enhance the thermodynamic capillary forces, so that spontaneous in-
filtration could be expected. In practical cases, however, external pressure must be
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applied on the polymer to speed up the process, in particular with resins of high
viscosity. The applied pressure is transmitted to the preform assembly, which may
thus deform during impregnation, thereby altering the kinetics of the process and
the homogeneity of the final part. Since fiber preforms used in the processing of
composite materials are rather compliant porous materials [1,2], significant pre-
form deformation has been reported in most cases of composite processing [1–6].
Models have been proposed to describe the behavior of fiber mats in compression
[1,7], which have been confronted to experimental stress-strain curves obtained
for a range of preform types [8]. The relaxation of preforms after compression is
often observed to differ from the behavior in compression, the hysteresis being at-
tributed to fiber sliding and rearrangement or breakage [4,9]. As preform compres-
sion was recognized to play a large role in compression modeling or autoclave cur-
ing of already impregnated fiber beds, a number of models have been developed to
describe the compression of an already impregnated preform with lateral flow of
fluid being squeezed out [1,10,11]. The recent interest in injection-compression
liquid composite modeling has also led to the development of models taking into
account the compression of the impregnated assembly [12,13]. Preform compres-
sive behavior is less often taken into account in other types of composite process-
ing whereby the liquid resin impregnates a dry preform, such as RTM or thermo-
plastic impregnation including film stacking within a closed mold. In such cases,
the liquid resin first compresses the preform, which subsequently relaxes as the
fluid penetrates the dry preform. As the process occurs in a closed mold, no lateral
flow is allowed, and both matrix and preform withstand the externally applied
pressure. Simultaneous fluid flow and mechanical equilibrium thus need to be
taken into account. The phenomenon of fluid flow within deformable porous me-
dia being encountered in many other branches of engineering such as soil science
or biomechanics, methods derived in these fields have been successfully applied
in composite processing studies, and are reviewed in References [14,15]. In partic-
ular, Sommer et al. [14] recently proposed a treatment of infiltration of initially dry
deformable porous media, based on a soil mechanics approach. This treatment ne-
glects inertial forces as well as thermal and chemical transport phenomena, and
uses the slug-flow assumption, which makes all infiltration take place along a
two-dimensional front within the preform. This analysis was implemented fully
for infiltration in one direction under constant applied pressure using the
Boltzmann transformation to reduce the variables’ position and time into a com-
bined variable, and was validated using experiments on the infiltration of a poly-
urethane sponge by ethylene glycol. The method was further extended to the case
of non-isothermal infiltration of a porous preform by molten metal, taking into ac-
count solid phase formation [9]. An analysis along similar lines by Preziosi and
co-workers [16,17] provided a theoretical evaluation of the effects of inertial
forces and of various constitutive equations for the stress term for infiltration of a
dry porous preform and for relaxation of an initially compressed wet porous me-
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dium. Recently, Antonelli et al. used a similar approach to propose a model for
RTM, but no experimental results are provided for validation [18].

In this paper, we propose to extend the method developed in Reference [14] to
practical cases of thermoplastic polymer composite impregnation processes. A
model is proposed to predict the kinetics of impregnation and the evolution of the
fiber volume fraction distribution during impregnation, as well as after the front
has reached the end of the mold, as the fiber bed relaxes within the fluid. The anal-
ysis is then applied to a case of practical interest, the impregnation of needled glass
fiber mats by polypropylene for the manufacturing of Glass Mat Thermoplastic
(GMT) blanks.

