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Abstract. Two new techniques based on nonparametric estimation of probabil-
ity densities are introduced which improve on the performance of equivalent ro-
bust methods currently employed in computer vision. The first technique draws
from the projection pursuit paradigm in statistics, and carries out regression M-
estimation with a weak dependence on the accuracy of the scale estimate. The
second technique exploits the properties of the multivariate adaptive mean shift,
and accomplishes the fusion of uncertain measurements arising from an unknown
number of sources. As an example, the two techniques are extensively used in an
algorithm for the recovery of multiple structures from heavily corrupted data.

1 Introduction

Visual data is complex and most often not al the measurements obey the same para-
metric model. For a satisfactory performance, robust estimators tol erati ng the presence
of outliers in the data, must be used. These estimators are aready popular in the vi-
sion community, see [17] for a representative sample of applications. Some of the ro-
bust techniques, like M-estimators and |east median of squares (L MedS) were imported
from statistics, while others, like Hough transform and RANSAC are innate, devel oped
initially to solve specific vision problems.

Itwasshownin[2] that all the robust methodswidely used in computer vision can be
regarded as members of the same family of M-estimatorswith auxiliary scale, and that
estimators with a smooth loss function (see Section 2) are to be preferred. In this paper
we propose anovel approach toward computing M-estimators. The new approach com-
bines several of the desirable characteristics of the different robust techni ques already
in use in computer vision and it iswell suited for processing complex visual data.

A large class of computer vision problems can be modeled under the linear errors-
in-variables (EIV) model. Under the EIV model all the measurementsy, € RP are
corrupted independently by zero mean noise, y; = y;, + dy;, where the subscript ' o’
denotes the unknown true value. In the sequel will consider the simplest case in which
the noise covariance is 021, however, our results can be easily extended to arbitrary
covariance matrices. A linear constraint can be defined as

yig—a=0 i=1,...,n 6] = 1. (1)



When the constraint is written under this form it can be shown that the Euclidean dis-
tance between a measurement y; and y;, its orthogonal projection on the hyperplane
defined by the linear constraint is

ly: —3ill =y 0 — | 2

i.e., the geometric distance and the algebraic distance are the same.
Theoptimal estimator for theabovemodel isthetotal least squares(TLS) technique.
In the presence of outliers the corresponding robust M-estimator is defined as
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where s is ascale parameter, and p(u) is anonnegative, even symmetric loss function,
nondecreasing with |u| and having the unique minimum p(0) = 0. Only the class of
redescending M-estimatorsis considered here, and therefore we can always assume that
p(u) = 1for|u| > 1. A frequently used redescending M-estimator hasthe biweight loss
function
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and it will be the one employed throughout the paper.

The success of an M-estimation procedure, i.e., accurate estimation of the model pa-
rametersthrough rejection of the outliers, is contingent upon having a satisfactory scale
parameter. (Theissue of the breakdown point of the M-estimatorsis of lesser relevance
in our context as will be seen later.) In [2] it was shown that the robust techniques im-
ported from statistics differ from those devel oped by the vision community in the way
the scale is obtained. For the former the scale is estimated from the data, while for the
latter its valueis set apriori.

It wasimplicitly assumed in (3) that agood scale estimateis aready known. Statisti-
cal techniquesfor simultaneous estimation of the scale are available, e.g., [20], but they
can not handle complex data of the type considered in this paper. Similarly, not in every
vision application can areliable scale estimate be obtained from the underlying physi-
cal properties. For example, in data containing multiplestructures, i.e., several instances
of the same model but with different sets of parameters, each structure may have been
measured with a different uncertainty. A typical vision task generating such dataisthe
recovery of the motion parameters for several moving objects in the presence of cam-
eraegomotion. In this case using a single global scale value for al the involved robust
estimation procedures may not be satisfactory.

The performance of the robust M-type regression technique proposed in this paper
has only a weak dependence on the accuracy of the scale estimate. Nevertheless, the
technique provides a satisfactory inlier/outlier dichotomy for awider range of contam-
inations than the traditional M-estimators. This performance improvement is achieved
by recasting M-estimation as a kernel density estimation problem.

