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Abstract

Our starting point is a selection-mutation equation describing the adaptive dynamics of a quan-
titative trait under the influence of an ecological feedback loop. Based on the assumption of small
(but frequent) mutations we employ asymptotic analysis to derive a Hamilton-Jacobi equation.
Well-established and powerful numerical tools for solving the Hamilton-Jacobi equations then al-
low us to easily compute the evolution of the trait in a monomorphic population. By adapting the
numerical method we can, at the expense of a significantly increased computing time, also capture
the branching event in which a monomorphic population turns dimorphic and subsequently follow
the evolution of the two traits in the dimorphic population.

From the beginning we concentrate on a caricatural yet interesting model for competition for two
resources. This provides the perhaps simplest example of branghing and has the great advantage
that it can be analysed and understood in detail.
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1 Introduction

Biological evolution is driven by selection and mutation. Whenever the environmental conditions are
fixed once and for all, one can describe the end result in terms of optimality and derive estimates for
the speed of adaptation of a quantitative trait from a selection-mutation equation [5]. If, however,
an ecological feedback loop is taken into account, the environmental conditions necessarily co-evolve
and accordingly the spectrum of possible dynamical behaviour becomes a lot richer. The theory
which focusses on phenotypic evolution driven by rare mutations, while ignoring both sex and genes,
is known by the name Adaptive Dynamics, see [19], [18], [12], [10], [11] and the references given
there. Particularly intigueing is the possibility of ”branching”, a change from a monomorphic to a
dimorphic population. Under the assumption that mutations are not only rare but also very small one
can derive the so-called ”canonical equation” [12], [7] champagnat, which describes both the speed
and the direction of adaptive movement in trait space. The canonical equation does not capture the
branching phenomenon, however. (So the switch from a description of the monomorphic population
to a description of the dimorphic population has to be effectuated by hand, see e.g. [9].)

The present paper has two aims. One is to present a rather simple example of branching (in fact
so simple that all of the relevant information can be obtained via a pen and paper analysis. The
other is to derive, by a limiting procedure, a Hamilton-Jacobi equation from a selection-mutation
equation in which it is oncorporated that mutations are not necessarily rare but are certainly very
small. The link between these two items is that we show that a numerical implementation of the
Hamilton-Jacobi description of the example is able to capture the branching phenomenon. This leads
to our main message : the Hamilton-Jacobi formalism offers a promising tool for analysing more
complicated problems from Adaptive Dynamics numerically.

The organization of the paper is as follows. In Section 2 we introduce the ecological setting for the
example, viz. competition for two substitutable resources. Consumers are characterized by a trait x
which takes values in [0,1]. the two end-points correspond to specialists which ingest only one of the
two substrates. The up-take rates for general x embody a trade-off. In principle this can work both
ways : either generalists may be less efficient or, on the contrary, there may be a price to specialisation.

In Section 3 we model a distributed, with respect to x, population of consumers. Incorporating the
possibility of mutation, we arrive at a selection-mutation equation in which the ecological feedback
loop via the resources is explicitly taken into account. Assuming that mutations are very small we
derive (by a formal limiting procedure in which time is rescaled in order to capture the slow process
of substantial change in predominant trait) the Hamilton-Jacobi equation with constraints that is the
main subject of this paper.

What adaptive dynamics should we expect ? How does this depend on the trade-off ? If we assume
that muatations are rare, we can employ the methods of the Adaptive Dynamics references cited above
to answer these questions. This we do in Section 4. Focussing at first on a monomorphic population
we introduce the invasion exponent, the selection gradient and the notion of mutual invasibility. Next
we embark on a search for singular points (i.e., points at which the selection gradient vanishes).
Singular points can be classified according to their attraction/repulsion properties with respect to the
adaptive dynamics. A key feature is that a singular point may be an attractor for monomorhisms, yet
a repellor for dimorphisms. Such a point is called a ”branching point”. We deduce conditions which
guarantee that the utmost generalist trait x = 1/2 corresponds to a branching point. We also present
a graphical method, due to [25], for analysing the adaptive dynamics of dimorphisms, including a
characterization of the pair of points at which evolution will come to a halt. As in the context of
our example plurimorphisms involving more than two points are impossible, our results give a rather
complete qualitative picture of the adaptive dynamics in dependence on qualitative (and quantitative)
features of the trade-off. Additional quantitative information about the speed of adaptive movement
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is embodied in the canonical equation which, much as the Hamilton-Jacobi equation, describes trait
change on a very long time scale when mutations are, by assumption, very small.

Section 5 deals with the numerical implementation of the Hamilton-Jacobi equation. To test its
performance, we compare the results with both the qualitative and quantitative insights derived in
Section 4 and with a direct numerical simulation of the full selection-mutation equation. The tests
are a signal success for the Hamilton-Jacobi algorithm.

In Section 6 we summarize our conclusions. An appendix gives a rigorous justification of the
limiting procedure leading to the Hamilton-Jacobi formulation in the context of a drastically simplified
model.

2 Competition for two resources

Consider an organism that has access to two resources which provide energy and comparable materials
(such resources are called ”substitutable”). Let S1 and S2 denote the concentrations of these resources
in a chemostat, cf [26]. Then the vector

I =

(

S1

S2

)

(2.1)

constitutes the environmental condition (in the sense of [20], [21]) for the consumer.
The organisms can specialise to various degrees in consuming, given I, more or less of either of

the two resources. We capture this in a trait , which we denote by x and which varies continuously
between 0 and 1. If the trait is 0 only resource 2 is consumed and when the trait equals 1 only resource
1 is consumed. The general effect of the trait is incorporated in the two up-take coefficients η(x) and
ξ(x), which are such that the per capita ingestion rate of an organism with trait x equals, respectively,
η(x)S1 and ξ(x)S2 (so we assume mass action kinetics and ignore saturation effects).

In case of a monomorphic consumer population, the ecological dynamics is then generated by the
system of differential equations























dS1
dt = S01 − S1 − η(x)S1X,

dS2
dt = S02 − S2 − ξ(x)S2X,

dX
dt = −X + η(x)S1X + ξ(x)S2X,

(2.2)

where X denotes the density of the consumer population and S0i is the concentration of resource i in
the inflowing medium (note that the variables have been scaled to make the chemostat turnover rate
and the conversion efficiencies equal to 1).

