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Online Terrain Parameter Estimation for Wheeled Mobile
Robots With Application to Planetary Rovers

Karl Iagnemma, Shinwoo Kang, Hassan Shibly, and Steven Dubowsky

Abstract—Future planetary exploration missions will require wheeled
mobile robots (“rovers”) to traverse very rough terrain with limited human
supervision. Wheel–terrain interaction plays a critical role in rough-ter-
rain mobility. In this paper, an online estimation method that identifies key
terrain parameters using on-board robot sensors is presented. These pa-
rameters can be used for traversability prediction or in a traction control
algorithm to improve robot mobility and to plan safe action plans for au-
tonomous systems. Terrain parameters are also valuable indicators of plan-
etary surface soil composition. The algorithm relies on a simplified form of
classical terramechanics equations and uses a linear-least squares method
to compute terrain parameters in real time. Simulation and experimental
results show that the terrain estimation algorithm can accurately and effi-
ciently identify key terrain parameters for various soil types.

Index Terms—Mobile robots, planetary rovers, rough terrain, wheel–ter-
rain interaction.

I. INTRODUCTION

Future planetary exploration missions will require rovers to perform
challenging mobility tasks in rough terrain [1]–[4]. Proposed future
mission objectives include traversal of several kilometers with a high
degree of autonomy. To accomplish these objectives, future control
and planning methods must consider the physical characteristics of the
rover and its environment to fully utilize the rover’s capabilities.

Wheel–terrain interaction plays a critical role in rough-terrain
mobility [5]–[7]. For example, a robot traveling through loose sand
has very different mobility characteristics than one moving across firm
clay. It is important to estimate terrain physical parameters online,
since this would allow a robot to predict its ability to safely traverse
terrain [8]. It would also allow a robot to adapt its control and planning
strategy to maximize wheel traction or minimize power consumption
[9]. Finally, estimation of terrain parameters is an important scientific
goal of planetary surface exploration missions [10]–[12].

Several researchers have studied terrain parameter estimation. Gen-
erally, these methods involve offline estimation using dedicated testing
equipment [13], [14]. Parameter estimation for a legged system has
been studied in [15]. This approach relies on feedback from an em-
bedded multi-axis force sensor in the robot’s leg and is not applicable
to wheeled systems. Terrain parameter estimation for tracked vehicles
has been proposed in [16]. This approach assumes a highly simplified
“force coefficient”model of track–terrain interaction, which is not valid
in deformable rough terrain.

Parameter estimation of Martian soil has been performed by the
Viking landers and the Sojourner rover. TheViking landers usedmanip-
ulator arms to conduct soil trenching experiments [10]. The Sojourner
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Fig. 1. Free-body diagram of a rigid wheel on deformable terrain.

rover used the rover wheel as a trenching device to identify soil cohe-
sion and internal friction angle [11]. Both missions used visual cues
and offline (earth-based) analysis techniques to compute soil parame-
ters. Earth-based analysis requires lengthy communication time delays
that reduce rover efficiency and limit its autonomy.

In this paper, a method for online estimation of two key terrain pa-
rameters, cohesion and internal friction angle, is presented. The partic-
ular application of planetary exploration is addressed. The algorithm
relies on a simplified form of classical terramechanics equations and
uses a linear-least squares estimator to compute terrain parameters in
real time. The method is computationally efficient and thus suitable for
implementation on a rover with limited computational resources. Also,
the method uses sensors that are likely to be part of future planetary
rover systems and thus does not add to system complexity. Simula-
tion and experimental results show that the algorithm can accurately
and efficiently identify cohesion and internal friction angle for various
soil types.

II. TERRAIN PARAMETER IDENTIFICATION

The parameter identification algorithm estimates the terrain cohesion
c and internal friction angle � online, using on-board rover sensors.
These parameters can be used to compute the maximum terrain shear
strength �max from Coulomb’s equation

�max = c+ �max tan� (1)

where �max is the maximum normal stress acting on a terrain region.
Since soil failure occurs when themaximum shear strength is exceeded,
knowledge of c and � can be used to predict rover traversability on flat
and sloped terrain. The parameters c and � are also important scientific
parameters for characterizing soils.

