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Sensor network technology promises a vast increase in automatic data collection capabilities

through efficient deployment of tiny sensing devices. The technology will allow users to mea-
sure phenomena of interest at unprecedented spatial and temporal densities. However, as with

almost every data-driven technology, the many benefits come with a significant challenge in data
reliability. If wireless sensor networks are really going to provide data for the scientific community,

citizen-driven activism, or organizations which test that companies are upholding environmental

laws, then an important question arises: How can a user trust the accuracy of information pro-
vided by the sensor network? Data integrity is vulnerable to both node and system failures. In

data collection systems, faults are indicators that sensor nodes are not providing useful informa-

tion. In data fusion systems the consequences are more dire; the final outcome is easily affected
by corrupted sensor measurements, and the problems are no longer visibly obvious.

In this paper, we investigate a generalized and unified approach for providing information about

the data accuracy in sensor networks. Our approach is to allow the sensor nodes to develop a
community of trust. We propose a framework where each sensor node maintains reputation metrics

which both represent past behavior of other nodes and are used as an inherent aspect in predicting

their future behavior. We employ a Bayesian formulation, specifically a beta reputation system,
for the algorithm steps of reputation representation, updates, integration and trust evolution.

This framework is available as a middleware service on motes and has been ported to two sensor

network operating systems, TinyOS and SOS. We evaluate the efficacy of this framework using
multiple contexts: (1) a lab-scale testbed of Mica2 motes, (2) Avrora simulations, and (3) real

data sets collected from sensor network deployments in James Reserve.

Categories and Subject Descriptors: ... [...]: ...

General Terms: ...
Additional Key Words and Phrases: Faults, Outlier Detection, Reputation, Sensor Networks,
Security, Trust.

1. INTRODUCTION

The ability of a sensor network to perform its task depends not only on its ability
to communicate among the nodes of the network, but also on its ability to sense the
physical environment and collectively process the sensed data. Fusing data from
multiple sensor nodes in order to produce meaningful results for the end-user implies
a reliance on the nodes to provide correct information. However, sensor nodes are
implemented using inexpensive hardware components which are highly unreliable.
Faulty data can thus result from corruptive processes in the hardware. In our
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deployment experience, faulty data has often confounded results; We describe this
motivation in Section 2. Lest the readers think that these barriers may disappear
with advancing technology, we note that the driving force in sensor networks is
the large quantity of sensor nodes. Less emphasis is put on the quality of each
individual sensor node. Moore’s law will push towards ever-cheaper systems. If
we are able to understand the limits of these unreliable technologies, then sensor
networks will always be able to operate at this lowest-cost boundary.

Therefore, mechanisms in sensor networks which ensure the reliable relaying of
data between trusted parties should also account for accuracy and trustworthiness
of the data itself. However, network reliability alone cannot be used to solve this
problem because of uncertainties and the lack of control over the physical world and
faulty nodes. Providing a reliable sensing channel is much harder than providing
reliability over wireless radio channels because the sensor network designer only has
control over the sensing receiver1.

In this paper, we investigate a generalized and unified approach for providing
data reliability in sensor networks. We choose to address the issue of trust in the
sensor network by developing a community of sensor nodes. In a human social
community, trust between two individuals is developed based on their actions over
time. When faced with uncertainty, individuals trust and rely on the actions and
opinions of others who have behaved well in the past. The intent is to develop
a similar Reputation-based Framework for Sensor Networks (RFSN), where each
sensor node develops a reputation for each other node by making direct observations
about these other nodes in the neighborhood. This reputation is used to help a
node evaluate the trustworthiness of other sensor nodes and make decisions within
the network. Reputation systems have been widely studied in the context of several
diverse domains such as e-commerce [Resnick and Zeckhauser 2000; Resnick et al.
2000], Internet [Blaze et al. 1996; Blaze et al. ], ad-hoc wireless networks [Buchegger
and Boudec 2002; Michiardi and Molva 2002], peer-to-peer networks [Xiong and Liu
2003], etc.

E-commerce systems, such as ebay [Resnick and Zeckhauser 2000], Yahoo auc-
tions [Resnick et al. 2000], and Internet based systems such as Keynote [Blaze et al.
1996; Blaze et al. ], maintain reputation metrics at a centralized trusted authority.
Additionally, they use a deterministic number for representing reputation. As a
result, these systems use several debatable heuristics for the key steps of reputation
updates and integration. In fact, much closer to our context are reputation sys-
tems such as those designed for ad-hoc networks, Confidant [Buchegger and Boudec
2002] and Core [Michiardi and Molva 2002], and peer-to-peer networks [Xiong and
Liu 2003]. These systems are distributed and also maintain a statistical represen-
tation of the reputation by borrowing tools from the realms of game theory. These
systems try to counter selfish routing misbehavior of nodes by enforcing nodes to
cooperate with each other. More recently reputation systems were proposed in the
domain of ad-hoc networks, that formulate the problem in the realm of Bayesian
analytics rather than game theory [Buchegger and Boudec 2003b; 2003a]. These
systems can counter any arbitrary misbehavior of nodes. This observation led us
to develop RFSN using a similar Bayesian formulation.

1There are some exceptions to this, such as RFID and ultrasound or laser ranging.
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Specifically we model RFSN using the economic tool decision theory. Decision
theory can be best visualized as the study of games against nature, where nature
is an opponent that does not seek to gain the best payout, but rather acts ran-
domly. This general definition allows us to capture many possible node failures
such as system faults, process noise, etc. As we will show, RFSN integrates tools
from statistics and decision theory into a distributed and scalable framework. We
employ a Bayesian formulation, specifically a beta reputation system, for the algo-
rithm steps of reputation representation, updates, integration and trust evolution.
This output metric of trust can be used by a node in several ways. For example,
a data reading reported by a node can be weighted by the trust of the node when
aggregating data from several nodes, thus reducing the impact of the faulty read-
ings. Additionally, the evolution of trust over time provides an on-line tool to the
end-user to detect compromised or faulty nodes. This can help the end-user to take
appropriate countermeasures such as replacing the corrupted node or sensor. We
note that RFSN is not fundamentally different from the reputation systems pro-
posed in the domain of ad-hoc networks [Buchegger and Boudec 2002; Michiardi
and Molva 2002; Buchegger and Boudec 2003b; 2003a]; the applicability to sensor
networks and the development of a complete middleware service that can counter
faulty misbehavior of nodes are the two main contributions of this paper.