System (2.2) has, provided

η(x)S01 + ξ(x)S02 > 1, (2.3)

a unique nontrivial steady state which is globally asymptotically stable. To see this, note first of all
that the population growth rate of consumers with trait x under steady environmental conditions I
is given by

r(x, I) = −1 + η(x)S1 + ξ(x)S2. (2.4)

So a first steady state condition reads

r(x, I) = 0. (2.5)
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In addition there are feedback conditions to guarantee that I is constant, viz.,






S01 − S1 − η(x)S1X = 0,

S02 − S2 − ξ(x)S2X = 0.
(2.6)

If we solve (2.6) for S1 and S2 in terms of X and substitute the result into (2.5), we obtain one
equation

−1 +
η(x)S01

1 + η(x)X
+

ξ(x)S02

1 + ξ(x)X
= 0 (2.7)

in one unknown, X. The left hand side of (2.7) is a monotone decreasing function of X with limit
-1 for X → ∞. So there is a positive solution if and only if the value of the left hand side is
positive for X = 0, which amounts exactly to condition (2.3) (note that this inequality guarantees
that the consumer population starts growing exponentially when introduced in the virgin environment

I =

(

S01

S02

)

. To deduce the global stability, first observe that, for t→ ∞

S1 + S2 +X −→ S01 + S02 (2.8)

(just add all equations of (2.2) to obtain a linear equation for S1 + S2 +X. A standard phase plane
analysis of the two-dimensional system obtained by putting X equal to S01 + S02 − S1 − S2 in the
equations for S1 and S2 now yields the desired conclusion, see [27] for more details.

We conclude that, under the condition (2.3), the population dynamics of a monomorphic consumer
leads to a unique steady state attractor.

The analogue of (2.2) for the competition of two consumer populations, one with trait x and the
other with trait y, is the system











































dS1
dt = S01 − S1 − η(x)S1X1 − η(y)S1X2,

dS2
dt = S02 − S2 − ξ(x)S2X1 − ξ(y)S2X2,

dX1
dt = −X1 + η(x)S1X1 + ξ(x)S2X1,

dX2
dt = −X2 + η(y)S1X2 + ξ(y)S2X2.

(2.9)

In steady state both r(x, I) and r(y, I) are zero. These are two linear equations in the two unknowns
S1 and S2. The solution reads

(

S1

S2

)

=
1

η(x)ξ(y) − η(y)ξ(x)

(

ξ(y) − ξ(x)
η(x) − η(y)

)

.

The two feedback relations can next be used to deduce that the steady state densities of the two
consumer populations are





X1

X2



 =







ξ(y)S01

ξ(y)−ξ(x) −
η(y)S02

η(x)−η(y) −
η(y)−ξ(y)

η(x)ξ(y)−η(y)ξ(x)

−ξ(x)S01

ξ(y)−ξ(x) + η(x)S02

η(x)−η(y) + ξ(x)−η(x)
η(x)ξ(y)−η(y)ξ(x)






. (2.10)

Note, however, that in order to be meaningful the expressions for Xi should be positive and, it
then follows automatically, by the two feedback equations, that 0 < Si < S0i. The translation of these
conditions into conditions on the pair (x, y) is of course cumbersome.
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The steady state is a global attractor whenever it satisfies the sign conditions, [28].
According to the Competitive Exclusion Principle, three or more consumer populations cannot

coexist in steady state on two resources. And indeed, if r(x, I), r(y, I) and r(z, I) are all put equal
to zero we have three linear equations in just two unknowns, S1 and S2, so generically there is no
solution.

3 The selection-mutation equation and its Hamilton-Jacobi limit

If reproduction is not completely faithful, a consumer with trait y may generate offspring with trait x.
Let K(x, y) be the corresponding probability density. One then expects to find, after a while, con-
sumers of all possible traits. Let n(t, .) denote the density of consumers at time t. The system



























dS1
dt (t) = S01 − S1(t) − S1(t)

∫ 1
0 η(x)n(t, x)dx,

dS2
dt (t) = S02 − S2(t) − S2(t)

∫ 1
0 ξ(x)n(t, x)dx,

∂n
∂t (t, x) = −n(t, x) +

∫ 1
0 K(x, y){S1(t)η(y) + S2(t)ξ(y)}n(t, y)dy,

(3.1)

describes the interaction, via the resources, of the various types of consumers, as well as the effect of
mutation. It is therefore called a selection-mutation (system of) equation(s).

Let now K depend on a small parameter ε, the idea being that mutations are necessarily, which
we incorporate by assuming that Kε(x, y) is negligibly small for x outside an ε-neighbourhood of y.
Rescale time by putting τ = εt. Abusing notation by writing τ again as t we can now rewrite the last
equation of (3.1) as

ε

n(t, x)

∂n

∂t
(t, x) = −1 +

∫ 1

0
Kε(x, y){S1(t)η(y) + S2(t)ξ(y)}

n(t, y)

n(t, x)
dy. (3.2)

In terms of ϕ defined by

ϕ(t, x) = ε ln n(t, x), (3.3)

the left hand side equals ∂ϕ
∂t (t, x) while the second term at the righthand side can be written as

∫ 1

0
Kε(x, y){S1(t)η(y) + S2(t)ξ(y)}e

ϕ(t,y)−ϕ(t,x)
ε dy (3.4)

Now assume that Kε(x, y) is sufficiently small for y outside an ε neighbourhood of x. We then make
the change of integration variable y = x+ εz and approximate

ϕ(t, y) − ϕ(t, x)

ε
by

∂ϕ

∂x
(t, x)z

and

Kε(x, y)dy by K̃(z)dz

where K̃ is a nonnegative and even function defined on (−∞,+∞) which has integral 1 (here we simply
ignore the subtelities of mutation in small neighbourhoods of the boundary points x = 0 and x = 1,
and assume that the likelihood of a mutation depends only on the distance between the original trait
and the new trait). By formally taking the limit ε→ 0 in (3.2) we obtain

∂ϕ

∂t
(t, x) = r(x, I) + (S1(t)η(x) + S2(t)ξ(x))H

(∂ϕ

∂x
(t, x)

)

(3.5)
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where r is as defined in (2.4) and H is defined by

H(p) =

∫ ∞

−∞

K̃(z)e−pzdz − 1. (3.6)

Note that H(0) = 0 and that for an even function K̃ we have H ′(0) = 0 and H ′′(0) > 0, so H is
convex. We call H the Hamiltonian corresponding to K̃. Also note that we abuse notation once
more by not distinguishing ϕ defined by (3.3) from its limit for ε→ 0.

