
080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page I

Project IST 026850 SUPER
Semantics Utilized for Process management within and between

Enterprises

Deliverable 6.11

Semantic Process Mining Tool – Final Implementation

Leading Partner: TUE
Contributing Partner: NUIG, OU

Security Classification: Public (PU)

September, 2008

Version 1.0

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page II

Project Details

IST Project Number 026850

Acronym SUPER

Project Title Semantics Utilised for Process management within and between
EnteRprises

Project URL http://www.ip-super.org

EU Project Officer Werner Janusch

Authors (Partner) Ana Karla Alves de Medeiros (TUE), Peter van den Brand (TUE),
Wil van der Aalst (TUE), Ton Weijters (TUE), Walid Gaaloul
(NUIG), Carlos Pedrinaci (OU)

E-mail a.k.medeiros@tue.nl Deliverable Owner
(Partner)

Ana Karla Alves de
Medeiros (TUE)

Phone +31 40 247 4239

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page III

Versioning and Contribution History

Version Description Comments

0.1 Definition of Outline All partners

0.2
Added text to the sections Executive Summary,
Introduction, Ontology Discovery, and Converter from
Execution History to SA-MXML

TUE

0.3 Added text to the section Enriching Logs with Semantic
Information NUIG

0.4
Added remaining sections plus corrections based on the
comments of our internal reviewer (Irene Celino, from
CEFRIEL)

TUE

0.5 Added final text to the section Enriching Logs with
Semantic Information NUIG

1.0 Final editing of the document (based on EPBM delegate
feedback) TUE

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page IV

Table of Contents
Executive Summary 1

1 Introduction 2
1.1 Alignment 2
1.1.1 Architecture Alignment 2
1.1.2 Methodology Alignment 3
1.1.3 Modeling Stack Alignment 3
1.1.4 SUPER Ontology Stack 4
1.1.5 Use case Alignment 5
1.2 Approach and Results 5
1.3 Document Structure 8

2 Ontology Discovery 9
2.1 Mining Role Ontologies: Approach, Algorithm and Implementation 9
2.1.1 Role Ontology Miner Algorithm 10
2.1.2 Implementation Using ProM and WSML 12
2.2 Mining Default Ontologies 16

3 Enriching Logs with Semantic Information 22
3.1 Motivation and Approach 22
3.2 Implementation Using ProM 22

4 Semantic Performance Analysis 26
4.1 Execution Times Based on Work Shifts 26
4.1.1 Approach and Metric 27
4.1.2 Implementation Using ProM 29

5 Converter from Execution History to SA-MXML 37

6 Conclusions 39

References 40

Annex 42

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page V

Table of Figures
Figure 1 Super Reference Architecture. 3
Figure 2 Super Methodology. 3
Figure 3 Super Modelling Stack. 4
Figure 4 SUPER Ontology Stack. 4
Figure 5 Sources of information for process mining. The discovery plug-ins use only an event log as
input, while the conformance and extension plug-ins also need a (process) model as input. 5
Figure 6 Semantic Analysis Tools in SUPER. 7
Figure 7 Illustration of our approach. The whole approach in (A) starts with event logs and, by applying
the ontology mining algorithms explained in this section, can discover populated templates for role
ontologies. The area in (R) indicates the input (i.e., the "Originator by Task Matrix") and output (i.e., the
"Discovered Role Ontology") of the algorithm RoleOntologyMiner. The grey rectangles highlight the
two components involved in the approach. 10
Figure 8 Screenshot of the two ProM plug-ins to mine and save role ontologies. The main window
shows the role ontology discovered by the Role Hierarchy Mining plug-in. The highlighted menu option
indicates how to invoke the Export ontology to WSML plug-in to save the mined role ontology. 14
Figure 9 Screenshot of the Role Hierarchy ontology in the WSMT Toolkit, which is an editor for WSML
ontologies. Note that, in this case, the end user would have to give meaningful names for the
concepts. Our export labels the concepts after the users it contains. When multiple originators belong
to a concept, our export adds the substring _et_al to the name of the first originator to be an instance
of this concept. 15
Figure 10 Screenshot showing the results of applying the Annotate with default ontologies plug-in to an
MXML log. 16
Figure 11 Screenshot showing the resulting of applying the semantic process mining plug-in
Performance Metrics in Ontologies [2] over the results in Figure 10. 17
Figure 12 Graphical representation of the Mining XML [13] logging format. 18
Figure 13 WSMT visualization of the "main skeleton" of 7 default ontologies created by the Annotate
with default ontology ProM plug-in. The Events Ontology (EVO) is not included become this ontology is
defined within SUPER ontology stack (cf. Figure 4). 19
Figure 14 Excerpt of the MXML used to mine the default ontologies in Figure 10. 20
Figure 15 Excerpt of the SA-MXML that is generated when running the Annotate with Default
Onotologies plug-in over the log in Figure 14. Note that the elements have been annotated with
modelReference that link to ontology concepts. 21
Figure 16 Excerpt of a non-annotated MXML log. 23
Figure 17 Screenshot showing the main interface of the LISR in the Semantic Log Enricher Prom
plug-in. 23
Figure 18 Excerpt of a SA-MXML log. This log has been generated by the Semantic Log Enricher plug-
in for the log in Figure 16. 24
Figure 19 Screenshot showing part of the annotation report in ProM. 25
Figure 20 Approach: Four steps to calculate execution times based on performer availability. 27
Figure 21 Example of three task instances (Ai, Bj and Ck) to which execution times need to be
computed. The instances are performed by a same user. The areas in grey indicate in which work
shifts this user was available. 27
Figure 22 Scheenshot with the main screen of the analysis plug-in Execution Times Using Availability
Based on Hours Per Shift. 30

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page VI

Figure 23 Screenshot showing the tab Graphical View of Execution Times when ontologies have not
been taken into account. Note that the resulting graphs link each task label to the root node "Task" (cf.
middle pane). 32
Figure 24 Screenshot showing the tab Graphical View of Execution Times based on task ontologies in
a log. Note that the task ontology is shown in the middle pane. 33
Figure 25 Screenshot showing the tab Graphical View of Execution Times when originator ontologies
are considered. Note that the originator ontology is shown in the middle pane. 34
Figure 26 Screenshot showing the results in the tab Originator vs Task matrix. 35
Figure 27 Screenshot showing the results in the tab Task Statistics. 35
Figure 28 Screenshot showing the results in the tab Originator Availability. Note that all the tables
shown in four tabs can be exported to the CSV format (cf. menu option "Exports"). 36
Figure 29 Screenshot of the SUPER Project ProMimport plug-in that has been developed within
SUPER. 37
Figure 30 Screenshot showing typical messages that are printed in the "Console" when the SUPER
Project ProMimport plug-in is executed. 38

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 1

Executive Summary

D6.11 aims at developing the final version of the Semantic Process Mining tool. This tool supports the

analysis of processes based on their execution instances (or process space). Actually, D6.11 is a

follow-up of D5.2 (cf. Section 4) [1] and D6.5 [2] (where the first semantic process mining prototype

has been implemented). In a nutshell, D6.11 focuses on three aspects that have not been addressed

in D5.2 and D6.5:

1. The development of new semantic performance analysis metrics and corresponding new plug-

ins in ProM. These metrics enhance the current performance analysis that is supported by the

Performance Analysis with Ontologies (cf. [2], Section 4.6), which is able to compute

throughput and execution times for the instances of concepts referenced in the logs.

2. The definition and implementation of techniques that help users to migrate from non-semantic

Business Process Management (BPM) environments to semantic ones. These techniques aim

at (i) discovering role ontologies from scratch (based on non-semantic logs) and (ii) enriching

(partially annotated) logs with semantic information. The main difference from these new

developments to existing related work is the focus on aiding the annotation of semantic BPM

environments.

3. Fully integrating the Semantic Process Mining Tool in the SUPER architecture. This integration

has consisted on implementing the ProMimport plug-in "SUPER Project", which automatically

convert the WSML instances in the Execution History Repository (the component in the

SUPER architecture that stores data relating to the execution of processes) to the SA-MXML

logging format (the semantically annotated format that is used by the ProM tool to perform

semantic process mining).

Together, D5.2, D6.5 and D6.11 present the Semantic Process Mining tool that has been developed

within SUPER.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 2

1 Introduction

The SUPER project aims at developing an architecture in which business people become more

independent of the IT people to perform business process management (BPM). To do so, SUPER will

embed semantic information in each of the four phases of the BPM lifecycle: design, configuration,

execution and analysis. This deliverable (D6.11) focuses on the analysis phase. The aim is to develop

the final version of the semantic process mining techniques that are provided by the semantic analysis

environment explained in D5.2 [1]. The semantic process mining techniques allow for the semantic

analysis of process instances. Furthermore, the results in this deliverable are additions to the results

that were already presented in D6.5 [2], where the prototypical version of the semantic process mining

tool is described.

In this section we explain how this deliverable aligns with the goal of the SUPER project (cf.

Subsection 1.1), the approach that we have taken while developing the process mining tools (cf.

Subsection 1.2) and how the remainder of this document is organized (cf. Subsection 1.3).

1.1 Alignment

The semantic process mining tools are a subcomponent of the semantic analysis environment.

Therefore, this section explains how the semantic analysis environment integrates with the SUPER

architecture, methodology, modeling stack, ontology stack and use cases.

1.1.1 Architecture Alignment

The SUPER reference architecture contains the core elements depicted in Figure 1. As can be seen,

this architecture contains four groups of elements (execution, tooling, services, and repositories) that

are connected via the semantic service bus1. The semantic analysis environment is part of the

Analysis Tool in the SUPER tooling group, and it interacts with the SUPER repositories Execution

History. The Execution History repository contains the process space, i.e. the executed process

instances over which the analysis is conducted.

1 A detailed description of this reference architecture is out of the scope of this deliverable. For more
details, the interested reader is referred to D6.1 [18] and D7.2 [14].

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 3

Figure 1 Super Reference Architecture.

1.1.2 Methodology Alignment

The SUPER methodology, like the usual BPM lifecycle, contains four phases (cf. Figure 2): semantic

business process modeling, semantic business process configuration, semantic business process

execution and semantic business process analysis. As the name already suggests, this deliverable

belongs to the semantic business process analysis phase. The feedback provided by the semantic

process mining prototype will aid the (re-)design of processes in the semantic business process

modeling phase and their (re-)configuration during the semantic business process configuration phase.

Figure 2 Super Methodology.

1.1.3 Modeling Stack Alignment

The SUPER modeling stack has five layers that follow a top-down approach (cf. Figure 3). The

semantic analysis environment aids the second layer, where the process models are designed. The

idea is that the semantic feedback provided by the analysis tools will help on detecting points of

improvements for existing processes and, therefore, helping on the re-design and/or tuning of these

processes.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 4

Figure 3 Super Modelling Stack.

1.1.4 SUPER Ontology Stack

Ontologies are the basic building blocks in any semantic analysis. Figure 4 illustrates the SUPER

ontology stack (see D1.1 [9] for more details). From this stack, the Core Business Analysis (COBRA)

ontology is especially important for semantic analysis. The Appendix of this document and deliverable

D1.9 [10] contain more details on the COBRA ontology and its related ontologies.

Figure 4 SUPER Ontology Stack.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 5

1.1.5 Use case Alignment

As a proof of concept, the analysis tools developed in the semantic analysis environment are going to

be used within the use cases in SUPER. For instances, one could use the semantic process mining

tools to analyze the use case "Requesting Service Level Agreement" from the partner Nexcom

Telecommunications (see D9.1 [15], section 2.2.5.2 for more details).

