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Abstract. Two new techniques based on nonparametric estimation of probabil-
ity densities are introduced which improve on the performance of equivalent ro-
bust methods currently employed in computer vision. The first technique draws
from the projection pursuit paradigm in statistics, and carries out regression M-
estimation with a weak dependence on the accuracy of the scale estimate. The
second technique exploits the properties of the multivariate adaptive mean shift,
and accomplishes the fusion of uncertain measurements arising from an unknown
number of sources. As an example, the two techniques are extensively used in an
algorithm for the recovery of multiple structures from heavily corrupted data.

1 Introduction

Visual data is complex and most often not all the measurements obey the same para-
metric model. For a satisfactory performance, robust estimators tolerating the presence
of outliers in the data, must be used. These estimators are already popular in the vi-
sion community, see [17] for a representative sample of applications. Some of the ro-
bust techniques, like M-estimators and least median of squares (LMedS) were imported
from statistics, while others, like Hough transform and RANSAC are innate, developed
initially to solve specific vision problems.

It was shown in [2] that all the robust methods widely used in computer vision can be
regarded as members of the same family of M-estimators with auxiliary scale, and that
estimators with a smooth loss function (see Section 2) are to be preferred. In this paper
we propose a novel approach toward computing M-estimators. The new approach com-
bines several of the desirable characteristics of the different robust techniques already
in use in computer vision and it is well suited for processing complex visual data.

A large class of computer vision problems can be modeled under the linear errors-
in-variables (EIV) model. Under the EIV model all the measurements yi 2 Rp are
corrupted independently by zero mean noise, yi = yio + �yi, where the subscript ’o’
denotes the unknown true value. In the sequel will consider the simplest case in which
the noise covariance is �2Ip, however, our results can be easily extended to arbitrary
covariance matrices. A linear constraint can be defined asy>io� � � = 0 i = 1; : : : ; n k�k = 1: (1)



When the constraint is written under this form it can be shown that the Euclidean dis-
tance between a measurement yi and ŷi, its orthogonal projection on the hyperplane
defined by the linear constraint iskyi � ŷik = jy>i � � �j (2)

i.e., the geometric distance and the algebraic distance are the same.
The optimal estimator for the above model is the total least squares (TLS) technique.

In the presence of outliers the corresponding robust M-estimator is defined as[�̂; �̂] = argmin�;� 1n nXi=1 ��1skyi � ŷik� subject to ŷ>i � � �̂ = 0 (3)

where s is a scale parameter, and �(u) is a nonnegative, even symmetric loss function,
nondecreasing with juj and having the unique minimum �(0) = 0. Only the class of
redescending M-estimators is considered here, and therefore we can always assume that�(u) = 1 for juj > 1. A frequently used redescending M-estimator has the biweight loss
function �(u) = �1� (1� u2)3 if juj � 11 if juj > 1 (4)

and it will be the one employed throughout the paper.
The success of an M-estimation procedure, i.e., accurate estimation of the model pa-

rameters through rejection of the outliers, is contingent upon having a satisfactory scale
parameter. (The issue of the breakdown point of the M-estimators is of lesser relevance
in our context as will be seen later.) In [2] it was shown that the robust techniques im-
ported from statistics differ from those developed by the vision community in the way
the scale is obtained. For the former the scale is estimated from the data, while for the
latter its value is set a priori.

It was implicitly assumed in (3) that a good scale estimate is already known. Statisti-
cal techniques for simultaneous estimation of the scale are available, e.g., [20], but they
can not handle complex data of the type considered in this paper. Similarly, not in every
vision application can a reliable scale estimate be obtained from the underlying physi-
cal properties. For example, in data containing multiple structures, i.e., several instances
of the same model but with different sets of parameters, each structure may have been
measured with a different uncertainty. A typical vision task generating such data is the
recovery of the motion parameters for several moving objects in the presence of cam-
era egomotion. In this case using a single global scale value for all the involved robust
estimation procedures may not be satisfactory.

