
1

a
e
N
r
a
v
q

c
c
fi
t
t
t
t
m
m
a
a
t
e
B
a
i

J
s
b
c
�

J

Downloaded From:
Daniel Wehrwein
e-mail: daniel.wehrwein@gm.com

Zissimos P. Mourelatos1

e-mail: mourelat@oakland.edu

Department of Mechanical Engineering,
Oakland University,

Rochester, MI 48309

Optimization of Engine Torque
Management Under Uncertainty
for Vehicle Driveline Clunk Using
Time-Dependent Metamodels
Quality and performance are two important customer requirements in vehicle design.
Driveline clunk negatively affects the perceived quality and must be minimized. This can
be achieved using engine torque management, which is part of engine calibration. Dur-
ing a tip-in event, the engine torque rate of rise is limited until all the driveline lash is
taken up. The engine torque rate of rise can negatively affect the vehicle throttle re-
sponse, which determines performance. The engine torque management must be therefore
balanced against throttle response. In practice, the engine torque rate of rise is cali-
brated manually. This article describes an analytical methodology for calibrating the
engine torque considering uncertainty, in order to minimize clunk, while still meeting
throttle response constraints. A set of predetermined engine torque profiles are consid-
ered, which span the practical range of interest. The transmission turbine speed is cal-
culated for each profile using a bond graph vehicle model. Clunk is quantified by the
magnitude of the turbine speed spike. Using the engine torque profiles and the corre-
sponding turbine speed responses, a time-dependent metamodel is created using principal
component analysis and kriging. The metamodel predicts the turbine speed response due
to any engine torque profile and is used in deterministic and reliability-based optimiza-
tions to minimize clunk. Compared with commonly used production calibration, the clunk
disturbance is reduced substantially without greatly affecting the vehicle throttle
response. �DOI: 10.1115/1.3086788�
Introduction
To be competitive, automotive manufacturers strive for depend-

ble and high quality vehicles. The definition of quality has
volved from strictly functionality and durability to pleasability.
oise, vibration, and harshness �NVH� issues, such as squeaks,

attles, wind noise, and gear whine, are “unwanted” noises, which
re perceived as poor quality, although they do not affect the
ehicle functionality. Driveline clunk is also a perceived NVH
uality issue.

Driveline clunk �or clonk in Europe� is a phenomenon that oc-
urs while the drivetrain gear transitions from the drive to the
oast side of the gear teeth or vice versa. As shown in Fig. 1, a
nite amount of lash is inherent in every gear set by design. If

here is no lash, the gear set cannot rotate. In the presence of lash,
he gear teeth travel through a lash zone. While in the lash zone,
he gear accelerates until it contacts the drive side of the gear
ooth at the end of the lash zone. Clunk occurs when the faster

oving gear set collides with the slower moving gear set. The
omentum of the driveline collision causes the vehicle to jerk

nd, in some cases, results in an audible metallic sound. It can
lso affect gear durability and driveline reliability. The jerk and
he sound associated with clunk are perceived by the customer as
ither a problem with the vehicle or as a low quality attribute.
ecause of the quality degradation and the durability concern,
utomotive manufacturers try to eliminate, or at least reduce the
ntensity of the clunk phenomenon.
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Driveline clunk can occur under different driving conditions
such as transmission ratio shifts, parking lot shifts from drive to
reverse, ABS maneuvers, and throttle application and release. It
can also be observed in manual transmission applications during
clutch engagement and disengagement. Although clunk occurs
during various driving conditions, the focus of this study is on its
occurrence during throttle application maneuvers. This is com-
monly referred to as “tip-in clunk” because it happens when the
driver tips in on the throttle pedal. Tip-in clunk occurs only when
there is a transition from negative to positive torque in the driv-
eline. The gear sets are on the coast side of the gear teeth while
the driveline torque is negative, and on the drive side of the gear
teeth when the driveline torque is positive. Tip-in clunk has also
been referred to as throttle-on clunk, fore-aft tactile disturbance,
impact induced vibration, and sudden throttle demand clunk.

In order to reduce its severity, the automotive industry uses
engine torque management to reduce the net torque on the driving
gear as it transitions through the lash zone. This reduces the im-
pact intensity when the driving gear collides with the driven gear.
A feed-forward engine torque controller is the current state-of-the-
art in automotive design, and is used in this work. More sophisti-
cated engine torque controllers, which estimate the current lash
state in the drivetrain have also been considered �1–3�. Although
these controllers are promising, they must be further developed.

Reducing engine torque will reduce clunk, but it will also re-
duce the vehicle’s acceleration performance. Reducing clunk with
a minimal impact on vehicle performance requires a controller to
shape the engine output torque as needed, without intervening
when the driveline is not crossing the lash zone. This requires
precise calibration. If the engine torque rises too rapidly, it causes
a large clunk disturbance. If it rises slowly however, it results in a
large delay between the driver’s request and the throttle response.
This trade-off can be resolved by optimizing the engine torque

shape.
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In this article, the shape of the engine torque is optimized to
inimize clunk while meeting a throttle response target. In doing

o, it is possible however, to have other adverse effects, such as
ehicle shuffle �4�, which is caused by a rapid rise in engine
orque. The proposed methodology can also address vehicle
huffle by using an additional constraint in the optimization prob-
em in Secs. 6 and 7. We chose not to consider vehicle shuffle,
owever, because it occurs after the clunk event, and is usually
ddressed with a different torque control strategy.