1.2 Approach and Results

Process mining [3] targets the automatic discovery of information from event logs. The discovered

information is used to analyze how the systems that generate these logs are actually being used. The

analysis provided by current process mining techniques can be seen as from three types [3]:

discovery, conformance and extensions (cf. Figure 5). The techniques that focus on discovery mine

information based on data in an event log only. This means that these techniques do not assume the

existence of pre-defined models to describe aspect of processes in the organization. Examples of such

techniques are control-flow mining algorithms that extract a process model based on the dependency

relations that can be inferred among the tasks in the log. Other examples are social network mining

algorithms that discover the relations between the performers of certain tasks, like a graph that shows

who is handing over work to whom. The algorithms for conformance verify if logs follow prescribed

behaviors and/or rules. Therefore, besides a log, such algorithms also receive as input a model that

captures the desired property or behavior to check. Example of such algorithms are the mining

algorithms that assess how much the behavior expressed in a log matches the behavior defined in a

model and points out the differences, or algorithms used for auditing of logs (in this case, the model is

the property to be verified). The extension algorithms enhance existing models based on information

discovered in event logs, e.g., algorithms that automatically discover business rules for the choices in

a given model.

Figure 5 Sources of information for process mining. The discovery plug-ins use only an event log as

input, while the conformance and extension plug-ins also need a (process) model as input.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 6

Current discovery, conformance and extension process mining techniques are already quite powerful

and mature. However, the analysis they provide is purely syntactic. In other words, these mining

techniques are unable to reason over the concepts behind the labels in the log, thus the actual

semantics behind these labels remain in the head of the business analyst which has to interpret them.

Therefore, within SUPER we are developing process mining techniques that make use of this semantic

perspective.

In fact, the semantic perspective provided by SUPER raises two opportunities [5] for process mining

techniques. The first opportunity is to make use of the ontological annotations in logs/models to

develop more robust process mining techniques that analyze the logs/models at the concept level. In

this case, it is assumed that event logs and models indeed link to ontologies. The second opportunity

is to use process mining techniques to discover or enhance ontologies based on the data in event

logs. The semantic process mining prototype presented in the D6.5 [2] has exploited the first

opportunity. The final version of the semantic process mining tools (presented in this deliverable) also

addresses the second opportunity (i.e., the use of process mining techniques to discover or enhance

ontologies).

The semantic process mining prototype is based on the ProM tool [11], which is an open-source

framework that supports the development of process mining algorithms/techniques in a pluggable way.

For the deliverables D5.2 [1] and D6.5 [2], seven semantic plug-ins have been implemented: (i)

Ontology Summary, which shows a projected view of an ontology; (ii) Semantic LTL Checker [4], which

supports the verification of properties in a log, e.g. for auditing purposes; (iii) Semantic Control-Flow

Mining, which allows for the mining of process models at different levels of abstractions; (iv) Semantic

Performance Analysis, which shows information about throughput times of process instances and

processing times of tasks based on concepts in a log; (v) Semantic Organizational Mining, which uses

the semantic information in the log to mine groups of users based on task similarity; (vi) Semantic

Originator by Tasks Matrix, which describes how frequently certain user concepts execute certain task

concepts; and (vii) Semantic Ontology URI Renaming Filter, which supports renaming the location of

ontologies used in a log. For the current deliverable (D6.11), four other semantic ProM plug-ins have

been implemented: (i) Role Hierarchy Miner, which mines the backbone of an organizational ontology

based on execution instances of a given process; (ii) Annotate with Default Ontologies, which allows

end users to apply the semantic process mining plug-ins over non-semantic logs; (iii) Semantic Log

Enricher, which automatically adds semantic annotations to elements in events logs; (iii) Execution

Times Using Availability Based on Hours Per Shift, which calculates the processing (or execution)

times of tasks by considering the time shifts in which performers where available. This analysis

includes more sophisticated metrics that go beyond the analysis already supported by the plug-in

Performance Analysis based on Ontologies (cf. Section 4.6 in [2]).

All semantic plug-ins are part of the subcomponent semantic process mining (sPM) of the semantic

analysis environment (cf. Figure 6) and are publicly available in the ProM tool2. Note that the sPM

2 ProM 5.0 [10] contains all the semantic plug-ins described in D5.2 and D6.5, plus the semantic plug-

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 7

component converts the information in the execution history to the SA-MXML (Semantically Annotated

Mining XML format) [2]. Therefore, within the context of D6.11 we have also developed the actual

component to convert the information in the Execution History repository to the SA-MXML format. This

format is our semantic extension to the log input format used by ProM. Furthermore, the SA-MXML

format is backwards compatible with the Mining XML (MXML) [13] format used by the non-semantic

plug-ins of the ProM tool. Therefore, users of our sPM component can directly utilize other non-

semantic process mining plug-ins that are provided in ProM. As a consequence, these users have an

even bigger myriad of process mining techniques to analyze process instances.

Figure 6 Semantic Analysis Tools in SUPER.

ins Role Hierarchy Miner and Annotate with default ontologies (cf. Section 3). The other semantic plug-
ins described in D6.11 are publicly available together with the nightly builds of the ProM tool (see
http://tabu.tm.tue.nl/dev/prom/nightly/). This is the case because these other plug-ins described in
have been developed after the official release of ProM 5.0. Therefore, these plug-ins will be
incorporated in the next official release of the ProM tool.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 8

1.3 Document Structure

The remainder of this document is organized as follows. Section 2 describes how process mining

techniques can be used to discover organizational ontologies. This section presents also the ProM

plug-ins Role Hierarchy Miner and Annotate with Default Ontologies. Section 3 explains the Semantic

Log Enricher plug-in, which adds semantic annotation to event log. Section 4 describes the Execution

Times Using Availability Based on Hours Per Shift plug-in, which takes into account the availability of

performers when computing execution (or processing) times of tasks. Section 5 describes how to use

the SUPER Project ProMimport, which is the component to convert the data in the Execution History to

the SA-MXML format, and Section 6 contains the conclusions. For the interested reader, Table 1

outlines the roadmap based on the three points explained in the Executive Summary.

Point in the Executive Summary Sections with details on these points

1. New Semantic Performance Metrics Section 4

2. Migration from non-semantic BPM environment

to semantic ones

Section 2 and Section 3

3. Component to create SA-MXML logs in SUPER Section 5

Table 1 Roadmap based on points in the Executive Summary.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 9

2 Ontology Discovery

Deploying semantic BPM systems (like the SUPER framework) can be very time consuming because

several ontologies have to be provided. Therefore, within D6.11, we have developed an approach

based on process mining techniques to discover ontologies from event logs. The focus is on mining

templates for role ontologies. The discovered templates contain concepts, instances and is-a

relationships. The term "template" is used because it is up to the end user to give meaningful labels to

the automatically discovered concepts. The applicability of the approach is illustrated by showing the

ProM plug-ins to mine and export role ontologies from an event log. Both the approach and the

developed plug-ins are explained in Subsection 2.1. Additionally, in order to allow users to quickly

apply the semantic process mining ProM plug-ins over non-semantic logs too, we have developed a

simple algorithm to annotate logs with default ontologies that are created based on the MXML [13]

logging format. Subsection 2.2 contains more details about this algorithm and its implementation in

ProM. All the plug-ins described in this section have been officially released together with ProM 5.0

[11]. Furthermore, all the screenshots included in this section are based on a synthetic log that is

publicly available at http://is.tm.tue.nl/research/processmining/OntologyMiningLog.zip.

2.1 Mining Role Ontologies: Approach, Algorithm and Implementation

When designing our approach, we had the following two main requirements as input: (i) the mining of

role ontologies should be based on actual executions of business processes; and (ii) the approach

should support the easy replacement of involved components. This facilitates the (re-)use of existing or

future solutions. An overview of the resulting approach is illustrated in Figure 7. Note that, satisfying

requirement (i), event logs are the starting point of our approach. Furthermore, satisfying requirement

(ii), the components (or modules) in the approach is structured in the piped way, where each

component has a well-defined interface and can be easily substituted. The whole approach is as

follows: Based on event logs, process mining techniques can be used to mine an originator by task

matrix. The matrix is the input for the algorithm to mine the populated backbone template of a role

ontology. This algorithm is called RoleOntologyMiner. In a nutshell, this algorithm uses the

information about which originators have executed which tasks to identify who are the

specialists/generalists [12] for a given process. Subsection 2.1.1 contains more details about the

RoleOntologyMiner algorithm. Subsection 2.1.2 introduces the ProM plug-ins that have been

developed to mine and export role ontologies. This subsection also explains how to use these plug-ins.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 10

Figure 7 Illustration of our approach. The whole approach in (A) starts with event logs and, by applying

the ontology mining algorithms explained in this section, can discover populated templates for role

ontologies. The area in (R) indicates the input (i.e., the "Originator by Task Matrix") and output (i.e., the

"Discovered Role Ontology") of the algorithm RoleOntologyMiner. The grey rectangles highlight the

two components involved in the approach.

2.1.1 Role Ontology Miner Algorithm

In an organization, roles can be used to set the permissions that users and systems have to perform

certain tasks. For instance, think of roles like secretary, manager, team leader, director, etc. These

roles provide an abstraction layer to detach the execution of tasks from the actual people or systems

by focusing on the required capabilities or competencies necessary to perform these tasks. These

competencies naturally capture the notion of specialists and generalists in organizations. Specialists

can execute a more restricted set of tasks than generalists [12]. In other words, the set of tasks that a

generalist can execute is a superset of the set of tasks that a specialist can. This is the basic notion

behind the RoleOntologyMiner algorithm formalized in Definition 1.

The RoleOntologyMiner algorithm works as follows. First, it creates a concept for each set c

containing all the originators that perform the same tasks (Steps 1 and 2). Second, it defines the

instances of these concepts (Step 3). Each originator is an instance of the concept it belongs to (Step

4). Third, it builds the is-a relationships for the concepts in C (Steps 5 and 6). A concept c1 is a

subconcept of another concept c2 if all the originators in c1 can execute the tasks that the originators in

c2 can execute. Because some concepts may not have a superconcept, an artificial root node is

created in Step 7, and new is-a relationships are established between these concepts and the root

node (Step 8). The discovered ontology is returned in Step 9.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 11

The ontology template returned by the RoleOntologyMiner algorithm is an objective starting point to

build the role ontology for a given process. Actually, this template has more than the backbone of this

role ontology because it also contains information about which instances belong to which concepts.

Although it is clear that end users will have to improve this ontology (e.g., by giving meaningful names

to concepts, defining properties and axioms, etc.), the core structure of the ontology reflects the

specialist/generalist relations observed in practice. However, the RoleOntologyMiner algorithm in

Definition 1 has one drawback: it does not take the frequencies of the executions into account. So, if

an originator performs a given task at least once, this is enough to state that this originator is able to

perform this task. In many situations, it may be desirable to build ontologies that express what the

originators have more frequently performed. Note that the more often an originator performs a task, the

better (or the more specialized) this originator becomes in doing so. For this reason, we have defined

three new functions that can be used as a replacement to the function perform in Definition 1. These

functions are absolute, relative and combined, and they are formalized in Definition 2. The

function absolute calculates the set of tasks that an originator has performed more than n times. The

function relative computes the set of tasks that an originator has performed more than a certain

percentage m, which is relative to the total number of times this originator has executed tasks. The

function combined, as the name already suggests, combines the two functions absolute and

relative.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 12

Notice that when n equals zero, the function absolute in Definition 2 behaves just like the function

performs in Definition 1. Furthermore, the use of these replacement functions indeed allows the end

user to get a more robust feedback about how specialized users actually are. In fact, our ProM plug-in

implementation explained in Subsection 2.1.2 supports all these flavours of the RoleOntologyMiner

algorithm.

2.1.2 Implementation Using ProM and WSML

Two ProM plug-ins have been implemented to mine and export role ontologies. Figure 8 shows a

screenshot with these plug-ins.

The Role Hierarchy Miner mining plug-in implements the algorithm RoleOntologyMiner (cf.