The performance of the robust M-type regression technique proposed in this paper
has only a weak dependence on the accuracy of the scale estimate. Nevertheless, the
technique provides a satisfactory inlier/outlier dichotomy for a wider range of contam-
inations than the traditional M-estimators. This performance improvement is achieved
by recasting M-estimation as a kernel density estimation problem.

Kernel density estimation is a well known technique in statistics and pattern recogni-
tion. See the books [16] and [19] for a statistical treatment, and [7, Sec.4.3] for a pattern
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recognition description. Let xi, i = 1; : : : ; n, be scalar measurements drawn from an
arbitrary probability distribution f(x). The kernel density estimate of this distributionf̂(x) (called the Parzen window estimate in pattern recognition), is obtained based on a
kernel function K(u) and a bandwidth h asf̂(x) = 1nh nXi=1 K �x� xih � : (5)

The kernel functions considered here satisfy the following propertiesK(u) = K(�u) � 0 K(0) � K(u) for u 6= 0K(u) = 0 for juj > 1 Z 1�1K(u) = 1 : (6)

Other conditions on the kernel function or on the density to be estimated [19, p.18], are
always satisfied in practice. The even symmetry of the kernel function allows us to define
its profile, k(u) from K(u) = ckk(u2) (7)

where ck is a normalization constant determined by (6). The importance of the profile is
revealed in the case of multivariate kernel density estimation which will be be discussed
in Section 3.

The quality of the density estimate f̂(x) is assessed using the asymptotic mean in-
tegrated error (AMISE), i.e., the integrated mean square error between the true density
and its estimate for n ! 1, while h ! 0 at a slower rate. The AMISE optimal band-
width depends on the second derivative of f(x), the unknown density [19, p.22]. While
a good approximation of this bandwidth can be obtained employing a simple plug-in
rule [19, p.72], for our purposes a bandwidth depending only on the kernel function and
a raw scale estimate [19, Sec.3.2.2] sufficesĥ = � 243R(K)35�2(K)2n�1=5 �̂ �̂ = cmedj j xj �medi xi j (8)R(K) = Z 1�1K(u)2du �2(K) = Z 1�1 u2K(u)du :
The data is taken into consideration through a median absolute deviations (MAD) scale
estimate. The proportionality constant can be chosen as c = 0:5 or 1 to avoid over-
smoothing of the estimated density [19, p.62]. In Section 2 the connection between the
regression M-estimator (3) and the univariate density estimation (5) is established and
then exploited to computational advantage.

In Section 3 kernel density estimation is reformulated under its most general mul-
tivariate form and will provide the tool to solve the following difficult problem. Let�j 2 Rp, j = 1; : : : ;m, be a set of measurements whose uncertainty is also available
through the covariance matrices Cj . A large subset of these measurements is related
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to M � m different data sources, while the rest are completely erroneous. The value
of M is not known. Find the best (in statistical sense) estimates for the M vectors and
covariances characterizing these sources. This is a fundamental feature space analysis
problem and our approach, based on an extension of the variable bandwidth mean shift
[4], provides a simple robust solution.

In Section 4 the two new techniques become the main building blocks of an algo-
rithm for analyzing data containing multiple structures. The success of the algorithm is
illustrated with 3D examples. Finally, in Section 5 the potential of the proposed tech-
niques to solve difficult vision tasks, and the remaining open issues are discussed.

2 M-estimators and Projection Pursuit

Projection pursuit is a nonparametric technique introduced in statistics in the 1970s for
exploratory data analysis, and was soon applied also to nonlinear regression and density
estimation problems. Projection pursuit seeks “interesting” low-dimensional (almost al-
ways one-dimensional) projections of multidimensional data. The informative value of a
projection is measured with a projection index. Most often the projection index is a scalar
functional of the univariate probability distribution estimated from the data projected on
the chosen direction. The “best” direction is obtained through numerical optimization
and corresponds to an extremum of the projection index. This is one step in an iterative
procedure toward the solution. The current solution is then updated and a new search
is initiated. For example, in projection pursuit regression at each iteration the shape of
a smooth univariate nonlinear function which minimizes the sum of squared residuals
is determined. At the subsequent iteration this function is incorporated into the current
model. Convergence is declared when the squared error falls below a threshold. The pa-
pers [9], [11] offer not only excellent reviews on the projection pursuit paradigm, but
also contain extensive discussions from researchers working on related topics.