Rewriting (3.3) as

n(t, x) = e
ϕ(t,x)

ε , (3.7)

it becomes clear that we should have

ϕ(t, x) ≤ 0 (3.8)

in the limit for ε → 0 (see Section 6 for a derivation of the bounds that substantiate the ’should’).
The points where ϕ equals 0 are of particular interest since, again in the limit ε→ 0, n is concentrated
in these points (in the limit n is no longer a density, but a measure).

Suppose x = x(t) is such that

ϕ(t, x) = 0. (3.9)

Then, because of (3.8), necessarily

∂ϕ

∂x
(t, x(t)) = 0. (3.10)

Since also

0 =
d

dt
ϕ(t, x(t)) =

∂ϕ

∂t
(t, x(t)) +

∂ϕ

∂x
(t, x(t))

dx

dt
(t) (3.11)

we must have that

∂ϕ

∂t
(t, x(t)) = 0. (3.12)

Substituting (3.12) and (3.10) into (3.5) and using H(0) = 0 we find that

r(x(t), I) = 0. (3.13)

The Competitive Exclusion Principle as formulated at the end of the preceding section now implies
at once that there can be at most two points x1(t) and x2(t) for which (3.9) holds.

This observation allows us to rewrite the limiting version of the first two equations of (3.1) in the
form

S1(t) =
S01

1 + c1η(x1(t)) + c2η(x2(t))
,

(3.14)

S2(t) =
S02

1 + c1ξ(x1(t)) + c2ξ(x2(t))
,

where c1 and c2 are the sizes of the subpopulations with, respectively, trait x1(t) and trait x2(t). The
limiting problem thus takes the Hamilton-Jacobi form (3.5). If the population is dimorphic, the two
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Figure 1: Branching in system (3.1). Left: direct simulation through (7.1). Right: simulation of the
H.-J. equation (3.5).

constraints induced by (3.9) at two points x1(t) and x2(t) allow to recover the ’Lagrange multipliers’
Si(t), and then the population densities c1, c2 are recovered from given by (3.14). If the population
is monomorphic, then there is only one free constant c := c1 + c2 and the equation (3.5) has to be
complemented by a relation between S1(t) and S2(t), namely

S1(t) =
S01

1 + cη(x(t))
, S2(t) =

S02

1 + cξ(x(t))
. (3.15)

The switch from one case to the other (and thus the search for an additional criteria for uniqueness of
the solution) is a problem we leave open for the moment. See Section 7 for an algorithmic solution. In
Figure 1 we present an example computed with these methods along with up-take functions obtained
with the analysis in Section 4.

In conclusion of this section we remark that the ansatz (3.7) works equally well when mutation is
described by a diffusion term (rather than an integral operator), as in some parts of [5] and [14]

4 Trait substitutions, singular points and branching

In this section we adopt the Adaptive Dynamics point of view by assuming that mutations are ex-
tremely rare at the time scale of ecological interaction.

4.1 Invasibility

Imagine a resident consumer population which is monomorphic. It sets the environmental condi-
tion at a steady level. If the resident has trait x, we denote the corresponding vector of substrate
concentrations by Ix.

Now suppose that, due to a mutation, a consumer with trait y enters the scene. Will this in-
vader initiate an exponentially growing clan of y individuals ? If we ignore the issue of demographic
stochasticity, the answer is provided by the sign of the invasion exponent

sx(y) := r(y, Ix), (4.1)
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in the sense that it is ”yes” if sx(y) > 0 and ”no” if sx(y) < 0. If we focus on small mutations the
relevant quantity is the selection gradient

∂s

∂y

∣

∣

∣

y=x
=
∂r

∂x
(x, Ix). (4.2)

If the selection gradient is positive, mutations that increase the trait value are successful.
For the present system it seems feasible to prove rigorously that a successful invader will out-

compete the resident, and thus become the new resident, if there is no mutual invasibility, i.e. if
sy(x) < 0. Here we simply assume this, while referring to [10] and [18] for a general justification of
such an assumption in the case of small mutations.

So in the absence of mutual invasibility a successful mutant causes a trait substitution, i.e.,
the resident is, after a period of ecological interaction which is short at the time scale of mutation,
monomorphic again, but with a different trait.

4.2 Singular points

A trait x at which the selection gradient vanishes is called a singular point. The classification of
singular points is the corner stone of Adaptive Dynamics theory, [19], [17], [11], as much information
about the dynamics can be derived once all singular points and their character are known.

If we supplement the steady state condition (2.5) by the singularity condition

0 =
∂s

∂y
=
∂r

∂x
(x, I) = η′(x)S1 + ξ′(x)S2 (4.3)

we obtain a system of two linear equations in the unknown S1 and S2. The solution is given by




S1

S2



 =
1

η(x)ξ′(x) − η′(x)ξ(x)





ξ′(x)

−η′(x)



 . (4.4)

Substituting these expressions in the feedback conditions (2.6) and eliminating the unknown X we
obtain the equation

ξ(x)η′(x)S01 + η(x)ξ′(x)S02 =
ξ′(x)η′(x)(ξ(x) − η(x))

η(x)ξ′(x) − ξ(x)η′(x)
(4.5)

which the trait x should satisfy in order to be a singular point. Conversely, any solution of (4.5), such
that the Si defined by (4.4) satisfy 0 < Si < S0i, yields a singular point.

