
Determining Service Dependencies in Distributed Systems

Alexander Keller, Gautam Kar
IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
E-Mail: falexkjgkarg@us.ibm.com

Proceedings of theIEEE International Conference on Communications (ICC) 2001,
Helsinki, Finland, June, 2001

Abstract— We describe an architecture and its implementation for re-
trieving and handling dependency information from various managed re-
sources in a web-based environment. The core of our architecture is a de-
pendency query facility that allows the application of queries and filters
to dependency models; its output is a consolidated dependency graph that
can then be used as input for event correlators and various management
applications to display service topologies or to perform additional problem
determination tasks. The definition of an XML-based notation for specify-
ing dependencies facilitates the sharing of information between the various
components involved in the process.

Keywords— Service Management, Application Management, Problem
Determination, Dependencies, Fault Management

I. M OTIVATION

The identification of dependencies has become increasingly
important in today’s networked environments because applica-
tions and services rely on a variety of supporting services that
might be outsourced to a service provider. Failures occurring in
lower service layers affect the quality of service of end-to-end
services that are offered to customers. In order to perform end
to end fault management, which includes tracing the root cause
of a problem manifested at a customer service offering, it is
necessary to navigate through dependency information, which
relates how services in one layer of a distributed system affect
those in another layer. However, in practice, service dependen-
cies are not made explicit in today’s systems, thus making the
task of problem determination difficult. Solving this problem
requires the determination and computation of dependencies be-
tween services and applications. For our discussion, we call ser-
vices that depend on other servicesdependents, while services
on which other services depend are termedantecedents. It is
important to note that a service often plays both roles (e.g., a
name service is required by many applications and services but
is dependent on the proper functioning of other services, such
as operating system and network infrastructure), thus leading
to a dependency hierarchythat can be modeled as a directed
graph.

What is needed is a dynamic model reflecting the dependency
relationships between services; in addition, a management sys-
tem should be capable to provide various mechanisms to select
parts of a dependency model according to different criteria.

We have designed and implemented a system that allows to
determine and compute such dependencies. It provides a uni-
form interface to query service and dependency information
across the systems of a distributed environment and can be used
by various fault and topology management applications or event
correlation systems.

The paper is structured as follows: Section 2 analyses the
requirements on service dependency models by focusing on two
typical service provider scenarios. It also gives an overview
on related work in this area. The methodology for determining
and computing dependencies and our resulting architecture are
presented in sections 3; our proof-of-concept implementation
is described in section 4. Section 5 concludes the paper and
presents issues for further research.

II. REQUIREMENTSANALYSIS

Our first scenario deals withmanaging outsourced services,
typically offered byInternetor Application Service Providers
(ISP/ASP). Outsourcing services leads to layered service hier-
archies where, e.g., the services of an ASP depend on the IP-
connectivity offered by an ISP, which, in turn, relies on the
wide-area network of a telecom carrier. At every layer, a ser-
vice is accessed through aService Access Point (SAP). A SAP
delimits the boundary between the different organizational do-
mains and is the place whereService Level Agreements (SLAs)
[7], [9] are defined and observed. Usually, this is done at every
layer by monitoring a set of specific parameters that are exposed
by the provider. In case of an error or performance degradation
in an upper-layer service, it is necessary to traverse the service
hierarchy from the top to the bottom to identify theRoot Cause
of the problem.

The second scenario deals with the regular maintenance tasks
that cannot be done “on the fly” and therefore affect services
and their customers: Email servers get updated with a new re-
lease of their operating system, network devices are exchanged
or upgraded with a new firmware version etc. In all cases, it is
crucial for the network and server administrators to determinein
advancehow many and, more specifically, which services and
users are affected by the maintenance. This is also known as
Impact Analysis.

Both scenarios allow us to derive the following requirements
and characteristics of dependency information:

1. Dependencies betweendifferentservices are layered; fur-
thermore, their dependency graph is directed and acyclic: The
latter statement also reflects the authors’ experience with IP-
based networked services (such as DNS, NFS, DFS, NIS etc.)
but there might be cases where mutual dependencies might oc-
cur in some systems: A “pathological” example for such a mu-
tual dependency is a DNS server that mounts the filesystem in
which its DNS configuration is stored via NFS from a remote
system. It is the authors’ belief that while such a configura-



websphere-daemon

Domain Name
System

Functional Model Structural Model Operational Model

Web Application Server

BIND 5.6

WWW Server
Database

DB2 UDB

Oracle v7

IBM WebSphere

Lotus Domino

Apache 1.3.4
db2d

db2d
db2d

db2d

httpd
httpd

httpd

named

websphere-daemon

Install/Deploy Instantiate

Fig. 1. Dependency models related to the service lifecycle

tion is technically possible, it reflects flaws in the system de-
sign because this leads to an unstable system whose bootstrap-
ping might be non-deterministic and thus should be avoided. A
dependency-checking application that discovers cyclic depen-
dencies should issue a warning to an administrator.