A set of time-dependent engine torque profiles are used as input
n a vehicle dynamic model �see Sec. 3�, and the resulting time-
ependent transmission turbine speed profile is calculated for each
ngine torque. Principal component analysis �PCA� is then used to
uild time-dependent surrogate models �metamodels� of the en-
ine torque input and the corresponding turbine speed output, pro-
iding an accurate and efficient input-output relationship, which
llows us to use optimization. The throttle response is quantified
y the time it takes for the engine torque to reach a specified
alue. The clunk event is quantified by the magnitude of the tur-
ine speed spike during a tip-in because it represents the speed of
he colliding gear set. The clunk severity increases with an in-
reasing magnitude of the turbine speed spike.

To our knowledge, this is the first study using time-dependent
etamodeling and optimization to reduce the tip-in clunk distur-

ance. The time-dependent metamodels reproduce the time-
ependent sample functions of a parametric random process.

Quantification of Driveline Clunk
The driveline consists of the propshaft and axle, as shown in

ig. 2. Several papers have been published on driveline clunk
escribing how to quantify and reduce its severity using both ex-
erimental and analytical methods �5–19�.

Driveline hardware changes are proposed in Refs. �5–8�, focus-
ng on lash reduction and increased damping. As we have men-
ioned, lash reduction is very costly and has physical limitations.
f it is reduced, clunk also reduces because the accelerating gear
ets have less time to build up speed before they impact the slower
oving gear sets. Even if lash is reduced to an absolute minimum

owever, clunk can still occur if the torque input to the driveline is
ot managed �14,15�. Increasing driveline damping can reduce

Fig. 1 Illustration of gear set lash
Fig. 2 Driveline schematic
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clunk, but it also reduces the driveline efficiency and the vehicle’s
fuel economy because it provides resistance to the gear sets while
in the lash zone, lowering the speed difference between gear sets
during impact. Both of these solutions have therefore, large nega-
tive impacts.

A parametric study in Ref. �5� showed that increasing the trans-
mission and flywheel inertia can reduce clunk. Also compliant
rubber mounts in the driveline can reduce clunk �8�. Garage shift
clunk was experimentally addressed in Refs. �6,7� for a front-
wheel-drive �FWD� vehicle with an automatic transmission. It
was observed that a reduction in driveline lash reduces clunk, and
that the clunk severity is proportional to the magnitude of the
input torque.

The clunk phenomenon was studied in Refs. �9,10� for manual
transmission vehicles using a torsional vibration analysis of the
driveline with emphasis on the “declutch” clunk, which does not
require an engine model. An experimental test rig was used in
Refs. �11,12� for a rear-wheel-drive �RWD� vehicle with a manual
transmission. The driveline natural frequencies and mode shapes,
which contribute to the clunk, were used in Ref. �11�, and possible
acoustic improvements to reduce the severity of the audible clunk
were considered in Ref. �12�. A relationship between clunk and
shuffle was indicated in Ref. �13�.

Engine torque management is a promising and cost effective
way to reduce clunk �6,14–17�. It must be done optimally though,
in order to avoid a negative impact on fuel economy. Most of the
reported studies to reduce clunk �e.g., Refs. �14–17,6�� vary cer-
tain design variables arbitrarily and calculate, or measure, their
effect on clunk. Optimization is used only in Ref. �4�, where a
genetic algorithm minimizes clunk by varying the flywheel iner-
tia, driveline lash, and the clutch spring stiffness. Our proposed
approach provides a unique method to determine the optimal en-
gine torque shape to minimize the clunk without excessively sac-
rificing the vehicle performance.

There are no standards for quantifying tip-in clunk. Several
studies have used, however, the relative speed of the colliding
gears to establish a metric for clunk severity �14–16,18�. They
indicate that the relative speed between gear sets is proportional to
the clunk severity. The transmission turbine speed is a commonly
measured signal in most automotive applications and is used to
quantify clunk in this article.

As the driveline passes through the lash zone, there is very little
resistance and the gears speed up rapidly. The turbine speed spikes
momentarily until the gear sets collide on the other side of the lash
zone. Figure 3 illustrates this phenomenon using measured engine
torque and turbine speed time traces for a rear-wheel-drive light
duty truck. As the driver presses the throttle pedal rapidly, the

Fig. 3 Illustration of the transmission turbine speed spike dur-
ing a tip-in
engine torque rises abruptly and the transmission turbine speed
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pikes. In this article, we calculate an optimal engine torque pro-
le under uncertainty by minimizing the magnitude of the turbine
peed spike.