There is a strong connection between robust linear regression estimators, such as
least median of squares, and the projection pursuit procedure [6], [14, Sec.3.5]. This re-
lationship, however, was investigated in statistics mostly for theoretical considerations
and in the case of traditional regression, i.e., the case in which only one of the measured
variables is corrupted by noise. In this paper will apply the projection pursuit paradigm
to design a technique for the more general errors-in-variables (EIV) model which is bet-
ter suited for vision tasks.

To prove the connection between EIV regression M-estimation and kernel density
estimation, the definition (3) is rewritten as[�̂; �̂] = argmax�;� "1� 1n nXi=1 ��y>i � � �s �# = argmax�;� 1n nXi=1 ��y>i � � �s �

(9)

where �(u) = c�[1� �(u)] will be called the M-kernel function, and c� is the normal-
ization constant making �(u) a proper kernel. Note that �(u) = 0 for juj > 1, and
that the even symmetry of the loss function �(u) allows the removal of the absolute val-
ues when (2) is plugged in. In Figs. 1a and 1b the biweight loss function and its corre-
sponding M-kernel function is shown. Compare the M-kernel with the weight function
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Fig. 1. The different functions associated with the biweight M-estimator. (a) The loss function�(u). (b) The M-kernel function �(u). (c) The weight function w(u).w(u) = u�1�0(u) used in the well known iterative reweighted least squares implemen-
tation of M-estimators [13, p.306] (Fig. 1c). The two functions while look similar have
different expressions.

Let � be a unit vector defining a line through the origin in Rp. The projections of
the data points yi on this line have the intrinsic coordinates xi = y>i �. Given a kernelK(u) and the bandwidth ĥ (8), the estimated density of this sequence isf̂�(x) = 1nĥ� nXi=1 K y>i � � xĥ� !

(10)

where the dependence of the bandwidth on the direction of the projection (through the
scale estimate of the projected points) was made explicit. The mode of the density esti-
mate is defined as x̂� = argmaxx f̂�(x) (11)

and can be easily computed. Comparing (9) and (10) we can remark that if �(u) is taken
as the kernel function,� is chosen close to the true parameter of the linear model (1), andĥ� is a satisfactory substitute for the scale s, the mode (11) should provide a reasonable
estimate for the intercept �.

Based on the above observation the EIV linear model M-estimation problem can be
reformulated as [�̂; �̂] = argmax� hĥ�maxx f̂�(x)i (12)

which is the projection pursuit definition of the M-estimator, the projection index being
the quantity inside the brackets. The equivalence between (3) and (12) is not perfectly
rigorous since the scale was substituted with the bandwidth. However, this is an advan-
tage since now the role of the scale is diminished and any bandwidth is satisfactory as
long as it secures the reliable recovery of the mode. The bandwidth ĥ� is proportional
with the MAD scale estimate (8) which can be unreliable when the distribution is multi-
modal since the median is a biased estimator for nonsymmetric data. Similarly, for small
measurement noise ĥ� becomes small which can introduce artifacts if the bandwidth is
not bounded downward.
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Fig. 2. Projection pursuit principle: the parameter estimates are sought by examining the projec-
tions of the data points on arbitrary directions.
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Fig. 3. Processing the data in Fig. 2. (a) Estimated density for the projection along direction �̂1.
The detected mode is marked as �. (b) Estimated density for the projection along direction �̂2
which maximized the projection index. The points projecting inside the interval marked with the
vertical bars are selected. (c) Projection pursuit based line estimate. The dashed lines bound the
region delineated for robust postprocessing. (d) Hough transform based line estimate.
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The projection pursuit approach toward M-estimation has a clear geometric inter-
pretation. The direction � can be regarded as the unit normal of a candidate hyperplane
fitted to the p-dimensional data, yi. The bandwidth ĥ� defines a band centered on this
plane. The band is translated inRp along � to maximize, for the points within the band,
the weighted average of the orthogonal distances from the hyperplane. The M-estimate
corresponds to the densest band (largest weighted average) over all �. Note the simi-
larity with the well known interpretation of the LMedS estimator where the parameter
estimates correspond to the narrowest band containing half the data points [14, p.126].
Our approach, however, has an important advantage. The optimization criterion is not
dependent on a preset percentage of data points being inliers, thus yielding a better be-
havior in the presence of severely contaminated data, as it is shown in the following
example.