Kernel density estimationisawell known techniquein statistics and pattern recogni-
tion. Seethe books[16] and [19] for astatistical treatment, and [7, Sec.4.3] for apattern



recognition description. Let xz;,7 = 1,... ,n, be scalar measurements drawn from an
arbitrary probability distribution f(z). The kernel density estimate of this distribution

f(z) (called the Parzen window estimate in pattern recognition), is obtained based on a
kernel function K (u) and a bandwidth / as

i) = %;102"”) ®

The kernel functions considered here satisfy the following properties

S

K(u)=K(-u) >0 K(0) > K(u) for u#0

K(u)=0 for [ul > 1 /1 Ku)=1. (6)
-1

Other conditions on the kernel function or on the density to be estimated [19, p.18], are
awayssatisfied in practice. Theeven symmetry of thekernel function allowsusto define
its profile, k(u) from

K(u) = cpk(u?) (7

where ¢, isanormalization constant determined by (6). Theimportance of the profileis
reveal ed in the case of multivariate kernel density estimation which will be be discussed
in Section 3. X

The quality of the density estimate f(x) is assessed using the asymptotic mean in-
tegrated error (AMISE), i.e., the integrated mean square error between the true density
and its estimate for n — oo, while h — 0 at aslower rate. The AMISE optimal band-
width depends on the second derivative of f(z), the unknown density [19, p.22]. While
a good approximation of this bandwidth can be obtained employing a simple plug-in
rule[19, p.72], for our purposes a bandwidth depending only on the kernel function and
araw scale estimate [19, Sec.3.2.2] suffices
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The dataistaken into consideration through a median absolute deviations (MAD) scale
estimate. The proportionality constant can be chosen asc¢ = 0.5 or 1 to avoid over-
smoothing of the estimated density [19, p.62]. In Section 2 the connection between the
regression M-estimator (3) and the univariate density estimation (5) is established and
then exploited to computational advantage.

In Section 3 kernel density estimation is reformulated under its most general mul-
tivariate form and will provide the tool to solve the following difficult problem. Let
B; € RP,j =1,...,m, beaset of measurements whose uncertainty is also available
through the covariance matrices C;. A large subset of these measurements is related



to M <« m different data sources, while the rest are completely erroneous. The value
of M isnot known. Find the best (in statistical sense) estimates for the A/ vectors and
covariances characterizing these sources. This is a fundamental feature space analysis
problem and our approach, based on an extension of the variable bandwidth mean shift
[4], provides a simple robust solution.

In Section 4 the two new techniques become the main building blocks of an algo-
rithm for analyzing data contai ning multiple structures. The success of the algorithm is
illustrated with 3D examples. Finaly, in Section 5 the potentia of the proposed tech-
niques to solve difficult vision tasks, and the remaining open issues are discussed.

2 M-estimatorsand Projection Pursuit

Projection pursuit is a nonparametric technique introduced in statistics in the 1970s for
exploratory dataanalysis, and was soon applied also to nonlinear regression and density
estimation problems. Projection pursuit seeks “interesting” low-dimensional (almost al-
waysone-dimensional) projectionsof multidimensional data. Theinformativevalueof a
projectionismeasured with aprojectionindex. M ost often the projectionindex isascalar
functional of the univariate probability distribution estimated from the data projected on
the chosen direction. The “best” direction is obtained through numerical optimization
and correspondsto an extremum of the projectionindex. Thisis one step in aniterative
procedure toward the solution. The current solution is then updated and a new search
isinitiated. For example, in projection pursuit regression at each iteration the shape of
a smooth univariate nonlinear function which minimizes the sum of squared residuals
is determined. At the subsequent iteration this function is incorporated into the current
model. Convergenceis declared when the squared error fallsbelow athreshold. The pa
pers [9], [11] offer not only excellent reviews on the projection pursuit paradigm, but
also contain extensive discussions from researchers working on related topics.