Overview of Vehicle Dynamic Model
Developing a dynamic model to simulate vehicle performance

equires accurate modeling of the engine, transmission, drivetrain,
nd vehicle. The bond graph method �20–22� has been used in this
rticle because of its modularity, simplicity, modeling accuracy,
nd graphical representation of the simulated system. It can also
andle multiple disciplines, such as mechanical, electrical, and
ydraulic, simultaneously. Bond graphs allowed us to develop a
odel for each subsystem separately and then to assemble all
odels, providing flexibility to improve any subsystem without

aving to model the entire system over. Because of its distinct
odeling advantages, the bond graph method has been exten-

ively used in vehicle dynamics �20� and powertrain analysis �21�.
Bond graphing was only used for modeling. The numerical

imulation was carried out using MATLAB SIMULINK. For that, an
quivalent block diagram was developed based on the bond graph
odel. The MATLAB environment was then used for all simula-

ions, including the deterministic and probabilistic optimizations.
Sections 3.1–3.3 give a brief description of the engine, torque

onverter, transmission, and driveline and vehicle models. Details
an be found in Refs. �23�.

3.1 Engine Model. A detailed engine dynamics model is not
eeded in estimating vehicle performance. Instead, the engine can
e modeled as a rigid body with a lump inertia. The engine torque
s estimated using a steady-state torque map obtained from dyna-

ometer data �21,23,24�. The engine inertia and friction are
umped into a single inertia element and friction element, respec-
ively. The lump engine inertia includes the flywheel and torque
onverter housing inertias. The engine speed and throttle position
re fed into the torque map to obtain the torque input to the sys-
em. The latter is applied to the lump engine inertia element. Some
f it is dissipated at the lump friction element, and the remaining
s fed to the torque converter.

Every engine uses a torque management algorithm in the en-
ine controller, which changes the spark timing, throttle rate, and
ir/fuel ratio to accomplish the desired torque level. The engine
ontroller determines the desired spark timing, throttle position,
nd fuel rate using an experimentally determined internal torque
odel based on dynamometer data at steady-state engine condi-

ions, where the temperature, pressure, and quality of fuel are
ontrolled. The engine torque output is measured for varying com-
inations of throttle position, engine speed, and spark timing, and
simple look-up table is established.
In production however, there is an inherent engine torque varia-

ion from engine to engine. In our model, the effect of this varia-
ion is represented with a positive scalar multiplication factor
alled engine torque variation �ETV� factor, which is close to, but
maller than, 1. A value of 1 means that there is no variation,
here a value of 0.9, for example, means that the actual engine

orque is 90% of the torque reported by the engine controller.

3.2 Torque Converter and Transmission Models. The
orque converter is a fluid coupling device that transfers torque
rom the engine to the transmission. Its model is based on steady-
tate dynamometer data and is used similarly to the engine model
o obtain the torque ratio and converter efficiency curves. The
orque ratio decreases with increasing speed ratio, and the con-
erter efficiency increases with increasing speed ratio. Similar
odels exist in Refs. �20,24�. The torque converter is a hydrome-

hanical device without a control system. Variation is due to in-
ccuracies in geometry or transmission fluid viscosity because of
ariation in the transmission operating temperature.

The torque converter model uses the speed ratio between the
ngine and the transmission, a measured K-factor, and the torque

atio to calculate the output torque to the transmission and the

ournal of Mechanical Design
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load on the engine. The K-factor indicates the torque converter
efficiency. It is defined as the engine speed divided by the square
root of the engine torque. The K-factor and the torque ratio can
account for all variation in the torque converter model. Similarly
to the engine model, the positive scalar variation factors, K-factor
variation �KFV�, and torque ratio variation �TRV�, are used as
random parameters to account for variation in the torque converter
model. Both KFV and TRV are close to, but smaller than, 1. The
K-factor variation is important in the driveline clunk model be-
cause the torque converter efficiency determines how much torque
is dissipated in the torque converter before it gets to the transmis-
sion, and eventually to the driveline.

The transmission includes a compound planetary gear set with
four forward gear ratios and one reverse. Each planetary gear set
is modeled using a separate lump inertia for the sun, ring, and
planetary carrier. It also includes a clutch between rotating ele-
ments, a clutch brake, and a one way roller clutch. A controller
actuates each clutch mechanism for the desired gear state using
current driving conditions. The gear state is determined by a shift
table, which uses the vehicle speed and engine throttle position as
inputs. Details are provided in Ref. �23�.

3.3 Driveline and Vehicle Model. The vehicle driveline con-
nects the transmission to the vehicle wheels. A simple two-wheel
drive driveline is used consisting of a propeller shaft, a reduction
gear set, a differential gear set, two axle shafts, and two tires. For
simplicity, each shaft is represented by two inertial elements con-
nected by a spring element. The model is similar to those in Refs.
�21–23�. The reduction gear set has a ring and a pinion. The num-
ber of rings and pinion teeth determines the reduction gear ratio.
Its model includes the inertia of the ring and pinion, as well as the
lash and gear tooth stiffness, similar to Ref. �20�.

The vehicle is assumed to be a rigid body with a lumped mass
because its dynamics do not contribute to the vehicle perfor-
mance. We assume no slip between the tire and the road. The
driveline parameters have less effect on clunk compared with the
engine torque on the driveline �14,15�. There is no study to our
knowledge that has considered optimizing the engine torque input
to reduce clunk using engine torque management. When engine
torque management is applied, the net torque on the driveline is
relatively low. In this case, the variation in lash and friction be-
comes important and is included in this study.