The classification of singular points involves second order derivatives of the invasion exponent sx(y)
and these we compute next :

c22 :=
∂2s

∂y2
|y=x =

∂2r

∂x2
(x, Ix) = η′′(x)S1 + ξ′′(x)S2 =

η′′(x)ξ′(x) − ξ′′(x)η′(x)

η(x)ξ′(x) − ξ(x)η′(x)
, (4.6)

c12 :=
∂2s

∂x∂y

∣

∣

∣

y=x
= η′(x)

dS1

dx
+ ξ′(x)

dS2

dx

=
(

(
ξ(x)

ξ′(x)
)2S01 + (

η(x)

η′(x)
)2S02

)−1( ξ′(x) − η′(x)

η(x)ξ′(x) − ξ(x)η′(x)
− S01 − S02

)

. (4.7)

(The computation of dSi

dx starts from (2.5) and the form of (2.6) resulting from elimination of X,
which are two equations in the unknowns S1 and S2, parametrized by the trait x. One then applies
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the Implicit Function Theorem.) There is no need to compute c11 := ∂2s
∂x2

∣

∣

∣

y=x
since the identity

sx(x) ≡ 0 implies that c11 + 2c12 + c22 = 0.
Our aim is to find a singular point which satisfies























c12 < 0,

c22 < −c12,

c22 > 0,

(4.8)

since these are the conditions for a branching point (the first guarantees that one has mutual
invasibility near the singular point, the second that the singular point is convergence stable, i.e., an
attractor for the monomorphic adaptive dynamics, and the third that branching is guaranteed since
(x, x) is a repellor for the dimorphic adaptive dynamics, see [19],[17],[11].

4.3 Symmetric trade-off

In order to make further progress, it helps to specify η and ξ in more detail. Implicitly we assumed
already that (η(0), ξ(0)) = (0, 1), (η(1), ξ(1)) = (1, 0) and that η is increasing while ξ is decreasing.
Now we require that







η(x) = x− δφ(x),

ξ(x) = 1 − x− δφ(x),
(4.9)

where φ is a C2 function which vanishes in x = 0 and x = 1 and φ and δ are such that

δ sup
0≤x≤1

|φ′(x)| < 1 (4.10)

to make sure that η and ξ are monotone. Specialists are more efficient than generalists, in a sense,
when φ is positive. When φ is negative it is the other way around. We introduce the positive parameter
δ to measure the strength of such a trade-off effect (but we refrain from normalising φ explicitly, e.g.
by fixing its value for x = 1

2).
To simplify the analysis we next introduce symmetry by assuming that

S01 = S02 = S0 (4.11)

and

φ(x) = φ(1 − x). (4.12)

If (S1, S2,X) is a steady state corresponding to trait x then, under these conditions, the steady state
corresponding to 1 − x is (S2, S1,X). And if we call (x, y), with 0 ≤ x, y ≤ 1, a point of neutrality

when sx(y) = 0 then, whenever (x, y) is neutral, so is (1 − x, 1 − y). Or, in other words, the curve of
neutral points is invariant under reflection in the midpoint (1

2 ,
1
2) of the square (x, y) : 0 ≤ x, y ≤ 1.

Note that singular points correspond, generically, to intersections of a neutrality curve with the diago-
nal. The symmetry thus suggests that x = 1

2 may very well be a singular point. Let us check whether
this is indeed the case.

Note first of all that (4.12) implies that φ′(1
2 ) = 0. Hence η′(1

2 ) = 1 = −ξ′(1
2 ). Since η(1

2 ) = ξ(1
2)

we deduce from (4.4) that for x = 1
2 the steady state values of S1 and S2 are equal and the value is
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(1−2εφ(1
2 ))−1. In combination with η′(1

2)+ ξ′(1
2 ) = 0 this implies that the selection gradient vanishes

for x = 1
2 (see (4.3)), so x = 1

2 is indeed a singular point.

Evaluating the expressions (4.6) and (4.7) for x = 1
2 we find

c22 =
−2δφ′′

(

1
2

)

1 − 2δφ
(

1
2

) (4.13)

and

c12 =

(

1

2
− δφ(

1

2
)

)−2
(

1

S0

(

1 − 2δφ
(

1
2

)) − 1

)

. (4.14)

The last inequality of (4.8) only requires

φ′′
(

1

2

)

< 0. (4.15)

The middle one amounts to

S0 >

(

1 − 2δφ(
1

2
)

)−1(

1 +
1

2
δ

(

1 − 2δφ(
1

2
)

)

φ′′
(

1

2

))−1

(4.16)

and when the middle and the last hold, so does the first.

For the special case
φ(x) = x(1 − x), (4.17)

the only condition thus is

S0 >

(

1 −
1

2
δ

)−1(

1 − δ(1 −
1

2
δ)

)−1

. (4.18)

For
φ(x) = x(1 − x)[x(1 − x) − α] (4.19)

we find the conditions

α <
1

2
(4.20)

and

S0 >

(

1 −
1

8
δ(1 − 4α)

)−1(

1 + δ(α −
1

2
)

(

1 −
1

8
δ(1 − 4α)

))−1

. (4.21)

4.4 Dimorphisms

Recall that dimorphic steady states are explicity described by the expressions (2.10) and (2.11). The
invasion exponent is now given by

Sx,y(z) = r(z, Ix,y) = −1 + η(z)S1,x,y + ξ(z)S2,x,y (4.22)

with Si,x,y(z) given by (2.10). As we learned from C. Rueffler (cf.[25]), there is a convenient way to
analyse (4.22) graphically.

First plot the curve x 7→ (η(x), ξ(x)). If, as we assumed, η(x) = ξ(1 − x) then this curve is
symmetric with respect to reflection in the diagonal. Accordingly the intersection with the diagonal

10



� �� �

� ��

η η = ξ

−1 + S1η + S2ξ = 0

x 7→ (η(x), ξ(x))

ξ

Figure 2: Elements for the analysis of dimorphic situations.

occurs for x = 1
2 and corresponds to the “extreme generalist” singular point. The condition (4.15)

guarantees local concavity of the curve near this point.
Next draw in the same picture the straight line

−1 + S1η + S2ξ = 0 (4.23)

for some values of S1 and S2. If this line intersects the curve in two points, we can express S1 and S2

in terms of the coordinates of these two points. Thus we rederive (2.10), with x and y the traits that
yield the points.