Here, the case of a rigid wheel traveling through deformable terrain
is considered, since this is the expected condition for planetary explo-
ration vehicles. This method also applied to terrestrial vehicles with
pneumatic tires, if the inflation pressure is high compared to the terrain
stiffness [5]. The following analysis assumes a smooth wheel but can
also be applied to grousered wheels, since properly designed grousers
can be modeled as an increased effective wheel radius [6].

To estimate terrain parameters, equations relating the parameters of
interest to physically measurable quantities must be developed. A free-
body diagram of a driven rigid wheel of radius r and width b traveling
through deformable terrain is shown in Fig. 1. A vertical loadW and a
horizontal forceDP are applied to the wheel by the vehicle suspension.
A torque T is applied at the wheel rotation axis by an actuator. The
wheel has angular velocity !, and the wheel center has linear velocity
V . The angle from the vertical at which the wheel first makes contact
with the terrain is denoted �1. The angle from the vertical at which

the wheel loses contact with the terrain is denoted �2. Thus, the entire
angular wheel–terrain contact region is defined by �1 + �2.

A stress region is created at the wheel–terrain interface, as indicated
by the regions �1 and �2. Here �1 is the interface section from initial
terrain contact (i.e., �1) to the point of maximum stress (i.e., �m), and
�2 is the region from the point of maximum stress to final terrain con-
tact (i.e., �2). At a given point on the interface, the stress can be decom-
posed into a component acting normal to the wheel at the wheel–terrain
contact point � and a component acting tangential to the wheel at the
wheel–terrain contact point � . The angle from the vertical at which the
maximum stress occurs is denoted �m.

In the following analysis, it is assumed that the following quantities
are known: the vertical load W , torque T , sinkage z, wheel angular
speed !, and wheel linear speed V . Issues related to sensing are dis-
cussed later in this paper.

Force balance equations for the system in Fig. 1 can be written as

W = rb

�

�

�(�) cos � � d� +

�

�

� (�) sin � � d� (2)

DP = rb

�

�

� (�) cos � � d� �

�

�

�(�) sin � � d� (3)

T = r2b

�

�

� (�) � d�: (4)

The shear stress can be computed as

� (�) = (c+ �(�) tan�) 1� e [� ���(1�i)(sin � �sin �)] (5)

where k is the shear deformation modulus, r is the wheel radius, and i
is the wheel slip, defined as i = 1� (V=r!) [17].

The normal stress at the wheel-terrain interface is given by

�(z) =
kc
b
+ k� zn (6)

where b is the wheel width, kc and k� are pressure-sinkage moduli,
and n is the sinkage exponent [5]. This equation can be expressed as
a function of the wheel angular location � by noting that sinkage is
related to � as

z(�) = r(cos � � cos �1): (7)

Substituting (7) into (6) yields expressions for the normal stress dis-
tribution along the wheel–terrain interface as follows:

�1(�) =
kc
b
+ k� (r(cos � � cos �1))

n (8)

�2(�) =
kc
b
+ k�

� r cos �1 � �
(�1 � �m)

�m
� cos �1

n

: (9)

To develop a parameter estimation algorithm, analytical expressions
for the force balance (2)–(4) are required, since these equations relate
physically measurable quantities (W;T; z; !; V ) to the parameters of
interest (c; �). However, (2)–(4) are not amenable to closed-form inte-
gration due to their complexity. This motivates the use of an approxi-
mate form of the stress [see (5), (8), and (9)].

A. Equation Simplification

Fig. 2 shows typical simulated plots of shear and normal stress dis-
tributions (as defined by (5), (8), and (9), respectively) around the rim
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Fig. 2. Normal and shear stress distribution for various terrain types at moderate wheel slip.

TABLE I
PARAMETERS FOR VARIOUS TERRAIN TYPES

of a driven rigid wheel on various terrains at moderate wheel slip. Pa-
rameters used in these plots are listed in Table I and represent a diverse
range of terrain types: dry sand, sandy loam, clayey soil, and snow [7],
[17]. Fig. 2 shows that the shear and normal stress distribution curves
are approximately linear for a diverse range of terrains.