In Section 3, we will analyze the statistical foundations behind each of the algo-
rithm steps. Furthermore, we will show that all these steps can be reduced to a
few basic mathematical operations of addition, subtraction, multiplication and di-
vision; making it completely feasible to run RFSN on resource constrained devices.
RFSN is available as a middleware service on Motes. It has been ported to two
sensor network operating systems: TinyOS [Hill and Culler 2001] and SOS [Han
et al. 2005]. In this paper, we will focus on the prototype implementation that
has been developed for SOS. We will explain the APIs exposed by RFSN and how
sensor network applications can utilize this service in Section 4. In Section 5, we
will evaluate the efficacy of RFSN over a lab-scale testbed of Mica2 Motes and
also in the context of real data sets collected from deployments in James Reserve.
Specifically, we will demonstrate how RFSN can be used effectively in identifying
faulty nodes as well as in calculating resilient data aggregates.

2. MOTIVATION

The prime objective of developing sensor networks is that information that can
be leveraged from numerous sensing devices placed close to the actual physical
phenomena is going to be more accurate then that provided by a few expensive
state-of-the-art sensing devices. As a result, the past few years have seen a number
of prototype sensor network deployments in diverse domains, a few notable ones
being James Reserve [jam 2005], Great Duck Island [Szewczyk et al. 2004], Intel
Berkeley [int 2004], CENS deployment at Bangladesh [Ramanathan et al. 2006],
etc. However, all these deployments have been done in academic, scientific or
engineering contexts, wherein they operate under controlled environments. As a
result, security is a non-issue. Nevertheless, these deployments have still witnessed a
large number of misbehaving nodes, arising due to faults in software and hardware.
In this section, we list down some of these faults and the arising problems as a
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Fig. 1. Leaf Wetness measurements from several weather stations at the James Reserve. A single
station got stuck at the highest possible reading.

result of these faults.
Sticky values are one of the most common faults in sensor network data. The

sensor gets stuck at a wrong data value and remains there either permanently or
intermittently. The first example of this fault is from a leaf wetness sensor at
the James Reserve in California. There are several stations around the reserve
measuring leaf wetness on a scale from one to ten. As you can see in Figure 1,
one of the sensors got stuck at 10 and remained there for several days. This is a
faulty measurement. On the other hand, many of the other sensors measured 0
for extended periods of time, and this is not a faulty measurement. Identifying
which stuck measurements are faulty and which are not will need more than a
simple graphical visualization of the data. We need explicit mechanisms for data
measurements to be classified as outliers, depending on expectations given by the
application context, measurements taken by other nodes, and other cross-validating
information.

A benefit offered by sensor networks is indeed the redundancy in sensors across
space. Sensors can thus be used to validate one another. Our second example comes
from an experiment to find the variability across temperature and humidity sensors
used at the James Reserve. All sensors were closed together in a styrofoam box.
In the instance shown in Figure 2, the temperature and the humidity sensors were
shorted to one another, causing the temperature measurement to track the wrong
phenomenon. In this graph it is clear that the temperature measurement from that
sensor device is completely inconsistent with the other temperature measurements.

In the same experiment a more complex situation arises with the behavior of the
humidity sensors. During this same calibration experiment, the batteries drained
from the motes and behavior would vary at the end of the mote life. Sometimes the
radio would die and we would stop receiving data, and these behaviors occured at
varying low battery voltages. Other times, the sensor would have a failure response
to the low battery before the radio failed. This graph shows some failure examples
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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(a) Temperature (b) Humidity

Fig. 2. Temperature and Humidity data from an experiment with ten sensors inside a styrofoam
box. One temperature sensor was shorted to a humidity sensor and thus gave readings entirely

inconsistent with the other temperature sensors. The humidity sensors experienced inconsistent
behavior near the end of the battery life.

of the capacitive humidity sensor. This sensor requires a 3.3V excitation voltage.
At the point that the sensors were failing, the batteries on the mote were down to
2.3-2.6V. The incorrect behavior can be seen in the right panel of Figure 2. Note
that the corrupted value from the humidity sensor was still within a valid range,
and hence a simple range check would not identify this fault. Additionally, these
measurements are within the range of the correct measurements. We address this
in Section 5.

Figure 3 shows temperature measurements from a set of motes in a valley at
the James Reserve. The values are all similar, except for those values from one
mote which get stuck at a low value and then return to normal. Intermittently
stuck values may be indicative of a deeper problem in the sensor, and this sensors’
measurements should not be trusted as much as measurements from the others.
To accurately establish the relative magnitude of trust between the different sensor
nodes, we need mechanisms that take into account the behavior of the node in the
past.

The last example of a sticky value is also an example of an out-of-range data
fault. Expected ranges are often associated with a phenomenon of interest. The
range could be a physical range, such as humidity that can not be outside the
range of 0-100 Percent Relative Humidity. Other ranges may be expected range,
such as a case where someone deploying the network knows the phenomenon will
not exceed that range or the sensor is constructed so as to read the phenomenon of
interest within a particular range of values. Ion Selective Electrodes, for example,
have a range of voltages over which they have a linear response to a change in
phenomenon, a voltage range over which they display a non-linear response, and
a range where a voltage measurement does not map to anything at all. Figure 4
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Fig. 3. Temperature measurements from a transect of motes in a valley at the James Reserve.

One of the motes’ measurements got stuck and then returned to normal.
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Ammonium (P1-2ft)

Fig. 4. Concentration of Ammonium measured at 2 ft depth. The vertical lines represent the
range of linear sensor response, and the horizontal lines represent the total response range. Many

measurements were outside this range.

shows a dataset collected to measure ammonium concentrations in soil in a rice
paddy in Bangladesh. Many measurements were outside the response range of the
sensor.