The invasibility condition
Sx,y(z) > 0 (4.24)

now means that the point on the curve corresponding to trait z should be above the line. Thus we see
at once that when the curve is globally concave, like in the case (4.17) φ(x) = x(1 − x), depicted in
Figure 2 the two traits grow wider and wider apart and converge to the boundary of trait space (i.e.,
the ultimate dimorphism consists of the two extreme specialists, x = 0 and y = 1).

η

ξ

Figure 3: The (ξ, η) curve used for constructing branching points.

When φ is given by (4.19), a suitable choice of the parameters α and δ leads to the curve depicted
in Figure 3. The graphical criterion now yields that the dimorphism corresponding to the two “tops”,
i.e., the two traits at which the tangent line to the curve has slope −1, is uninvasible (or, in other
words, unbeatable).

11



Note that when y = 1 − x the expression (2.10) simplifies to

(

S1

S2

)

=
1

1 − 2δφ(x)

(

1
1

)

. (4.25)

If S1 = S2, the line (4.23) has slope −1. Moreover, the environmental condition is then completely
described by a scalar quantity, the common value of S1 and S2.

So if we constrain the dimorphisms to satisfy the symmetry condition y = 1−x, the “pessimization
principle”, cf. [23, 24], applies and evolution will minimize the common value of S1 and S2 which,
according to (4.25), amounts to minimizing φ. Finally note that the condition φ′(x̄) = 0 is equivalent
to the condition that the tangent to x 7→ (η(x), ξ(x)) has slope −1 in x = x̄.

4.5 The boundary of trait space

To complement the information obtained by a singular point analysis, we pay special attention to
boundary mono - and dimorphisms, as these too may serve as attractors for the adaptive dynamics.

A monomorphic population with trait x = 0 sets the environmental condition at S1 = S01, S2 = 1.
The selection gradient

∂r

∂x
(0, I0) = η′(0)S01 + ξ′(0) = (1 − δφ′(0))S01 − 1 − δφ′(0) (4.26)

determines both whether nearby traits can invade and whether x = 0 is an attractor. The condition

S01 >
1 + δφ′(0)

1 − δφ′(0)
(4.27)

guarantees that x = 0 is a repellor with respect to the adaptive dynamics. Similarly one finds that
x = 1 is unstable if

S02 >
1 − δφ′(0)

1 + δφ′(0)
. (4.28)

A dimorphic population with traits x = 0 and y = 1 sets both S1 and S2 at the value 1, so the
invasion exponent (4.22) equals −2δφ(z). Accordingly the dimorphism (0, 1) is adaptively stable if
φ′(0) > 0 and φ′(1) < 0 but unstable if either of these inequalities is reversed.

4.6 The canonical equation

The canonical equation is a differential equation for the position of the dominant trait(s) in trait space.
In case of a 1-dimensional trait, the time derivative of any position is proportional to the selection
gradient. The proportionality factor incorporates such features as the mutation probability per birth
event, the variance of the distribution of mutant traits, the probability that a potentially successful
mutant does not go extinct due to demographic ????? and the equilibrium resident population size.
We refer to Dieckmann & Law [12] , Champagnat et al [7], [10] for further details including a derivation
from a birth-death process with mutation.

5 An alternative for the canonical equation

At the end of Section 3 we derived, starting from the Hamilton-Jacobi equation (3.5) and the con-
straint (3.8), the property (3.13) expressing that in a point x̄(t) in which ϕ assumes its maxima value
zero, necessarily the consumer growth rate equals zero. Here we take these considerations a step

12



further: we derive an ode for x̄ being given the local shape of ϕ in x̄, as captured by the second order

derivative ∂2ϕ
∂x2 (t, x̄(t)). An interesting feature here is that the system cannot be closed because an ode

for the second derivative of ϕ uses its third derivative.

We differentiate (3.9) with respect to t and we obtain

∂2ϕ

∂t∂x
+

∂2ϕ

∂x2

dx̄

∂t
= 0 (5.1)

(here and in the following we omit the argument (t, x̄(t)). Differentiating (3.5) with respect to x we
find, in general

∂2ϕ

∂t∂x
(t, x) =

∂r

∂x
(I, x) + (S1(t)η

′(x) + S2(t)ξ
′(x))H

(

∂φ

∂x
(t, x)

)

+ (S1(t)η(x) + S2(t)ξ(x))H
′

(

∂φ

∂x
(t, x)

)

∂2φ

∂x2
(t, x)

(5.2)

but if we specialise to x = x̄(t) then, since H(0) = 0 and H ′(0) = 0, this boils down to

∂2ϕ

∂t∂x
=

∂r

∂x
(I, x̄). (5.3)

Combining (5.1) and (5.3) we obtain an alternative for the canonical equation, namely:

dx̄

dt
=

(

−
∂2ϕ

∂x2

)−1
∂r

∂x
(I, x̄). (5.4)

Notice that −∂2ϕ
∂x2 is a positive (unknown) coefficient because it corresponds to a maximum of ϕ(t, ·).

Therefore (5.4) indicates the sense of variation of x̄(t).
If ϕ has a single maximum (or, in other words, the consumer population is quasi-monomorphic),

5.4) constitutes a two dimensional system of ode and

I =











S01

1 + η(x̄)X

S02

1 + ξ(x̄)X











(5.5)

where X(x̄) is the unique solution of (cf. (2.7))

η(x̄)S01

1 + η(x̄)X
+

ξ(x̄)S02

1 + ξ(x̄)X
= 1. (5.6)

This provides an explicit dependency I = I(x̄).
If ϕ has two maxima we provide x̄ with an index taking the values 1 and 2. The coupling between

the two versions of (5.4) is provided by I which is now defined by (cf. (2.10))

I =
I

η(x̄1)ξ(x̄2) − η(x̄2)ξ(x̄1)





ξ(x̄2) − ξ(x̄1)

η(x̄1) − η(x̄2)



 . (5.7)

13



To go further we may differentiate (5.2) once more with respect to x and subsequenlty put x = x̄(t).
We obtain similarly, using also (3.13), the differential equation

d

dt

(

∂2ϕ

∂x2
(t, x)

)

=
∂2r

∂x2
(I(t), x) +H ′′(0)

(

∂2ϕ

∂x2
(t, x)

)2

. (5.8)

Along the path (t, x̄(t)) we obtain

d

dt

(

∂2ϕ

∂x2

)

=
∂2r

∂x2
(I, x̄) +H ′′(0)

(

∂2ϕ

∂x2

)2

+
∂3ϕ

∂x3

dx̄

dt
. (5.9)

Continuing this process to recover ∂3ϕ
∂x3 , we directly see that the Hamilton-Jacobi system boils down to

an infinite system of odes and no finite closure can describe entirely the adaptive dynamic system (2.2).