Based on this observation, linear approximations of the shear and
normal stress equations can be written as:

�
L

1 (�) =
�1 � �

�1 � �m
�m (10)

�
L

2 (�) =
�

�m
�m (11)

�
L

1 (�) =
�1 � �

�1 � �m
�m (12)

�
L

2 (�) = c+
�

�m
(�m � c) (13)

where �m and �m are the maximum values of the normal and shear
stress, respectively. Equation (13) contains an offset term for cohesive
soils.

Simplified forms of the force balance equations can be written by
combining (2)–(4) with (10)–(13) (with �2 = 0, since �2 is generally
small in practice) to yield

W = rb

�

0

�
L

2 (�) cos � � d� +

�

�

�
L

1 (�) cos � � d�

+

�

0

�
L

2 (�) sin � � d� +

�

�

�
L

1 (�) sin � � d� (14)

DP = rb

�

0

�
L

2 (�) cos � � d� +

�

�

�
L

1 (�) cos � � d�

�

�

0

�
L

2 (�) sin � � d� �

�

�

�
L

1 (�) sin � � d� (15)

T = r
2
b

�

0

�
L

2 (�) � d� +

�

�

�
L

1 (�) � d� : (16)

Evaluation of (14) and (16) yields the following expressions for the
normal load and torque:

W =
rb

�m(�1 � �m)
�m(��m cos �1 + �1 cos �m � �1)

� �m(�m sin �1 � �1 sin �m)

� c �1 sin �m � �m sin �m � �m�1 + �
2

m (17)

T =
r
2
b

2
(�m�1 + c�m): (18)



924 IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

TABLE II
PARAMETER SPACE FOR ALGORITHM ANALYSIS

Two assumptions are made in solving (17) and (18) for c and �.
The first is that the location of the maximum shear and normal stress
occurs at the same location, �m. Analysis and simulation have shown
that this assumption is reasonable for a wide range of soil types. With
this assumption, an additional relation can be written, based on (5), as

�m = (c+�m tan�) 1� e� [� �� �(1�i)(sin � �sin � )] : (19)

The second assumption is that the angular location of maximum
stress, �m, occurs midway between �1 and �2, i.e.,

�m =
�1 + �2

2
: (20)

This assumption is reasonable for a wide range of soils at moderate
slip ratios [18]. This can be justified by noting that �m can be estimated
from the relation �m = (c1 + ic2)�1, where c1 and c2 are terrain
parameters. The range of c1 and c2 is generally c1 � 0:4 and 0 �

c2 � 0:3 [19]. Thus, for a wide range of slip ratios, �m will be near
0.5.

The system of (17)–(19) can be combined into a single equation re-
lating cohesion and internal friction angle as follows:

c =
�1 tan�+ �2

�3 tan�+ �4
(21)

where

�1 = A �21Wr + 4T sin �1 � 8T sin
�1
2

�2 = 4T cos �1 � 2 cos
�1
2

+ 1

�3 = A�1r
2b sin �1 � 4 sin

�1
2

+ �1

�4 = �1r
2b cos �1 � 2 cos

�1
2

+ 2A cos �1

� 4A cos
�1
2

+ 2A+ 1

A = 1� e [ +(1�i)(� sin � +sin( ))]:

Equation (21) can be rearranged to

�2

�4
=

�3

�4
c tan�+ c�

�1

�4
tan�: (22)

The relative contribution of each term in the right-hand side of (22)
was studied numerically over the range of parameters in Table II. This
space encompasses a broad variety of terrain types. The simulated
wheel radius r was 0.1 m, and the wheel width b was 0.1 m.

It was found that the maximum relative contribution of the
(�3=�4)c tan� term was 2.47%. The other two terms had a signif-
icantly higher contribution [18]. Thus the (�3=�4)c tan� term is
negligible, and (22) can be reduced to

�2

�4
= c�

�1

�4
tan�: (23)

Equation (23) is a single equation in two unknowns. At least two
unique instances of (23) are required to compute c and �. During the
parameter estimation process, it is expected that sensor data would be
sampled at a frequency of several hertz. For each unique sensor sam-
pling occurrence j, a unique instance of (23) can be written as

�1
2

�1
4

= c�
�1
1

�1
4

tan�

...
...