There is a strong connection between robust linear regression estimators, such as
least median of squares, and the projection pursuit procedure[6], [14, Sec.3.5]. Thisre-
lationship, however, was investigated in statistics mostly for theoretical considerations
and in the case of traditional regression, i.e., the casein which only one of the measured
variablesis corrupted by noise. In this paper will apply the projection pursuit paradigm
to design atechniquefor the more general errors-in-variables(EIV) model whichis bet-
ter suited for vision tasks.

To prove the connection between EIV regression M-estimation and kernel density
estimation, the definition (3) is rewritten as

A 1 — y. 0 —a
A, 0] = 1—— E =
[, 0] argmagx [ n 2 p < 5 >
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where k(u) = ¢,[1 — p(u)] will be called the M-kernel function, and ¢, is the normal-
ization constant making x(u) a proper kernel. Note that «(u) = 0 for |u| > 1, and
that the even symmetry of thelossfunction p(u) allowsthe removal of the absolute val-
ueswhen (2) is plugged in. In Figs. 1aand 1b the biweight loss function and its corre-
sponding M-kernel function is shown. Compare the M-kernel with the weight function
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Fig. 1. The different functions associated with the biweight M-estimator. (a) The loss function
p(u). (b) The M-kernel function «(u). (c) The weight function w(u).

w(u) = u~1p'(u) usedin the well known iterative reweighted least squaresimplemen-

tation of M-estimators[13, p.306] (Fig. 1¢). Thetwo functionswhile ook similar have
different expressions.

Let 6 be a unit vector defining a line through the origin in R?. The projections of
the data points y; on thisline have the intrinsic coordinates z; = y,” 8. Given akernel
K (u) and the bandwidth h (8), the estimated density of this sequenceis

folr) = -3k (M) (10)
i=1

where the dependence of the bandwidth on the direction of the projection (through the
scale estimate of the projected points) was made explicit. The mode of the density esti-
mate is defined as

g = argmax fg(x) (12)

and can be easily computed. Comparing (9) and (10) we can remark that if <(u) istaken
asthekernel function, 8 ischosen closeto the true parameter of the linear model (1), and
fze isasatisfactory substitute for the scale s, the mode (11) should provide areasonable
estimate for the intercept a.

Based on the above observation the EIV linear model M-estimation problem can be
reformulated as

~

[&, 0] = argmgx iALB max fe(x) (12

which isthe projection pursuit definition of the M-estimator, the projection index being
the quantity inside the brackets. The equivalence between (3) and (12) is not perfectly
rigorous since the scale was substituted with the bandwidth. However, thisis an advan-
tage since now the role of the scale is diminished and any bandwidth is satisfactory as
long as it secures the reliable recovery of the mode. The bandwidth fzg is proportional
with the MAD scale estimate (8) which can be unreliable when the distribution is multi-
modal since the median isabiased estimator for nonsymmetric data. Similarly, for small
measurement noise hg becomes small which can introduce artifacts if the bandwidth is
not bounded downward.
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Fig. 2. Projection pursuit principle: the parameter estimates are sought by examining the projec-

tions of the data points on arbitrary directions.
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Fig. 3. Processing the datain Fig. 2. (a) Estimated density for the projection along direction 6 .
The detected mode is marked as . (b) Estimated density for the projection along direction 8,
which maximized the projection index. The points projecting inside the interval marked with the
vertical bars are selected. (c) Projection pursuit based line estimate. The dashed lines bound the
region delineated for robust postprocessing. (d) Hough transform based line estimate.



The projection pursuit approach toward M-estimation has a clear geometric inter-
pretation. The direction 6 can be regarded as the unit normal of a candidate hyperplane
fitted to the p-dimensional data, y;. The bandwidth 719 defines a band centered on this
plane. The band istrandated in R? along 8 to maximize, for the pointswithin the band,
the weighted average of the orthogonal distances from the hyperplane. The M-estimate
corresponds to the densest band (largest weighted average) over al 6. Note the simi-
larity with the well known interpretation of the LMedS estimator where the parameter
estimates correspond to the narrowest band containing half the data points [14, p.126].
Our approach, however, has an important advantage. The optimization criterion is not
dependent on a preset percentage of data points being inliers, thus yielding a better be-
havior in the presence of severely contaminated data, as it is shown in the following
example.

