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ABSTRACT

In this paper, the cooperative spectrum sensing is probabilis-
tically modeled as a mixture of two Gaussian distributions
and EM algorithm is applied for learning the parameters and
classifying these two classes. Also, in order to exploit the
dependencies of the states of the primary user in time, a Hid-
den Markov Model is used to improve the performance of
the centralized spectrum sensing. Furthermore, a new decen-
tralized cooperative spectrum sensing algorithm is proposed.
In this case, the local information of secondary users are ap-
propriately combined to guarantee a reliable communication.
Our simulation results indicate the remarkable performance
of the proposed cooperative sensing algorithms even in very
low signal to noise ratios.

1. INTRODUCTION

Cognitive radio is the means to promote the efficient use of
the spectrum by exploiting the existence of spectrum holes
[1]. In fact, cognitive radio is an intelligent wireless commu-
nication system that is aware of its surrounding environment
to learn from the environment and adapt its internal states to
create highly reliable communications whenever and wher-
ever needed, and utilize the radio spectrum efficiently [1].

Spectrum sensing (SS) plays a crucial role in the imple-
mentation of the cognitive radio technology. It provides the
key ability for secondary users (SU) to detect the unused spec-
trum and sharing it without harmful interference with primary
users (PU) [2]. Spectrum sensing approaches can be classified
into two main categories [2]:

1. Local Sensing
Each cognitive radio must independently have the ca-
pability to determine the presence or absence of the
primary user in a certain spectrum. This method al-
though is simple in terms of computation and imple-
mentation, they are sensitive to model uncertainty, fad-
ing and shadowing. There are several methods pro-
posed for local SS such as matched filtering, Waveform-
Based Sensing, Cyclostationarity-Based Sensing and En-
ergy Detector-Based Sensing [2].

2. Cooperative Sensing
Information from multiple cognitive radio users are ap-
propriately incorporated for PU detection. This approach
enhances the accuracy and reliability of the PU detec-
tion and it is robust to fading, shadowing and model
uncertainties and, consequently, it can resolve the hid-
den node problem; also, it reduces the required sens-
ing time. However, the complexity of this approach is
higher; also, it needs a control channel and it increases
the traffic overhead. Cooperative sensing can be imple-
mented in two fashions: Centralized and Decentralized.

In Centralized Cooperative Spectrum Sensing (CCSS)
a central unit collects hard [3], [6], [7] or soft [4] sens-
ing information from cognitive radios, identifies the avail-
able spectrum, and broadcasts this information to other
cognitive radios or directly controls the cognitive radio
traffic (Fig.1-(a)). For instance [5] introduces an opti-
mal linear cooperation for SS in which the goal is to
mitigate the fading effects and increase the probability
of detection of the primary user.

In Decentralized Cooperative Spectrum Sensing (DCSS)
cognitive nodes share information through local com-
munications, in-order to make their own decisions as
to which part of the spectrum can be used (Fig. 1-(b)).
DCSS is more advantageous in the sense that there is no
need for a backbone infrastructure [2]. An incremental
gossiping approach for efficient coordination within a
cognitive network is explained in [8]; this simple algo-
rithm is fast and it is robust to network changes. More-
over, [9] introduces a distributed sensing method where
secondary users share their information and utilize an
OR-rule to infer the presence or absence of the PU.

In this paper, Spectrum sensing is formulated as a statis-
tical inference problem. In centralized approach, SS is for-
mulated as a classification problem in Fusion Center (FC)
and Expectation-Maximization (EM) algorithm is used to es-
timate the model parameters and detect the PU. Furthermore,
a Hidden Markov Model (HMM) is considered to model the
memory in the PU’s activity. In the decentralized approach an
effective message passing algorithm is proposed to distribute



Fig. 1. (a) Centralized Cooperative Spectrum Sensing; (b)
Decentralized Cooperative Spectrum Sensing.

the local decisions among SU’s. Each SU, utilizes this infor-
mation to improve the quality of its own decision.

The rest of the paper is as follows. First the centralized
cooperative spectrum sensing is explained. In section 3 the
decentralized cooperative SS is introduced. Also, simulation
results illustrating the effectiveness of the algorithms are pre-
sented. Finally, section 4 concludes the paper.