�j2
�j4

= c�
�j1
�j4

tan� (24)

or, in matrix form, as

K1 = K2
c

tan�
(25)

with

K1 = �1
2 �1

4 � � � �j2 �j4
T

K2 =
1 � � � 1

� �1
1 �1

4 � � � � �j1 �j4

T

:

In practice, more than two equations are used to form an estimate
of c and � to decrease sensitivity to sensor noise. In this case, K2 is
nonsquare and (25) can be solved in a least-squares sense, using the
pseudoinverse of K2 as follows:

c

tan�
= K

T
2K2

�1

K
T
2K1: (26)

Note that singularity of (KT
2K2)

�1 only occurs in the degenerate
case where nonunique sensor data are sampled (such as on perfectly
flat terrain). This case will be discussed later.

All quantities in (26) can be sensed except the shear deformation
modulus k (in the matrices K1 and K2). In practice, the estimation
algorithm exhibits low sensitivity to k, particularly for large wheel radii
and high slip ratios. Thus, k is chosen as a representative value for
deformable terrain.

B. Sensing and Implementation Issues

In the preceding analysis, it was assumed that the vertical load W ,
torque T , sinkage z, wheel angular speed !, and wheel linear speed
V could be measured or estimated. Here, methods for measuring or
estimating these inputs are discussed, along with other implementation
issues for planetary rovers.

The vertical loadW can be computed from a quasi-static force anal-
ysis of the rover, with knowledge of the rover configuration and mass
distribution. Quasi-static analysis is valid since dynamic effects are
negligible at the low speeds of these vehicles (on the order of 10 cm/s)
[3]. The torque T can be estimated from the current input to the motor
and an empirically determined mapping from current to torque. In ap-
plications where large thermal variation is expected (such as Martian
surface exploration), motor temperature can be included in this map-
ping [11]. Note that torque and vertical load could be directly measured
if thewheel were instrumentedwith amulti-axis force sensor. However,
this adds cost and complexity to the rover.

The sinkage z can be computed with vision-based techniques or by
kinematic analysis of the rover suspension [20], [21]. The wheel an-
gular speed ! can be measured with a tachometer. The wheel linear
speed V can be computed using inertial measurement unit (IMU) mea-
surements. However, at low speeds, IMU velocity measurements can
be highly degraded by noise. In this case, visual odometry can give
more accurate results [22].
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The sensors described above (i.e., rover configuration sensors,
motor current sensor, wheel tachometer, IMU, and vision system)
would likely be part of a planetary exploration rover. Thus, all required
inputs can be measured or estimated with on-board rover sensors.

An important implementation issue isminimizing sensor noise.Most
rover sensors can be modeled as a “true” signal corrupted by white
noise. In this case, increasing the number of data points in (26) acts
as an averaging filter and improves estimation accuracy. Other filtering
techniques (such as the Kalman filter and its extensions) could also be
applied to this problem.

Note that all data points used in a parameter estimate are assumed to
be sampled from homogeneous terrain. For example, consider a rover
moving at 5 cm/s with a sensor sampling rate of 5 Hz. If 10 data points
are used to compute a parameter estimate, it must be assumed that
the terrain is homogeneous within a 10-cm distance. If data are sam-
pled from mixed or inhomogeneous terrain, resulting parameter esti-
mates will be effective estimates of the combined terrain types. In gen-
eral, assumptions regarding terrain homogeneity can be formed from a
priori knowledge of local terrain characteristics. Terrain classification
methods could also be used to detect changes in terrain type [23].