2. Every dependency is visible at a customer/provider do-
main boundary and made explicit by means of SLAs; it follows
that the number of observable dependencies is finite.

3. Dependency models must allow a top-down traversal of
dependency chains.

4. Dependencies between different systems are perceived as
dependencies between the client and server parts of thesame
service. It is not possible that a client for service A issues re-
quests to a server which provides a different service B.

5. Dependency models must allow (in addition to the top-
down navigation) a bottom-up traversal of dependency chains.

6. The number of dependencies between many involved sys-
tems can be computed but may become very large. From an
engineering viewpoint, it is often undesirable - and sometimes
impossible - to store a complete,instantiateddependency model
at a single place. Traditional mechanisms used in network man-
agement platforms, such as keeping an instantiated network
map in the platform database, therefore cannot be applied to de-
pendencies due to the number and the dynamics of the involved
dependencies. These two facts make it prohibitive to follow
a “network-management-like” approach for the deployment of
application, service and middleware dependency models. In-
stead, we propose to distribute the storage and computation of
dependencies across the systems involved in the management
process.

As an engineering response to the last item, section III
presents an approach to deal with the aforementioned charac-
teristics and requirements. It is is built on the definition of three
different kinds of dependency models, depicted in figure 1, that
reflect the service lifecycle:

A Functional Model that defines generic service (database
service, name service, web application service etc.) dependen-
cies and establishes the principal constraints to which the mod-
els mentioned below are bound: While they add more detailed
configuration and runtime information to an existing functional

model, it is not possible for them to introduce new dependencies
among service classes. This constraint is necessary to prevent
the creation of loops in the graph. The functional model con-
tains a generic service topology and is stored in the database of
a management system; it can be modified by a system adminis-
trator.

A Structural Model containing the detailed descriptions of
software components that realize the services (DB2 UDB 7.1,
BIND 6.5, WebSphere Advanced Edition 3.5 etc.). It provides
details w.r.t. the installed software and extends the amount of
information provided by the functional model. The structural
model reflects the actual software configuration present on ev-
ery single system and can be retrieved from system configura-
tion repositories such as the Windows Registry, the Linux Red-
Hat Package Manager or the AIX Object Data Manager. This
model is therefore kept at the managed resources.

An Operational Model that reflects the bindings between
running service instances addresses the runtime stage in the ser-
vices’ lifecycle. Since the amount of highly dynamic object
instances and their dependencies is excessively large, it is not
appropriate to keep the operational model in one place. Instead,
we introduce aDependency Query Facility(described in more
detail in section III) that computesthe relevant partof the op-
erational dependency model on demand; i.e., it determines for a
given service instance what its antecedents (or dependents) are.

A. Acquiring Dependencies

There are many different ways to gather service dependency
information in a distributed environment; the most common ap-
proaches are listed below.

� The straightforward way is to provide appropriate instru-
mentation within the applications and services themselves; the
problem is that none of today’s applications is able to provide
this kind of information at an acceptable granularity.

� Another approach consists in instrumenting the communi-
cation protocol stack and/or some shared libraries of the host
system to intercept the communication between different parties
in order to infer potential dependencies. The resulting informa-
tion could be either provided by a specific “dependency agent”
or given out as flat files.

2



� In [5], an approach is described that makes use of the in-
formation stored in system configuration repositories for gener-
ating appropriate service dependency information.

� A technique used in system and protocol design, which has
only recently been applied to service and application manage-
ment is the active perturbation of components within a system
(i.e., injecting faults in a controlled manner and observing the
behavior of the components) while running synthetic transac-
tions against it. [1] describes how active perturbation can be
used to obtain the required dependency information; however,
great care has to be taken if this technique is used on production
systems.

� Other approaches come from the area of Artificial Intelli-
gence. [3] uses Neural Networks to automatically derive depen-
dency information by looking at system’s behavior over time.

� Finally, aCIM Object Manager (CIMOM), as proposed by
the Distributed Management Task Force (DMTF) could be used
to expose the necessary information. The CIM Core Model
[2] provides an association classCIM Dependency, from which
several subclasses are derived.