Definition 1). The middle panel shows the mined backbone. The squares represent the discovered

concepts and the directed arrows represent the mined is-a relationships. Furthermore, by enabling the

option "Show tasks" (see left panel), it is possible to see which tasks have been performed by

originators in a given concept. This information is shown in the ellipses attached to concepts. For

instance, the originators "Lucas" and "Rose" have executed the task "Prepare Silver". Note that the

ellipses attached to the concepts only show the tasks that do not belong to any superconcepts. For

instance, the concept named "Joan" does not have any ellipsis attached to it because the originator

"Joan" has executed only the task "Prepare Best Effort" and "Prepare Silver", which are already linked

to the two superconcepts of the concept that contains "Joan" (namely, the superconcept with the user

"Carlos" and the superconcept with the users "Lucas" and "Rose"). The thresholds "Absolute" and

"Relative" (cf. left panel) respectively correspond to the thresholds n and m in Definition 2. Note that

setting (one of) these thresholds to values higher than zero is equivalent to replacing the function

perform in Definition 1 by one of the functions in Definition 2. For instance, if both values are set to

zero, the plug-in will behave just like the algorithm in Definition 1. If only the value of "Absolute" is

bigger than zero, the plug-in behaves as if the function perform is replaced by the function

absolute in Definition 1. A similar reasoning holds when only the value of "Relative" is bigger than

zero, or both thresholds are bigger than zero. The right panel allows the end user to zoom in and out

on the graph view. The bottom panel shows the originator by task matrix after applying the filtering

based on the thresholds. Furthermore, if the end user clicks on a concept, this matrix shows only the

users that are instances of that concept.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 13

The Export ontology to WSML export plug-in (cf. menu option Exports→Role hierarchy

ontology→Export ontology to WSML in Figure 8) allows for saving the mined role ontology as a WSML

ontology [16]. End users can modify exported ontologies in any WSML editor. For instance, Figure 9

shows a view of the exported ontology from Figure 8 in the WSMT (Web Service Modelling Toolkit)

editor [17].

How to Use the Role Hierarchy Miner Plug-in

To use the Role Hierarchy Miner, perform the following steps in the ProM tool:

1. Open a (SA-)MXML log file by clicking on File->Open Supported File....

2. Start the Role Hierarchy Miner plug-in via clicking Mining->LogName->Role Hierarchy Miner

How to Use the Export ontology to WSML Plug-in

To use the Export ontology to WSML, perform the following steps in the ProM tool:

1. Mine a role ontology by using the Role Hierarchy Miner plug-in (see above)

2. Export the mined ontology by clicking Exports->Role hierarchy ontology->Export ontology to

WSML

As a final remark, we point out that our approach can also be used when there is no event log.

Although the overall approach in Figure 7 starts with an event log, the algorithm RoleOntoloyMiner

only requires an originator by task matrix as input (see highlighted area (R) in Figure 7). Therefore,

both components highlighted in grey in Figure 7 could be easily replaced by other techniques, with

same input and output, that may be developed in the future.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 14

Figure 8 Screenshot of the two ProM plug-ins to mine and save role ontologies. The main window

shows the role ontology discovered by the Role Hierarchy Mining plug-in. The highlighted menu option

indicates how to invoke the Export ontology to WSML plug-in to save the mined role ontology.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 15

Figure 9 Screenshot of the Role Hierarchy ontology in the WSMT Toolkit, which is an editor for WSML

ontologies. Note that, in this case, the end user would have to give meaningful names for the

concepts. Our export labels the concepts after the users it contains. When multiple originators belong

to a concept, our export adds the substring _et_al to the name of the first originator to be an instance

of this concept.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 16

2.2 Mining Default Ontologies

The semantic process mining plug-ins require semantically annotated logs (i.e., SA-MXML logs) as

input. In this sense, it would be nice if end users could taste the power of the semantic process mining

plug-ins without first having to annotate logs. Therefore, within D6.11 we have developed a plug-in that

can semantically annotate logs based on the structure of the Mining XML (MXML) [13] format. The

created ontologies are called default ontologies because they are based on the format of MXML.

Actually, because these ontologies are based on this format, they constitute a good starting point to

create more elaborate ontologies for a given business process model.

The ProM plug-in that can mine default ontologies is called Annotate with default ontologies. Figure 10

shows a screenshot of this plug-in in action. Note that any semantic plug-in can be now called over this

log because it has been semantically annotated with default ontologies. As an illustration, Figure 11

contains a screenshot with the results of running the Performance Metrics in Ontologies [2] for this log.

Figure 10 Screenshot showing the results of applying the Annotate with default ontologies plug-in to an

MXML log.

In total, 7 default ontologies are created and populated based on the elements that are contained in a

given log (cf. left pane of Figure 10). These ontologies are: DataFieldOntology, OriginatorOntology,

ProcessInstanceOntology, ProcessOntology, SourceOntology, TaskOntology and

WorkflowLogOntology. The EVO ontology is the Event Ontology in Figure 4. Therefore, this ontology is

not created by this plug-in, it is only populated with instances. The default ontologies are based on the

MXML elements illustrated Figure 12. Figure 13 shows the "main skeleton" (or core) of each of 7

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 17

default ontologies that are created by this plug-in. The addition of subconcepts and instances for these

ontologies happen in the following way:

Figure 11 Screenshot showing the resulting of applying the semantic process mining plug-in

Performance Metrics in Ontologies [2] over the results in Figure 10.

1. DataFieldOntology: Data fields are part of the MXML element Data (cf. Figure 12), and they

can be linked to WorkflowLog, Source, Process, ProcessInstance, and AuditTrailEntry.

Therefore, the DataFieldOntology contains a root concept, called "DataField", which has five

subconcepts: "LogData", "SourceData", "ProcessData", "ProcessInstanceData", and

"AuditTrailEntryData" (to respectively capture the data fields that are linked to the

WorkflowLog, Source, Process, ProcessInstance and AuditTrailEntry MXML elements). Given

a log, these ontologies will be extended such that: (i) every data attribute becomes a

subconcept of one of the five subconcepts of "DataField". The choice is based on the location

of the data attribute in the MXML file. For instance, for the log in Figure 14, a concept "upTime"

would be created for the data attribute name "upTime". This concept would be added as a

subconcept of "AuditTrailEntryData" because "upTime" is a part of an AuditTrailEntry element

in the MXML file; and (ii) every data attribute value of a given attribute becomes an instance of

the concept that refers to this attribute. As an example, the subconcept "upTime" would have

an instance called "96". Actually, the excerpt of the SA-MXML log in Figure 15 illustrates this

situation.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 18

(a) Process log XML format

reassign
schedule assign

star t
resume

suspend

autoskip complete

manualskip

ate_abor t

p i_abort

withdraw

(b) Transactional model for EventType

Figure 12 Graphical representation of the Mining XML [13] logging format.

2. EVO: Every EventType element in a MXML log becomes an instance of a concept in the

Events Ontology (EVO) (cf. Figure 4). Note that EVO contains a concept for every event type

in the transactional model in Figure 12.

3. OriginatorOntology: All Originator entries in the event log are mapped to a concept with the

same name. All created concepts are a subconcept of the root concept "Originator" (cf. Figure

13). The actual originator names used in the log become instances of these concepts. For

instance, for the excerpt in Figure 14, a concept "Mark" would be created. This concept would

have one instance, also called "Mark".

4. ProcessInstanceOntology: Contains a single "ProcessInstance" concept. All process instances

identifiers (i.e., the value of the "id" field) in the event log become an instance of this single

concept.

5. ProcessOntology: Contains a single "Process" concept, and all processes identifiers in the

event become an instance of this single concept.

6. SouceOntology: Contains a single "Source" concept, and all values of the field "program"3

become an instance of this single concept.

7. TaskOntology: All WorkflowModelElement entries in the event log are mapped to a concept

with the name contained in this field. This concept is a subconcept of the root concept "Task".

Additionally, every created subconcept has an instance with the same name. For instance,

note that the excerpt in Figure 13 contains a WorkflowModelElement named "Prepare Gold",

3 "program" is a required attribute of the element "Source" in the MXML format (cf.
http://is.tm.tue.nl/research/processmining/WorkflowLog.xsd).

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 19

and the mined TaskOntology in Figure 10 indeed contains a subconcept called "PrepareGold"

with the instance "Prepare Gold".

8. WorkflowLogOntology: Contains a single WorkflowLog concept, and a single instance which is

the filename of the event log.

Note that both the created default ontologies and the respectively created semantically annotate log (i)

are provided within ProM for further analysis by other (semantic) plug-ins, and (ii) can be exported too.

The ontologies are exported to WSML files that can be edited with the WSMT tool [17]. The log is

exported as a SA-MXML log that links to the mined default ontologies.

Figure 13 WSMT visualization of the "main skeleton" of 7 default ontologies created by the Annotate

with default ontology ProM plug-in. The Events Ontology (EVO) is not included become this ontology is

defined within SUPER ontology stack (cf. Figure 4).

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 20

How to Use the Annotated with Default Ontologies Plug-in

To use the Annotated with Default Ontologies, perform the following steps in the ProM tool:

1. Open a (SA-)MXML log file by clicking on File->Open Supported File....

2. Start the Annotated with Default Ontologies plug-in via clicking Analysis->LogName->Annotate

with default ontologies

3. If you like, you can export the annotated log and the created default ontologies via clicking

Exports->Annotated log->SA-MXML log file.

Figure 14 Excerpt of the MXML used to mine the default ontologies in Figure 10.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 21

Figure 15 Excerpt of the SA-MXML that is generated when running the Annotate with Default Onotologies plug-in over the log in Figure 14. Note that the

elements have been annotated with modelReference that link to ontology concepts.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 22

3 Enriching Logs with Semantic Information

3.1 Motivation and Approach

The purpose of semantic annotation is to add formally defined semantics into existing logs so that

newly specified semantic process mining tools can use executed over existing logs in companies. Note

that the semantic process mining techniques expects log elements to be connected with process

ontologies (i.e., to be in the SA-MXML logging format).

Our aim is to automatically recognize the business background ontology instances in logs. Indeed,

semantic annotation research is fundamental for semantic Business Process Management Systems

(sBPMS). A semantic annotation step is needed to add formal metadata to logs which lack semantic

description regarding the related business background. This metadata links data in log to the defined

concepts in the business background ontologies. This way, reasoners will be capable of interpreting

data in these semantically annotated logs with respect to their respective business background

ontologies, as annotated content becomes machine processable. Therefore, our approach proposes

an automated annotation using SUPER ontologies for non-(or partially) annotated process logs

through Log Instance Semantics Recognizers (LISR).

3.2 Implementation Using ProM

Our semantic annotation ProM plug-in is inspired from Ontos4, the BYU data-extraction engine, which

is a union of many smaller projects, which include: data-extraction ontology development, record

boundary detection, table recognition, deep web information extraction, and several others. The

process of upgrading the actual process log to be machine-understandable semantic logs is named

the process of log annotation. A typical semantic annotation process includes three components. First,

a process ontology describes the domain of interest (for instance, the domain ontologies defined for

the Nexcom use case). Second, a data instance recognition process discovers all instances of interest

in target log files based on the defined ontology. Third, an annotation generation process creates

semantic model references to annotate log tags (in our case, these are the workflow model elements,

originators, and event types). Note that the added model references provide the ontological context

necessary to run the semantic process mining tools.

The following basic presentation shows the capabilities of our plug-in, called Semantic Log Enricher.

To run this plug-in, users should choose (i) a (partially semantic annotated) log file5 (see Figure 16), (ii)

a business process ontology and (iii) the related Log Instance Semantics Recognizers (see Figure 17),

and then ask the tool to do the annotation. During the process, a small window will pop up and show

the progress of the annotation process. After the processing is finished, users can view the annotated

log file (see Figure 18). The plug-in shows also a report of the annotation process (see Figure 19). This

report can be stored in HTML and used for further analysis.

4 http://www.deg.byu.edu/
5 Our plug-in can be used to update existing ontology references of already annotated logs. But this
functionality is not considered as Log Instance Semantics Recognizer.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 23

Figure 16 Excerpt of a non-annotated MXML log.

Figure 17 Screenshot showing the main interface of the LISR in the Semantic Log Enricher Prom

plug-in.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 24

Figure 18 Excerpt of a SA-MXML log. This log has been generated by the Semantic Log Enricher plug-

in for the log in Figure 16.

LISR are formal specifications that identify instances of a concept in logs. The concept should be a

lexical element of a formal ontology (e.g. Nexcom use case concepts such as NexcomActivities,
NexcomProcess, NexcomOrganisationalOntology, or more general concepts such as
Events_Ontology, etc.). An LISR of an ontology concept (e.g.