Let us now focus on the ode (5.4) describing a quasi-monomorphic population. The steady state
should satisfy

∂r

∂x
(I(x̄), x̄) = 0 (5.10)

or, in AD jargon, x̄ should be a singular point. Define, as usual, (see (4.6) and (4.7))

c22 =
∂2r

∂x2
(I(x̄), x̄) (5.11)

c12 =
∂2r

∂x∂I
(I(x̄), x̄)

dI

dx
(x̄) (5.12)

and note that (since ∂2ϕ
∂x2 “enters” the differential equation for x̄ only via a signed factor) whether

or not x̄ moves to or from the singular point is completely determined by the sign of c22 + c12. In
particular the movement is towards the singular point precisely when

c22 + c12 < 0 (5.13)

or, in the jargon of AD, when the singular point is convergence stable.

Being given a singular point (I, x̄), the Hamilton-Jacobi equation has a steady value (therefore

satisfying ϕ(x̄) = 0 and ∂ϕ(x̄)
∂x = 0)

H
(∂ϕ

∂x

)

=
−r(I, x)

S1η(x) + S2ξ(x)
, (5.14)

iff r(I, x) ≤ 0 (since H is nonnegative convex with H(0) = H ′(0) = 0) and this is possible if the
singular point fullfills the ESS condition

c22 < 0. (5.15)
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6 Rigorous derivation of the H.-J. asymptotic

This section is devoted to the mathematical derivation of the Hamilton-Jacobi equation in a simplified
case where mutations arise with a fixed rate, but we compensate by considering also a death rate d.
Namely, we consider the following variant, for x ∈ R,























































d
dtS1,ε(t) = 1

ε

[

S0
1 − S1,ε[1 +

∫

R
η(x)nε(t, x)dx]

]

,

d
dtS2,ε(t) = 1

ε

[

S0
2 − S2,ε[1 +

∫

R
ξ(x)nε(t, x)dx]

]

,

d
dtnε(t, x) = 1

ε

[

−dnε(t, x) + S1,ε(t)η(x)nε(t, x) + S2,ε(t)ξ(x)nε(t, x)

+
∫

R
Kε(x− x′)(nε(t, x

′) − nε(t, x))dx
′
]

,

(6.1)

with nonnegative initial data S1,ε(t = 0), S2,ε(t = 0), n0
ε(x). We still perform the change of unknowns

nε(t, x) = eϕε(t,x)/ε, n0
ε(x) = eϕ

0
ε(x)/ε, (6.2)

and carry the same analysis as in Section 3. We also set

H(p) =

∫

R

K(z)e−p·zdz − 1. (6.3)

Then, we arrive formally, in the limit when ε vanishes, at































































S1(t) =
S0

1
1+I1(t)

, I1(t) =
∫

R
η(x)n(t, x)dx,

S2(t) =
S0

2
1+I2(t)

, I2(t) =
∫

R
ξ(x)n(t, x)dx,

∂
∂tϕ(t, x) = −d+ S1(t)η(x) + S2(t)ξ(x) +H(∇ϕ),

maxx∈R ϕ(t, x) = 0, ∀ t ≥ 0,

n(t, ·) is supported by the maximum points of ϕ,

(6.4)

At this level we need to make precise assumptions

η(x), ξ(x) are positive, lipschitz continuous and bounded, (6.5)

K(x) ≥ 0,

∫

R

K(x)dx = 1, K is even , (6.6)

d > 0, S0
1 > 0, S0

2 > 0, (6.7)

ϕ0
ε(x) is uniformly lipschitz continous, (6.8)

∫

R

n0
ε(x)dx = M0 > 0, Si,ε(t = 0) are bounded and bounded away from 0 for i = 1, 2. (6.9)

In fact we prove a weaker statement than the complete derivation of equation (6.4), namely
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Theorem 6.1 Assume (6.5)–(6.9), then the (nonnegative) solution to system (6.1) satisfies

(i) S1,ε(t), S2,ε(t),
∫

R
nε(t, x)dx are uniformly bounded,

(ii) ϕε(t, x) is uniformly lipschitz continous on [0, T ] × R, for all T > 0,

(iii) after extracting a subsequence, ϕε and Σi,ε(t) =
∫ t
0 Si,ε(s)ds (for i = 1, 2) converge locally uni-

formly to some lipschitz continuous functions ϕ, Σi(t), and the H.-J. equation is fullfilled in the sense
that ψ(t, x) = ϕ(t, x) − Σ1(t)η(x) − Σ2(t)ξ(x) satisfies in the viscosity sense











∂
∂tψ(t, x) = −d+H

(

∇ψ + Σ1(t)∇η(x) + Σ2(t)∇ξ(x)
)

,

maxx∈R ϕ(t, x) ≤ 0, ∀t ≥ 0.

(6.10)

The motivation for writing the equation on ψ rather than ϕ is that the coefficients Σi in (6.10) are
now continuous, which is better fitted to the concept of viscosity solutions than the mere bounded
coefficients Si. We have also simplified as much as possible the settings and some assumptions are not
optimal (as the uniform lipschitz continuity assumptions).