The driveline system has many points where lash and friction
are present. Every component interface has a finite amount of
lash, and every bearing produces a finite amount of friction. The
largest contribution to system lash is the ring and pinion in the
rear axle with a nominal of approximately 7 deg. All other driv-
eline components have a smaller than 0.5 deg lash. Because the
ring and pinion of the rear axle have much more lash than any
other driveline component, its variation has a dominant effect and
must be considered. A random parameter LRP �lash at the ring and
pinion� is used in this study to account for the lash at the ring and
pinion.

Friction is also important in driveline clunk. All bearings and
the viscous fluid contribute to friction. The viscous friction is
caused by the gear lubrication. The driveline friction is modeled
as a lump sum parameter. The axle friction varies due to wear and
temperature. As the vehicle is first built, the axle bearings are
tight. After the vehicle break-in period, the bearings wear slightly,
resulting in less friction. In addition to bearing wear, temperature
also affects driveline friction. Because there is lube in the ring
gear, the friction is purely viscous. When the gear lube heats up,
the fluid viscosity is reduced, reducing friction. In this article, a
random parameter Rring accounts for the friction variation due to
temperature and wear.

4 Time-Dependent Metamodels Using Principal Com-
ponent Analysis

A variety of metamodeling techniques have been developed

over the years and have been used in design. Metamodels are
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omputationally efficient “surrogates” of expensive simulations or
xperiments. Among the commonly used methods are polynomial
esponse surfaces, kriging models, radial basis functions, moving
east-squares, multivariate adaptive regression splines, artificial
eural network methods, and multistage Bayesian surrogates.

Kriging is an interpolation technique originally developed in
eostatistics �25�. It considers the true function y�x� as a realiza-
ion of a random process Y�x�= f�x�+Z�x�, where f�x� is a deter-

inistic regression model, and Z�x� is a random error, which is
epresented by a zero-mean stochastic Gaussian process �26� with
ovariance COV�x1 ,x2�=�2R�x1 ,x2�, where �2 is the process
ariance and R�x1 ,x2� is the correlation function. The Gaussian
orrelation function is common, although other multiple correla-
ion functions exist �27�. Kriging is a widely used nonparametric
nterpolator with good capabilities in capturing nonlinear local
ehavior in contrast to parametric interpolators such as polyno-
ial response surfaces. A good overview of metamodeling tech-

iques including kriging, their use in design, and relevant sam-
ling strategies for computer experiments can be found in Refs.
28–30�.

A multistage Bayesian surrogate methodology �MBSM� has
een also proposed �31–33�. It creates surrogate models using a
ayesian framework. The models are updated sequentially

hrough multiple stages of refinements based on targeted data col-
ection. MBSM has a lot of similarities with kriging. It provides
owever, a systematic and computationally efficient way to create
nd update surrogate models using information from different
ources, such as simulations, experiments, expert opinion, or heu-
istics.

Kriging and all previously mentioned metamodeling methods
re time independent. They simply provide a scalar estimate of the
rue function y�x� at point x, which is different from a set of
raining points �design� used to build the metamodel. It is com-

on however, in practice, to have time-dependent functions,
hich may represent the response of dynamic systems for ex-

mple. To our knowledge, only the MBSM technique has been
xtended to time-dependent problems �34,35�. Our proposed
ethodology is an extension of Ref. �36�. It has also similarities
ith a recently reported method �37�, which extracts the main

eatures of a random field in the form of eigenvectors of its cor-
elation matrix, using proper orthogonal decomposition, which in
rinciple is similar to the Karhunen–Loeve �KL� decomposition
38�.

This section gives a brief overview of a time-dependent meta-

Fig. 4 Illustration
odeling technique using singular value decomposition �SVD�

51001-4 / Vol. 131, MAY 2009
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�39� and kriging �25–30�. The method uses concepts from the
principal component analysis. It first characterizes a parametric
random process using an available finite number of time-
dependent sample functions. Subsequently, it can “sample” the
random process, producing time-dependent sample functions,
which belong to the same random process. Both a parametric case
in Sec. 4.1 and a nonparametric case in Sec. 4.2 are considered.
The parametric case of the time-dependent metamodeling has
been also used in Refs. �36,40�.

4.1 Parametric Case. In this case, the random process is de-
fined by a number of random variables. A realization of all ran-
dom variables, defines a time-dependent sample function of the
random process. The harmonic random process A sin��t� is an
example, where the magnitude A and the frequency � are random
variables.

Figure 4 illustrates the parametric uncertainty for a two-random
variable case. For each sample of the input random variables, the
output is a time-dependent sample function of the output random
process.