Unlike the James Reserve sensor network deployment, this deployment at Bangladesh
corresponds to the scenario wherein a temporary deployment, lasting for a few days,
was done to gather as much scientific data as possible. In both the cases, the faults
were identified after post processing the collected data from the site of deployment.
This was a major loss of deployment effort; although the researchers were present
physically at the site, a major bottleneck they faced was the lack of the availability
of tools to identify the misbehaving nodes in real time. If that would have been
possible, these researchers could have perhaps been able to rectify these failures at
the time of deployment (change sensors, node orientation, batteries etc.) and the
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.



... · 7

Watchdog
Reputation

System

other nodes’ actions

external evidence

cooperation 

metric trust

Fig. 5. RFSN Block Diagram

unnecessary wastage of resources could have been avoided.
The occurrence of so many instances of corrupted data in existing sensor network

deployments provides us the motivation to identify misbehaving nodes and incon-
sistent measurements in real time. In Section 5, we will revisit some of these faults
and will try to showcase how these deployments can benefit by using RFSN.

3. REPUTATION BASED FRAMEWORK FOR SENSOR NETWORKS (RFSN)

To address the sensor malfunction problems we have shown, we propose a framework
where sensor nodes maintain reputation for other nodes in the network. A sensor
node continuously builds these reputation metrics for other nodes by monitoring
their behavior and rating them as being cooperative (expected behavior of the nodes
in the network) or non-cooperative (unexpected behavior that is most likely the
result of a system fault or node compromise). Then the node uses this reputation to
evaluate the trustworthiness of other nodes and the data they provide. For example,
a node can weigh the data provided by the other nodes with their corresponding
reputation metrics while calculating the aggregates or these reputation metrics can
be used to identify misbehaving nodes in realtime.

3.1 Overview

Figure 3.1 depicts the two key building blocks of RFSN, Watchdog and Reputation,
and their inputs and outputs. The direction of the arrow represents the flow of
information.

The block labeled Watchdog is responsible for monitoring the actions of other
nodes and characterizing these actions as cooperative or non-cooperative. In our
work, the actions of interest are sensor readings2. Instead of classifying a sensor
reading as either cooperative or non-cooperative, we aim to associate a level of
confidence or probability (any real number between (0,1)) with it. As can be antic-
ipated, a one-fit all solution does not work for the Watchdog mechanism. Different
applications might have different criteria for associating this level of confidence.
Therefore, we visualize the Watchdog mechanism to be a library of outlier detec-
tion protocols. In Section 3.2, we will discuss one possible protocol in detail, the

2In general, the Watchdog can encompass multiple layers such as routing, time synchronization,

localization, etc.
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one which we have used in all our evaluations. As explained in Section 4, the design
of the Watchdog mechanism allows easy integration of customized outlier detection
protocols for specific application scenarios.

The Reputation block is responsible for maintaining the reputation of a node.
This duty encompasses many tasks. This block manages reputation representation,
updates reputation based upon the new observations made by the Watchdog, in-
tegrates the reputation information based on other available information, ages the
reputation, and creates an output metric of trust. In the next two subsections, we
will explain each of these two blocks in detail.

Before discussing the pieces of the framework, we briefly address the issue of scal-
ability. RFSN runs on each sensor node, and functions in a completely distributed
and localized manner. Clearly, it will be infeasible for a node to maintain the rep-
utation for all the nodes in the network. However, unlike peer-to-peer networks, a
sensor node interacts most often only with its neighbors3. Therefore, a node mon-
itors and maintains reputation for only the nodes in its neighborhood. We note
that even for those rare scenarios wherein a node needs to interact with a distant
node, it can use a chain through trusted nodes to evaluate its trustworthiness. This
provides scalability to the complete architecture.

3.2 Watchdog

The objective of the Watchdog mechanism is to detect the presence of invalid data
resulting from compromised and faulty nodes. This block is designed as a library
of outlier detection protocols. The input to this block is a set of data readings and
the output is a rating for each data reading. This rating, represented by p, is a
number in the range (0, 1). It can be inferred as the level of confidence that can be
associated with a given data reading4.

Outlier detection has been a widely researched problem in the data mining com-
munity [Barnett and Lewis ]. Only recently, a vast variety of these protocols have
been studied in the context of calibrating the sensors [Feng et al. 2003; Koushanfar
et al. 2004; Ramanathan et al. 2006] or detecting sensor faults [Koushanfar et al.
2002; 2003; Koushanfar and Potkonjak 2005]. Outlier detection protocols can be
broadly classified as either model-based or consensus-based. Model-based outlier
detection protocols tend to look for outliers or data readings that deviate from
a given model. As an example for sensor networks, this model can represent the
underlying physical process or the correlation across different sensing modalities.
Each data reading is evaluated independently against a model and as a result, these
outlier detection schemes do not put any constraint on the number of total read-
ings or on the goodness of the readings for a correct evaluation. However, a priori
knowledge of the expected data model is needed.

On the other hand, consensus-based outlier detection protocols have a common
principle of looking for consistency among the data readings in the set. The level

3We define the neighborhood of a node as the subset of nodes with which a node can directly
communicate by broadcasting a packet
4If we were interested in designing a reputation system for the routing behavior instead of the

measurements themselves, we could use a block for the watchdog such as the piece of [Marti et al.
2000] which has the same name. If this block were made to report a rating between (0, 1) for the

cooperativeness of the node, it would fit easily into the rest of RFSN.

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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of confidence assigned to a data reading is proportional to its deviation from this
consensus. Different protocols use some variant of this basic principle. They either
differ in the way they define consensus or the definition of deviation from the con-
sensus. Note that these protocols do not require any additional data models than
the readings for their functionality. However, the rating assigned to a data reading
depends on the number of other “similar” data readings in the set. Thereby, unlike
the model-based outlier detection, the rating assigned to a given data reading might
change depending on other readings in the set. Our current prototype implemen-
tation of RFSN uses consistency based outlier detection because of its generality
and applicability to several diverse application contexts.