NexcomActivities.wsml#RequestOffer) interprets, for example, the log tag

<WorkflowModelElement> obtain Availability Quality and Price
</WorkflowModelElement>, to have the intentional meaning of the defined concept,
NexcomActivities.wsml#RequestOffer. Figure 17 shows the ISR declaration for
NexcomActivities.wsml#RequestOffer concept. The ISR identifies the concept instance using

its context (the patterns of its originator, event type, preceding and following log elements). We use

Perl-style regular expressions to declare recognition patterns.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 25

Figure 19 Screenshot showing part of the annotation report in ProM.

In the following, we describe in the form of a table the functionalities provided by the log semantic

annotator tool and its dependencies, i.e., the functionalities which this tool expects from the other

SUPER components.

Provided Functionalities

Description: LISR plug-in semantically annotates MXML log

Provided to: Semantic process mining techniques

Input artefacts: MXML, Ontologies, ISR declaration

Output artefacts: SA-MXML

ISR Prom Plug-in functionalities

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 26

4 Semantic Performance Analysis

Companies usually are interested in knowing how much time is spent in the execution of tasks. This is

important because it helps in detecting points of improvements or in building simulations models to

analyze different scenarios. In this setting, a critical question is "How much time is actually spent in the

execution of tasks?". This question is interesting because many things can happen between the start

and the completion of tasks. Note that human resources do not work 24 hours in a row. Therefore,

tasks that start in one day and finish in another have a lot of non-working (or non-processing) hours.

Thus, while estimating actual processing times of tasks, techniques that only compute the difference

between the completing and starting times are overlooking many characteristics that impact the actual

time a task needs to be executed. In this sense, our research within D6.11 has taken information about

performers into account when determining the actual processing time of tasks. Our long-term aim is to

come up with more elaborate and robust performance metrics for (semantic) BPM systems. In the

context of this deliverable, this aim is being accomplished in two steps:

1. Define an ontology to support business process analysis. This way, new analysis metrics will

be easily incorporated in the SUPER architecture.

2. Define a new semantic performance analysis metric that considers information about tasks

performers when calculating execution times.

The COBRA ontology, a Core Ontology for Business pRocess Analysis, is the result of Step 1. This

ontology has been created in collaboration with the team responsible for the "Monitoring &

Management Tool" of the SUPER architecture (cf. Figure 1). In the Annex we have included the

published paper that describes the COBRA ontology. This paper is entitled "A Core Ontology for

Business Process Analysis" [19]. The results of performing Step 2 are explained in Subsection 4.1.

4.1 Execution Times Based on Work Shifts

This section explains the new performance metric that we have defined to compute execution times of

tasks. The metric is a refinement of the one used to calculate the executions times in the Performance

Analysis with Ontologies (cf. D5.2 [2], Section 4.6). In this plug-in, execution times are calculated as

the time spent between the starting time of a task and its completion time. This means that the

availability of performers is not taken into account. Therefore, this section presents new metrics that do

take this factor into account.

The remainder of this section is organized as follows. Subsection 4.1.1 describes the defined metric

and our approach to calculate this metric. Subsection 4.1.2 introduces the ProM plug-in that

implements this metric.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 27

4.1.1 Approach and Metric

Our aim is to calculate the actual execution times of tasks. For this, we need to know when performers

of tasks have been working on this task. As a result, we have created an approach based on the four

steps illustrated in Figure 20:

1. Calculate Work Shifts: Companies typically work based on shifts. So, in our approach the end

user can define the amount of time included in a shift. Based on this, the work shifts are

calculated. For instance, if the work shift time is 6 hours, a day will be divided into four shifts

of 6 hours (namely, 0h-5:59h, 6h-11:29h, 12h-17:59h and 18-23:59h). Figure 21 illustrates the

idea of shifts in a more abstract way. In this figure, time is divided into work shifts of size x.

Figure 20 Approach: Four steps to calculate execution times based on performer availability.

Figure 21 Example of three task instances (Ai, Bj and Ck) to which execution times need to be

computed. The instances are performed by a same user. The areas in grey indicate in which work

shifts this user was available.

2. Calculate Performers Availability: Given that the work shifts are defined, it is necessary to

know in which shifts users are available. In our case, we have decided to calculate performers

availability based on when events have been registered in the log. So, whenever a performer

has a registered event in the log, this perform is considered to be available during this shift.

As an illustration, consider the situation in Figure 21, which shows three instances of tasks

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 28

that have been executed by a same performer. The grey small circles in the graph indicate

when an event has been registered in the log for this user. In this case, 6 events have been

registered involving this user. Since these events have happened in the time shifts 0-x, 2x-3x

and 3x-4x, we can conclude that this user has been available only during these shifts. That is

why we have highlighted these shifts in grey in Figure 21. They indicate the user availability.

3. Calculate Execution Time for Each Task Instance: Provided that we know when performers

are available, we can calculate the actual time that has been spent in executing a certain task

instance. We start by dividing work shifts in equal chunks of time. The size of the chunk

should be such that "start" events always happen at the beginning of a chunk and "complete"

events always happen at the end of a chunk. We do so because we need to know how many

tasks instances a certain performer is executing for a given chunk. Note that users can

execute tasks concurrently. Figure 21 illustrates the notion of chunks. In this figure, every

chunk has an equal size of x/3. Furthermore, the size of the chunk correctly accommodates

the happening of "start" and "complete" events. For instance, we can see that the performer is

not execution any task during chunk c1 (from 0 to x/3), is executing task Ai in chunk c2 (from

x/3 to 2x/3), is executing two tasks (Ai and Bj) in chunk c3 (from 2x/3 to x), etc.

Given that the notions of user availability, chunk size and the number of tasks in a chunk have

been explained, we can now introduce our metric to calculate the actual time spent in the

execution of a given process instance. This is given in Definition 3, where the metric ExecTime

is defined. In a nutshell, the total execution time of a given task instance is calculated by

adding up the results of dividing the time of an available chunk (i.e., a chunk in which the user

was available) by the number of tasks instances being executed by this user for this chunk. As

an example, consider the situation in Figure 21. Note that the total execution time of Ai is equal

to (35/18)x (i.e., x*1/3*(1+1/2+1/2+1/3+1/2+1+1+1), which is approximately equal to 1.95x.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 29

4. Calculate Average Execution Time for Task: The execution time of task is the average of the

sum of the execution times of its instances.

So far, we have talked about task instances. However, when concepts are involved, we take into

account the instances of concepts. For example, if the task instances in Figure 21 would link to a same

concept Y, the average time spent on executing instances of Y would be the average of the execution

time of Ai, the execution time of Bj, and the execution time of Ck. The next subsection introduces the

ProM plug-in that implements our approach for both SA-MXML and MXML logs.

4.1.2 Implementation Using ProM

The analysis plug-in Execution Times Using Availabiliby Based on Hours Per Shift implements our

approach to calculate execution times based on work shifts (cf. Subsection 4.1.1). In the following, we

first describe the functionalities of this plug-in and, afterwards, we explain how to use this plug-in. All

screenshots presented in this subsection result from applying this analysis plug-in to the synthetic log

at http://is.tm.tue.nl/research/processmining/super/SUPER_NexcomUseCase.zip.

Description

The plug-in Execution Times Using Availabiliby Based on Hours Per Shift has the following 15
functionalities:

Main Interface

The main interface is shown in Figure 22. In this interface, the end user can:

1. Set the number of hours per shift (cf. parameter "Hours per Shift" in Figure 22).

2. Set if ontologies should be considered when calculating the execution times. In this sense,

three options are provided (cf. drop-down menu in Figure 22):

a. Don't use ontologies: In this case, the approach described in Subsection 4.1.1 is

applied based on the labels for the tasks and originators in the log. The visualization

of the results is also provided on graphs built based on these labels (cf. Figure 23).

b. Use task ontology: In this case, the execution times are calculated based on the

concepts used to semantically annotate task labels in a log. Note that, when this

option is selected, only task instances that are semantically annotated are taken into

account during the calculation. The visualization of the results is also provided based

on the ontologies that annotate tasks in a log (cf. Figure 24).

c. Use originator ontology: In this case, the calculation of execution times only applies

for tasks whose originators (or performers) contain semantic annotations. The results

show how long users linked to certain concepts take to execute certain tasks (cf.

Figure 25).

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 30

3. Calculate the actual execution times based on work shifts (cf. button "Calculate").

Figure 22 Scheenshot with the main screen of the analysis plug-in Execution Times Using Availability

Based on Hours Per Shift.

Results Interface

The results interface contains four main tabs: Graphical View of Execution Times (cf. Figure 23, 24

and 25), Originator vs Task (cf. Figure 26), Task Statistics (cf. Figure 27) and Originator Availability

(cf. Figure 28). The following describes the functionality provided in each tab.

Tab Originator Availability

4. Visualize the work shifts in which every performer in the log has been available (cf. Figure

28). A user is available in a shift whenever a true value is set in a cell. Note that this table

shows the results of performing Step 1 of our approach (cf. Figure 20).

5. Export the Originator Availability table to the CSV (Excel) format. This way, end users can

build different graphs based on these values.

Tab Originator vs Task

6. Visualize how every user is performing while executing instances of tasks. The drop-down

menu (cf. Figure 26), provides the following options:

a. Average: Shows the average times that each user takes to execute each task;

b. Sum: Shows the total time a users have spent while executing instances of a given

task;

c. Frequency: Shows how often instances of a given task have been executed by a

given originator;

d. Standard deviation: Standard deviation for the execution times values;

e. Variance: Variance for the execution times values;

f. Minimum: Minimum time that took a given user to execute an instance of a given task;

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 31

g. Maximum: Maximum time that took a given user to execute an instance of a given

task.

Note that this table shows the aggregated results of performing Step 3 of our approach (cf.

Figure 20).

7. Export the Originator vs Task table to the CSV (Excel) format. The export is based on the

selected view in the drop-down menu.

Tab Task Statistics

8. Visualize (in seconds) the execution times values of tasks. This table is an aggregated view of

the values in the table Originator vs Task. Actually, this table shows the results of performing

Step 4 of our approach (cf. Figure 20).

9. Export the Task Statistics table to the CSV (Excel) format.

Tab Graphical View of Execution Times

10. Visualization of the execution times in a graphical view (cf. Figure 23, 24 and 25).

11. Filtering of which instances to take into account when showing this graphical view (cf. left

pane "Filtering" in Figure 23).

12. Visualization of the filtered metric numbers in a tabular way. This functionality is provided by

the top-right pane "Numbers" (cf. Figure 23). The colors in the rows of the tables are the same

ones used for the graph/ontology in the middle pane. The table has four columns with the

following meanings:

a. Name: name of the concept/task label in the visualized ontology/graph.

b. Total: performance metric as an absolute value.

c. Frequency: number of included measurements.

d. Average: Total divided by Frequency.

13. Selection of different units for the visualization of the execution times. This functionality is

provided at the bottom-right pane where the option "Number Format" is available.

14. Selection of which column of the table "Numbers" to use when coloring the ontology/graph in

the middle pane and table rows. This functionality is provided at the bottom-right pane where

the option "Colors based on" is available.

15. Export the table "Numbers" to the CSV (Excel) format.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 32

Figure 23 Screenshot showing the tab Graphical View of Execution Times when ontologies have not

been taken into account. Note that the resulting graphs link each task label to the root node "Task" (cf.

middle pane).

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 33

Figure 24 Screenshot showing the tab Graphical View of Execution Times based on task ontologies in

a log. Note that the task ontology is shown in the middle pane.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 34

Figure 25 Screenshot showing the tab Graphical View of Execution Times when originator ontologies

are considered. Note that the originator ontology is shown in the middle pane.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 35

Figure 26 Screenshot showing the results in the tab Originator vs Task matrix.

Figure 27 Screenshot showing the results in the tab Task Statistics.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 36

Figure 28 Screenshot showing the results in the tab Originator Availability. Note that all the tables

shown in four tabs can be exported to the CSV format (cf. menu option "Exports").