GENERAL STATEMENT OF THE PROBLEM

We consider the isothermal infiltration in one direction of an initially dry fiber
preform by molten polymer under constant applied pressure Pa, exerted by a pis-
ton, as described schematically in Figure 1(a) and (b) for two cases treated in this
article. For both cases, we assume that infiltration takes place in a closed mold, so
that one end and the sides of the preform are restrained by the mold walls. We ne-
glect any lateral friction between the mold walls and the sides of the preform. Both
flow and strain are assumed to take place along the x-direction only. Capillary
forces are neglected at the infiltration front, because these are generally low in
polymer infiltration compared to the level of applied pressure. A constant capil-
lary pressure drop at the infiltration front could however easily be included as in
References [9,14]. The pressure at the infiltration front is thus exactly the gas pres-
sure at that location, Pg, assumed to remain constant due to the presence of an air
path in the mold. We assimilate the porous medium to a continuum, and define the
local fiber volume fraction as Vf. We neglect all body forces and inertial forces,
and assume for simplicity the matrix behavior to be Newtonian, so that Darcy’s
law is valid. We further assume that the porous medium is isotropic in a plane per-
pendicular to the x-axis, such that the infiltration direction is a principal axis of the
permeability tensor. In the first instant of pressure application, the liquid is decel-
erated by the porous preform during a transient period. Simultaneously, the pre-
form is compressed to the volume fraction corresponding to the applied pres-
sure Pa. As in previous studies [9,14], we do not consider the dynamics of this
transient phase. We thus simplify the problem by taking compression of the porous
medium to be instantaneous. The position of the compressed preform entrance at
t = 0 is defined as x = 0, and the x-axis remains fixed in relation to the mold wall,
and oriented along the direction of infiltration. We also include in Figure 1 another
system of axes marked as z, where z = 0 at the mold wall (corresponding to x = xm)
and oriented along the direction of preform relaxation, opposite to the direction of
infiltration. The purpose of the z-axis is only to allow a more convenient represen-
tation of the relaxation results.
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(a)

Figure 1. Schematic description of the preform impregnation proce
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case where the preform reaches the other end of the mold before relax
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(b)

Figure 1 (continued). Schematic description of the preform im
amount of resin is large and the preform relaxes completely after in
(b) represents the case where the preform reaches the other end o
and (iii). The z-axis marked in this figure is used as the reference
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Impregnation of Compressible Fiber Mats with a Thermoplastic Resin. Part I 1155
In a first step (i), marked in Figure 1(a) and (b), as infiltration of the dry preform
proceeds, the local pressure P in the liquid increases from Pg behind the infiltration
front to Pa + Pg at the preform entrance. Infiltration is supposed to occur in a
slug-flow manner, such that there is a sharp infiltration front between the dry
preform and the fully infiltrated preform containing no residual porosity. The pre-
form accordingly relaxes behind the infiltration front, along the stress-strain curve
of the preform in relaxation. When the polymer has traveled across the preform
thickness to the mold wall, at t = tinf, infiltration is complete. During a second step
(ii), the preform then relaxes further within the liquid. The preform eventually
reaches a fully relaxed state, Vf = as shown in Figure 1(a). If the preform has
reached the other end of the mold before being completely relaxed, as shown in
Figure 1(b), a final step (iii) occurs, in which the remaining gradients in volume
fraction smooth out to reach an equilibrium volume fraction which is higher than
the value in the relaxed state.

GOVERNING EQUATIONS

The governing equations are written in one dimension over a representative vol-
ume element ∆V, following Reference [14]. Darcy’s law is written as:

(1)

where ul is the (positive) average local velocity of the liquid within the pores, us the
(negative) local velocity of the solid, K (a function of Vf) is the permeability of the
porous medium in ∆V, η is the liquid viscosity, and P is the pressure in the liquid.

Mass conservation in the solid and liquid phases, respectively, dictates:

(2)

and

(3)

Finally, having neglected inertial and body forces in both solid and liquid, stress
equilibrium implies:

(4)
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where σ is the effective stress acting in the solid along x, counted as positive in
compression and averaged over a surface area comprising both solid and liquid.