The two most popular approaches for consistency-based outlier detection are
distance and density-based outlier detection. Distance-based outlier detection is
a very simplistic way of determining the outliers based on the absolute distance
between the data readings. The notion of distance-based outliers was proposed
in [Knorr and Ng 1998; 1999]. An object p in a data set D is a DB(x, dmin)-outlier
if at least x percentage of the objects in D lie at a distance greater than dmin from
p. Here, distance represents the difference in the data readings. For example in
the case of one dimensional data such as temperature, the distance between two
data readings 61F and 62.5F is equal to the absolute difference between them i.e.,
1.5F . The rating assigned to a data reading using distance-based outlier detection
is binary i.e. 0, if it is classified as an outlier, and 1 otherwise. Next we describe
density-based outlier detection in more detail, because the current implementation
of the RFSN Watchdog uses this mechanism for outlier detection.

3.2.1 Density-based outlier detection. Although density-based outlier detection
uses the same locality theory as distance-based outlier detection, its consistency
definition is more general. Instead of just classifying all the data points in just
two clusters, “good” and “outliers”, it allows the data to be classified in as many
clusters as possible. Afterwards, each data reading is rated based on two metrics:
(1) the relative cardinality of the cluster in which the data point lies compared to
the cardinality of the complete data set, and (2) the distance of the data point with
rest of the data points in its cluster.

Several variants of the density-based outlier detection scheme have been proposed
over the past few years [Breunig et al. 2000; Papadimitriou et al. 2003]. These
proposals either differ in the way they cluster the data or the way in which they
decide the rating for different data points. Our prototype implementation uses the
simplest version of density-based outlier detection, which is named Local Outlier
Factor, or LOF [Breunig et al. 2000]. This choice was mainly motivated by the fact
that LOF consumes the least amount of resources as compared to other density-
based schemes such as Local Correlation Integral or LOCI [Papadimitriou et al.
2003], etc. The main advantage of LOCI over LOF is its superior performance for
high dimensional data sets. However, since most of the sensor modalities have low
dimensions (at most 3), we note that LOF is a good choice for outlier detection in
sensor networks.

In the remaining part of this subsection, we will present a brief overview of the
LOF algorithm. We refer the readers to [Breunig et al. 2000] for all the details. A
key difference between LOF and distance-based outlier detection is that LOF does

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Fig. 6. Local Outlier Factor (LOF)
Figure source [Breunig et al. 2000]

not enforce outlying to be a binary property. Instead, each data reading is assigned
an outlier factor, which is the outlying degree of the reading. The only parameter
required by LOF is minpts, which corresponds to the minimum number of points
that are used to define a neighborhood of a given data reading.

The LOF algorithm works as follows: A virtual circle is drawn around every data
reading so that at least minpts readings are included in this circle. For example,
Figure 6 shows a representative example for reading P and minpts = 3. This set
of data readings is also referred to as the minpts-neighborhood of P . Based on Ps
distance to different points in its minpts-neighborhood and the average distance
between different readings in this neighborhood, a density parameter is calculated,
which is called the local reachable density of P . Finally, the local outlier factor,
LOF, is calculated by taking the average of the ratio of the local reachable density
of P and those of P ′s minpts-nearest neighbors.

As observed in [Breunig et al. 2000], LOF’s performance depends a lot on the
choice of minpts. Picking an inappropriate value greatly degrades the performance
of outlier detection. Thereby, in practice, instead of calculating just one LOF for
every reading, we calculate multiple LOF values for different minpts varying in the
range (minptslower,minptsupper). The final LOF value for a reading is taken as
the maximum of all these LOF values. In our prototype implementation, these two
parameters, minptslower and minptsupper, are exposed to the applications. We also
normalize the LOF values to project them on the scale of (0,1).

3.3 Reputation System

Reputation systems are widely used in diverse domains. E-commerce systems, such
as ebay [Resnick and Zeckhauser 2000], Yahoo auctions [Resnick et al. 2000], and
Internet based systems such as Keynote [Blaze et al. 1996; Blaze et al. ], maintain
reputation metrics at a centralized trusted authority. Additionally, they use a
deterministic number for representing reputation. As a result, these systems use
several debatable heuristics for the key steps of reputation updates and integration.
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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In fact, much closer to our context are reputation systems such as those designed
for ad-hoc networks, Confidant [Buchegger and Boudec 2002] and Core [Michiardi
and Molva 2002], and peer-to-peer networks [Xiong and Liu 2003]. These systems
are distributed and also maintain a statistical representation of the reputation by
borrowing tools from the realms of game theory. These systems try to counter
selfish routing misbehavior of nodes by enforcing nodes to cooperate with each
other. More recently reputation systems were proposed in the domain of ad-hoc
networks, that formulate the problem in the realm of Bayesian analytics rather than
game theory [Buchegger and Boudec 2003b; 2003a]. These systems can counter any
arbitrary misbehavior of nodes. This observation led us to develop RFSN using a
similar Bayesian formulation.

In this section, we describe techniques for estimating a reputation θ based on
transactional data. A transaction occurs whenever two nodes make an exchange of
information or participate in a collaborative process. With each exchange, the nodes
generate ratings indicating the “cooperativeness” of their partner node. For the
moment, we consider reputations θ representing the probability that a given node
will cooperate when asked to exchange information5. Therefore, our reputations
θ are contained in the unit interval [0, 1], and values of θ closer to one suggest
greater cooperativeness. In the next two sections, we discuss a Bayesian framework
for updating reputations given the rating from each new transaction. The first
approach, based on binary ratings, will be familiar to many readers. The second
approach is based on interval ratings and appeals to the Dirichlet Process, which
is gaining popularity in the statistics and machine learning literature.

Within this section we address the following topics: representation of reputation
update with new transactions, a trust metric as output of the reputation, integra-
tion of reputation with other information available to a node, and aging of the
reputation.