The final implementation issue arises for a rover traveling at con-
stant velocity on flat terrain, where the matrix (KT

2K2)
�1 in (26) may

be poorly conditioned. This occurs because the rover is collecting an
identical set of sensor readings at each sampling instance. The ridge re-
gression technique can be used to solve (26) in caseswhere (KT

2K2)
�1

is poorly conditioned as follows:

c

tan�
= K

T

2K2 + �I
�1

K
T

2K1 (27)

where � is a small positive constant that can be optimized by techniques
such as cross validation [24]. In practice (and in the results presented
below), natural terrain variationwill usually lead to acceptable equation
conditioning. Deliberately inducing variable wheel slip also improves
parameter estimates on flat terrain.

III. SIMULATION RESULTS

Simulations were conducted of a single driven wheel traveling
through deformable terrain. The purpose was to examine algorithm
accuracy under various terrain conditions. In all simulations, the wheel
traveled at approximately 0.1 m/s. The wheel had radius 0.1 m, width
0.1 m, mass 10 kg, and inertia 0.05 kg�m2. A proportional-derivative
control algorithm commanded the wheel. The simulated sampling rate
was 20 Hz. Further details of the simulation are given in [18].

Simulations were first performed with noise-free inputsW;T; z, and
i to study fundamental algorithm accuracy. Random variation of 15%
was introduced to W and i to simulate variation caused by uneven,
natural terrain, where wheel load and velocity change as the rover con-
figuration changes. During the estimation procedure, the shear defor-
mation modulus k was assumed to be 150% of its actual value to study
algorithm sensitivity to this parameter.

Estimates of cohesion and internal friction angle were computed for
15 625 evenly spaced parameter sets in the parameter space described
in Table II. This parameter space represents a broad variety of terrain
types. Five sampled data points were used to compute each parameter
estimate.

The root mean square (rms) error between the estimated and actual
c over all simulations was 0.21 kPa (c ranges from 0 to 10 kPa). The
rms error between the estimated and actual � over all simulations was
1.62� (� ranges from 20� to–40�). This shows that the approximations
introduced in Section II-A do not introduce significant error into the
estimation algorithm. The computational load for the algorithm was
approximately 1 ms per estimation cycle for unoptimized Matlab code
on a 933-MHz desktop PC.

Fig. 3. Simulated estimation of cohesion of dry sand for a noise-free case, a
noisy case using 15 data points, and a noisy case using 30 data points.

Simulations were then run to study the effect of sensor noise on esti-
mation accuracy. The inputs W;T; z, and i were corrupted with white
noise with standard deviation equal to 10% of their maximum value.
Again, estimates of cohesion and internal friction angle were computed
for the 15 625 parameter sets described above. The shear deformation
modulus k was assumed to be 150% of its actual value, and ten sam-
pled data points were used to compute each parameter estimate.

The rms error between the estimated and actual c over all simulations
was 1.57 kPa. The rms error between the estimated and actual� over all
simulations was 4.12�. As expected, increasing the sensor noise levels
leads to increased parameter estimation error. Simulations were then
run with the number of sampled data points increased to 30. The rms
error between the estimated and actual c was reduced to 0.63 kPa and
for � to 2.11�. The computational load for the algorithm was approx-
imately 3 ms per estimation cycle. This suggests that it is possible to
compute accurate parameter estimates despite sensor noise, with low
computational cost. It also shows that increasing the number of sam-
pled data points used to form a parameter estimate decreases the error
caused by sensor noise.

Figs. 3 and 4 show representative parameter estimation simulation
results for dry sand (see Table I). It can be seen that the estimated pa-
rameters c and � rapidly approach their true values in the noise-free
case. Sensor noise degrades the accuracy of the estimated parameters
compared to the noise-free case. The effect of sensor noise is dimin-
ished by increasing the number of sampled data points from 15 to 30.
In general, it is possible to obtain accurate parameter estimates using
relatively few data samples despite sensor noise.

IV. EXPERIMENTAL RESULTS

Experiments were performed on a laboratory terrain characterization
testbed, shown in Fig. 5. The testbed consists of a driven rigid wheel
mounted on an undriven vertical axis. The wheel assembly is mounted
to a driven horizontal carriage. By driving the wheel and carriage at
different rates, variable slip ratios can be imposed. The vertical wheel
load can be changed by adding weight to the vertical axis.