The boundary conditions are written for the two or three steps defined earlier
which determine the process. In the first step (i), an initially dry porous medium is
infiltrated by polymer. Thus, at the infiltration front x = xf(t), P = Pg

which is constant assuming that the gas can escape through the mold ahead of the
infiltration front, and us = 0. At the preform entrance x = xe(t), P = Pa + Pg and

In the second step (ii), the polymer has reached the end of the mold and
the preform relaxes. Therefore, at the front, which is the mold wall position,
x = xm, us = ul = 0. At the preform entrance, x = xe(t), If the mold has a
size smaller than the relaxed length of the preform, the preform entrance will reach
the mold wall before complete relaxation. The third step (iii) is then encountered,
with xe(t) = constant = xm − Lmold, where Lmold is the total length of the mold, dic-
tated by the initial volumes of fiber and polymer, assuming no residual porosity.

SOLUTION METHODOLOGY

Due to the different boundary conditions, the equations governing each step are
solved separately, the results of step (i) being implemented as initial volume frac-
tion distribution in the solution of step (ii), and the results of step (ii) after the pre-
form reaches the other end of the mold are implemented if necessary as initial vol-
ume fraction distribution in step (iii).

Solution for Step (i)

As the applied pressure is constant, step (i) is solved following the methodology
proposed in Reference [14], using the Boltzmann transformation to define a re-
duced parameter, χ as

(5)

where ψ is chosen such that L(t) = xf − xe = ψ√t.
The functions l(χ) and s(χ) are defined by:

(6)

(7)
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nary first-order differential equations of the three functions Vf, l and s:

(8)

(9)

(10)

where prime denotes derivation with respect to χ. The sum of Equations (9) and
(10) additionally yields:

(11)

s and l are therefore always linked, and the value of the average velocity:
((1 − Vf)1 + Vf s) is dictated by the values at χ = 1− and at χ = 0.

Considering the boundary conditions, as described in Reference [14]:

(12)
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and
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1158 V. MICHAUD AND J.-A. E. MÅNSON
The set of 2 nonlinear first-order equations defined by Equations (8) and (9) is
solved numerically using MathematicaTM for the parameter ψ and the functions
Vf(χ) and s(χ), using a numerical integration scheme and a two-dimensional New-
ton-Raphson method to adjust the initial guesses of ψ2, and s(χ = 0) for conver-
gence. The time at which the infiltration front reaches the end of the preform is
then obtained as:

(17)

where xm is the height of the preform at t = 0, when compressed to
Simplified solution: (−us) � ul. A simplified solution obtained by neglecting

the solid phase velocity as compared to the liquid phase velocity was proposed and
validated in Reference [14] and used as well in Reference [9]. The infiltration rate
parameter ψ is in this case directly obtained by setting in the fol-
lowing equation (derived as in Reference [14]):

(18)

and solving for ψ. The volume fraction Vf and the effective stress σ can then be cal-
culated as functions of χ by solving Equation (18) again, but for arbitrary χ. Even
if this solution is not valid in many cases of highly compressible preforms, it al-
lows a quick estimate of the parameter ψ which can then be introduced as a first
guess in the numerical solution procedure.

Solution for Step (ii)

In step (ii), as the value of Vf at x = xm decreases with time, no similarity solution
can be used, and the variables x and t will be considered. The sum of Equations (2)
and (3), associated with the boundary condition that us = ul = 0 at x = xm, indicates
that

(19)

This result is the same as Equation (11), with the additional condition that this
average velocity is 0. Combining with Equations (1) and (4), the resulting equation
to solve is:
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where

(21)

The position of the moving front, x = xe(t), where is found by Equation
(1), written as:

(22)

or alternatively by using a macroscopic mass conservation equation for the solid
phase.