Our work relies mainly on extracting information from sys-
tem configuration repositories and combining it with the results
obtained from perturbing some components of the distributed
system under typical workloads. This gives us the advantage of
gathering a lot of useful information for a wide range of appli-
cations and services (typically between 20 and 60 per system)
without requiring them to be instrumented.

B. Related Work

The notion of dependencies can be applied at various levels of
granularity: For example, threads within a running application
may be dependent on each other’s operational output; a stored
procedure within a database management system may be de-
pendent on a lock administrator, etc. A lot of research address-
ing such fine-grained dependencieswithin applications has been
carried out in the area of software engineering; identifying such
dependencies, however, requires the availability of the appli-
cation source code. The service management environment ad-
dressed by this paper does not consider such situations because
the prerequisites are different: The source code of applications
implementing a service is usually not available to the admin-
istrator of a distributed system and it is not his duty to debug
specific services but to keep the overall system running. There
is a big difference between applicationdebugging(dealing with
the internal behavior of a service) and applicationmanagement
(focusing on service behavior observable from “outside”). We
consider only dependencies of the latter type, i.e., dependencies
between different managed objects and, hence, visible from out-
side an application that implements a service.

Previous work in the systems management area on identify-
ing service dependency information has mainly been within the
scope of event correlation (see e.g., [4] and [6]). However, the
descriptions have always been in a proprietary format since their
use was confined to a single management tool, namely an event

correlator and thus could not be shared among different entities
involved in the management process. Since it is unlikely that the
different parties involved in fault management of outsourced ap-
plications use the same toolset for tracking dependencies, it is
of fundamental importance to specify and implement a mech-
anism that determines dependencies and is able to expose this
information in an open format. The following sections describe
our approach to solve this problem.

III. A RCHITECTURE

Our distributed three–tier architecture, depicted in figure 2
addresses the issue of dealing with potentially highly dynamic
dependency relationships among a very large number of com-
ponents. It follows a “divide and conquer” approach, which is
usually the way of choice for dealing with scalability problems
in distributed systems.

We assume that the managed resources (depicted in the right
part of the figure) are able to provide XML descriptions of their
system inventory and their various dependencies (for details on
how this information can be acquired see section II-A).

In the center of the figure is the core component of our archi-
tecture: TheDependency Query Facility, triggered by queries
of the management system using JavaRemote Method Invoca-
tion (RMI), processes them and sends the results back to the
manager. Its main tasks are as follows:

� Interacting with the management system. The management
system issues queries to the API of the Dependency Query Fa-
cility. The API exposes a flexible “drill–down” method that,
upon receiving the identifier of a service, returns:

– either descriptions of itsdirect antecedents, i.e., the first
level below the node representing the service, or

– thewhole subgraphbelow the node, or
– anarbitrary subsetof the dependency graph (levelsm to

n below a given node).
A “drill–up” method with the same facilities, targeting the de-
pendents of the service, is also present. In addition, methods for

System
Repository

Management System

Web
Server
httpd

CIMOM

Management Services Managed Resources

Web
Server
httpd

Dependency
Query

Facility

TraderName

Event
Other Services

Flat XML/RDF Files

Java/RMI

CIM
Provider

CIM
Provider

Dependency DescriptionsGenerate Dependency
Information

Issue Queries

XML/http

XML/http

XML/http

Fig. 2. Architecture of our Dependency System

3



gathering and filtering information for classes and properties of
managed objects are available.

� Obtaining dependency information from the managed re-
sources (by issuing queries over http) and applying filtering
rules (as specified by the manager) to it.

� Combining the information into a data structure that is sent
back to the manager as XML document.

The description of our implementation is given in section IV.
It should be noted that due to its fully distributed nature, the
architecture aims at keeping the load on every involved system
as low as possible. It completely decouples the management
system from the managed resources and encapsulates the time-
consumingfilter and join operations in the dependency query
facility, which can be replicated on various systems. We are
therefore able to achieve a maximum level of parallelism for
query operations, since the selection of an instance of the facil-
ity can be done flexibly by the management system.

Another important advantage of our architecture is that the
(very large and highly dynamic) operational dependency model
is not stored in a specific place, but computed on demand and
stepwise from the various structural models, located at the man-
aged resources. The management system therefore always re-
ceives the most recent information (but is free to store the ob-
tained information according to elaborate caching policies).