2. CENTRALIZED COOPERATIVE SPECTRUM
SENSING

The CCSS scenario is illustrated in Fig. 1-(a). In this case,
the cognitive radio network, is provided by a fusion center
or a Base Station (BS), which can be used for decision mak-
ing in the spectrum sensing mode. The k-th SU senses the
channel for N consecutive time period and observe a complex
baseband-equivalent signal xk, xk ∈ CN (k = 1, 2, · · · ,K).
Next, the FC collects these information through noisy chan-
nels.

The block diagram of the CCSS system is shown in Fig. 2.
In this model z, the baseband-equivalent signal transmitted by
the PU, is propagated to the k-th SU over a noisy, flat-fading
and time-invariant channel. More precisely we have:

xk = hkz + ωk (1)

where ωk ∼ CN (0, σ2
ωI) is a Circularly Symmetric Com-

plex Gaussian (CSCG), and hk is a CSCG channel gain, i.e.
hk ∼ CN (0, σ2

h) (representing Rayleigh fading between the
PU and the k-th SU). Here it is assumed that z, hk and ωk are
independent which is reasonable from a practical perspective.
This model has also been used by [7].

Fig. 2. CCSS: System block diagram.

At the k-th SU, an energy detector is used to make a local
decision uk = γk(xk) which is then transmitted to the FC
for the central decision making. However, two different types
of cooperation can be distinguished: soft and hard. In soft
decision the k-th SU sends it’s energy directly to FC

γk(xk) =
1
N

N∑
n=1

|xk[n]|2

and in hard decision uk is 0 unless the energy exceeds a
threshold,

γk(xk) = I

{
1
N

N∑
n=1

|xk[n]|2 ≥ τk

}

where I {.} is the indicator function.
In this paper, the soft decisions are transmitted to the FC

and in contrast to previous studies which SU-FC channels
are assumed to be perfect control [4, 5, 6], here, an Additive
White Gaussian Noise (AWGN) channel nk ∼ N (0, σ2

nk
) is

considered between each SU and the FC. Therefore, the re-
ceived signal at the FC from k-th SU is

yk = uk + nk (2)

where uk is the energy of the signal. Hence, the evidence
available to the FC to make the global decision at time i is the
set of SU-FC channel outputs yK

i = {y1, y2, ..., yK}.

2.1. CCSS: Gaussian Mixture Model

The CCSS can be formulated as a binary hypothesis testing
problem with the null and alternative hypothesis:

H0 : Primary user is not active (si = 0)
H1 : Primary user is active (si = 1)

.
In this case the hidden variable at time i, is the status of

the channel si and the observations at FC are yK
i . Since ωk

and hk are CSCG, we have,

xk ∼
{ CN (0, σ2

ωk
I) : H0 (z = 0)

CN (0, (Pσ2
hk

+ σ2
ωk

)I) : H1 (z 6= 0)



Fig. 3. a) Graphical Representation of the Gaussian mixture
model; b) Hidden Markov Model in spectrum sensing.

where P = E[|z|2] is the energy of the primary user. For a
large number of sensing samples, N , Central Limit Theorem
(CLT) states that uk = 1

N ||xk||2 is asymptotically normally
distributed under either H0 or H1, so roughly speaking, we
have:

uk ∼
{ N (σ2

ωk
, 2

N σ4
ωk

) : H0

N (Pσ2
hk

+ σ2
ωk

, 2
N (Pσ2

hk
+ σ2

ωk
)2) : H1

Now for simplicity assume that the noise and channel statis-
tics are the same, then,

uK ∼
{ N (σ2

ω.1K , 2
N σ4

ω.IK) : H0

N ((Pσ2
h + σ2

ω).1K , 2
N (Pσ2

h + σ2
ω)2.IK) : H1

where uK = {u1, ..., uK}, and finally yK can be modeled
as normal distribution N (µ0, Σ0) (under H0) and N (µ1, Σ1)
(under H1) as defined by:

yK ∼
{ N (σ2

ω.1K , ( 2
N

σ4
ω + σ2

n).IK) : H0

N ((Pσ2
h + σ2

ω).1K , ( 2
N

(Pσ2
h + σ2

ω)2 + σ2
n).IK) : H1

(3)
Therefore, yK is a mixture of two Gaussians (Fig. 3-(a)),

which means

p(yK) = π0N (yK |µ0,Σ0) + π1N (yK |µ1, Σ1)

where π0 and π1 are prior probabilities.
Hence, EM algorithm can be used to estimate the un-

known parameters of this model, namely (π0, µ0,Σ0) and
(π1, µ1, Σ1) [10] (chapters 10 and 11). Accordingly, FC uti-
lizes the Quadratic Discriminative Analysis (QDA) which is
basically Log-likelihood function

r(yK) = log(
π1

π0
) +

1
2

log(
|Σ0|
|Σ1| )

+
1
2
(yK − µ0)T Σ−1

0 (yK − µ0)

−1
2
(yK − µ1)T Σ−1

1 (yK − µ1)

to classify and assign the new observation vector yK to
the one of the two classes, H0 or H1.