The set of equations is solved with an explicit finite difference scheme, forward
in time, centered in space, as used for such non-linear diffusion type problems
[19]. The initial distribution of Vf for this step is taken as the result Vf(χ) for step (i)
at t = tinf defined in Equation (17), discretized according to the number of grid
points. Since one boundary is moving (x = xe(t)), a change of variable is operated,
by defining ξ(x,t) = x/[xe(t)]. Differentiation is thus performed along a moving
grid, but the number of grid elements and the grid spacing remain constant at each
step, in terms of ξ, using a method proposed in References [19–21]. At each time
step, the new position of xe is evaluated by a global mass conservation. The numer-
ical integration code was written in FORTRAN, the number of time steps being
imposed by the stability criterion (2D∆t)/∆x2 � 1, where ∆t is the time step and ∆x
the grid spacing. As ∆x increases with time, provided that D(Vf) does not change
much, the time step can also be increased at each step to speed up the calculation
while preserving the stability of the solution. The code was validated using the ex-
ample of the relaxation of a polyurethane sponge in ethylene glycol initially com-
pressed to a constant volume fraction using experimental system parameters deter-
mined in Reference [14]. The numerical results were in good agreement with those
obtained by Preziosi and co-workers treating this similar problem with a slightly
different numerical approach [15].

Solution for Step (iii)

In step (iii), the set of equations becomes a non-linear diffusion type of problem,
with no moving boundary, as xe(t) = constant = xm − Lmold. Equation (20) is thus
solved by finite difference as in step (ii) with a fixed grid. The initial distribution of
Vf for this step is taken as the final distribution given from step (ii) at the time trelax

when xe(trelax) = xm − Lmold. The calculation is stopped at t = tequil when the gradi-
ent in fiber volume fraction is less than a given tolerance value (typically 10% vari-
ation between xm and xe in our calculations).
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RESULTS AND DISCUSSION

As a practical application of the present analysis, we consider the unidirectional
infiltration under constant applied pressure of polymer into a needled glass fiber
mat of initial volume fraction 4%. The mats consist of fiber bundles about 250 µm
in diameter randomly distributed in a plane, with some fibers in the orthogonal
plane resulting from the needling operation performed to confer some structural
integrity to the porous fiber bed. The physical data for this system are based on ex-
perimental measurements and the reader is referred to References [22,23] for fur-
ther details concerning the experimental procedures.

The permeability of the fiber mats, as a function of fiber volume fraction is
taken as:

(23)

The relation between σ and Vf is obtained by a curve fit of experimental com-
pression tests of sized fiber mats at various applied pressures, and is given as fol-
lows:

• for the compression part of the curve, with σ given in Pa:

(24)

with a0 = 1.1958 · 105, a1 = −4.8888 · 106, a2 = 6.7048 · 107, a3 = −3.5488 ·
108, a4 = 7.0216 · 108

• for the relaxation part of the curve, with σ given in Pa:

(25)

where

(26)

σc is the compression stress before relaxation, is the fiber volume fraction at
σc obtained from Equation (24), is the fiber volume fraction at σ = 0, taken as

= 0.06, and m0 = 1.102025, m1 = −1.0222325, m2 = −4.197025, m3 =
7.300125, m4 = −3.18695. The resulting shape of the curve is given in Figure 2.
The influence of lubrication and strain rate being minimal for this type of pre-
form [22], the relaxation part of the curve should thus accurately represent the
intrinsic behavior of the preform relaxation during the process.
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Figure 2. Stress-strain curve for the glass fiber preform at 4 different compression levels.
The viscosity η of the polymer is taken as a constant, most of the calculations
being performed with a representative value taken as η = 250 Pa·s unless specified
otherwise, corresponding to a typical value for polypropylene at 200°C.

In a typical model experiment, two mats are stacked in a mold, so that the initial
preform thickness is 11.3 mm for a fiber volume fraction of 4%. A layer of
polypropylene is placed on top, and impregnation is performed under constant
pressure Pa applied by a piston. Two cases are considered: if the initial thickness of
polypropylene is greater than the relaxed preform thickness divided
by i.e.,8 mm, the preform will relax completely and only steps (i) and (ii)
will be considered. If the polymer thickness is less, the preform will not relax com-
pletely, and step (iii) will be considered as well. A typical case considered in what
follows is xm − Lmold = 3.48 mm, leading to a final average fiber volume fraction in
the composite of 13%, corresponding to that of a typical GMT blank.