It can be completed as follows:

Theorem 6.2 If additionally ϕ0
ε(x) → −∞ as |x| → ∞ (uniformly) and

S0
1 min

y∈R

η(y) + S0
2 min

y∈R

ξ(y) > d, (6.11)

then
∫

R
nε(t, x)dx is uniformly bounded away from 0 and

max
x∈R

ϕ(t, x) = 0, ∀t ≥ 0. (6.12)

Using Hamilton-Jacobi equations is standard by now in order to describe the propagation of fronts
in parabolic equations decribing an invasion process (in ecology, phase transitions...), see for example
[13], [4], or for integral equations for jump processes, [22]. The possibility to describe the evolution of
point consentrations seems much original. Some examples have been derived directly from stochastic
processes (through representation formulas) in [16] but the general formalism, including the constraint
(6.12) combined with Lagrange multipliers S, is completely new in this context.

Proof of Theorem 6.1. We begin with the a priori bounds (i). We integrate in x the equation on
nε and add-up the three equations of (6.1). We arrive at

d

dt
[S1,ε(t) + S2,ε(t) +

∫

R

nε(t, x)dx] = S0
1 + S0

2 − S1,ε(t) − S2,ε(t) − d

∫

R

nε(t, x)dx.

Therefore, by the maximum principle we deduce, using assumptions (6.7), (6.9),

0 < M ≤ S1,ε(t) + S2,ε(t) +

∫

R

nε(t, x)dx ≤M <∞,

with

M = min
[

S1,ε(t = 0) + S2,ε(t = 0) +

∫

R

n0
ε(x)dx,

S0
1 + S0

2

max(1, d)

]

,

M = max
[

S1,ε(t = 0) + S2,ε(t = 0) +

∫

R

n0
ε(x)dx,

S0
1 + S0

2

min(1, d)

]

.
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Because the quantities are nonnegative, this proves the upper bounds on all the quantities.
Next, we prove (ii). We begin with estimating space derivatives. We set p(t, x) = ∂

∂xϕε(t, x), and
compute

∂

∂t
ϕε(t, x) = −d− 1 + S1,ε(t)η(x) + S2,ε(t)ξ(x) +

∫

R

K(z)e(ϕε(t,x−εz)−ϕε(t,x))/ε, (6.13)

∂

∂t
p(t, x) = S1,ε(t)η

′(x) + S2,ε(t)ξ
′(x) +

∫

R

K(z)e(ϕε(t,x−εz)−ϕε(t,x))/ε(p(t, x− εz) − p(t, x)).

This equation admits P (t, x) = K0 + tK1 as a supersolution with K0 = maxy∈R,ε |∇ϕ
0
ε(y)|, K1 =

maxt,x[S1,ε(t)|η
′(x)|+S2,ε(t)|ξ

′(x)|] (using assumptions (6.5), (6.8)). Therefore the maximum principle
gives

|p(t, x)| ≤ K0 + tK1.

It remains to estimate time derivatives. To do that, we just notice that all the terms on the right
hand side of (6.13) are bounded (by assuption (6.5) and the space lipschitz continuity) and thus ϕε is
lipschitz continuous (locally in time).

We can now derive point (iii). Using Ascoli’s lemma and points (i) and (ii), we may extract
subsequences which converge as indicated in the statement. Then, the usual arguments for viscosity
solutions (see [3, 8, 2, 15]) gives the viscosity solution criteria. Next, we derive that ϕ is nonpositive.
To do so, we use step (i) and especially that

∫

nε(t, x)dx ≤M and argue by contradiction. If we had
maxx∈R ϕ(t, x) > 0 for some time, then also ϕε(t, x) > 0 uniformly in ε for t, x in some open set (by
uniform continuity). But this is impossible since

∫

eϕε(t,x)/εdx ≤M .

Proof of Theorem 6.2. We set M(t) =
∫

R
nε(t, x)dx, S(t) = miny∈R η(y)S1,ε(t)+miny∈R ξ(y)S2,ε(t),

S0 = miny∈R η(y)S
0
1 + miny∈R ξ(y)S

0
2 and we write the (rough) inequalities







d
dtM(t) ≥ 1

ε [−(d+ 1) + S(t)]M(t),

d
dtS(t) ≥ 1

ε [S0 − S(t)(1 + βM(t)],

with β = max
(

maxy∈R η(y),maxy∈R ξ(y)
)

. Direct manipulations show that this system maintains
M(t) away from 0.

Then, we argue as before to prove that we cannot have maxx∈R ϕ(t, x) < 0 for some t ≥ 0. Indeed,
by uniform continuity, this would imply maxx∈R ϕε(t, x) < −α for some α > 0 and thus

∫

R

nε(t, x)dx =

∫

R

eϕε(t,x)/εdx→ 0, as ε→ 0,

a contradiction.

7 Numerical method

The numerical tests presented above compare a direct simulation with a H.-J. solution. We present
the algorithms in the following three subsections.

Our purpose here is not to develop original or sophisticated methods for solving the problem we
have encountered. We simply wish that the interested reader can reproduce the results. Therefore we
always opt for simplicity. Notations for this section are: ∆t is the timestep and tk = k∆t. Then the
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exponent represents the time step, the indice i = 1, 2 represents the component in the two nutriments
(and we sometime use η1 = η, η2 = ξ), the indice j ∈ {1, ..., N} represents the grid discrete variable
associated with a finite difference scheme for the equation on n(t, x) (xj = j∆x, ∆x = 1/N). Finally,
for the mutation kernel K̃, we use the convolution model (see Section 3) and call 2M + 1 the number
of discrete points for descretizing it (and thus ε = M/N).

7.1 Direct simulation

We first present the algorithmic basis of the ldirect simulation of the system (3.1). Here we have opted
for a semi-implicit finite difference scheme for ensuring stability while keeping simplicity,















S
(k+1)
i = S0

i − ∆t S
(k+1)
i [1 + 〈nkηi〉],

n
(k+1)
j = n

(k)
j − ∆t n

(k+1)
j + ∆t

(

[S
(k+1)
1 η + S

(k+1)
2 ξ]n(k) ? K̃

)

j

(7.1)

where all variables being extended by 0 out of the interval {1, ...,M},

〈nkη〉 =
1

N

N
∑

j=1

n
(k)
j ηj ,

(

ηn(k) ? K̃
)

j
=

1

2M + 1

M
∑

m=−M

ηj−mn
(k)
j−mK̃m.