How to Use

1. Open a SA-MXML or MXML log file by clicking on File->Open Supported File....

2. Start the Execution Times Using Availability Based on Hours Per Shift plug-in via clicking

Analysis-> LogName-> Execution Times Using Availability Based on Hours Per Shift. You

should get a screen like the one in Figure 22.

3. If you like, you can export the table (cf. menu in Figure 28):

a. "Numbers" (cf. Figure 23) with the (filtered) execution times to CSV format by clicking

the menu option Exports->Table with raw numbers->Standard CSV (Excel).

b. Originator vs Task (cf. Figure 26) with the selected view of execution times to CSV

format by clicking the menu option Exports-> <<selected view>> of Originator vs Task

Matrix->Standard CSV (Excel).

c. Task Statistics (cf. Figure 27) with the execution times to CSV format by clicking the

menu option Exports-> Task Statistics Matrix->Standard CSV (Excel).

d. Originator Availability (cf. Figure 28) with the execution times to CSV format by clicking

the menu option Exports-> Originator Availability->Standard CSV (Excel).

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 37

5 Converter from Execution History to SA-MXML

The converter of the data in the Execution History to the SA-MXML format supported by the ProM tool

is implemented as a ProMimport plug-in. ProMimport [6] is an open-source tool that facilitates the

conversion between the several (commercial) formats used in information systems and the MXML

input format of the ProM tool. Within SUPER, we have extended the ProM tool to also have as input

event logs in the SA-MXML format [2]. Therefore, to build the converter from the execution history to

the SA-MXML format, we have performed the following two steps:

1. Extend the ProMimport framework to support the export to SA-MXML format.

2. Implement the actual ProMimport plug-in to convert the data from the Execution History to the

SA-MXML format.

As a result, the SUPER Project ProMimport plug-in has been implemented. The main interface of this

plug-in is shown in Figure 29. Basically, it contains three input parameters: (i) Input Directory, where

users can define the directory that contains the Execution History files to be converted. Note that these

files are created by the SUPER engine when executing processes. Each file contains WSML

instances. When performing the conversion, the ProMimport plug-in loads these files into the SBP

Reasoner (cf. Figure 4) in order to retrieve the WSML instances; (ii) Input Files Suffix, where users can

define the termination of Execution History files, and (iii) SA-MXML Output File, where users can set

the name of the resulting SA-MXML to be generated during the conversion. The actual conversion

takes place by clicking on the button "Start" (cf. Figure 30). The SUPER Project ProMimport plug-in

can be downloaded at http://promimport.sourceforge.net/.

Figure 29 Screenshot of the SUPER Project ProMimport plug-in that has been developed within

SUPER.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 38

This plug-in converts the data in the Execution History to the SA-MXML used by the semantic process

mining tools.

Figure 30 Screenshot showing typical messages that are printed in the "Console" when the SUPER

Project ProMimport plug-in is executed.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 39

6 Conclusions

This has described the final implementations we have made for the Semantic Process Mining Tool in

SUPER. Together, D5.2, D6.5 and D6.11 explain all the semantic process mining techniques that have

been developed in SUPER. In total, eleven semantic plug-ins have been developed for the SUPER

Process Mining Tools. These plug-ins focus into two aspects: (i) the actual provision of semantic

process analysis (these are the eight plug-ins: Ontology Summary, Semantic LTL Checker, Semantic

Control-Flow Mining, Semantic Performance Analysis, Semantic Organizational Mining, Semantic

Originator by Tasks Matrix, Semantic Ontology URI Renaming Filter and Execution Times Using

Availability Based on Hours Per Shift), and (ii) the migration from non-semantic BPM environments to

semantic ones (these are the three plug-ins: Role Hierarchy Miner, Annotate with Default Ontologies,

Semantic Log Enricher). Additionally, a component has been implemented to convert the History Logs

in SUPER to the SA-MXML format used by the semantic plug-ins. This component is the SUPER

Project ProMimport plug-in. All these plug-ins are freely available together with the ProM and the

ProMimport tool at www.processmining.org.

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 40

References

[1] SUPER D5.2 – Semantic Process Instance Environment (http://www.ip-

super.org/res/Deliverables/M18/D5.2.pdf).

[2] SUPER D6.5 – Semantic Process Mining Prototype (http://www.ip-

super.org/res/Deliverables/M18/D6.5.pdf).

[3] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K. Alves de

Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An Industrial Application.

Information Systems 32(1), 713-732.

[4] A.K. Alves de Medeiros, W.M.P. van der Aalst, and C. Pedrinaci. Semantic Process Mining

Tools: Core Building Blocks. 16th European Conference on Information Systems (ECIS 2008), Galway,

Ireland, 2008.

[5] A.K. Alves de Medeiros, C. Pedrinaci, W.M.P. van der Aalst, J. Domingue, M. Song, A.

Rozinat, B. Norton, and L. Cabral. An Outlook on Semantic Business Process Mining and Monitoring.

In Robert Meersman, Zahir Tari, and Pilar Herrero, editors, OTM Workshops (2), volume 4806 of

Lecture Notes in Computer Science, pages 1244{1255. Springer, 2007.

[6] C. Günther, W.M.P. van der Aalst. A Generic Import Framework for Process Event Logs. In J.

Eder, S. Dustdar, eds.: Business Process Management Workshops. Volume 4103:81-92, 2006.

[7] N. Guarino. Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum.-

Comput. Stud. 43(5-6): 625-640 (1995)

[8] A. Lally, and D. Ferrucci. Building an Example Application with the Unstructured Information

Management Architecture, 2004, IBM Systems Journal 43, No. 3, 455-475.

[9] SUPER D1.1 – Process Modelling Ontology and Mapping to WSMO (http://www.ip-

super.org/res/Deliverables/M12/D1.1.pdf).

[10] SUPER D1.9 – Events Ontology and Core Ontology for Business Process Analysis

(http://www.ip-super.org/content/view/32/66/).

[11] The Process Mining (ProM) Framework (http://prom.sourceforge.net/).

[12] H.A. Reijers and S. Limam Mansar. Best Practices in Business Process Redesign: An

Overview and Qualitative Evaluation of Successful Redesign Heuristics. Omega: The International

Journal of Management Science, 33(4):283-306, 2005.

[13] B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining Data. In

Proceedings of the CAiSE'05 WORKSHOPS, volume 2. FEUP, 2005.

[14] SUPER D7.2 – Semantic Web Services-based Business Process Architecture. (http://www.ip-

super.org/res/Deliverables/M18/D7.2.pdf).

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 41

[15] SUPER D9.1 – Requirements Specification for Telecoms Base Environment. (http://www.ip-

super.org/content/view/32/66/).

[16] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web Service Modeling Language

WSML: An Overview. In Y. Sure and J. Domingue, editors, ESWC, volume 4011 of Lecture Notes in

Computer Science, pages 590-604. Springer, 2006.

[17] WSMT: Web Service Modelling Toolkit. http://sourceforge.net/projects/wsmt.

[18] SUPER D6.1 – Execution Engine Design and Architecture. (http://www.ip-

super.org/res/Deliverables/M12/D6.1.pdf).

[19] C. Pedrinaci, J. Domingue, A. K. Alves de Medeiros: A Core Ontology for Business Process

Analysis. 5th European Semantic Web Conference (ESWC), pages 49-64, Tenerife, Spain, 2008.

(Paper available at: http://kmi.open.ac.uk/people/carlos/publications/cobra-eswc2008.pdf)

Project SUPER SUPER-Project-No 026850
 Semantic Process Mining Tool – Final Implementation Work Package 6

Document Deliverable 6.11 Date 30.09.08

080930_SUPER_D6.11_V1_AKAM.doc PUBLIC Page 42

Annex

In this deliverable we have annexed the original of the following paper:

1. A Core Ontology for Business Process Analysis. This paper has been published in the

proceeding of the 5th European Semantic Web Conference (ESWC 2008) [19].

A Core Ontology for Business Process Analysis

Carlos Pedrinaci1, John Domingue1, and Ana Karla Alves de Medeiros2

1 Knowledge Media Institute, The Open University, Milton Keynes, MK7 6AA, UK.
E-mails:{c.pedrinaci, j.b.domingue}@open.ac.uk

2 Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven,
The Netherlands. E-mail: a.k.medeiros@tue.nl

Abstract. Business Process Management (BPM) aims at supporting
the whole life-cycle necessary to deploy and maintain business processes
in organisations. An important step of the BPM life-cycle is the analysis
of the processes deployed in companies. However, the degree of automa-
tion currently achieved cannot support the level of adaptation required
by businesses. Initial steps have been performed towards including some
sort of automated reasoning within Business Process Analysis (BPA) but
this is typically limited to using taxonomies. We present a core ontology
aimed at enhancing the state of the art in BPA. The ontology builds
upon a Time Ontology and is structured around the process, resource,
and object perspectives as typically adopted when analysing business
processes. The ontology has been extended and validated by means of
an Events Ontology and an Events Analysis Ontology aimed at captur-
ing the audit trails generated by Process-Aware Information Systems
and deriving additional knowledge.

1 Introduction

Many companies use information systems to support the execution of their busi-
ness processes. Examples of such information systems are Enterprise Resource
Planning, Customer Relationship Management, and Workflow Management Sys-
tems (WFMS). These systems usually generate events while executing business
processes [1] and these events are recorded in logs. The competitive world we
live in requires companies to adapt their processes in a faster pace. Therefore,
continuous and insightful feedback on how business processes are executed be-
comes essential. Additionally, laws like the Sarbanes-Oxley Act force companies
to show their compliance to standards. In short, there is a need for good analysis
tools that can provide feedback about how business processes are actually being
executed based on the observed (or registered) behaviour in event logs.

BPM results from the limitations exhibited by WFMS which mainly focus
on the enactment of processes by generic engines and does not take into ac-
count the continuous adaptation and enhancement of existing processes. BPM
acknowledges and aims to support the complete life-cycle of business processes
which undoubtedly involves post-execution analysis and reengineering of process
models. A key aspect for maintaining systems and the processes they support

2

is the capability to analyse them. BPA is particularly concerned with the be-
havioural properties of enacted processes may it be at runtime, as in Business
Process Monitoring, or post-execution as in Business Process Mining [1] or Re-
verse Business Engineering.

Due to its cyclic nature, BPM has however made more evident the existing
difficulties for obtaining automated solutions from high-level business models,
and for analysing the execution of processes from both a technical and a busi-
ness perspective. The fundamental problem is that moving between the business-
level and the IT-level is hardly automated [2]. Deriving an IT implementation
from a business model is particularly challenging and requires an important
and ephemeral human effort which is expensive and prone to errors. Conversely
analysing automated processes from a business perspective, e.g., calculating the
economical impact of a process or determining the performance of different de-
partments in an organisation, is again an expensive and difficult procedure which
typically requires a human in the loop. Semantic Business Process Management
(SBPM), that is the combination of Semantic Web and Semantic Web Services
technologies with BPM, has been proposed as a solution [2].

In this paper we present results obtained in the context of the European project
SUPER (IST-026850) which aims at developing a SBPM framework, based on
Semantic Web Services technology, that acquires, organises, shares and uses the
knowledge embedded in business processes in order to make companies more
adaptive. This semantic framework will support the four phases of the BPM
life-cycle and the research presented in this paper provides the foundation for
semantic BPA. In particular we shall describe a core ontology for business pro-
cess analysis which bridges the gap between low-level monitoring information
and high-level business knowledge. The remainder of the paper is organised as
follows. Section 2 reviews existing research that makes use of semantic technolo-
gies and present a set of requirements and competency questions that semantic
BPA technologies should address. Section 3 presents COBRA, a Core Ontology
for Business pRocess Analysis, and Time Ontology which provides the basis for
using temporal reasoning within BPA. Section 4 illustrates how COBRA can be
applied to BPA. Section 5 presents our conclusions and describes future research
to be carried out.

2 Semantics in Business Process Management

In the last years significant efforts have been devoted to integrating automated
reasoning with the BPM domain, a field where the application of knowledge-
based technologies appears to be the next evolutionary step [3]. These efforts
can roughly be divided into top-down and bottom-up approaches. Top-down ap-
proaches make use of high-level conceptual models to structure and reason about
Business Process Management activities. Among these approaches we find re-
search on enterprise ontologies, models for resources consumption and provision,
value flows, service bundling, etc. [2, 4–8]. However, despite the variety of mod-
els and tools produced so far there is little uptake within the industry which

3

is often due to the existing difficulty to provide and maintain good knowledge
bases expressed in terms of these conceptual models.