The kinetics of infiltration for step (i) are plotted in terms of ψ2 as a function of

(1 ),r
fV�
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1162 V. MICHAUD AND J.-A. E. MÅNSON
applied pressure in Figure 3 for various cases, considering (a) no compression of
the preform at all, with Vf = 0.04 remaining constant, (b) no relaxation of the pre-
form at all, with remaining constant, as well as using the analysis de-
scribed earlier with (c) the simplified solution given in Equation (18) and (d) the
full numerical solution. It appears clearly that in the case of needled glass pre-
forms, the preform infiltration kinetics cannot be accurately described without
taking into account the preform compression and relaxation during the process.
The simplified solution gives somewhat inaccurate results, with a deviation of
about 10% at high pressures, but may provide a quick first estimate of the infiltra-
tion kinetics without the need of a numerical code. We observe that for the range of
pressures considered here, the infiltration kinetics increase with applied pressure,
indicating that the increase in infiltration driving force caused by the pressure gra-
dient is not yet counterbalanced by the decrease in permeability, as was for exam-
ple observed in Reference [9]. It is however expected that the infiltration kinetics

( )c
f f aV V P�
Figure 3. Infiltration kinetics as a function of applied pressure, for 4 cases: (a) assuming no
compression of the preform, (b) assuming no relaxation of the compressed preform, (c) as-
suming relaxation of the preform using the simplified solution and (d) assuming relaxation of
the preform using the full numerical solution.
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Figure 4. Profiles of the fiber volume fraction, and the reduced fluid and solid velocities as a
function of the reduced position χ for infiltration under an applied pressure of Pa = 0.5 MPa.
should reach a plateau towards the high pressure range. An example of profiles of
Vf, s and l solution of Equations (8,9,16) as a function of χ is given in Figure 4, for
Pa = 0.5 MPa. A strong gradient in fiber volume fraction is observed along the
length of the sample, the maximum value being at the front, as ob-
served in Figure 2. The variation in fluid and solid velocities is less drastic, and is
given in Figure 5 in non-reduced coordinates for an infiltration time of t = 10 s. At
that time, the fluid velocity is between 60 and 80 µm/s, justifying the assumption
of laminar flow and Newtonian fluid taken in the analysis as the corresponding
shear rates are low. The solid velocity is negative, since the solid phase moves
back, with a maximal velocity of about −17 µm/s at the preform entrance. The
value of the local pressure P in the fluid is evaluated considering the total force
equilibrium: Pa + Pg = σ(Vf) + P, and is also plotted as a function of distance in
Figure 5. The local pressure varies in opposition to the level of pressure borne by
the fiber network from Pg at the infiltration front to Pa + Pg at the preform en-
trance.

27.5%c
fV �
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1164 V. MICHAUD AND J.-A. E. MÅNSON
The fiber volume faction profiles as a function of distance for step (ii), after in-
filtration under Pa = 0.5 MPa are given in Figure (6a), for relaxation in an infinite
mold, and the corresponding value of the preform length as a function of time is
plotted in Figure 6(b). The initial profile is taken at tinf, which in this case is 13 s.
The initially very strong gradient is slowly reduced with time for relaxation within
a polymer of such a viscosity (250 Pa·s). The time for full relaxation is above 2
hours, whereas the time for infiltration was 13 s, indicating that an apparently im-
pregnated preform may exhibit very large gradients in reinforcement. Such a
graph could be used for the manufacturing of graded composite materials, by pro-
viding a time at which to stop relaxation by quenching the sample, as an alternative
to other more time consuming methods such as the one described in Reference
[24].