Fig. 4 illustrates the performance of the EM algorithm in
CCSS. In this case, different number of SUs were consid-
ered and the probability of error (more precisely probabil-
ity of wrong decision) was measured at different SNR’s. In
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Fig. 4. EM based Spectrum Sensing performance. In this
figure, error probability verses SNR is plotted for different
number of SUs. The performance is obviously improved by
the increase the number of SU (K).

our simulations, the PU transmits a Binary Phase Shift Key
(BPSK) sequence with power P and all channels and noises
are assumed to have the same statistics (CN (0, 1)) therefore
nodes are operating at the same SNR. It is clear that using the
CCSS, the detection of the PU is possible even at very low
SNR’s. In addition, by increasing the number of SUs the pe

was decreased. This is expected, because having more SUs
provides more information at FC and accordingly, more reli-
able decisions can be made.

2.2. CCSS: Hidden Markov Model

In section 2.1 we implicitly assumed that the PU’s statuses,
si(i = 1, 2, · · · ), are independent. This essentially means
that there is no memory in the system and PU’s activity is in-
dependent from time to time. However, it is quite natural to
assume that whenever the PU is active, it is more likely to be
active next time and vice versa; in other words, the system is
not memoryless. One way to capture this effect is to assume
that si(i = 1, 2, · · · ) is evolving according to a Markov chain
and at each time, based on the channel status si, we have an
observation (yK

i ) at the FC (see (Fig. 3-(b))). In this case, like
the problem that was discussed in section 2.1 the observed
data has a mixture model (equation 3). The only difference
is that the classes are not independent and evolving according
to a transition matrix which should be estimated along with
the other parameters of the Gaussian mixture model. The in-
ference problem for HMMs involves taking as input the ob-
served data and yielding as output a probability distribution
on the underlying states. This problem can be solved recur-
sively in a neat way and in the mean time EM algorithm can
be used to derive the mixture components [10].

Figure 5 illustrates the performance of the HMM in the
CCSS and compares it with the Gaussian mixture model when
K = 2. It is clear that, by modeling the dependencies in the
PU’s activity with a HMM, the performance is significantly
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Fig. 5. HMM and EM based spectrum sensing performances
for K = 2 SUs. As you can see HMM by utilizing the time
dependency in the PU activity has a lower error probability
for the same SNR.

improved.

3. DECENTRALIZED COOPERATIVE SPECTRUM
SENSING (DCSS)

In DCSS as it was explained in section 1, there is no FC to
collect all the information and make a unanimous decision.
However, some of the SU’s can share their information with
each other to make the decision processing more reliable (see
Fig.1-(b)). In this section, a DCSS algorithm is proposed
which improves the reliability of decisions made by the SU’s.

Assume G = (V, E) is a graph on the SU’s where each
node is a SU, also (i, j) ∈ E if and only if there is a communi-
cation link between node i and j. We assume that these links
are independent Binary Symmetric Channels (BSC) with cross
probability α which means if u is the input and y is the output
then p(y 6= u | u) = α. Note that interference form primary
user is modeled as noise.

The proposed DCSS is as follows. At the first iteration
of the algorithm (nodes are assumed to be synchronized), ev-
ery node senses the channel and based on the received energy
makes a hard decision (see section 2). Let the jth node deci-
sion be u

(1)
j (j = 0, 1, · · · ,K − 1). Then every node sends

it’s decision (u(1)
j )to its neighbors, assume the output of the

BSCs be y
(1)
jt where t ∈ N(j) (N(j) = {t ∈ V : (j, t) ∈ E})

this completes the first iteration. In the second iteration, ev-
ery node makes a new decision (u(2)

j ) based on the data that

it had, (u(1)
j ), and the data that it received from the neighbors,

(y(1)
N(j)j). At this point SUj’s decision is based on its own in-

formation and the 1-neighbor 1 information. This process is
being continued till the point that every node has the whole

1t is a k-neighbor of j if and only if the shortest path from j to t is of
length k

Fig. 6. A typical graph of SU’s. Every edge in this graph is a
BSC.

information (the number of iterations would be the graph di-
ameter).