3.3.1 Representation and Update: Binary Ratings. We begin with a simple bi-
nary rating scheme. Suppose a transaction occurs between nodes i and j. Depend-
ing on the outcome, the node i will assign the value 1 if node j was cooperative
and 0 otherwise6. Node i will then update its reputation for node j, incorporating
this new data. Independently, node j will create its own rating for the exchange
and update its opinion of node i. For simplicity, we will focus on the computations
carried out by node i with the understanding that each node in the network will
perform similar operations after it completes a transaction.

Let θ denote the reputation of node j held by node i. We adopt a classical beta-
binomial framework for estimating reputations [Gelman et al. 2003; Josang and
Ismail 2002]. Specifically, we assign to θ a prior distribution p(θ) that reflects our
uncertainty about the behavior of node j before any transactions with i take place.
We will take p(θ) from the beta family, a two-parameter class of distributions which

5As we have seen previously, “cooperation” may be thought of either in terms of a node’s ability

to deliver information or perhaps in terms of the quality of data delivered.
6Note that this rating is done in our framework by the Watchdog mechanism, as described in

earlier sections.
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can be expressed as

P (θ) =
Γ(α+ β)
Γ(α)Γ(β)

θα−1(1− θ)β−1 ∀ 0 6 θ 6 1, α > 0, β > 0 (1)

for some choice of α and β, where Γ(·) is the gamma function [Gelman et al.
2003]. The mean of a beta distribution with parameters (α, β) is α/(α + β) and
its variance is αβ/(α + β)2(α + β + 1). The beta is chosen, in part, because of
its flexibility and ability to peak at any value in the interval [0, 1] with arbitrarily
small variance [Gelman et al. 2003].

Given θ we then model our binary ratings as Bernoulli observations with success
probability θ. That is, let X ∈ {0, 1} denote node i’s rating of node j for a single
transaction. Then, given j’s reputation θ, the probability that node j will be
cooperative is

p(X|θ) = θX(1− θ)1−X (2)

Once the transaction is complete, we update our reputation using the posterior
distribution for θ

p(θ|X) =
p(X|θ)p(θ)∫

[0,1]
p(X|θ)p(θ)dθ

∝ p(X|θ)p(θ) (3)

In our case, these expressions become

θX(1− θ)1−Xθα−1(1− θ)β−1 = θα+X−1(1− θ)β+1−X−1 (4)

which means the posterior p(θ|X) again has a beta distribution with parameters
α + X and β + 1 − X. The utility of the choice of a beta distribution is now
clear because of its relationship with the bernoulli (binomial) distribution; the beta
distribution is the conjugate prior for the bernoulli distribution. Therefore, our
reputation framework requires node i to maintain only two parameters to describe
the reputation of node j with very simple update rules as each new transaction
occurs.

Suppose nodes i and j now conduct n transactions with ratings X1, . . . , Xn ∈
{0, 1}. Repeating the updates in the previous paragraph, we find that the posterior
distribution for θ after n transactions is again beta with parameters updated as
follows.

αnew = α+ nX βnew = β + n− nX (5)

Therefore, after n transactions, the posterior mean of θ is

α+ nX

α+ β + n
=

α

α+ β + n
+X

n

α+ β + n

=
α

α+ β

α+ β

α+ β + n
+X

n

α+ β + n

= qn
α

α+ β
+ (1− qn)X (6)

where qn = (α+ β)/(α+ β+n) is a probability that tends to zero as n→∞. This
form of the update shows clearly that we are doing a weighted average of the prior
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mean and the mean of the new observations. The weight on the prior mean goes
to zero as the number of new observations grows very large.

3.3.2 Reputation and Update: Interval Ratings. Now we describe an update for
ratings that are not measured on a binary scale but instead are assigned some value
in [0, 1]. We can think of these ratings as estimated probabilities, perhaps for the
event that a particular data point exchanged between i and j is faulty. Note that the
notion of estimated probabilities is much more consistent than binary ratings, when
combined with density based outlier detection that was described in the previous
section. In this context, we appeal to a slightly more elaborate framework involving
Dirichlet processes [Ferguson 1973].

Take D(δ) to be a Dirichlet process with base measure δ and let this be our prior
distribution. Given observations X1, . . . , Xn ∈ [0, 1], [Ferguson 1973] tells us that
posterior is again a Dirichlet process with base measure δ(x) +

∑n
i−1 IXi

(x), where
I is an indicator of a point mass at the location of the observation Xi. As we will
describe in Section 3.3.3, we are ultimately interested in the posterior trust, i.e. the
posterior mean of the reputation distribution. When the prior mean is given by µδ,
the posterior mean of the Dirichlet process is given by

qnµδ + (1− qn)X (7)

where qn = δ([0, 1])/(n+δ([0, 1])) tends to zero as n→∞ and µδ =
∫
xdδ(x)/δ([0, 1])

is the mean of the base measure. Suppose we take δ([0, 1]) = α+ β. Then we have

qn =
α+ β

n+ α+ β
(8)

which, even though we now are dealing with real-valued observations on the interval
[0, 1], gives the same weights as in Section 3.3.1, where we had binary cooperative-
ness ratings. In fact, in order to match not just the the weights qn but also the
prior mean µδ, we could take our measure δ to be (α+β)Beta(α, β) and get exactly
the same updating as in Equation 6 with real-valued variables X1, . . . , Xn ∈ [0, 1]
instead of binary variables.

Once we have seen that the update is of a generalizable form using the Dirichlet
Process, we can also see that the update using binary ratings in Section 3.3.1 can
also be derived within this framework. If we let the measure δ = βI0 + αI1, which
would suggest our data are binary, then the update for the mean is again exactly
Equation 6. We can now see that this justification is a very general one.