The 180 data points in the rectangle in Fig. 2 belong to three classes. There are 50
measurementsfromtheline segment 0.54y, +0.84y, —606 = 0 where400 < y; < 560,
corrupted by normal noise with covariance 52I,. A second structure is also present. Its
30 measurementsarefromtheline segment 0.54y, —0.84y, —60 = 0 where600 < y; <
750, but were severly corrupted by normal noise with covariance 20?I, and became
indistinguishable from the background. The background has 100 points uniformly dis-
tributedin therectangleboundedby (425, 225) and (750, 525). By definitiontheLMedS
estimator cannot handle such data. Similarly, the global maximum of the Hough accu-
mulator (built using al pairs of points) yields erroneous fits once the angle side of the
bins exceeds 3.6 degrees. An exampleis shown in Fig. 3d.

The projections of the 2D data points on two directions are shown in Fig. 2. For the
direction 6; = [0.99, 0.12], the computed bandwidthis g = 50.2. The mode s de-
tected at ig = 578 and has the value 0.004 (Fig. 3a). The projection index (12) is
maximized by the direction 6> = [0.52, 0.85]. Theresulting bandwidthishg = 23.8
andthemodeat 2y = 600 hasthe value 0.013 (Fig. 3b).

The basin of attraction of the mode g, is delineated by the first significant local
minimum at the left and at the right, marked with vertical barsin Fig. 3b. They define
two parallel linesin R? which bound the region containing the structure of interest (Fig.
3c). Since outliers relative to this structure may have been included, a robust postpro-
cessing isrequired. The postprocessing also allowslower accuracy in the projection pur-
suit search for thebest 6, anecessary condition for searchesin higher dimensional spaces
(see Section 5).

We have used an M-estimator for robust postprocessing. The scale s of the structure
and itsparameters 6 wereestimated simultaneously [ 13, p.307]. Finaly, theinlier/outlier
dichotomy is established and therobust covarianceof theparameter estimate, C 6 isalso

computed. In the example, the final line estimate [0.53, 0.85, 604] is remarkable close
to the true values in spite of the severe contamination (Fig. 3c). Here the improvement
due to the postprocessing was small, however, itsrole is increased when the projection
pursuit based M-estimator is employed as a computational modulein Section 4.



3 Robust Data Fusion

Thefollowing problem appears under many formsin computer vision tasks. Them mea-
surements 3, € R? areavailabletogether with their uncertainty described by the covari-
ance matrices C;. Taking into account these uncertainties, classify the measurements
into M < m groups, where M isthe number of clusters present in the data. The value
of M isnot known. The problem can also be regarded as a datafusion task in which the
available evidenceisto be reduced to the minimum number of plausible representations.

Will consider first thetrivial case of M = 1, i.e., the case in which all the measure-
ments belong to asingle group. A satisfactory estimate for the center of the underlying
cluster is obtained by minimizing the sum of Mahalanobis distances

A =argmﬁinz<ﬁ—ﬁj>T051<ﬁ—ﬁj> (13)
j=1

where the covariances are assumed to have full rank. As expected, the solution

-1
= (Z Cﬁ) > Ci'8, (14)
j=1 j=1

is the covariance weighted average of the measurements. The more uncertainis a mea-
surement (the inverse of its covariance has a smaller norm), thelessit contributesto the
result of the fusion.

To compute the covariance matrix C (uncertainty) associated with 83, the covari-
ances C; are approximated as C; ~ a;C. The common covariance structure C and the
positive proportionality factors a; are determined from the minimization

[4;,C] = arg min > lc; —a;Cl? (15)

=1

where |B||2 = trace[B'B] is the squared Frobenius norm of the matrix B. Differ-
entiating after a; and taking the matrix gradient after C, two relations connecting the
unknown quantities are obtained

S a;Cy . trace[C] C]

C = T—m .3 a;, = ——————— .
it a3 ! trace[CTC]

(16)
Therelations are evaluated iteratively starting fromall é; = 1, which makes C the av-
erage covariance. The @,-s are then refined, and the next value of C isthe one retained.