We assume that the random process can be fully characterized
using m sample functions. Each sample function corresponds to a
particular design �sample point of input random variables�. A m
�n response matrix, �X�, is formed by discretizing each of the m
output sample functions in time, using n time increments. Each
row of the response matrix represents the discretized time history
for a particular design �see Eq. �1��. Each column corresponds to
a particular time step. The time-dependent metamodel of this sec-
tion can provide the time history of a new design �circle in Fig. 4�,
which is not represented by any row of matrix �X�. Without loss of
generality, we assume that m�n resulting in r�m, where r is the
rank of matrix �X�, where

�X� = �x1�t1� ¯ x1�tn�
] � ]

xm�t1� ¯ xm�t1�
� �1�

The time histories in �X� contain all potential nonlinear effects.
The methodology can be therefore, applied to both linear and
nonlinear systems. A SVD is performed on matrix �X� according
to the following relation �39�:

�X� = �U��S��V�T �2�

�U� is a column-orthogonal m�m matrix, with each column be-
T

parametric case
ing the left eigenvector of �X�, �V� is an orthogonal n�n matrix
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f the right eigenvectors of �X�, and �S� is an m�n matrix con-
aining all m singular values of �X� in decreasing magnitude in its
pper diagonal portion. The matrix �V�T includes all time-
ependent information of �X�, and matrices �U� and �S� are
ime-independent.

Keeping only the dominant singular values in �S�, Eq. �2� is
artitioned as

�X� = �M� M ��Sv 0

0 0
��P�

T

PT � �3�

here the diagonal matrix S� includes the � dominant singular
alues. The remaining m−� nondominant singular values are trun-
ated to zero. The columns of �U� are called principal components
nd can be viewed as space-dependent “modes” of �X�. Finally,
q. �3� becomes

�X� = �M���Sv��P��T �4�

Each row of matrix �X� represents the time history for a par-
icular sample design point. To characterize the random process, a
umber of design points equal to m were used to “space-fill” the
esign space. An optimum symmetric Latin hypercube �OSLH�
ampling algorithm �41� is used to define the m design points. The
ime-dependent response 	X�k�
 of a design point k, which is not
ncluded in the m sample design points, is calculated using a non-
inear interpolation of each “mode” of matrix �M�� in Eq. �4� as

	X�k�
 = 	Mv�k�
�Sv��P��T �5�

X�k�
 is an “interpolated” row of the response matrix, corre-
ponding to design point k, where 	Mv�k�
 is an interpolated row
f matrix �M��. The time-dependent information in matrix �P��
emains the same. We use kriging to calculate 	Mv�k�
 because it
rovides an accurate interpolation for nonlinear functions. It uses
spatial correlation function so that the prediction is heavily in-
uenced by sample points close to the prediction point. This fea-

ure greatly improves the interpolation accuracy.
The software package Design and Analysis of Computer Ex-

eriments �DACE� �27�, a MATLAB toolbox, is used to create all
riging metamodels. A zero-order regression model and a Gauss-
an correlation function are used.

4.2 Nonparametric Case. For the nonparametric case, the
nput random process is an ensemble of time-dependent sample
unctions, as shown in Fig. 5. A response time function corre-
ponds to each input sample function, as indicated by the arrows.
ll response time functions constitute the output random process.
Each time function of the input random process is discretized in

ime, and an input response matrix �Xin� is formed similarly to Eq.
1�. According to Eq. �2�, a singular value decomposition results
n �Xin�= �Uin��Sin��Vin�T or in a least-squares sense,

�Uin� = �Xin��Vin��Sin�−1 �6�

here �Sin� is the diagonal matrix of the � dominant singular

Fig. 5 Illustration o
alues. Similarly for the output random process, we have
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�Uout� = �Xout��Vout��Sout�−1 �7�

where �Xout� is the response matrix of the output random process.
At this point, a kriging interpolation is established between �Uin�
and �Uout�. For a given input time function 	Xin

k �t�

= 	Xin

k �t1� . . .Xin
k �tn�
, which is discretized in time, we calculate

	Uin
k 
= 	Uin1

k . . .Uin�

k 
 using Eq. �6�, i.e.,

	Uin
k 
 = 	Xin

k 
�Vin��Sin�−1 �8�

Using the kriging interpolation, which is established between
�Uin� and �Uout�, the output vector 	Uout

k 
 is calculated. Finally, the
output time function, which corresponds to 	Xin

k �t�
 is given by

	Xout
k 
 = 	Uout

k 
�Sout��Vout�T �9�

5 Time-Dependent Metamodels for Engine Torque
and Turbine Speed

This section describes how time-dependent metamodels of a
nonparametric case �see Sec. 4.2� are used to interpolate an exist-
ing set of functions comprising the engine torque random process
and the corresponding turbine speed functions. The engine torque
random process is first sampled, and the corresponding turbine
speed is then calculated without running the actual simulation
model. The process described herein is utilized in the determinis-
tic optimization in Sec. 6.

A torsional full vehicle model of a rear-wheel-drive light duty
truck is considered. A set of engine torque time histories �input�
and the corresponding turbine speed time histories �output� are
used to create an input-output relationship between engine torque
and turbine speed.