The 180 data points in the rectangle in Fig. 2 belong to three classes. There are 50
measurements from the line segment 0:54y1+0:84y2�606 = 0where 400 � y1 � 560,
corrupted by normal noise with covariance 52I2. A second structure is also present. Its
30 measurements are from the line segment 0:54y1�0:84y2�60 = 0where 600 � y1 �750, but were severly corrupted by normal noise with covariance 202I2 and became
indistinguishable from the background. The background has 100 points uniformly dis-
tributed in the rectangle bounded by (425; 225) and (750; 525). By definition the LMedS
estimator cannot handle such data. Similarly, the global maximum of the Hough accu-
mulator (built using all pairs of points) yields erroneous fits once the angle side of the
bins exceeds 3.6 degrees. An example is shown in Fig. 3d.

The projections of the 2D data points on two directions are shown in Fig. 2. For the
direction �1 = [0:99; 0:12], the computed bandwidth is h�1 = 50:2. The mode is de-
tected at x̂�1 = 578 and has the value 0.004 (Fig. 3a). The projection index (12) is
maximized by the direction �2 = [0:52; 0:85]. The resulting bandwidth is h�2 = 23:8
and the mode at x̂�2 = 600 has the value 0.013 (Fig. 3b).

The basin of attraction of the mode x̂�2 , is delineated by the first significant local
minimum at the left and at the right, marked with vertical bars in Fig. 3b. They define
two parallel lines inR2 which bound the region containing the structure of interest (Fig.
3c). Since outliers relative to this structure may have been included, a robust postpro-
cessing is required. The postprocessing also allows lower accuracy in the projection pur-
suit search for the best �, a necessary condition for searches in higher dimensional spaces
(see Section 5).

We have used an M-estimator for robust postprocessing. The scale ŝ of the structure
and its parameters �̂were estimated simultaneously [13, p.307]. Finally, the inlier/outlier
dichotomy is established and the robust covariance of the parameter estimate,C�̂, is also

computed. In the example, the final line estimate [0:53; 0:85; 604] is remarkable close
to the true values in spite of the severe contamination (Fig. 3c). Here the improvement
due to the postprocessing was small, however, its role is increased when the projection
pursuit based M-estimator is employed as a computational module in Section 4.
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3 Robust Data Fusion

The following problem appears under many forms in computer vision tasks. Themmea-
surements�j 2 Rp are available together with their uncertainty described by the covari-
ance matrices Cj . Taking into account these uncertainties, classify the measurements
into M � m groups, where M is the number of clusters present in the data. The value
of M is not known. The problem can also be regarded as a data fusion task in which the
available evidence is to be reduced to the minimum number of plausible representations.

Will consider first the trivial case of M = 1, i.e., the case in which all the measure-
ments belong to a single group. A satisfactory estimate for the center of the underlying
cluster is obtained by minimizing the sum of Mahalanobis distances�̂ = argmin� mXj=1(� � �j)>C�1j (� � �j) (13)

where the covariances are assumed to have full rank. As expected, the solution�̂ = 0@ mXj=1C�1j 1A�1 mXj=1C�1j �j (14)

is the covariance weighted average of the measurements. The more uncertain is a mea-
surement (the inverse of its covariance has a smaller norm), the less it contributes to the
result of the fusion.

To compute the covariance matrix C (uncertainty) associated with �̂, the covari-
ancesCj are approximated as Cj�ajC. The common covariance structure C and the
positive proportionality factors aj are determined from the minimization[âj ; Ĉ] = argminaj ;C mXj=1 kCj � ajCk2F (15)

where kBk2F = trace[B>B] is the squared Frobenius norm of the matrix B. Differ-
entiating after aj and taking the matrix gradient after C, two relations connecting the
unknown quantities are obtainedĈ = Pmj=1 âjCjPmj=1 â2j âj = trace[C>j Ĉ]trace[Ĉ>Ĉ] : (16)

The relations are evaluated iteratively starting from all âj = 1, which makes Ĉ the av-
erage covariance. The âj-s are then refined, and the next value of Ĉ is the one retained.