The testbed is instrumented with encoders to measure angular ve-
locities of both the wheel and the carriage pulley. The carriage linear
velocity is computed from the carriage pulley angular velocity. The
vertical wheel sinkage is measured with a linear potentiometer. The
wheel torque T is measured by a Cooper Instruments torque sensor.
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Fig. 4. Simulated estimation of internal friction angle of dry sand for a
noise-free case, a noisy case using 15 data points, and a noisy case using 30
data points.

Fig. 5. Terrain characterization testbed.

The six-component wrench between the wheel and carriage is mea-
sured with a JR3 six-axis force/torque sensor. The force sensor allows
measurement of the normal loadW and drawbar pull DP. The testbed
is controlled by a 133-MHz PC. The soil bin is 90 cm long, 30 cmwide,
and 15 cm deep.

The wheel diameter and width are 14.6 and 6.0 cm, respectively.
The wheel maximum angular velocity is 1.1 rad/s. This results in a
maximum linear velocity of 8.0 cm/s. The wheel size and speed were
chosen to be in the range of current and projected planetary rovers.

Three distinct soil types were chosen for experimentation: washed
sand, dried bentonite clay, and compacted topsoil. Classical shear
failure experiments were performed to determine c and � for all soils.
In these experiments, a vertical load is applied to homogeneous soil
through a device called a bevameter, which is translated horizon-
tally until shear failure occurs [5]. By varying the vertical load, a
relationship between normal stress and shear stress can be observed.
Numerous experiments were run to account for nonuniformity in
soil mixing and moisture content. Table III summarizes the results
of these experiments. These results agree with published values for
similar soils [7], [17], [25]. A result of shear failure experiments for
dried bentonite clay can be seen in Fig. 6. This figure shows a linear
relationship between normal stress and shear stress, as predicted by
(1).

TABLE III
RESULTS FROM SHEAR FAILURE EXPERIMENTS

Fig. 6. Result from shear failure experiments for dried bentonite clay. Data
points shown with best-fit line.

Fig. 7. Results of experimental estimation of cohesion and internal friction
angle estimation for dried bentonite.

Parameter identification experiments were performed on each soil
type. The shear deformation modulus k was assumed to be 0.05. Thirty
sampled data points were used to compute each parameter estimate.

Fig. 7 shows the results of the estimation algorithm for dried ben-
tonite. The estimated cohesion and internal friction angle rapidly con-
verge to values of approximately 0.70 kPa and 32.1�, respectively.
These values lie near or within the variance observed in the shear failure
experiments.

Table IV summarizes the results of these experiments. Comparing
these values with the values of Table III, it can be seen that the estimated
values are similar to those measured via shear failure experiments. This
suggests that the proposed approach can identify c and � of various
soils despite noisy sensors. Error and variation in estimated parameters
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TABLE IV
RESULTS FROM TERRAIN PARAMETER ESTIMATION EXPERIMENTS

are likely due to nonuniformity in soil mixing and moisture content.
Note that this variation is not unique to the proposed method, but is
present in any soil property measurement technique. Estimation error
is due to sensor noise and error in the assumed value of k. Also, at high
slip ratios the testbed wheel exhibited control chatter, which degraded
sensor readings.

These results show that the estimation algorithm produces reason-
ably accurate, online parameter estimates on an experimental system
with noisy sensors, in a variety of terrain types. The level of accuracy
shown by the algorithm would allow it to distinguish between distinct
soil types such as crusty material or drift material. The computation
time for each estimation cycle was approximately 1 ms on a 933-MHz
desktop PC. Thus the approach is suitable for systems with limited
on-board computation, such as planetary rovers.

V. SUMMARY AND CONCLUSION

An efficient online terrain parameter estimation algorithm has been
presented. The estimation method is based on simplified forms of clas-
sical terramechanics equations. A linear least-squares estimator was
used to estimate cohesion and internal friction angle in real time. Sim-
ulation and experimental results have shown that the method can es-
timate parameters of three different terrain types with good accuracy
despite noise, using limited computation. This method could be used
for planetary rovers for online terrain analysis.
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