Following from this discussion, in order to maintain our two parameters α, β in a
way so that we correctly update the posterior mean, we replace the bayesian update
step with an identical bookkeeping step. After a single transaction, if the assigned
probability of cooperativeness were p ∈ [0, 1], the beta parameter updates would be

αnew = α+ p βnew = β + 1− p (9)

3.3.3 Trust. The main objective of the reputation block is to expose an output
metric that can be used as a representative of the subjective expectation of the other
node’s future behavior. Up until now we have represented i’s reputation of node j
with θ, but from here on we represent it with Rij to make the pairwise reputations
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more explicit. Given a reputation metric Rij , we define the trust metric Tij as node
i′s prediction of the expected future behavior of node j. Tij is obtained by taking
a statistical expectation of this prediction:

Tij = E[Rij ] = E[Beta(αj , βj)] =
αj

αj + βj
(10)

This trust metric can be used by a node in several ways. Some notable ones are:

(1) Data Fusion: Tij can be used as a weight for a data reading reported by node
j. The data fusion can be then performed on these weighted data readings,
thereby reducing the impact of untrustworthy nodes.

(2) Node revocation: The evolution of trust over time provides an on-line tool to
the end-user to detect compromised or faulty nodes. This can help the end-user
to take appropriate countermeasures such as replacing the misbehaving node
or sensor.

(3) Decentralized decision making : In a heterogeneous sensor network, different
nodes might be equipped with different capabilities. For example, a few of
them might have a more precise temperature sensor or a camera, others may
be mobile etc. Given a requirement of using a particular service from some
other node in the network and faced with multiple choices, the value of Tij can
be used as a decision making criteria.

We will elaborate on some of these uses of the trust metric in the context of real
world sensor networking applications in Section 5.

3.3.4 Reputation Integration. Every node builds upon its reputation table by
making direct observations about other nodes in the neighborhood through the
Watchdog mechanism. Another way of learning about other nodes in the network
is to make use of the experiences of other nodes in the neighborhood. Different
nodes have different reputations for other nodes because they may have developed
the reputation based on a disjoint set of events. For example, a failure may not
span an entire node neighborhood; perhaps a packet containing a data reading is
broadcast but is only received at a subset of nodes in the neighborhood. Thus,
node i could develop a reputation of node j not only on the basis of its own direct
observations but also indirectly through another node k (which also has developed
some reputation of node j). We classify these indirect observations as evidence and
this step as reputation integration.

We would like to point out that the objective of the integration step is not to es-
tablish consistent reputation metrics at all the nodes. Our only objective is to make
nodes share experiences (via reputation). This can be conceptualized as external
evidence for a node to establish more concrete reputation metrics. This is useful
for several reasons: (1) propagating reputation information in the network facili-
tates the formation of the community of trustworthy nodes, (2) convergence time is
shorter than when relying solely on direct observations, (3) acquiring information
through external evidence is much cheaper from an energy perspective, as you get
information about several nodes in a single packet (observation), and (4) this allows
nodes to learn about distant nodes (not in their neighborhood), which it cannot
monitor directly. We now describe the integration step, followed by potential for
abuse introduced by integration.
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Node i receives reputation information about node j through node k. Let us rep-
resent these indirect observations by (αkj , β

k
j ). Node i already have prior reputation

information about j and k, represented by (αj , βj) and (αk, βk) respectively. We
need to combine these pieces of information to obtain a new reputation metric for
j, (αnewj , βnewj ). The simplest strategy is to treat the new reputation information
received from node k and the new observations made by node i about node j using
the Watchdog mechanism equivalently. Following this, the new reputation metric
can be derived as follows:

αnewj = αj + αkj ;βnewj = βj + βkj (11)

However, this simplistic strategy exposes some potential avenues for abuse, such
as “Bad-mouthing” and “Ballot stuffing” attacks [Buchegger and Boudec 2003b;
Dellarocas 2000]. E-commerce systems such as e-bay and yahoo auctions have been
specifically found to be highly vulnerable to “bad-mouthing attacks”, in which
sellers can collude with buyers to drive other sellers out of the market [Dellarocas
2000]. The conspiring buyers provide unfairly negative ratings to the targeted
sellers, thereby lowering their reputation. Reputation-based systems developed for
ad-hoc networks such as Confidant try to limit the damage of these attacks by
relying on trusted nodes to report bad behavior. They use special messages called
alarm messages to handle this case [Buchegger and Boudec 2003a]. However, this
makes the system vulnerable to retaliation attacks, as analyzed in [Michiardi and
Molva 2003]. In an e-commerce system sellers can also collude with buyers, in order
to obtain unfairly high ratings from them [Dellarocas 2000]. This will have the
effect of inflating a seller’s reputation, thereby allowing the seller to receive more
orders. This kind of “ballot stuffing” attack can also be achieved in distributed
reputation-based systems such as Core and Confidant.

It can be noted that a malicious adversary can carry out both bad-mouthing
and ballot stuffing attacks on the simplistic integration strategy. Intuitively, node
i should give more weight to the direct observations made by it than the evidence
obtained from other nodes. Furthermore, the evidence from different nodes should
be weighted in ratio of their respective reputation. Based on these observations, we
use an approach, proposed in [Josang and Ismail 2002], that is based on the concept
of belief discounting [Josang 2001]. In this approach, the problem is mapped into
an equivalent problem in the realm of Dempster-Shafer belief theory [Shafer ]. We
refer the readers to [Josang and Ismail 2002] for all the details. The closed form
expressions for the new reputation metric are given by the following equations:

αnewj = αj +
2αkαkj

[(βk + 2)(αkj + βkj + 2)] + 2αk
(12)

βnewj = βj +
2αkβkj

[(βk + 2)(αkj + βkj + 2)] + 2αk
(13)

Let us do some simple sanity checks on these equations. Consider the special
case of an untrustworthy node, i.e. αk << βk. In this scenario, the two equations
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can be approximated as follows:

αnewj = αj +
2αkαkj

βk(αkj + βkj + 2)
;βnewj = βj +

2αkβkj
βk(αkj + βkj + 2)

(14)

In case of a bad-mouthing attack, node k will propagate αkj << βkj and hence,
the two equations can be further reduced to:

αnewj = αj +
2αkαkj
βkβkj

;βnewj = βj +
2αk
βk

(15)

However, as αk << βk, the end result of the equations will be: αnewj ∼ αj ;βnewj ∼
βj . Thus, an untrustworthy node will not be able to perform a bad-mouthing attack.
In case of a ballot stuffing attack, node k will propagate αkj >> βkj and hence, the
two equations can be further reduced to:

αnewj = αj +
2αk
βk

;βnewj = βj +
2αkβkj
βkαkj

(16)

However, as αk << βk, the end result of the equations will be: αnewj ∼ αj ;βnewj ∼
βj . Thus, an untrustworthy node will not even be able to perform a ballot stuffing
attack. Furthermore, it can be verified that if two nodes perform the same evidence,
the effect on the eventual reputation (αnewj , βnewj ) gets weighted in ratio of their
respective reputations.