If the polymer initial volume is adjusted to obtain a final fiber volume fraction
Figure 5. Profiles of the local pressure in the fluid, and the local fluid and solid velocities as a
function of position in the mold, for an infiltration time of 10 s, under an applied pressure of
Pa = 0.5 MPa.
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(a)

Figure 6. (a) Distribution of the volume fraction fiber as a function of position in the mold, af-
ter full impregnation under an applied pressure of Pa = 0.5 MPa, for various times from
tinf = 13 s to infinity and (b) evolution of the total preform length as a function of time, under
the same conditions.
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(b)

Figure 6 (continued). (a) Distribution of the volume fraction fiber as a function of position in
the mold, after full impregnation under an applied pressure of Pa = 0.5 MPa, for various times
from tinf = 13 s to infinity and (b) evolution of the total preform length as a function of time, un-
der the same conditions.
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Figure 7. Distribution of the volume fraction fiber as a function of position in the mold for the
case of partial relaxation allowed, after infiltration under an applied pressure of Pa = 0.5
MPa, for various times corresponding to t = 0, t = tinf, t = tinf + trelax and
t = tinf + trelax + tequil.
higher than the reinforcement profile evolves as shown in Figure 7, for
Pa = 0.5 MPa. The preform reaches the other end of the mold at tinf + trelax = 242
s + 13 s = 255 s. Vf still varies between 16.5 and 6% across the thickness of the
sample. The fiber volume fraction subsequently equilibrates, and reaches a uni-
form value around 13% (within 10% variation) after another tequil = 327 s. The to-
tal time required to obtain a uniform sample is therefore ttotal = 582 s, about 10
minutes. The corresponding plot of the local pressure in the fluid as a function of
position using the z-axis as shown in Figure 1, taking 0 at the mold wall for the sake
of clarity, is given in Figure 8(a) for various times. The local pressure at x = L(t) is
equal to Pa + Pg during infiltration and relaxation, and then decreases during the
equilibration period to reach an equilibrium value of Pa + Pg − σ(Vfinal). On the
other side of the preform, near the mold wall, the local pressure slowly increases as

,r
fV
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(a)

Figure 8. (a) Local pressure in the fluid as a function of position in the mold and time for infil-
tration in the conditions corresponding to Figure 7 and (b) evolution of the local pressure in
the polymer with time, for three locations within the preform, corresponding to near the mold
wall (x = xm), near the preform entrance (x = xe (t)) and in between.

 at PENNSYLVANIA STATE UNIV on March 5, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


Impregnation of Compressible Fiber Mats with a Thermoplastic Resin. Part I 1169

(b)

Figure 8 (continued). (a) Local pressure in the fluid as a function of position in the mold and
time for infiltration in the conditions corresponding to Figure 7 and (b) evolution of the local
pressure in the polymer with time, for three locations within the preform, corresponding to
near the mold wall (x = xm), near the preform entrance (x = xe (t)) and in between.

 at PENNSYLVANIA STATE UNIV on March 5, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


1170 V. MICHAUD AND J.-A. E. MÅNSON
the preform locally relaxes. The evolution of the local pressure in the fluid versus
time, at three locations on the preform, namely x = xe(t), x = (xm − xe)/2 and x = xm,
is given in Figure 8(b). The slow raise of fluid pressure near the mold wall may
have an impact on the quality of impregnation, particularly as will be discussed in
Part II, if the fiber bundles are not fully impregnated during flow, and are subse-
quently filled by radial impregnation within the local pressure field. Also, it is im-
portant to note that if high volume fraction blanks, for example with Vf = 25%, are
to be produced by this method, the local pressure in the polymer at the end of the
process will be Pa + Pg − σ(Vffinal) = 0.3 MPa. As a result, near the preform en-
trance, the pressure in the polymer will decrease from 0.6 to 0.3 MPa during the
process. This, in turn, may favor entrapped gas dissolution or deconsolidation
within the bundles.