Will return now to kernel density estimation. A radially symmetric, p-dimensional
multivariate kernel K(u) is built from the profile k(u) asK(u) = ck;pk(u>u) (17)

where ck;p is the corresponding normalization constant and u 2 Rp. The properties (6)
can be easily extended toRp. In the most general case the bandwidth h is replaced by a
symmetric positive definite bandwidth matrix,H.
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Given the data points xi, i = 1; : : : ; n, in Rp, their multivariate density estimate
computed with the kernel K(u) and the bandwidth matrixH is [16, Sec.4.2.1]f̂(x) = 1n nXi=1 KH (x� xi) (18)KH(x) = [det[H]]�1=2K(H�1=2x) = ck;p[det[H]]�1=2k(x>H�1x) : (19)

Note thatH = h2Ip reduces (19) to the well known, traditional multivariate kernel den-
sity estimation expression.

In practice using a single bandwidth is often not satisfactory since the available data
points are not spread uniformly over the region of existence of the unknown density. The
sample point kernel density estimator is defined asf̂(x) = 1n nXi=1 KHi (x� xi) (20)

where each data point xi is considered in the computations through its own bandwidth
matrixHi. The sample point estimator has superior performance relative to kernel den-
sity estimators in which the variable bandwidth is associated with the center of the kernelx, [16, Sec.5.3]. From (20), taking into account (19) we obtainf̂(x) = ck;pn nXi=1 [det[Hi]]�1=2k �(x � xi)>H�1i (x� xi)� : (21)

To solve the robust data fusion problem will compute the sample point density es-
timate of the m measurements �j . Multivariate Epanechnikov kernels built from the
profile [19, p.30] k(u) = �1� u 0 � u � 10 u > 1 (22)

are used, and as bandwidth matrices the covariances Cj are employed. The covariance
matrices are scaled to �2;pCj , where �2;p is the chi-square value for p degrees of free-
dom and level of confidence  (in our implementation  = 0:995). ThusKCj (u) = 0 for u>C�1j u > �2;p j = 1; : : : ;m (23)

i.e., the kernel associated with a measurement is nonzero in the region of confidence of
that measurement having coverage probability . The density estimate (21) becomesf̂(�) = ck;pm ��2;p�p=2 mXj=1[det[Cj ]]�1=2k� 1�2;p (� � �j)>C�1j (� � �j)� : (24)

Taking into account (22) we have obtained that solving the minimization problem (13)
is equivalent to finding the maximum of the density estimate (24), i.e., its mode. (The
apparent differences are only scalar normalization factors for the covariances.)
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We are now ready to proceed to the proposed problem where the measurements come
from an unknown number of sources M . To characterize these sources, first the M clus-
ters are to be delineated, which as will be shown below is equivalent to finding all the
significant modes of the density f̂(�)�̂l = argmax� f̂(�) l = 1; : : :M : (25)

Note that the value of M is determined automatically from the data. A mode of f̂(�)
corresponds to a zero of its gradientrf̂(�) = ck;pm ��2;p�(p=2+1) mXj=1[det[Cj ]]�1=2C�1j (� � �j)� (26)� k0� 1�2;p (� � �j)>C�1j (� � �j)� :
The function g(u) = �k0(u) defines a new profile which in our case isI(u) = g u>C�1j u�2;p ! = 8<:1 u>C�1j u � �2;p0 u>C�1j u > �2;p (27)

i.e., the indicator function selecting the data points inside the region of confidence of�j .
Defining the matrix Wj = [det[Cj ]]1=2Cj the expression of the gradient (26) can be
rewrittenrf̂(�) = ck;pm ��2;p�(p=2+1) 0@ mXj=1 I(� � �j)W�1j 1A� (28)� 2640@ mXj=1 I(� � �j)W�1j 1A�10@ mXj=1 I(� � �j)W�1j �j1A� �375
where the presence of the indicator function assures the robustness computations. In-
deed, the zeros of the gradient are given by an expression similar to (14), but with the
computations restricted to local regions in Rp. As long as the M clusters are reason-
ably separated, computing their centers is based only on the appropriate data points. By
choosing a kernel other than Epanechnikov from the beta family [19, p.31], instead of a
binary indicator function (27) additional weighting can be introduced in (28).