The jth decision reliability at iteration i can be determined
by two numbers, probability of false alarm, p

(i)
fj = P (u(i)

j =

1 | H0) and probability of detection, p
(i)
dj = P (u(i)

j = 1 |
H1). Without loss of generality assume the neighbors of SU0

are SUj j = 1, 2, · · · d. As it was explained, SU0 receives
y
(i)
j (j = 1, 2, · · · d) from it’s neighbors. one can find:

p̃
(i)
fj := P (y(i)

j = 1 | H0) = p
(i)
fj (1− α) + (1− p

(i)
fj )α

p̃
(i)
dj := P (y(i)

j = 1 | H1) = p
(i)
dj (1− α) + (1− p

(i)
dj )α

Consequently the log-likelihood at SU0 can be written

r
(i+1)
0 =

d∑

j=0

log
P (y(i)

j | H1)

P (y(i)
j | H0)

=
d∑

j=0

log
I
{

y
(i)
j = 0

}
(1− p̃

(i)
dj ) + I

{
y
(i)
j = 1

}
p̃
(i)
dj

I
{

y
(i)
j = 0

}
(1− p̃

(i)
fj ) + I

{
y
(i)
j = 1

}
p̃
(i)
fj

where y
(i)
0 = u

(i)
0 , p̃

(i)
f0 = p

(i)
f0 and p̃

(i)
d0 = p

(i)
d0 . In other

words, u
(i)
0 has passed a noise less channel with α = 0.

The Maximum Likelihood (ML) detection at time i + 1 is
determined based on r

(i+1)
0 , so we have

u
(i+1)
0 = I

{
r
(i+1)
0 > 0

}

p
(i+1)
f0 = P (r(i+1)

0 > 0 | H0) (4)

p
(i+1)
d0 = P (r(i+1)

0 > 0 | H1) (5)

This process is conducted for every node each time.
An interesting point about equations 4 and 5 is that p

(i+1)
f0

and p
(i+1)
d0 are just functions of d (degree of SU0), α (noise

parameter)and the reliability of it’s neighbors (p(i)
fj and p

(i)
dj

for j = 0, 1, · · · d). In other words, if every node knows the
whole graph G = (V, E), p

(i+1)
f0 and p

(i+1)
d0 can be computed

recursively. Notice that initial points are p
(1)
fj = Q( τ−σ2

ω√
2
N σ2

ω

)

and p
(1)
dj = Q( τ−(Pσ2

h+σ2
ω)√

2
N (Pσ2

h+σ2
ω)

) for all j. In these equations τ is



the hard decision threshold and Q(.) is the standard gaussian
Q-function.

In order to demonstrate the effectiveness of this algorithm
a simulation were conducted on the graph shown in figure
6. The probability of error verses SNR for SU1 and SU2

are illustrated in Fig. 7. As you can see the performance
is improved by increasing the number of iterations for SU1.
However in SU2 the performance is improved in the second
iteration and decreased a bit for high SNRs in the third iter-
ation. The reason is, SU2, has gathered all the relevant in-
formation in the second iteration and the third is just adding
more randomness in the decision which reduces the perfor-
mance. Therefore it is natural that nodes run the algorithm
not more than it is necessary to gather all the information.
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Fig. 7. DCSS performance for SU1(up) and SU2 (down).

4. CONCLUSION

Cooperative spectrum sensing methods are of great impor-
tance in cognitive radios because: 1) they are robust against
impairments in wireless communication systems, and 2) they
improve the coordination and cooperation between SUs. Con-
sequently, cooperative sensing techniques enhance the accu-
racy and reliability of the SS in cognitive radios. In this paper,
effective solutions for centralized and decentralized coopera-
tive spectrum sensing in cognitive radios were proposed.

Our simulation results showed that the robust and reliable

detection of PU is possible even at very low SNR’s which
is of crucial importance in cognitive radios. A comparison
between the performance of the EM and the HMM models
in CCSS clearly indicates that capturing the dependencies in
the PU’s activities at different times (using HMM) can sig-
nificantly improve the performance of the system. We also
showed how the flexibility and the lack of need of the central-
ized fusion center in DCSS can be compromised with the reli-
ability and accuracy of spectrum sensing in CCSS. However,
in both case (CCSS, DCSS), the performance is improved by
the increase of the number of SUs. Therefore, careful con-
siderations must be made in the design of cognitive radios by
making an appropriate trade off between available resources
and goals.
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