3.3.5 Aging. We incorporate an aging mechanism in RFSN so that a node’s
trustworthiness is reevaluated continuously. This provides resiliency against sleeper
attacks, often witnessed in the context of e-commerce systems, wherein an entity
behaves accurately for some stipulated amount of time, creates a good reputation
for itself, and then starts misbehaving. In this mechanism, the reputation metrics
of the node are decreased periodically by a weight w as follows:

αnewj = w ∗ αj ;βnewj = w ∗ βj (17)

The two parameters required by the aging mechanism are the periodic rate at
which the aging is performed and the weight w. Our prototype implementation
of the RFSN middleware service exposes both these parameters to be configured
by the application developers. The aging period can be set to the average interval
between successive observations, but choosing an appropriate value of w is not
straightforward. In [Buchegger and Boudec 2003a], authors provide a technique for
finding out this weight by comparing the evolution of the reputation in a system
with and without aging weight respectively. We refer the readers to [Buchegger and
Boudec 2003a] for the details. In Section 5, we will demonstrate the efficacy of this
aging procedure through a specific example.

4. MIDDLEWARE SERVICE ON MOTES

RFSN is available as a middleware service on Motes. It is currently supported in
two operating systems, TinyOS and SOS. In this section, we explain in detail the
prototype implementation that has been developed for SOS. We will provide an
evaluation of this service in context of a temperature monitoring sensor networking
system in the Section 5.
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4.1 Overview

Applications in SOS are written as a collection of interacting modules. Our proto-
type implementation of RFSN consists of two modules: (1) The Watchdog module
implements the outlier detection schemes, and (2) The Reputation module imple-
ments reputation representation, updates, integration and trust evolution. Follow-
ing a brief description of SOS in Section 4.2, we explain both these modules and the
APIs that are exposed by these modules to the applications in Sections 4.3 and 4.4.
Next in Section 4.5, we discuss the memory and energy overhead in the context of
a data collection application. Finally we describe the graphical front end interface
for RFSN in Section 4.6.

4.2 SOS Background

SOS [Han et al. 2005] is an operating system for resource constrained embedded
sensor nodes. It consists of a thin kernel that is statically installed on all the
nodes in the network. The rest of the system and the application components are
implemented as modules, for which the SOS kernel provides support for run-time
dynamic loading and unloading. In addition, the kernel implements mechanisms
for inter-module communication, as well as a rich set of services such as dynamic
memory allocation, software timers, sensor management and high-level I/O inter-
face. The kernel services are accessible by the dynamic modules via an extra level
of indirection through a jump table. Applications in SOS are a collection of in-
teracting modules. Inter-module communication in SOS can be synchronous or
asynchronous. Asynchronous communication is implemented using message pass-
ing. Each module is implemented as a message handler that processes messages.
Modules post messages, which are queued by the SOS kernel and dispatched to
the corresponding destination module. Synchronous communication between the
modules is implemented using dynamic linking. Every module indicates the set
of functions that it provides to the rest of the system and functions to which it
subscribes from the rest of the system. The dynamic linker tracks down and links
all the provide-subscribe function pairs when each module is loaded. Therefore, a
module in SOS just needs to define its synchronous and asynchronous interfaces,
and afterwards it can be combined with other modules to form a valid application.

4.3 Watchdog module

The Watchdog module maintains a library of outlier detection protocols. It cur-
rently implements two protocols - distance-based outlier detection and LOF (density-
based outlier detection), as described in Section 3. The module provides two asyn-
chronous interfaces (message types): msg-distance and msg-density, for using the
distance- and density-based outlier detection respectively. The calling application
specifies both its identity and the asynchronous interface on which it expects a reply
from the Watchdog module. The calling application is also responsible for provid-
ing the requisite parameters for the corresponding outlier detection mechanism.
This provides the applications with the full freedom to appropriately customize the
working of the protocols to their specific needs.

The Watchdog module has been written in a manner so that it can be easily
populated in the future with more outlier detection protocols. In order to add a
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protocol X to this module, the user needs to perform the following tasks: (1) Add a
new message type, msg-X, (2) Add a new data structure containing the parameters
that are required by the protocol X, and (3) Provide the C-code function that
implements this protocol.

4.4 Reputation module

This module maintains the reputation metric, as requested by different applications,
in the following data structure.

struct { uint32_t context; rfsn_param_t param; uint8_t size;
reputation_t* reputation; } rfsn_t;

context acts as the identifying tag for the given reputation metric. This informa-
tion is provided by the applications when a new reputation metric is initialized,
and from then onwards every time for a reputation update. size holds the total
number of reputations maintained in a given reputation metric. The three param-
eters of RFSN (aging period, aging weight and integration period) are stored in
rfsn_param_t and the reputation parameters (α, β) along with the node identities
are stored in reputation_t.

The Reputation module exposes three asynchronous interfaces (message types):
msg-reputation-init, msg-reputation-update, and msg-param-update for reputation
initialization, updates and RFSN parameter updates, respectively. The reputation
updates, aging, integration and trust evolution are implemented as described in
Section 3. Reputation integration takes place under the hood without the knowl-
edge of the applications. Periodically, the Reputation module broadcasts a packet
that contains the reputation information of nodes in the neighborhood. The period
is equal to the integration period as specified by the applications. The Reputation
module also provides a synchronous function call that returns the trust metric of a
given node.