Figure 6 shows the 25 input engine torque sample functions.
They cover the entire range of possible engine torque functions.
All engine torque time histories have similar shapes according to
commonly used engine torque profiles in the automotive industry.
With the exception of the baseline, each history is broken into two
distinct regions. The first region represents the torque manage-
ment phase, where the engine torque is controlled. The engine
torque rises gradually until the lash is closed. In the second phase,
the engine torque is unmanaged, jumping suddenly to the driver’s
requested torque. For the function with no torque management,
the engine torque rises very quickly, early in time. The gradual
torque rise of all functions except the baseline helps to reduce
clunk.

For each input engine torque time function, the corresponding
transmission turbine speed time function is calculated using the
analytical model in Sec. 3. Figure 7 shows the calculated turbine
speeds. Some of the time histories have a peak spike early in time
and some later. The time at which the spike occurs indicates when
the driveline lash is closed.

Using the process in Sec. 4.2, the 25 sample functions in Figs.

onparametric case
f n
6 and 7 were used to characterize the input engine torque and the
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utput turbine speed random processes, respectively. According to
q. �9�, an interpolated engine torque function and its correspond-

ng turbine speed function are given by

	Xe
 = 	Ue
�Se��Ve�T �10�

nd

	Xt
 = 	Ut
�St��Vt�T �11�

here the subscripts e and t indicate engine and transmission,
espectively.

The number of kept singular values in Eqs. �10� and �11� was
ncreased until the rms error �see Eq. �12��, between the predicted
ime function and the time function from the actual simulation,
as less than 1 N m and 5 rpm, respectively. 10 and 12 singular
alues were needed for the input engine torque and the output
urbine speed, respectively. Therefore, the dimensions of matrices

Fig. 6 Engine torq
Fig. 7 Corresponding transmission
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�Ue� and �Ut� �see Eqs. �6� and �7�� are 25�10 and 25�12,
respectively. Using kriging interpolation, we can predict the row
of the output matrix �Ut�, which corresponds to an interpolated
row of the input matrix �Ue� as follows.

An integer number from 1 to n is assigned to each of the n rows
of the n�m matrix �Ue�. A kriging interpolation model is then
created between a real “counter” x with 1�x�n, and the matrix
of �Ue�. For each noninteger value of x we get an interpolated row
	Ue

x
= 	Ue1

x . . .Uem

x 
 of �Ue�. If x is an integer, we simply obtain the

original xth row of �Ue�. The xth row 	Ut
x
= 	Ut1

x . . .Utm
x 
 of the

output matrix �Ut� is similarly obtained. Finally using Eqs. �10�
and �11�, the actual time functions 	Xe

x
= 	Ue
x
�Se��Ve�T and 	Xt

x

= 	Ut

x
�St��Vt�T are calculated. This process is used to interpolate
the 25 input engine torque functions in Fig. 6 and the correspond-
ing 25 output turbine speed functions in Fig. 7.

sample functions
ue
turbine speed sample functions
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The accuracy of the time-dependent metamodels and the re-
uired number of time functions to build them were assessed us-
ng a “leave-one-out” approach. A time function is left out at a
ime, and a metamodel is built using the remaining functions.
ubsequently, the metamodel is used to predict the left out func-

ion and an rms error is calculated using Eq. �12�. We kept adding
unctions until the average rms error was less than 5 rpm. Twenty
ve functions were needed for the metamodel in the deterministic
ptimization of Sec. 6, and 100 functions were needed for
he reliability-based design optimization �RBDO� metamodel in
ec. 7.
The rms error

Erms =��i=1

n
�xi − x̂i�2

n
�12�

s calculated using the difference between the function value xi of
he actual simulation and the function value x̂i of the time-
ependent metamodel at all discrete times i=1,2 , . . . ,n. A time
tep of 0.001 s is used. Figure 8 compares a value predicted by the
etamodel time function with the actual function for the deter-
inistic optimization case, after the leave-one-out approach indi-

ated that 25 functions are needed. The two functions are visually
dentical, indicating that the rms error of 5 rpm is relatively small.

Deterministic Optimization of Engine Torque Dur-
ng a Tip-In Event

The optimal engine torque profile is determined here without
onsidering variation, providing a basis of comparison when
ariation is considered in Sec. 7. In practice, engine calibration is
erformed using manual iterations, based on subjective feedback
rovided by experienced calibration engineers. In calibration for
ip-in clunk, the calibration engineer enters an aggressive engine
orque profile if the throttle response is too slow, and a slower
ngine torque rate if the clunk event is perceived as too objection-
ble. A production calibration is achieved when both the throttle
esponse and the clunk magnitude are perceived as acceptable.
his article provides an analytical methodology for improved en-
ine calibration for clunk, using objective �not subjective� mea-
ures, optimization, and time-dependent metamodels.

Using time-dependent metamodels, the turbine speed can be

Fig. 8 Illustration of time-de
redicted for any engine torque input as a function of time without

ournal of Mechanical Design

 https://mechanicaldesign.asmedigitalcollection.asme.org on 06/19/2019 Terms o
running the actual simulation model. It has been mentioned that
the rate of engine torque rise affects the vehicle response time
significantly, and that a trade-off exists between reduced clunk
disturbance and vehicle performance. An optimization is there-
fore, used to reduce clunk while maintaining an acceptable level
of vehicle performance.