Will return now to kernel density estimation. A radially symmetric, p-dimensional
multivariate kernel K (u) is built from the profile k(u) as

K(u) = ¢, pk(u’u) a7

where ¢y, , is the corresponding normalization constant and u € R”. The properties (6)
can be easily extended to R”. In the most general case the bandwidth h is replaced by a
symmetric positive definite bandwidth matrix, H.



Given the data pointsx;, i« = 1,... ,n, in RP, their multivariate density estimate
computed with the kernel K (u) and the bandwidth matrix H is[16, Sec.4.2.1]

fo) =3 K b= x) (18)
=1
Ku(x) = [det[H]] 72K (H™/?x) = ¢, [det[H]] "/ 2k(xTH™'x) . (19)

Notethat H = h21,, reduces (19) to thewell known, traditional multivariate kernel den-
Sity estimation expression.

In practice using asingle bandwidth is often not satisfactory since the available data
pointsare not spread uniformly over the region of existence of theunknown density. The
sample point kernel density estimator is defined as

fx) == 3 K, (x - x) (20)
=1

where each data point x; is considered in the computations through its own bandwidth
matrix H;. The sample point estimator has superior performancerelative to kernel den-
sity estimatorsin which thevariablebandwidth is associated with the center of thekernel
x, [16, Sec.5.3]. From (20), taking into account (19) we obtain

~ C n _ _
f(x) = % > et [FL 72k (x — ;) TH (x — x1)) (21)

=1

To solve the robust data fusion problem will compute the sample point density es-
timate of the m measurements 3;. Multivariate Epanechnikov kernels built from the
profile[19, p.30]

1—u 0<u<l1

are used, and as bandwidth matrices the covariances C; are employed. The covariance
matrices are scaled to X?WCj , Where Xi,p isthe chi-square value for p degrees of free-
dom and level of confidence  (in our implementation v = 0.995). Thus

ch(u) =0 for uTCj_lu > X?r,p j=1...,m (23)

i.e., the kernel associated with a measurement is nonzero in the region of confidence of
that measurement having coverage probability . The density estimate (21) becomes

f(B) = —2 S [det[C,]] 2k (%(ﬁ—ﬂfcjl(ﬁ—ﬂj)) . (24

m [x3,,] " J=1 P

Taking into account (22) we have obtained that solving the minimization problem (13)
is equivalent to finding the maximum of the density estimate (24), i.e., its mode. (The
apparent differences are only scalar normalization factors for the covariances.)



We arenow ready to proceed to the proposed problem wherethe measurementscome
from an unknown number of sources M . To characterize these sources, first the M clus-
ters are to be delineated, which as will be shown below is equivalent to finding all the
significant modes of the density f(3)

~

ﬁlzargmgxf(ﬁ) l=1,...M. (25)

Note that the value of M is determined automatically from the data. A mode of f(3)
correspondsto a zero of its gradient

Vf(ﬁ) = W ; det 1/2C;1(5 _ /6]) X (26)

xk’(xww 8)C B-5)

The function g(u) = —k'(u) definesanew profilewhichin our caseis
-1
uTC;1u 1 u'Cjlu<y?
Iy(u) =g Nz )= . (27)
7P 0 ulCilu> 2

i.e., theindicator function selecting the datapointsinside theregion of confidenceof 3.

Defining the matrix W; = [det[C,]]'/2C, the expression of the gradient (26) can be
rewritten

Vf(ﬁ): ﬁ (ZI (B - 5 ) (28)

m [va
x (Zam—ﬁj)wf) (Zw—ﬁﬂwjlﬁj) -

where the presence of the indicator function assures the robustness computations. 1n-
deed, the zeros of the gradient are given by an expression similar to (14), but with the
computations restricted to local regionsin RP. Aslong as the M clusters are reason-
ably separated, computing their centersis based only on the appropriate data points. By
choosing akernel other than Epanechnikov from the betafamily [19, p.31], instead of a
binary indicator function (27) additional weighting can be introduced in (28).