IV. PROTOTYPEIMPLEMENTATION

In order to demonstrate the concepts presented in this pa-
per, we have put togther a prototype of a simplified three-tier
e-commerce environment consisting of a web-based applica-
tion server, where the business logic (a fictituous Internet store-
front application) is implemented, and a back-end database. The
environment, schematically depicted in figure 3, consists of a
fairly heterogeneous mix of AIX and WindowsNT servers. As
a first step, we have developed algorithms to access the reposi-
tories of the individual machines to extract relevant information
and construct dependency graphs for services contained within
one machine environment. These graphs are represented and
stored as XML documents. Next, we have built a dependency
query facility (see figure 2) that, upon request from a manage-
ment application, obtains the current dependency information of
the different nodes in the form of XML documents, and manip-
ulates this information by means of XPath statements to build
the operational dependency model as a basis for performing root
cause and impact analysis.

Figure 3 illustrates that dependencies between different ser-
vices are represented as objects (large black dots in the figure)
themselves. This is necessary because the notion of dependen-
cies is very coarse and needs to be refined in order to be use-
ful. Examples for this are thestrengthof a dependency (indicat-
ing the likelihood that a component is affected if its antecedent
fails), thecriticality (how important this dependency is w.r.t.
the goals and policies of an enterprise), thedegree of formaliza-
tion (i.e., how difficult it is to obtain the dependency) and many
more. While it is out of the scope of this paper to establish a

Database
DB2 UDB 5.2

E-business Application
Storefront Servlets

Web Server
IBM HTTP Server 1.3.6

Web Application Server
IBM WebSphere 3.5

OS
AIX 4.3.3

OS
WinNT 4

IP
Service

wslab8.watson.ibm.com rslab2.watson.ibm.co m

Fig. 3. Sample service dependency graph

taxonomy for dependencies, there is a need to add attributes to
dependencies that allow their qualification, and accordingly, a
need to reflect these attributes in the dependency representation.

Every element of the graph (the services and their attributes,
the links between services and their dependencies, and the at-
tributes of the dependencies) are represented as elements of an
XML document. The core principles of our approach are as
follows:

1. Use the XML parsing capabilities for representing de-
pendency information:
When one (or many, stemming from various resources) XML
document is read by a parser, a parse tree is generated where
the managed objects, their attributes and dependencies become
nodes in the parse tree.

2. Use the Resource Description Framework (RDF) to
represent directed acyclic graphs in XML:
Following a hybrid RDF/XML approach and taking advantage
of the RDF [8] capabilities to annotate nodes with links, we are
able to map our dependency models into a representation that
allows us to take advantage of the aforementioned XML capa-
bilities. Section IV-A illustrates this by means of an example.

3. Use the query facilities of the XML Path Language
(XPath) to select and filter managed objects:
XPath [10] provides a powerful query language that operates
on XML parse trees (generated by DOM parsers) and allows to
select and filter nodes of the parse tree according to their posi-
tion and their properties. We have used XPath for performing
sophisticated queries on dependency models (see section IV-B).

A. RDF Representation of Services and their Dependencies

We will now present by means of an example how our ap-
proach can be applied to represent services and their depen-
dencies in XML/RDF. More precisely, we show the content
of the document that specifically represents the dependency
of Storefront Servlets on IBM WebSphere 3.5 on
the one side, and onDB2 UDB 5.2 on the other. These de-
pendencies are marked as dashed arrows in figure 3.

By definition, the header of every document starts with the

4



XML tag (line 1 of the following listing), followed by links to
our dependency schema (line 2) as well as the RDF syntax and
schema definitions (lines 3 and 4). The body of the document
contains the service definition start and end tags (line 5, resp.
29), its attributes (lines 6 to 12) and two dependencies (lines
13 to 20, resp. 21 to 28). The document closes with the RDF
end tag (line 30). Note that all pointers to descriptions of an-
tecedents are URIs, thus making their location (local or remote)
completely transparent to the dependency query facility.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:ds="wslab4/DependencySchema#"
3 xmlns:rdf="www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:rdfs="www.w3.org/2000/01/rdf-schema#">
5 <ds:Service>
6 <ds:name>E-business Application</ds:name>
7 <ds:caption>Storefront Servlets</ds:caption>
8 <ds:identifier>catalogServlets</ds:identifier>
9 <ds:description>myCatalogApp</ds:description>
10 <ds:version>3</ds:version>
11 <ds:release>1</ds:release>
12 <ds:processName></ds:processName>
13 <ds:dependency>
14 <ds:ServiceDependency>
15 <ds:antecedent rdf:resource=
16 "http://rslab2/xmlrepos/db2.xml"/>
17 <ds:generated>automatic</ds:generated>
18 <ds:label>App DB Dependency</ds:label>
19 </ds:ServiceDependency>
20 </ds:dependency>
21 <ds:dependency>
22 <ds:ServiceDependency>
23 <ds:antecedent rdf:resource=
24 "http://wslab8/xmlrepos/websph35.xml"/>
25 <ds:generated>automatic</ds:generated>
26 <ds:label>App AppServer Dependency</ds:label>
27 </ds:ServiceDependency>
28 </ds:dependency>