On the other hand, bottom-up approaches integrate some sort of light-weight
automated reasoning machinery with existing BPM solutions, see for instance [9–
11]. These efforts are mainly dominated by researchers from the BPM area,
where knowledge-based technologies have not been widely used so far. The focus
has mainly been the annotation of data warehouses or the application of rule
engines to control resources and ensure certain business policies are followed. Un-
fortunately, the information manipulated is mostly in syntactic formats which
is hardly amenable to automated reasoning. In fact, most of the budget when
applying so-called Business Intelligence solutions is typically devoted to the man-
ual integration of data from BPM systems and this is often an ephemeral effort
which has to be repeated over time. As a result the benefits gained by applying
these techniques are largely limited. Still, as opposed to top-down approaches,
the fact that these research efforts are grounded into deployed BPM systems
increases their impact in the industry.

What can be distilled from the current state-of-the-art is that the existent
epistemological gap between, on the one hand industry BPM solutions, and on
the other hand knowledge-based research, hampers to an important extent the
wider application of semantics in BPM. The research presented in this paper
aims precisely at reducing this gap when it comes to analysing business process
executions. In order to guide and validate our approach we present next a repre-
sentative set of requirements and competency questions that we have identified
based on existing practice within the BPM domain.

2.1 Requirements for Semantic Business Process Analysis

BPA is typically structured around three different views: (i) the process view ; (ii)
the resource view ; and (iii) the object view [12]. The process view is concerned
with the enactment of processes and is thus mainly focussed on the compliance
of executed processes with respect to prescribed behaviours and Key Perfor-
mance Indicators that can support business analysts in the examination and
eventual optimisation of deployed processes [1]. Relevant information in this re-
spect are (i) “the processes and activities currently running”; (ii) “which ones
have been completed and whether they were successful or not”; (iii) “the exe-
cution time of the different business activities”; (iv) “which business activities
have preceded which others”, etc. The resource view is centred around the usage
of resources within processes. In this perspective, the performance at different
levels of granularity (individuals, organisational units, etc.), work distribution
among the resources, and the optimisation of resources usage are the main as-
pects analysed. Typical questions in this perspective are for instance (i) “which
resources were involved in which business activities”; (ii) “which actor was re-
sponsible for a certain process”; (iii) “which external providers appear to work
more efficiently”; (iv) “what’s the average number of orders processed by the
sales department per month”, etc. Finally, the object view focusses on business
objects such as inquiries, orders or claims. This perspective is often adopted in

4

order to better analyse the life-cycle of so-called Business Objects. In this per-
spective, business analysts often want answers to questions like (i) “what is the
average cost per claim”; (ii) “which is the item we are currently selling the most
(or the least)”; (iii) “what’s the overall benefit we are obtaining per item”; (iv)
“are critical orders processed in less than two hours”, etc.

These three views are populated with statistical information such as the
minimum, the average or the deviation of some parameter of interest, and corre-
lations are typically established across them, e.g., “what is the average process
execution time for processing each type of order?”. Common to these scenarios
where BPA techniques are applied is the underlying dependency with respect to
time manipulation (e.g.,“are critical orders processed in less than two hours”),
the need to navigate through different levels of abstraction (e.g., “what’s the
average number of orders processed by the sales department per month”) and
across the different perspectives, and the overall necessity to apply general pur-
pose methods over domain specific data.

Therefore, to enhance the state-of-the-art of BPA we need a comprehensive
conceptual model of the BPM domain that supports applying general purpose
knowledge-based techniques over domain specific data, coupled with the capacity
to navigate through different levels of abstraction across the process, resource,
and object perspectives, and the ability to appropriately deal with temporal as-
pects. The next section is devoted to presenting a core ontology for supporting
Business Process Analysis that aims to provide a generic and extensible concep-
tual model that can support the competency questions exposed above.

3 An Ontology for Business Process Analysis

In order to support the level of automation required by enterprises nowadays we
need to enhance BPA with support for applying general purpose analysis tech-
niques over specific domains in a way that allows analysts to use their particular
terminology and existing knowledge about their domain. To this end we have de-
fined the Core Ontology for Business pRocess Analysis. COBRA provides a core
terminology for supporting BPA where analysts can map knowledge about some
particular domain of interest in order to carry out their analyses. It is worth
noting that COBRA does not aim to provide a fully-comprehensive conceptu-
alisation for supporting each and every kind of analysis since the scope would
simply be too big to be tackled appropriately in one ontology. Instead COBRA
provides a pluggable framework based on the core conceptualisations required
for supporting BPA and defines the appropriate hooks for further extensions
in order to cope with the wide-range of aspects involved in analysing business
processes. These extensions are currently been developed in SUPER as part of
an ontological framework aimed at providing an extensive conceptualisation of
the BPM domain ranging from process modelling to the definition of business
strategies. Still, COBRA already provides a good basis for supporting the most
typical analysis as described in the previous section.

COBRA has been developed using the Operational Conceptual Modelling
Language (OCML) [13], which provides support for executing the definitions in

5

�
�

�
�

�
�

�
�

�
�

�
�

����������

��	��
���
��	�
��
��

���
��
���
���
��
����
��

�����
������
����������

������������
��������������
��

�����������
��
�����������

�
�

��
�	������
�����������

����
����

� �����
��
���������

� �

� �����
��
���
����� �

� �����
��
���������� �

� �����
��
�������� �

� �����
��
���������� �

� �

� �
������������
�����������

� �� �
�����
��
������������
�����
��
������������

��
�	������
�����������

��
�	������
��������
���
� ��
�	������
��������
��

��
�	������
����������
���
� ��
�	������
����������
��

�
�

���
��
����������
���
��
����
����

�
�

������������������
������������
����

�
�

�

������������
��
������������
��

Fig. 1. Instants and Interval relations.

the ontology as well as export mechanisms to other representations including
OWL and WSML. COBRA builds upon two ontologies, namely Base Ontology
and Time Ontology, and is currently enhanced with Events Ontology for captur-
ing audit trails, and Events Analysis Ontology which provides a set of generic
reusable rules and relations3. Base Ontology provides the definitions for basic
modelling concepts such as tasks, relations, functions, roles, numbers, etc. The
interested reader is referred to [13] for further information. The other ontologies
will be described in the remainder of this section.

3.1 Time Ontology

COBRA builds upon Time Ontology that provides a temporal reference by
means of which one can determine temporal relations between elements. The
ontology defines three top-level concepts, namely Time Instant, Time Interval,
and Temporal Entity. Time Instant is the main primitive element and it provides
the means for identifying a point in time with precision up to the microsecond
for we aim to support monitoring automated systems. Time Intervals are de-
fined by means of the start and end instants and have therefore an associated
duration which can be computed by means of a function that substracts the lim-
iting instants. Temporal Entity, as opposed to the conceptualisation proposed
in [14], represents entities that have a temporal occurrence, and are therefore
different from Time Instant and Time Interval which are the base constructs
that represent a particular point or period in time.

Using these core concepts we have implemented the interval relations defined
by Allen [15], the additional instant-interval relations defined by Vilain [16],
and useful functions for computing the duration of intervals or for obtaining the
current Time Instant. The left hand-side of Figure 1 illustrates these relations,
whereby A and B represent Time Intervals, whereas P and Q represent Time In-
stants. The relations are self-explanatory, the interested reader is referred to [15]
and [16] for further details. It is worth noting that we have renamed the equality

3 The ontologies can be found at http://kmi.open.ac.uk/people/carlos

6

relations for Time Intervals and Time Instants to Temporally Coincide and In-
stants Coincide respectively, for we believe it is counterintuitive to use the term
“equal” for referring to different things that occur at the same time.

In addition to these relations we have also included for convenience a few
typical disjunctions of Allen’s algebra, e.g., Before-Or-Meets, and further rela-
tions which are relevant for BPA. The latter are depicted in the right-hand side
of Figure 1. The new relations we have implemented are namely Temporally
Disjoint, Temporally Concurrent, Starts-Before, Starts-After, Finishes-Before,
Finishes-After. Two intervals are considered to be Temporally Disjoint if there
is no interval shared between the two, which in Allen’s interval algebra is equiv-
alent to a disjunction between Before, After, Meets and Met-By. Temporally
Concurrent is the inverse relation of Temporally Disjoint and it therefore holds
when there exists some interval shared between the two concurrent intervals.
Starts-Before, Starts-After, Finishes-Before and Finishes-After, which we be-
lieve are self-explanatory, are based on the numerical comparison between the
start instant or end instant of the intervals.

Our Time Ontology considers two kinds of Temporal Entities, namely Instan-
taneous Entity and Time Spanning Entity. Instantaneous Entities are phenom-
ena that occur at a specific point on time and whose duration can be neglected.
By contrast, Time Spanning Entities are those that last over a period of time
indicated by the spansInterval slot. The distinction between, on the one hand,
Temporal Entities and, on the other hand, Time Instant and Time Interval al-
lows us to apply the previous relations over a plethora of entities, i.e., every
Temporal Entity. In addition to the previously mentioned relations we have in-
cluded two which are specific to Time Spanning entities and are particularly
useful for BPA, namely Followed-By and Preceded-By. A Time Spanning Entity
I is Followed-By by another Time Spanning Entity J of kind C, if J is After I
and there is no other Time Spanning Entity X of kind C which is After I and
Starts-Before J. Preceded-By is the inverse relation of Followed-By.

One of the main characteristics of our Time Ontology is the use of polymor-
phism. Our ontology supports determining temporal relations about the primi-
tive elements Time Instant and Time Interval, between these and Temporal En-
tities, and between any two Temporal Entities. To do so, the relations have been
implemented on the basis of backward-chaining rules that perform the appropri-
ate transformations between Temporal Entities and their primitive counterpart
and then invoke the primitive relation. This polymorphism is a convenient fea-
ture of our conceptualisation in order to support BPA where temporal relations
need to be evaluated between executions of activities, e.g., “was Activity A exe-
cuted after Activity B?”, executions of processes, e.g.,“has Process A been run
concurrently with Process B”, but also with respect to reference intervals or
instants, e.g., “retrieve all the Processes executed in the last month”.

3.2 Core Ontology for Business Process Analysis

We previously introduced that BPA is concerned with the analysis of the execu-
tion of business processes from several perspectives. In particular, we identified

7

the process view, the resource view, and the object view. COBRA has therefore
been structured around these very views in an attempt to enhance BPA with
support for the automated reasoning, querying, and browsing of audit trails from
different perspectives and at different levels of abstraction. The ontology is de-
picted in Figure 2 using an extended UML notation where arrows represent the
isA relation, dashed arrows denote the instanceOf relation, and lines represent
custom relations. Further notation extensions will be explained as the need arises
during the description of the ontology.

The development of COBRA has been guided to an important extent by ex-
isting ontologies like the Enterprise Ontology [5], DOLCE [17], TOVE [4] and
CIDOC [18]. COBRA distinguishes between Temporal Entities (see Section 3.1)
and Persistent Entities which are disjoint. This terminology is borrowed from
CIDOC [18] but is conceptually inline with DOLCE [17], whereby Endurant
corresponds to Persistent Entity and Perdurant to Temporal Entity. In short,
Temporal Entities are entities that have a temporal extent whereas Persistent
Entities are essentially independent of time. COBRA uses this high-level cat-
egorisation as a foundational basis but it doesn’t go however much further in
the reuse of existing foundational ontologies for it aims at supporting analysis
of processes and a complete grounding into this kind of ontologies would carry
an important computational overhead. Instead, we provide a simple categorisa-
tion of Persistent Entities specifically tailored to our needs, though informed by
DOLCE, whereby we contemplate Physical and Non-Physical Entities which are
disjoint. Physical entities are those that have a mass.