The influence of the polymer viscosity on the values of tinf, trelax and tequil for an
applied pressure of Pa = 0.5 MPa is given in Figure 9. As expected from the form
of the equations, and as used in Reference [16], time in all the equations (1 to 4)
could be replaced by a non-dimensional reduced time, by dividing t by η
and and multiplying it by a representative value of K(Vf) and σ(Vf). The influ-2 ,mx
Figure 9. Plot of the time for infiltration, time for relaxation, time for equilibration and total
process time as a function of the fluid viscosity, for infiltration under an applied pressure of
Pa = 0.5 MPa.
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ence of viscosity on all the calculated times is thus linear, and the influence of the
initial preform thickness at a given applied pressure is quadratic. For a given vis-
cosity and geometry, the influence of the applied pressure is much less intuitive, as
shown in Figure 10. The time for infiltration decreases when the pressure in-
creases, as was already noticed when considering the infiltration kinetics (Figure
3). Note that above 0.1 MPa, the time for infiltration becomes negligible compared
that for the other steps. The time for relaxation and the time for equilibration, for
the typical chosen geometry increases significantly with applied pressure. This
can be related to the shape of the preform stress-strain curve (Figure 2); also, since
relaxation is very slow in high viscosity liquids, it clearly becomes the limiting
step. In summary, for the case considered here, the total time for producing a ho-
mogenous sample increases as the applied pressure increases. This indicates that
process optimization would require using the lowest possible applied pressure,
that is the pressure corresponding to the final volume fraction to be obtained, for
example Pa = 0.05 MPa for our example of Vffinal = 13%.

This analysis applies to the case of completely saturated fluid flow. As will be
discussed in the next publication [23], in the case of fiber bundle mat impregna-
tion, the fluid may flow around the bundles first, leaving unimpregnated tows,
Figure 10. Plot of the time for infiltration, time for relaxation, time for equilibration and total
process time as a function of the applied pressure, for infiltration with a polymer viscosity of
250 Pa⋅s.
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which are then filled radially by the polymer. It then becomes important to con-
sider the local pressure around the bundles within the thickness of the sample, as
given in Figure 8, to predict a time for micro-impregnation which may, at low pres-
sures, become larger than the total time for macro-impregnation and relaxation.
An optimal value of applied pressure would then be defined based on the consider-
ation of these two related time-scales.

CONCLUSION

A model is presented to simulate the kinetics of impregnation, and the evolution
of the fiber volume fraction profile in liquid composite molding as the resin front
progresses, as well as after the front has reached the end of the mold. The process
was divided in three steps: (i) inflitration of the dry compressible preform, (ii) re-
laxation of the impregnated preform within the fluid after the infiltration front has
reached the preform thickness, and (iii) possible equilibration of the fiber volume
fraction to a higher level than the fully relaxed value if the final thickness of the
sample is less than the thickness of the relaxed preform. Governing equations for
the three steps are presented and solved with the relevant boundary conditions us-
ing numerical techniques. The analysis is then applied to an industrially relevant
system, polypropylene and needled glass fiber mats used in the production of
Glass Mat Thermoplastic blanks. The influences of fluid viscosity and applied
pressure on the kinetics of the process and the resulting distribution of the rein-
forcement are quantified. It is shown that the time for preform relaxation in a vis-
cous fluid may be much larger than that for full impregnation. As a result, an ap-
parently well impregnated part may exhibit an inhomogeneous distribution of the
reinforcement, in turn inducing a modification of the mechanical behavior and re-
sidual stress distribution. The present analysis can therefore be applied to provide
guidelines for producing a homogenous composite, or inversely, to produce a
graded structure in a controlled manner. The range of application covers many
practical cases of composite impregnation, provided that the preform stress-strain
curve, its permeability as a function of fiber volume fraction, and the necessary
boundary conditions are known.
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