The modes of f̂(�) by definition are located in high density regions ofRp. A versa-
tile, robust mode detector is based on the mean shift property introduced first in pattern
recognition [8], and which recently became popular in computer vision for a large va-
riety of tasks [3]. The variable bandwidth version of the mean shift procedure was also
developed [4].

The mean shift procedure recursively evaluates the second term of (28). The pro-
cedure starts by taking � = �j , and a new value of � is computed using only the data
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Fig. 4. An example of data fusion for p = 3, m = 60 and M = 3. (a) The measurements with
regions of confidence. (b) The result of the multivariate variable bandwidth mean shift. Note the
smaller scale.

points which yield nonzero values for the indicator function. The process is then repeated
with the obtained �, i.e., the kernels are shifted according to the result of the previous
step. Convergence is achieved when the shift becomes less than a threshold. See [3] and
[4] for details about the mean shift procedure.

After the mean shift procedure was applied to all the m measurements, by associ-
ating these measurements with theirs point of convergence, arbitrarily shaped basins of
attraction can be defined. Note that outliers, i.e., isolated erroneous measurements are
not taken into account since they will fail to evolve. The points of convergence are char-
acterized applying (14) and (16) to the data points in the basin of attraction. Pairs whose
squared Mahalanobis distance is less than �2;p (under both metrics) are merged. The re-
sulting M modes are the output of the robust fusion procedure. An example is shown in
Fig. 4. The large confidence regions in Fig. 4a correspond to erroneous measurements
and hide the majority of the data. After robust fusion three modes are detected, each as-
sociated with a small uncertainty (Fig. 4b).

The fusion technique introduced here can provide a robust component for more tra-
ditional approaches toward combining classifiers, e.g., [18], or for machine learning al-
gorithms which improve performance through resampling, e.g., bagging [1].

4 Robust Regression for Data with Multiple Structures

Data containing multiple structures is characterized by the presence of several instances
of the same model, in our case (1), each defined with a different set of parameters. The
need for reliable processing of such data distinguishes estimation problems in computer
vision from those in applied statistics.

The assumption that the sought model is carried by the absolute majority of the data
points, is embedded in all robust estimators in statistics. In vision tasks, such as, struc-
ture from motion, 3D scene representation, this assumption is violated once informa-
tion about more than one object is to be acquired simultaneously. Among the four main
classes of robust techniques employed in vision (see Section 1) only the Hough trans-
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form has the capability to handle complex multiple structured data. However, as our ex-
ample in Section 2 has already shown, good performance of the Hough transform is con-
tingent upon having access to the correct scale estimate (accumulator bin size), which
in practice is often not possible. See [2] for a detailed discussion on the difficulties of
traditional robust techniques in handling multiple structured data.

Four main processing steps can be distinguished in the implementation of the robust
estimators based on a nondifferentiable optimization criterion: LMedS, RANSAC and
Hough transform. First, several small random subsets of data points, i.e., samples, are se-
lected. Next, from each sample a parameter estimate candidate is computed. In the third
step, the quality of the candidates is assessed using all the data points and the candidate
yielding the “best” quality measure is retained. Finally, the data is classified into inliers
and outliers in relation to the model parameter estimates.

While some of these four steps can be intertwined and refined (or in the case of
Hough transform disguised), they provide a general processing principle. This principle
is still obeyed when the two techniques introduced in the paper are employed as com-
putational modules in an algorithm for analyzing data with multiple structures.