The following deterministic optimization problem is solved:

min
x

�f�x,p��

s.t. G�x,p� � 0.67

1 � x � 25 �13�

where the objective f�x ,p� represents the magnitude of the turbine
speed spike during a tip-in event. Because the spike is propor-
tional to the clunk severity, minimizing f�x ,p� also minimizes
clunk. In Eq. �13�, the design variable x provides an interpolation
counter among the engine torque profiles and the corresponding
turbine speeds �see last paragraph of Sec. 5�. Vector p includes the
deterministic parameters. The constraint G�x ,p� represents the ve-
hicle throttle response. It ensures that clunk is reduced without
causing excessive throttle delays due to torque management. It
also measures how quickly the vehicle reacts to throttle pedal
movement. Both f�x ,p� and G�x ,p� are determined from postpro-
cessing the turbine speed time trace.

During tip-in, the engine torque should only be “managed”
while the driveline is traveling through the lash zone. The engine
torque can, subsequently, rise rapidly without producing clunk. In
this article, an acceptable throttle response is defined by the time
it takes the engine torque to rise to 150 N m, because the clunk
event is over by the time the engine is producing 150 N m. The
upper limit for the throttle response constraint G�x ,p� is equal to
0.67 s �see Fig. 9�, which is representative of a rear-wheel-drive
light duty truck. This constraint is essential for the trade-off be-
tween throttle response �vehicle performance� and clunk reduc-
tion.

Figure 9 shows the deterministically optimal engine torque
from Eq. �13� and the baseline design with no engine torque man-
agement. The latter indicates, as expected, a sharp initial rise in
the engine torque. The optimal engine torque exhibits a gradual
slope to allow the lash to close without accelerating the gear sets.

ndent metamodel validation
Also the throttle response constraint G�x ,p��0.67 is active.
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The baseline and optimal torque functions were used as inputs
o the time-dependent metamodel, and the corresponding turbine
peed outputs in Fig. 10 were obtained. The baseline turbine speed
xperiences a relatively high turbine speed spike of 166 rpm, in-
icating a high level of clunk. The result is expected because there
s no torque management to slow the driveline acceleration while
n the lash zone. The turbine speed however, which corresponds to
he deterministically optimal engine torque, has a much lower
urbine speed spike of 65 rpm, resulting in a much lower level of
lunk. For comparison purposes, the optimal turbine speed from
he reliability-based design optimization study in Sec. 7 is also
hown.

Reliability-Based Design Optimization of Engine
orque
The optimization in Sec. 6 was performed without considering

he inherent variation in a vehicle population. As mentioned in
ec. 3, variation exists in the engine, torque converter, and driv-

Fig. 9 Initial and o
Fig. 10 Initial and optimal
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eline. The engine and torque converter variation is represented by
the positive scalar multiplication factors ETV, TRV, and KFV. The
driveline variability is characterized by LRP �lash at the ring and
pinion� and Rring �friction variation due to temperature and wear�.
The ETV, KFV, and TRV design parameters are assumed to follow
a truncated normal distribution N�0.975,0.05�, so that they vary
between 0.95 and 1. The Rring and LRP design parameters are
assumed normally distributed with Rring
N�0.2,0.02�, and LRP


N�0.275,0.02�
Based on available but limited data, ETV, KFV, and TRV are

close to, but smaller than, 1, and their COV is around 5%. Also
the COV for Rring and LRP is around 10%. Due to lack of further
information, we assumed normal distributions with approximately,
the above COVs. We believe that because our goal is to demon-
strate the effect of uncertainty in the design of vehicle drivelines
with reduced clunk, the assumed normal distributions are reason-
able. More work is needed to assess the input distributions using
limited available data.

al engine torques
turbine speed functions
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The input sample space is now six-dimensional �the interpola-
ion counter x for the engine torque and five random parameters
TV, TRV, KFV, LRP, and Rring�. As mentioned in Sec. 5, we used
leave-one-out approach to determine the number of input design
oints so that the average rms error is less than 5 rpm. One hun-
red points were needed. Points were created using the “space
lling” OSLH design in six dimensions. Table 1 shows some of

he OSLH design points. The counter x is used to interpolate the
ngine torque random process according to Sec. 4.1. The calcu-
ated engine torque time function and the values of the ETV, TRV,
FV, LRP, and Rring random parameters are used as inputs in the

ctual simulation model of Sec. 3 to calculate the corresponding
urbine speed time function. The engine torque and turbine speed
ime functions are postprocessed to obtain the throttle response
�x ,p� and the turbine speed spike f�x ,p�, respectively.
The optimal engine torque profile under uncertainty is calcu-

ated by solving the following RBDO problem

min
d

�f�d,�P,p��

P�G�d,P,p� � 0� � R

Table 1 Input sample

Point Counter x ETV

1 1.000 0.950
2 25.000 1.000
3 13.606 0.972
4 5.848 0.984
5 20.152 0.966
6 8.273 0.955
7 17.727 0.995
8 12.394 0.978
9 24.515 0.985