Themodesof f(3) by definition arelocated in high density regionsof R”. A versa-
tile, robust mode detector is based on the mean shift property introduced first in pattern
recognition [8], and which recently became popular in computer vision for a large va-
riety of tasks[3]. The variable bandwidth version of the mean shift procedure was also
developed [4].

The mean shift procedure recursively evaluates the second term of (28). The pro-
cedure starts by taking 8 = 3, and anew value of 3 is computed using only the data

10
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Fig. 4. An example of datafusion for p = 3, m = 60 and M = 3. (a) The measurements with
regions of confidence. (b) The result of the multivariate variable bandwidth mean shift. Note the
smaller scale.

pointswhichyield nonzerovaluesfor theindicator function. The processisthen repeated
with the obtained 3, i.e., the kernels are shifted according to the result of the previous
step. Convergenceis achieved when the shift becomeslessthan athreshold. See [3] and
[4] for details about the mean shift procedure.

After the mean shift procedure was applied to al the m measurements, by associ-
ating these measurements with theirs point of convergence, arbitrarily shaped basins of
attraction can be defined. Note that outliers, i.e., isolated erroneous measurements are
not taken into account since they will fail to evolve. The points of convergenceare char-
acterized applying (14) and (16) to the data pointsin the basin of attraction. Pairs whose
squared Mahalanobis distanceislessthan Xi,p (under both metrics) are merged. There-
sulting M modes are the output of the robust fusion procedure. An exampleis shownin
Fig. 4. The large confidence regionsin Fig. 4a correspond to erroneous measurements
and hide the mgjority of the data. After robust fusion three modes are detected, each as-
sociated with a small uncertainty (Fig. 4b).

The fusion technique introduced here can provide arobust component for more tra-
ditional approachestoward combining classifiers, e.g., [18], or for machine learning al-
gorithmswhich improve performance through resampling, e.g., bagging [1].

4 Robust Regression for Data with Multiple Structures

Data containing multiple structuresis characterized by the presence of several instances
of the same model, in our case (1), each defined with a different set of parameters. The
need for reliable processing of such data distinguishes estimation problemsin computer
vision from those in applied statistics.

The assumption that the sought model is carried by the absolute majority of the data
points, is embedded in all robust estimators in statistics. In vision tasks, such as, struc-
ture from motion, 3D scene representation, this assumption is violated once informa-
tion about more than one object is to be acquired simultaneously. Among the four main
classes of robust techniques employed in vision (see Section 1) only the Hough trans-

11



form has the capability to handle complex multiple structured data. However, as our ex-
amplein Section 2 has already shown, good performance of the Hough transformis con-
tingent upon having access to the correct scale estimate (accumulator bin size), which
in practice is often not possible. See [2] for a detailed discussion on the difficulties of
traditional robust techniquesin handling multiple structured data.

Four main processing steps can be distinguished in the implementation of the robust
estimators based on a nondifferentiable optimization criterion: LMedS, RANSAC and
Houghtransform. First, several small random subsets of datapoints, i.e., samples, are se-
lected. Next, from each sample a parameter estimate candidate is computed. In the third
step, the quality of the candidatesis assessed using all the data points and the candidate
yielding the “best” quality measure isretained. Finally, the datais classified into inliers
and outliersin relation to the model parameter estimates.

While some of these four steps can be intertwined and refined (or in the case of
Hough transform disguised), they provideageneral processing principle. Thisprinciple
is still obeyed when the two techniquesintroduced in the paper are employed as com-
putational modulesin an algorithm for analyzing data with multiple structures.

1. Déefinition of the random samples.
The datais quantized in R? by defining a p-dimensional bin using the bandwidths
(8) computed with a uniform kernel separately for each coordinate. The bins are
ranked by the number of pointsinside, and at random one is chosen from the upper
half of the ranking. Starting from this bin a sample is generated by probabilistic re-
gion growing. Any bin at the boundary of the current region selects a nei ghbor not
yet in the region with probability equal to the normalized number of points of the
neighbor. Normalization is by the total number of points of such neighbors. Region
growing stops when the sample reaches the upper bound of allowed bins (in our 3D
examples 6% of all nonempty bins), or no further growing is possible.