1. Definition of the random samples.
The data is quantized in Rp by defining a p-dimensional bin using the bandwidths
(8) computed with a uniform kernel separately for each coordinate. The bins are
ranked by the number of points inside, and at random one is chosen from the upper
half of the ranking. Starting from this bin a sample is generated by probabilistic re-
gion growing. Any bin at the boundary of the current region selects a neighbor not
yet in the region with probability equal to the normalized number of points of the
neighbor. Normalization is by the total number of points of such neighbors. Region
growing stops when the sample reaches the upper bound of allowed bins (in our 3D
examples 6% of all nonempty bins), or no further growing is possible.

2. Computation of the parameter estimate candidates.
For each of N samples (60 in our experiments) the projection pursuit based M-
estimation procedure discussed in Section 2 is applied. For each sample the candi-
date vector �̂l its covarianceC�̂l , and a scale estimate ŝl are obtained. For display

purposes, the points declared inliers are delineated with a bounding box.
3. Selection of the best candidates.

Using the N estimates and their covariances, the robust fusion procedure discussed
in Section 3 is applied. The number of structuresM present in the data is determined
and their characteristics are computed.

4. Classification of the data.
To refine the relation between theM structures and the data points declared inliers in
the samples, each sample/structure association receives a vote. Only the points with
more than 4 votes are retained for a structure. Finally, starting with the structure
having the largest number of points, they are recursively removed from the data.
Since the data classification starts from a reliable basis, other more sophisticated or
application specific procedures can also be used.

Two experiments with 3D synthetic data containingM = 3 structures, are presented
here. The first data set (Figures 5a and 5b) contains three planar regions in a chevron-
type arrangement. Each region contains 100 points corrupted with normal noise having
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Fig. 5. Example of 3D data analysis containing multiple structures. (a), (b) Two views of the data.
(c) Bounding boxes of the employed N = 60 samples. (d) Delineated structures.

covariance 102I3. In the background 200 more data points are scattered uniformly in a
cube incorporating all three structures. The 60 bounding boxes resulting at the end of the
M-estimation procedures are shown in Figure 5c, while the feature space and the result
of the robust fusion are in Figure 4. The output of the algorithm, the three structures
delineated by their final bounding boxes, is shown in Figure 5d.

The second data set (Figures 6a and6b) has the same characteristics, however, the
three planar regions are now arranged in a Z-type configuration. In spite of the intersect-
ing regions, the algorithm succeeded to distinguish the structures (Figure 5d). In both
examples the estimated parameters were close to the true values for the planes.

5 Discussion

Many computer vision problems can be recast under the framework of robust analysis
(regression) of data containing multiple structures. For example, the Costeira-Kanade
algorithm for structure-from-motion factorization for multiple objects [5], was recently
reformulated by Kanatani as finding for each tracked object a four-dimensional linear
subspace in a space having the dimension twice the number of image frames [12]. Sim-
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Fig. 6. Example of 3D data analysis containing multiple structures. (a), (b) Two views of the data.
(c) Bounding boxes of the employed N = 60 samples. (d) Delineated structures.

ilarly, to build from an image sequence a scene-based representation of the visual en-
vironment, e.g. a mosaic, the multiple layer plane+parallax representation is the most
general model [10], which can be also used for detecting independently moving objects
[15]. The algorithm proposed in this paper offers a tool which can simultaneously extract
all the significant model instances, instead of the usually employed recursive approach
in which the “dominant” feature is detected first.

These vision tasks, however, require processing in high dimensional spaces. Thus,
an efficient search strategy over � has to be employed when the projection index is maxi-
mized (M-estimation). In the 3D examples described above, first 42 directions distributed
uniformly overR3 were used, followed by a refinement of another 42 around the “best”
direction from the previous step. The 3D examples were processed in MATLAB in less
than a minute. Using a parametrization which takes into account that � is a unit vector
[20], we are currently developing a computationally feasible search strategy for higher
dimensions. Ideally the search should also take into account a priori information specific
to the vision task to be solved.

The two techniques presented in the paper make extensive use of nonparametric statis-
tics tools which are more sensitive than the parametric methods, however, require more

14



supporting data points to yield reliable results. See for example, [9, p.473] for a discus-
sion of projection pursuit for small sample sizes. Nevertheless, the new data analysis
algorithm tolerates “bad” data better than the robust techniques tradionally employed in
computer vision.
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