Physical and Non-physical Entities are further refined into Agentive and Non-
Agentive. The distinction between these classes which are obviously disjoint, is
that Agentive Entities are those that can take an active part within some spe-
cific activity. Finally, we define Agent as the union of both Physical and Agen-
tive Non-Physical Entities. We include for reference and self-containment a few
concepts widely used within BPM. For instance, we include Object, Person, Or-
ganisation, Software Agent, and Role. The latter will be dealt with in more detail
later on. COBRA, for its purpose is to provide core definitions for supporting
business analysis, does not refine these classes any further. Instead they serve as
placeholders for including additional conceptualisations such as Organisational
Ontologies or domain-specific master data. By doing so we aim at reducing the
ontological commitment, while we support the seamless integration of further
specific conceptualisations. Finally, since sometimes one needs not specify a con-
crete instance but rather the type, e.g. “you require a computer”, we have defined
the meta-class Persistent Entity Type such that all the sub-classes of Persistent
Entity are instances of Persistent Entity Type. This is depicted in Figure 2 by
means of a double-headed arrow.

Core concepts in COBRA are Business Activity and Business Activity Re-
alisation. A Business Activity is a Non-Agentive Non-Physical Entity (the isA
relation is not depicted in the figure for the sake of clarity) that represents the
specification of any business activity at a high-level where aspects such as the
control flow are abstracted away. We contemplate two kinds of Business Activ-

8

��������	
	��

�������	
	��

�������	
	��

�

�

�

�

����������
�

�

�

����

�	��	�����

�

�

��������
���
����

��
	���
	

�
����	
���

�

�

�� !������

�

�

���"��
�������!
�

�

�

�	
�#!
$

����

�
�

���%&��!��	�'���	��

�

�
��
	���
	

!���

!�����

��	�!���

��	�!�����

����	���

����	������

�	��!���

�	��!�����

�

�

�

�

������

���
������

�	��	�����

����

��	(����

��	(������

����������(�
)�*+�
��������(�

���	
�������

������

�	����
�,�&�-���� ���-����

�

� �

	��!��"�)�*+�
����������
���������	���
������

�� !����

�� !������

�

����	���

����	������

����!�����-����

�

��!�����
����

���.�������

������!���-����

����
	-����
�

�
����

� �

�������	
	��

	��!��"�)�*+�
����������
���������	���
������

���/
���	
�

���"��
�������!
�

�����/
������

��(
(�� !���

��	�!��� �	��!��� ��	(����
�

�

�
	����	

��������
������

�
	����	

������������
������

�����
	����	

������������
������

����������	�
��

�����	��
��������
�	���������

����	��

����������	�
)�*
���	
����	
�	���

��������

����������	�
��

�����������������

����	��
�������	
����������	�
��

�����������������

��������
�������	

���	
��
��
������)�*+�
����������

��������
�	����
!���������	
��������

�	����

!����������	
��������

�	����

�	�����	

���	
���	

�����

�	�����	��

������
���	

��������
������

������������
������

�	�����	��

������

�����	��

��������

�����	��
��������
����	

�
	��

"#$	��

���	

�����
	����	

��������
������

�	����

�
	����	

���	

�����
	����	

���	

"�
���������

����%��	
�
	��
��	��������)�*+�"����
����
	��(�)����*+�
����������

&	���
	
��	��

�����������)�*+�"����
�	������/�	������������)�*
�	������"���(�����������)����*

�����	��
��������

&��������

��	��

��������)�*
���/��������)�*
���0�
!�)�*

'���
(���	
��������)�*
�����(��"�)�*+�
����������
�����������)����*+�"����

&��������

��	��

Fig. 2. Core Business Process Analysis Ontology.

ities, namely Process and Activity, to reuse the terminology typically employed
in the BPM domain [12]. Activity represents atomic Business Activities whereas
Processes are composedOf at least two other Business Activities. Business Ac-
tivity Realisations are Time Spanning Entities which represent the actual ex-
ecution of Business Activities. Mirroring Business Activities, Process Instance
and Activity Instance are the two kinds of Business Activity Realisations con-
sidered. Despite their name, which originates again from BPM literature, both
are concepts which represent the actual executions of Processes and Activities
respectively (see performs in Figure 2). In this way it is simple to move between
fine-grained details concerning one single execution and aggregation details con-
cerning all the executions of the same Business Activity. Additionally, we include
the relation realises between Process Instance and Activity Instance in order to
track the fact that what appears as an Activity for some Process might in fact
be supported by a complex Process.

COBRA primarily characterises Business Activities from the perspective of
the Persistent Entities involved since we aim to cover the Resource and Object
views typically adopted in BPA. Our approach is based on the notion of Role4.
Role, much like in the Descriptions and Situations ontology [19], is the function
assumed or part played by a Persistent Entity in a particular Business Activity
Realisation. This is defined by means of the ternary relation playsRoleIn which
relates Roles, Persistent Entities and Business Activity Realisations. COBRA
includes a simple categorisation of Roles into two disjoint types, Agentive and
Non-Agentive ones. Agentive Roles are those that can only be played by Agents
whereas Non-Agentive Roles can, in principle, be played by any Persistent Entity.
Further restrictions should be defined on a per Role basis. COBRA currently
includes for self-containment an Agentive Role–Actor–and a Non-Agentive Role–

4 Role is duplicated in the figure for the sake of clarity

9

Resource–which are of most use when analysing business processes. Again, Roles
categorisation is to be extended for specific domains. Finally, we include the
Role Type meta-class in order to support describing things like “we require an
engineer”. Persistent Entities are further characterised by a set of Role Types
they can play within Business Activity Realisations. This allows to model for
example that “Directors can play the Role Type Supervisor”.

Given the notion of Role and how these relate to Persistent Entities, we can
now fully describe Business Activity and Business Activity Realisation. Business
Activities may use, consume, produce, and provide a set of Persistent Entity
Types. The relationship uses may also be defined over specific Persistent Enti-
ties, e.g., “this Activity requires this specific machine”, reason why we actually
include two relations usesPersistentEntity and usesPersistentEntityType. Usage,
like in the Enterprise Ontology, concerns Persistent Entities that can play a Re-
source Role, and which are not consumed during the execution of the business
activity. In other words, the availability of the Resource will decrease during the
execution of the Business Activity and will be restored to the original level at the
end. For example, we use a screw-driver for screwing but as soon as we are done
the screw-driver is available for others to use. Resource consumption is captured
by means of the relationship consumes. This relationship is only applicable to
those Persistent Entity Types which are not Agents. For situations where some
things are required but not used or consumed, we provide the relation requires.
Business Activities may require a set of Persistent Entities (e.g. “a particular
document is required”), Persistent Entity Types (e.g. “one license is required to
use the software”), and Role Types (e.g. “a coordinator is required”) in order
to be performed. The three scenarios are modelled as separate relations. The
relationship produces captures the outcomes of a Business Activity and is appli-
cable to Persistent Entity Types excepting Non-Agentive Non-Physical Entities
for which we have devoted instead the relationship provides. These two relation-
ships allow us to capture things like “this production process produces a robot”
and “market analysis provides knowledge”. These, excepting the relationship
provides, are all ternary relationships that can be characterised by the quantity
involved, see dashed line in Figure 2.

When it comes to Business Activity Realisations we capture their relation
with Persistent Entities in a very similar manner. We do so by means of five
relations–involves, uses, consumes, produces, and provides. Whereby involves is
a super-relation of the others. We finally provide a ternary relation between
Business Activity Realisation, Persistent Entity, and Role which allows us to
capture the Role a Persistent Entity plays in a Business Activity Realisation
(see playsRoleIn in Figure 2). Business Activity Realisations are the bridge be-
tween the high-level conceptualisation of the BPM domain and the low-level
monitoring information captured at runtime by the IT infrastructure. Thus,
Business Activity Realisations are further characterised by an execution history,
a life-cycle, and the current state of the execution.

The execution history is a set of Monitoring Events relevant for monitor-
ing the life-cycle of a Business Activity, see Figure 2. Monitoring Events are

10

Instantaneous Entities generated by Agents. They are characterised by a recep-
tion timestamp which is to be filled by the logging infrastructure upon recep-
tion of an event. The main goal of this attribute is to support monitoring even
in environments where clock synchronisation mechanisms are hardly applica-
ble. Additionally, Monitoring Events can have a causality vector, i.e., the set of
Monitoring Events that caused that particular event. This supports capturing
the actual derivation of events by the monitoring infrastructure as necessary for
Complex Event Processing. Finally, Monitoring Events might be characterised
by additional associated data which is expressed as Data Value instances. These
instances identify a particular parameter and the value associated to it.

Monitoring Events are further refined into Message Events and Business Ac-
tivity Monitoring Events. The former accommodates Event-Based environments
so that their execution can also be traced. The latter supports monitoring the
life-cycle of Business Activity Realisations in Process-Aware Information Sys-
tems. Business Activity Monitoring Events therefore concern a specific Process
Instance and, depending on the granularity of the event occurred, may also con-
cern an Activity Instance. Similarly to the proposals in [20, 12, 19], Business
Activity Monitoring Events are centred around the notion of state model. Ev-
ery event identifies a particular transition within the state model, the transition
being indicated by means of the leadsToState attribute. Conversely the canOc-
curInState attribute allows to ensure that the transitions are consistent with
the prescribed state model or to detect anomalies within the execution history
possibly due to missing events.

COBRA supports the definition of specific state models is a simple onto-
logical form by means of the Business Activity State concept which has a set
of possibleNextStates. Business Activity States are used to further characterise
Business Activity Realisations with the hasLifeCycle and hasCurrentState slots.
The former captures the overall life-cycle of Business Activity Realisations as a
set of Life-Cycle Periods which are Time Spanning Entities whereby the executed
business activity was in a particular state. The latter is a shortcut for avoiding
heavy usage of temporal reasoning in order to obtain the current state. On the
basis of these Life-Cycle Periods it is possible to revisit the complete life-cycle of
a Business Activity Realisation in a suitable manner for interval-based temporal
reasoning. Instead of prescribing a particular state model and the correspond-
ing events COBRA remains agnostic from the domain-specific details. Still, we
provide an extension, i.e., Events Analysis Ontology, with a set of generic event
processing forward-chaining rules that can derive information based Business
Activity Monitoring Events. These rules will be detailed in the next section.

Finally, given that COBRA aims to support Business Process Analysis, both
Persistent Entities and Business Activity Realisations are characterised by a set
of Analysis Results. Thus one can capture results of previous analysis for all
the relevant perspectives for BPA. Analysis Results are Instantaneous Entities
of a Quantitative or Qualitative nature5. Being part of the core ontology for
analysing business process, this allow us to reuse results across different types

5 Note that we have used slot renaming for occursAt

11

�����

���������	
��
����������
�����������	
��
����������
�������������
�����������������
�����������������	
�������
������������������������	
�����������������
����������������������������	
������������������
���������� �����	���
������������������ ����
!����
� �����	
������������������ ����

����������	
���
��
���
����������

������	
���
�
���� �"���!��
��������
�
������������

�	
���
����������

������	
���
�
������������
��������
�
������������

�	
���
������������

������	
���
�
����������! ����
��������
�
���� �"���!��

�	
���
���	�������

������	
���
�
������������
��������
�
���� �"���!��

�	
���
����������

������	
���
�
���� �"���!��#
���������������������������������������
��������
�
��$�%��&!����

�	
���
��
���������������

������	
���
�
����������! ����
��������
�
��$�%��&!����

�	
���
����
���
�	������������

������	
���
�
����'������
!����
� �����$�%��&!����

�	
���
��������
��������	
���
�
����'������
�����
��
�
��$�%��&!����

���	����������
��

������	
���
�
����'������#�
������������������������������� ��&�����
��������
�
�����(�����

�	
��
������
��

������	
���
�
���� ��&�����
��������
�
����'������

���	�����������

������	
���
�
����'�������
��������
�
���� ��&�����

���	�������������

������	
���
�
���� ��&�����
��������
�
����'������

�	
���
���������

������	
���
�
����'�������
��������
�
���� ��&�����

�	
���
�����������

������	
���
�
�������������
��������
�
����'������

�	
���
���
��
��

��������
�
�����(�����
���	��������
��

������	
���
�
����'����
��������
�
����'������

���	�����
��
��

��������
�
����
���������
���	�����������
��

������	
���
�
���� �"���!��#���
���������������������������������������
��������
�
�����(�����

�	
���
����
���� �

������	
���
�
����������! ����
��������
�
����'����

���	����!��
��
��
��

���	����
���
����������
 �����
����
���
����
�����������
���
����
����
�	
���
��
���
����������

Fig. 3. Events Ontology.

of BPA which paves the way for enhancing current analysis techniques [11]. For
instance, metrics computed at runtime can be reused when performing RBE,
mining results can be applied during monitoring, etc.