10 1.485 0.965
. . .
99 20.394 0.956

100 5.606 0.994
Fig. 11 Optimal engin

ournal of Mechanical Design
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1 � d � 100 �14�

where d is a new counter for interpolation among the engine
torque profiles and the corresponding turbine speeds of the 100
OSLH design points �first column of Table 1�. The vectors �p
= �0.975 0.975 0.975 0.275 0.2� and �p
= �0.05 0.05 0.05 0.015 0.02� represent the mean and stan-
dard deviation values of the random parameters P
= �ETV KFV TRV LRP Rring�, and the vector p includes all
deterministic parameters. In the deterministic optimization in Sec.
6, the mean values of LRP and Rring have been used, and the
parameters ETV, KFV, and TRV are equal to 1. The desired reli-
ability level is denoted by R=1− pf where pf = P�G�d ,P��0� is
the target probability of violating the throttle response constraint.
We have assumed that pf ���−	� where the target reliability in-
dex 	 is equal to 2. The RBDO problem of Eq. �14� is solved
using the single-loop RBDO algorithm of Liang et al. �42�.

Figure 11 shows the optimal engine torque from RBDO in com-
parison with the deterministic optimal engine torque. The former
rises slightly more gradually because of the presence of variation.
Both curves look similar and exhibit the peak torque at nearly the
same time. However, they are controlled slightly differently ear-

ce for the RBDO case

V TRV LRP Rring

50 0.950 0.250 0.100
00 1.000 0.300 0.300
51 0.981 0.289 0.209
84 0.952 0.289 0.153
66 0.998 0.261 0.247
67 0.963 0.299 0.172
83 0.987 0.251 0.228
99 0.969 0.261 0.191
72 0.987 0.280 0.173
78 0.963 0.270 0.227

53 0.988 0.255 0.165
97 0.962 0.295 0.235
spa

KF

0.9
1.0
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

0.9
0.9
e torque functions
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ier in time, when the engine torque is less than 50 N m, until the
ash is closed. This is indicated by the different slope and the
ifferent inflection point as the engine torque transitions from
anaged to unmanaged. The lash is closed when the engine

orque reaches 48.4 N m in the deterministic case, and 32 N m in
he RBDO case. The important portion of the engine torque be-
ween 0 N m and 50 N m depends on the vehicle application.

Figure 10 shows the resulting turbine speeds for the engine
orques in Fig. 11. The presence of variation resulted in a 34%
ncrease in clunk, increasing the turbine speed spike from 65 rpm
o 87 rpm. Small changes in the engine torque management, or
ariation in the driveline, can have, therefore, a large impact on
lunk. For a fleet of vehicles, the engine torque management and
he driveline must be simultaneously optimized under uncertainty.

Summary, Conclusions, and Future Work
A methodology has been proposed to create time-dependent
etamodels for parametric and nonparametric cases using princi-

al component analysis and kriging. The methodology was used
o optimize the engine torque profile under uncertainty for a rear-
heel-drive light duty truck in order to reduce the driveline tip-in

lunk disturbance without greatly affecting the vehicle perfor-
ance. Driveline clunk negatively affects the perceived quality

nd must be minimized. This is usually achieved using engine
orque management, which is part of engine calibration. The pro-
osed technique can replace the time consuming and relatively
naccurate current practice of trial-and-error engine calibration,
hich uses the subjective judgment of the calibration engineer�s�.

t was shown that the turbine speed spike, which serves as a
riveline clunk measure, is reduced from 166 rpm at the baseline
esign to 87 rpm for the optimum design under uncertainty. The
equired engine torque to reduce the level of clunk resulted in a
onger throttle response and therefore, a lower vehicle perfor-

ance. The lost performance however, was small and acceptable
onsidering the substantial clunk reduction.

It was demonstrated that small changes in engine torque man-
gement, or variation in the driveline, can have a large impact on
he level of clunk. This suggests that the engine torque and the
riveline design must be simultaneously optimized under uncer-
ainty, in order to minimize clunk for a fleet of vehicles.

In this article, clunk was optimized deterministically and also
nder uncertainty using engine torque management at the expense
f throttle response. Based on our findings, the following two
ecommendations for future work are proposed.

There is a trade-off between clunk reduction and throttle re-
ponse. The latter indicates vehicle performance. In this article,
lunk was minimized under the assumption of the throttle re-
ponse not exceeding a target of 0.67 s. Although this target is
cceptable in light duty truck design, a multi-objective optimiza-
ion should be considered in which the clunk and the throttle
esponse are simultaneously minimized. The resulting Pareto front
ill better guide the designer in choosing the appropriate compro-
ise between cluck and vehicle performance.
The development of “learning” algorithms to automatically
odify the engine torque during the vehicle life will be very use-

ul. As the vehicle ages, the engine torque compression ratio de-
reases, causing the engine to produce less torque. In this article,
e only accounted for the variation in engine torque among dif-

erent engines. However, we did not consider the engine torque
eduction during the life of the vehicle, which is expected to be
izeable. An algorithm can detect clunk using the turbine speed
pike, and can adjust the engine torque management to reduce
lunk and to also reduce the delay in the perceived throttle re-
ponse. The techniques in Refs. �1–3� can be incorporated into the

esign of such an algorithm.
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