29 </ds:Service>
30 </rdf:RDF>

B. Querying Dependency Graphs with XPath

Every XPath query describes a ‘path’ through the virtual tree
structure of the XML document that is generated by a DOM
parser. Each step on the path consists of:

� an axis: the ‘search direction’, e.g., towards thechild or
ancestor nodes,

� a node test: the name of the nodes (i.e., the tag–name) to
be chosen, and

� one or more predicates that apply filters to the result. The
predicate itself may consist of further XPath–expressions.

The simple XPath query/descendant::ds:Service[@rdf:about=ID] se-
lects a certain element description from an XML document: The
axisdescendantspecifies to search anywhere in the document be-
low the current node (in this case the root node). After ‘::’ fol-
lows the name of the desired node (ds:Service) and the filter pred-
icate (in square brackets), which specifies to select only nodes
with an attributerdf:aboutthat has a certain value (ID).

We have implemented more complex XPath statements to
perform top-down and bottom-up traversals of dependency
graphs, allowing the identification of both antecedents and de-
pendents of a given service, respectively. This information can
then be used by problem determination applications to pinpoint
the root cause of an outage.

V. CONCLUSION AND OUTLOOK

We have presented a novel approach for managing service
dependencies with XML, XPath and RDF. The need for apply-
ing these general–purpose technologies to the area of service
and application management stems from the fact that, despite
related work in the area of event correlation, no previous work
has dealt with describing and exposing dependency information
in a uniform way so that various management applications are
able to use it. This is necessary in today’s environments where
outsourcing of services results in a vast amount of dependencies
among services that are also highly dynamic.

We have combined several XML technologies and are there-
fore able to represent dependency graphs in a way that they can
not only be parsed by common off the shelf XML parsers, but
be also queried with the powerful XPath facility. This allows
us to implement an efficient mechanism for querying a poten-
tially very high number of managed objects in parallel for their
attributes and dependencies. Our prototype implementation has
shown that queries for (recursive) drill–up or drill–down opera-
tions are surprisingly compact and relatively easy to write. The
problems we experienced during our work are mainly related
to XML and, especially, RDF parsers, which are still in early
stages of development.

The identification of dependencies is a prerequisite for the
deployment of troubleshooting services that capture fault man-
agement knowledge contained in fault documentation systems.
The authors are currently engaged in further research on design-
ing and implementing such management services.

REFERENCES

[1] A. Brown, G. Kar, and A. Keller. An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in a Distributed Ap-
plication Environment. In N. Anerousis and G. Pavlou, editors,Proceed-
ings of the 7th IFIP/IEEE International Symposium on Integrated Network
Management. IEEE Publishing, May 2001.

[2] Common Information Model (CIM) Version 2.2. Specification, Dis-
tributed Management Task Force, June 1999.

[3] C. Ensel. Automated Generation of Dependency Models for Service
Management. InWorkshop of the OpenView University Association
(OVUA’99), Bologna, Italy, June 1999.

[4] B. Gruschke. Integrated Event Management: Event Correlation Using De-
pendency Graphs. InProceedings of 9th IFIP/IEEE International Work-
shop on Distributed Systems Operation & Management (DSOM ’98), Oc-
tober 1998.

[5] G. Kar, A. Keller, and S.B. Calo. Managing Application Services over
Service Provider Networks: Architecture and Dependency Analysis. In
J.W. Hong and R. Weihmayer, editors,Proceedings of the 7th IEEE/IFIP
Network Operations and Management Symposium (NOMS’2000), pages
61–75. IEEE Press, April 2000.

[6] S. Kätker and M. Paterok. Fault Isolation and Event Correlation for Inte-
grated Fault Management. InProceedings of the Fifth IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 97), pages
583–596, May 1997.

[7] L. Lewis. Service Level Management for Enterprise Networks. Artech
House, 1999.

[8] Resource Description Framework (RDF) Schema Specification 1.0. W3c
candidate recommendation, W3 Consortium, March 2000.

[9] D. Verma.Supporting Service Level Agreements on IP Networks. Macmil-
lan Technical Publishing, 1999.

[10] XML Path Language (XPath) Version 1.0. W3c recommendation, W3
Consortium, November 1999.

5