2. Computation of the parameter estimate candidates.
For each of N samples (60 in our experiments) the projection pursuit based M-
estimation procedure discussed in Section 2 is applied. For each sample the candi-
date vector él its covariance C 6 and a scale estimate §; are obtained. For display
purposes, the points declared inl iers are delineated with a boundi ng box.

3. Sdection of the best candidates.
Using the N estimates and their covariances, the robust fusion procedure discussed
in Section 3isapplied. The number of structures M present inthe dataisdetermined
and their characteristics are computed.

4. Classification of the data.
Torefinetherelation betweenthe M structuresand the datapointsdeclaredinliersin
the samples, each sample/structure association receives avote. Only the pointswith
more than 4 votes are retained for a structure. Finally, starting with the structure
having the largest number of points, they are recursively removed from the data.
Since the data classification starts from areliable basis, other more sophisticated or
application specific procedures can also be used.

Two experimentswith 3D synthetic datacontaining M = 3 structures, are presented
here. The first data set (Figures 5a and 5b) contains three planar regionsin a chevron-
type arrangement. Each region contains 100 points corrupted with normal noise having

12
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Fig. 5. Example of 3D dataanalysis containing multiple structures. (a), (b) Two views of the data.
(c) Bounding boxes of the employed N = 60 samples. (d) Delineated structures.

covariance 10I3. In the background 200 more data points are scattered uniformly in a
cubeincorporating all three structures. The 60 bounding boxesresulting at the end of the
M-estimation procedures are shown in Figure 5¢, while the feature space and the result
of the robust fusion are in Figure 4. The output of the algorithm, the three structures
delineated by their final bounding boxes, is shown in Figure 5d.

The second data set (Figures 6a and6b) has the same characteristics, however, the
three planar regionsare now arranged in a Z-type configuration. I n spite of theintersect-
ing regions, the algorithm succeeded to distinguish the structures (Figure 5d). In both
examplesthe estimated parameters were close to the true values for the planes.

5 Discussion

Many computer vision problems can be recast under the framework of robust analysis
(regression) of data containing multiple structures. For example, the Costeira-K anade
algorithm for structure-from-motion factorization for multiple objects[5], was recently
reformulated by Kanatani as finding for each tracked object a four-dimensional linear
subspace in a space having the dimension twice the number of image frames[12]. Sim-
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Fig. 6. Example of 3D data analysis containing multiple structures. (a), (b) Two views of the data.
(c) Bounding boxes of the employed N = 60 samples. (d) Delineated structures.

ilarly, to build from an image sequence a scene-based representation of the visual en-
vironment, e.g. a mosaic, the multiple layer planet+parallax representation is the most
general model [10], which can be al so used for detecting independently moving objects
[15]. Thealgorithm proposed in this paper offersatool which can simultaneously extract
all the significant model instances, instead of the usually employed recursive approach
in which the “dominant” feature is detected first.

These vision tasks, however, require processing in high dimensional spaces. Thus,
an efficient search strategy over 6 hasto be employed when the projectionindex is maxi-
mized (M-estimation). Inthe 3D examplesdescribed above, first 42 directionsdistributed
uniformly over R> were used, followed by arefinement of another 42 around the * best”
direction from the previous step. The 3D examples were processed in MATLAB in less
than a minute. Using a parametrization which takes into account that 6 is a unit vector
[20], we are currently devel oping a computationally feasible search strategy for higher
dimensions. |deally the search should al so take into account a priori inf ormation specific
to the vision task to be solved.

Thetwo techniquespresentedin the paper make extensive use of nonparametric statis-
ticstools which are more sensitive than the parametric methods, however, require more
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supporting data pointsto yield reliable results. See for example, [9, p.473] for adiscus-
sion of projection pursuit for small sample sizes. Nevertheless, the new data analysis
algorithm tolerates“bad” databetter than the robust techniquestradionally employedin
computer vision.
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