4 Events Processing

COBRA aims at providing a conceptual and extensible framework for supporting
BPA. Thus, it purposely leaves many aspects, such as domain-specific data or
infrastructure specific monitoring events unspecified. In order to apply COBRA
to specific domains these particular details have to be modelled and integrated.
As part of the overall BPA conceptual framework but also in order to validate
and test our conceptualisation we have developed an ontology for capturing
monitoring events from a plethora of BPM systems and a general purpose Events
Analysis Ontology that allows to derive information in terms of COBRA from
monitoring information. In the remainder of this section we shall describe first
the Events Ontology and next the Events Analysis Ontology.

4.1 Events Ontology

BPA takes the audit trails generated by the supporting IT infrastructure as a
starting point, and attempts to derive information from the business perspective.
Each of the supporting systems provides its own level of detail, in heterogeneous
formats making it particularly difficult to integrate the audit trails generated as
well as it complicates the creation of general purpose solutions. Common formats
have been proposed as a solution to overcome this problem, e.g., MXML [20]

12

�) �

� �0�� '

"�.*�� '

�0��"�.*�� '

+ �

/
,

"��) �
'� '

� ��/,
� '

"#�� '��� '

+ � .'�

"�##� ���������/
/��� '

� 0-) �� �� '

�
��##� ���������/
/��� '

� %0*�� '

�� *-/
.�� '

Fig. 4. Events Ontology State Model.

or the Audit Trail Format by the Workflow Management Coalition (WFMC).
Although these formats have proven their benefits, they are supported by tech-
nologies that are not suitable for automated reasoning. In order to overcome
this, we have extended COBRA with a reference Events Ontology (EVO) that
provides a set of definitions suitable to a large variety of systems and ready to
be integrated within our core ontology for analysing business processes. EVO is
however an optional module which can be replaced by other models if required.

EVO is based on the previously mentioned formats since they provide general
purpose solutions that have shown to be suitable to capture logs generated by a
plethora of systems. As prescribed by COBRA, EVO is centred around a state
model that accounts for the status of processes and activities, see Figure 4. The
figure shows the different states and possible transitions contemplated for both
Process Instances and Activity Instances which we believe are self-explaining.
Note that process abortion differs from process termination in that in the for-
mer any ongoing activity is allowed to finish [12]. The dark dot represents the
initial state, arrows represent transitions, the smaller boxes depict states, and
bigger boxes encapsulate (conceptual) families of states. The state model has
been captured ontologically as shown in Figure 3, an enhanced with additional
relations. For instance it is possible to determine whether an Activity Instance
has been allocated–isAllocated–which is true for those that are either in state
Running, Suspended, or Assigned. It is also possible to determine whether a
Business Activity Realisation is active–isActive–which is equivalent to Running,
or inactive–isInactive–which is true for the rest of the states.

The state model does not distinguish between Process Instances and Activity
Instance. The reason for this is mainly to simplify some tasks, e.g. monitoring of
active Business Activity Realisations. Still, this necessary distinction is preserved
within the logs by means of the Business Activity Monitoring Events defined,
see Figure 3. EVO includes two subclasses, namely Process Monitoring Event
and Activity Monitoring Event. EVO currently captures seven Process Monitor-
ing Events and twelve Activity Monitoring Events based on the state model in
Figure 4. Process Monitoring Events capture the different transitions which are
possible for Process Instances. A Process Instance can be Instantiated, Started,
Suspended, Resumed, Completed, Aborted and Terminated. Activity Monitoring
Events, in addition to the typical execution events, contemplate the distribution
of work to Agents. Thus, there are events that capture the scheduling of activ-

13

ities, the Assignment, ReAssignment, or Relief of activities to specific agents.
Additionally like MXML, EVO contemplates the possibility for skipping activi-
ties either manually or automatically, which lead to a correct completion. Finally,
EVO captures the abortion of activities by means of two events Activity Aborted
and Activity Withdrawn. The distinction between the two lays in the fact that
only started activities can be aborted.

4.2 Event Analysis Ontology

So far we have focussed on the conceptual models that capture the BPM do-
main spanning from the low-level details concerning audit trail information, to
higher-level aspects such the roles played by agents in certain processes. In this
section we focus on how, on the basis of this conceptual model and by capturing
monitoring information ontologically, we derive knowledge about the enterprise
that can then support business practitioners or even Knowledge-Based Systems
in the analysis and eventual decision-making process.

OCML provides support for defining both backward and forward-chaining
rules. In order to derive information upon reception of monitoring events we
have defined a set of generic forward-chaining rules which are independent from
the domain and the specific Monitoring Events defined. The goal is to provide
reusable rules which can then be enhanced with domain specific ones to derive
a richer knowledge-base. Additionally we have implemented a set of relations
which are of most use when analysing processes. Some of these relations have
been defined for COBRA in a generic manner, whereas others have been bundled
with EVO for they are EVO-specific. The rules currently implemented support
(i) deriving and checking the consistency of life-cycle information about Business
Activity Realisations; (ii) updating the execution history of Business Activity
Realisations; (iii) updating the relations between Process Instances and Activity
Instances; (iv) tracking the Agents involved and; (v) updating the Roles played
by Actors within Business Activities.

The first set of rules uses Business Activity Monitoring Events to update
the current state of activity realisations, generate Life-Cycle Period instances,
and contrast the transitions with the given state model. Basically, every event
defines the end of a period and the beginning of a new one6. In this way, by simple
updates over the life-cycle and with temporal reasoning we can support many of
the monitoring competency questions previously exposed. To this end we provide
a general purpose relation that holds when, given a Business Activity Realisation,
a Time Instant, and a Business Activity State, the activity realisation was in
the state given at that particular instant.

The second set of rules aim at correctly tracking the execution history for
specific Business Activities so that they can later on be used within Business
Process Mining algorithms. The third aspect is supported by a rule that tracks
the coincidence of Process Instances and Activity instances within the same
Business Activity Monitoring Event and derives the appropriate composedOf

6 The initial state is a special one which is predefined in COBRA

14

relation. Agents involvement is derived from the generatedBy slot in the events.
Finally, whenever one of the Actors involved is the only one taking part in
a Business Activity Realisation that can play a certain Role Type that was
required, we can derive the role this Actor played. This last rule is bundled with
EVO since it is necessary to know whether the business activity was completed
before deriving this. The interested reader is referred to the ontologies for further
details about the rules and relations currently implemented.

5 Conclusions and Future Work

BPM systems aim at supporting the whole life-cycle of business processes. How-
ever, BPM has made more evident the current lack of automation that would
support a smooth transition between the business world and the IT world. Yet,
moving back and forth between these two aspects is a bottleneck that reduces
the capability of enterprise to adapt to ever changing business scenarios. As a
consequence there is a growing need for integrating semantics within the BPM
domain. A crucial branch of BPM where semantics have a clear and direct im-
pact is Business Process Analysis, where in fact so-called Business Intelligence
is appearing as a key enabler for increasing value and performance [3]. Impor-
tant efforts but with limited success have been devoted to integrating semantics
within BPA. The reason for this appears to be the fundamental gap between
semantics technologies and the ones currently deployed within BPM solutions.

To reduce this gap we have defined COBRA, a core ontology for business
process analysis. The research carried has been guided on a set of competency
questions extracted from existing needs with the BPA domain. Our approach is
based on a conceptualisation that links low-level monitoring details with high-
level business aspects so as to bring this vital information to the business-level
as required by business practitioners. This conceptual model is based on a Time
Ontology and has been enhanced and validated by means of two extensions for
logging monitoring information in a semantic manner, and eventually processing
this information.

A key requirement underlying our work has been the need to produce a
generic yet comprehensive conceptual infrastructure where additional extensions
can be seamlessly plugged-in in order to better support BPA techniques. Future
work will thus be devoted to extending our work along the vision previously
presented in [11]. In particular, next steps will be devoted to the definition of a
metrics computation engine that will support the computation of both generic
and user defined metrics, and the implementation of a classification Problem-
Solving Method for detecting process deviations. In parallel, we are working
on an ontology-based user interface to the reasoning infrastructure as part of
WSMO Studio (www.wsmostudio.org).

References

1. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F.,
de Medeiros, A.K.A., Song, M., Verbeek, H.M.W.: Business process mining: An

15

industrial application. Information Systems 32(5) (2007) 713–732
2. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business

process management: A vision towards using semantic web services for business
process management. In Lau, F.C.M., Lei, H., Meng, X., Wang, M., eds.: ICEBE,
IEEE Computer Society (2005) 535–540

3. Watson, H.J., Wixom, B.H.: The current state of business intelligence. Computer
40(9) (2007) 96–99

4. Fox, M.S.: The tove project towards a common-sense model of the enterprise. In:
IEA/AIE ’92: Proceedings of the 5th international conference on Industrial and
engineering applications of artificial intelligence and expert systems, London, UK,
Springer-Verlag (1992) 25–34

5. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl-
edge Engineering Review 13(1) (1998) 31–89

6. Geerts, G.L., McCarthy, W.E.: An accounting object infrastructure for knowledge-
based enterprise models. IEEE Intelligent Systems 14(4) (1999) 89–94

7. Gordijn, J., Akkermans, H.: Designing and evaluating e-business models. IEEE
Intelligent Systems 16(4) (2001) 11–17

8. Malone, T.W., Crowston, K., Herman, G.A.: Organizing Business Knowledge: The
MIT Process Handbook. MIT Press, Cambridge, MA, USA (2003)

9. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: A comprehensive and auto-
mated approach to intelligent business processes execution analysis. Distributed
and Parallel Databases 16(3) (2004) 239–273

10. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business
process intelligence. Computers in Industry 53(3) (2004) 321–343

11. de Medeiros, A.K.A., Pedrinaci, C., van der Aalst, W.M.P., Domingue, J., Song,
M., Rozinat, A., Norton, B., Cabral, L.: An Outlook on Semantic Business Pro-
cess Mining and Monitoring. In: Proceedings of International IFIP Workshop On
Semantic Web & Web Semantics (SWWS 2007). (2007)

12. zur Muehlen, M.: Workflow-based Process Controlling. Foundation, Design, and
Implementation of Workflow-driven Process Information Systems. Volume 6 of
Advances in Information Systems and Management Science. Logos, Berlin (2004)

13. Motta, E.: Reusable Components for Knowledge Modelling. Case Studies in Para-
metric Design Problem Solving. Volume 53 of Frontiers in Artificial Intelligence
and Applications. IOS Press (1999)

14. Hobbs, J.R., Pan, F.: Time ontology in owl. Available at
http://www.w3.org/TR/owl-time/ (2006)

15. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11) (1983) 832–843

16. Vilain, M.B.: A system for reasoning about time. In: AAAI. (1982) 197–201
17. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.:

WonderWeb Deliverable D17. The WonderWeb Library of Foundational Ontolo-
gies and the DOLCE ontology. http://www.loa-cnr.it/Papers/DOLCE2.1-FOL.pdf
(2003)

18. ICOM/CIDOC CRM Special Interest Group: CIDOC Conceptual Reference
Model. http://cidoc.ics.forth.gr/docs/cidoc crm version 4.2.2.pdf (2007)

19. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task taxonomies for knowl-
edge content. Technical report, EU 6FP METOKIS Project D07 (2004)

20. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The
prom framework: A new era in process mining tool support. In: Applications and
Theory of Petri Nets 2005. 26th International Conference, ICATPN 2005, Miami,
USA, Springer-Verlag (2005) 444–454