Notice that this scheme has the property of preserving the a priori bounds of Section 6 because it
preservs positivity and the fundamental equality

Q(k+1)(1 + ∆t) = Q(k) + ∆t(S0
1 + S0

2), Q(k) := S
(k)
1 + S

(k)
2 +

1

N

N
∑

j=1

n
(k)
j .

In practice we have always chosen Km := 1 (even and piecewise constant function of mass 1).

7.2 H.-J.; Single nutriment
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Figure 4: Evolution of the dominant trait (x-axis) with time (y-axis) (case with a single resource;
η(x) = .5 − x). Left: direct simulation through (7.1). Right: simulation of the H.-J. equation (7.2).
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Figure 5: Evolution of the dominant trait (x-axis) with time (y-axis) (case with a single resource;
η(x) = .5 − x(2 − x)). Left: direct simulation through (7.1). Right: simulation of the H.-J. equation
(7.2).

Here, we explain the numerical resolution of the constraint in the H.-J. system (3.5) in the case
of a single nutriment , i.e., when S0

2 = 0, S2(t) ≡ 0. In this case (corresponding to S2 ≡ 0), the H.-J.
equation is given by







d
dtϕ(t, x) = −1 + S(t)η(x)[1 +H(∇ϕ)],

maxx∈R ϕ(t, x) = 0, ∀ t ≥ 0.

(7.2)

A discretized version is as follows


















ϕ
(k+1)
j = ϕ

(k)
j + ∆t

[

− 1 + S(k) ηj(1 + H(
ϕ

(k)
j+1−ϕ

(k)
j

∆x ;
ϕ

(k)
j −ϕ

(k)
j−1

∆x )]
]

,

max
1≤j≤N

ϕ
(k)
j = 0, ∀ k.

(7.3)

The subtlety here that the resolution of the H.-J. equation requires an upwind solver for the Hamil-
tonian H, denoted by H, (see [1] and the references therein for recent and classical references on the
subject).

The new difficulty here is to solve the constraint, which can be done as follows. For all 1 ≤ m ≤ N ,
we can first compute a value Σk

m of the constraint Sk by imposing that the updated value ϕk+1
m vanishes,

0 = ϕ(k)
m + ∆t

[

− 1 + Σ(k)
m ηm[1 + H(

ϕ
(k)
m+1 − ϕ

(k)
m

∆x
;
ϕ

(k)
m − ϕ

(k)
m−1

∆x
)]
]

.

Then the choice
S(k) = min

1≤m≤N
Σ(k)

m ,

gives the solution to (7.3). Indeed, for the particular index m0 where the min is achieved, we clearly

have ϕ
(k+1)
m0 = 0. For the other indices, the inequality Σ

(k)
m ≥ S(k) leads to ϕ

(k+1)
m ≤ 0.
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The numerical experiments presented in Figures 4, 5 are performed with N = 1500 points for
the direct simulation and 200 points in the H.-J. setting. We have taken the value of M = 5 which
corresponds to ε ≈ .310−2 .

7.3 H.-J.; Two nutriments

In the case of two nutriments, we have to a face a specific difficulty which is to choose between the
dimorphic case (where the two Lagrange multipliers S1, S2 are to be computed) and the monomorphic
case with the additional constraint (3.15) (refer to discussion at the end of Section 3). We begin again
with a discrete version



















ϕ
(k+1)
j = ϕ

(k)
j + ∆t

[

− 1 + [S
(k)
1 ηj + S

(k)
2 ξj] [1 + H(

ϕ
(k)
j+1−ϕ

(k)
j

∆x ;
ϕ

(k)
j

−ϕ
(k)
j−1

∆x )]
]

,

max
1≤j≤N

ϕ
(k)
j = 0, ∀ k.

(7.4)

At the moment we do not have a clear criteria to decide which case should be applied and we use
preferentially the dimorphic case whenever the values S1 and S2, which follow from the algorithm
described, below satisfy 0 < S1 < S0

1 and 0 < S2 < S0
2 . Otherwise we can always recover a density

c which relate the Lagrange multipliers S1 and S2 and allow to apply the algorithm of Section 7.2
replacing Σm(t)ηm by

S0
1

1 + cηm
ηm +

S0
2

1 + cξm
ξm,

and choosing cm such that the corresponding discrete H.-J. equation vanishes at the index m, we see
that c(k) = max1≤m≤N cm gives a solution just as before.

It remains to describe the dimorphic algorithm. We consider now two indices l 6= m and compute
S1(l,m), S2(l,m) such that for j = l or m we have

0 = ϕ
(k)
j + ∆t

[

− 1 + [S1(l,m) ηj + S2(l,m) ξj] [1 + H(
ϕ

(k)
j+1 − ϕ

(k)
j

∆x
;
ϕ

(k)
j − ϕ

(k)
j−1

∆x
)]
]

.

If one of these values also gives for all 1 ≤ j ≤ N ,

ϕ
(k)
j + ∆t

[

− 1 + [S1(l,m) ηj + S2(l,m) ξj] [1 + H(
ϕ

(k)
j+1 − ϕ

(k)
j

∆x
;
ϕ

(k)
j − ϕ

(k)
j−1

∆x
)]
]

≤ 0,

and
0 ≤ S1(l,m) ≤ S0

1 , 0 ≤ S2(l,m) ≤ S0
2 ,

then we consider that this is a solution to the problem (7.4) and we update S
(k)
1 = S1(l,m), S

(k)
2 =

S2(l,m). If such a choice is not possible, we go to the monomorphic choice (which is always possible).

The numerical result for a branching case is presented in Figure 1, again with N = 1500, M = 5
for the direct simulation and η = x−1.8x(1−x)[x(1−x)−6/25], ξ = 1−x−1.8x(1−x)[x(1−x)−6/25].

Acknowledgment: The authors wish to thank E. Miot who helped in a first version of the nu-
merical tests presented in this paper.
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