4.5 Complexity in Context of a Data Monitoring Application

In this section, we evaluate the implementation complexity and the energy/memory
overhead of the RFSN middleware service in the context of a general data moni-
toring application. A data monitoring application forms the basic building block of
several sensor networking systems. SOS provides a prototypical data collector and
tree builder application. In the sensor networking literature, this complete applica-
tion is referred as Surge. The implementation also involves a module called surge,
which we do not capitalize for clarity. The main components of this application are
shown in Figure 7(a). The surge module periodically samples the desired sensors
and uses tree routing to transmit the data to the base-station. The surge module,
tree routing and the different sensor drivers such as temperature, photo, acoustic
etc. are implemented as binary modules in SOS.

Although Surge provides a stable implementation of a data monitoring applica-
tion, it does not provide any mechanisms to verify the validity of the sensor data.
As a result, sensor network applications that are based on Surge are highly vulnera-
ble to both malicious attacks and non-malicious system faults that can corrupt the
sensor data. As shown in [Wagner 2004], a single corrupted sensor can drastically
change the aggregation metrics, such as average, maximum, minimum etc.
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(a) Surge (b) Surge-RFSN

Fig. 7. Data Monitoring and Collection Application in SOS

4.5.1 Secure Data Monitoring Application. We have enhanced the Surge ap-
plication to make it resilient to non-malicious sensor faults by adding the RFSN
middleware service. We name this application as Surge-RFSN. The components of
the Surge-RFSN application are shown in Figure 7(b). In this application, every
node also maintains a reputation metric for all the other nodes in its neighbor-
hood using the RFSN-monitor, Watchdog and Reputation modules. In every time
epoch, besides sampling and transmitting the data, each node collects the temper-
ature readings from the other nodes in the neighborhood. This data array, which
corresponds to the readings in the same epoch, is passed to the Watchdog mod-
ule. Density-based outlier detection is used to assign a rating to each data reading,
which is used to update the reputation for every node accordingly. In the previ-
ous section, we have explained the functionality of the reputation and Watchdog
module: the RFSN-monitor module collects the readings from all the other nodes
in the neighborhood and calls the interfaces that are provided by the Reputation
and Watchdog modules appropriately. RFSN-monitor exploits the broadcast prop-
erty of the communication medium. When a node transmits a packet to its parent
in the hierarchical tree structure, other nodes in the neighborhood can also pas-
sively listen to this packet. As a result, no additional packets are transmitted in
Surge-RFSN as compared to Surge for maintaining reputation for every node. It is
important to note that the part of Surge-RFSN application that collects the data
and transmits it to the base-station using tree routing is the same as those in the
Surge application. We have not made any changes in either surge, tree routing or
the data sensor modules. This clearly demonstrates the ease with which RFSN can
be incorporated in existing sensor network applications. It does not impose any
change in the existing application software.

RFSN was designed with the goals of developing a distributed, localized and a
lightweight reputation system for sensor networks. We visualize each node in the
network to be running the software framework, equivalent to the block diagram
shown in Section 3. In a centralized data collecting application such as Surge,
where the final results are only aggregated at the root node, it would have been
fine even if we ran the RFSN middleware only on the root node. In general, it
will depend on the nature of the application, as to where this service should be
run. RFSN is flexible and can be customized to be run in a centralized manner for
applications such as Surge or in a distributed manner for distributed applications
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Component ROM (in bytes) RAM7 (in bytes)

surge module 578 11

Tree routing 2080 10

Temperature sensor 174 0

RFSN-monitor 934 12

Reputation 2230 6

Watchdog 3558 0

Table I. Memory footprint of the different SOS components

such as event monitoring. In the following subsections, we analyze the overhead of
running the RFSN middleware at a node, so that it can be used in the context of
both centralized and distributed operation of RFSN.

4.5.2 Memory overhead. Table I shows the memory footprint of the different
components in Surge-RFSN and Surge respectively. The Surge application (SOS
kernel + surge module + Tree routing + Temperature Sensor) takes 40552 bytes
of ROM, whereas the Surge-RFSN application (SOS kernel + surge module + Tree
routing + Temperature Sensor + RFSN-monitor + Reputation + Watchdog) takes
47274 bytes of ROM; the memory overhead of Surge-RFSN is around 6Kb of ROM.
As can also be observed from Table I, the static RAM memory allocation for the
complete RFSN middleware service (RFSN-monitor + Reputation + Watchdog) is
only 18 bytes. We note that this does not include the memory used for storing the
data readings by the RFSN-monitor nor does it include the reputation metrics by
the Reputation module. The memory needed to maintain this state information
is allocated dynamically by the respective modules using the dynamic memory
allocation API provided by the SOS Kernel.

4.5.3 Energy overhead. The extra energy overhead of the Surge-RFSN appli-
cation can be due to the following three reasons. First, the Reputation module
transmits packets that contain the reputation information (integration step). As
mentioned in Section 3, the period of this integration can be configured by the ap-
plications. In Surge-RFSN we have configured this parameter to -1, which indicates
the Reputation module does not perform any reputation integration. Our objec-
tive is to reduce the extra energy overhead of Surge-RFSN. All the results that are
shown in the next section correspond to this configuration. As we will show, even
without any reputation integration, Surge-RFSN can obtain considerable benefits
over Surge.

In both Surge and Surge-RFSN, a node is at least involved in the following two
types of data communication: (1) The node transmits a packet containing its data
reading to its parent node in the hierarchical tree structure, and (2) It collects
the data readings from all its children, provided that it is not a leaf node, and
forwards them towards the base-station. In addition to this, Surge-RFSN keeps the
radio in the promiscuous mode to snoop on the data communication, in which it is
neither involved as a parent nor as a child. In Surge, the radio will be in idle mode
after completing these two tasks. Since the idle mode and receive mode power
consumption are comparable for typical sensor networking platforms, the extra
energy spent in snooping on the data packets in case of Surge-RFSN is negligible.
In [Szewczyk et al. 2004], the authors have coupled Surge with BMAC [Polastre
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Fig. 8. Time complexity of density-based outlier detection (LOF) on motes

et al. 2004], a duty-cycling MAC protocol, wherein the radio is put to sleep mode
during the time of inactivity. This results in a significant decrease in the energy
consumption. If all the data communication in a neighborhood takes place during
a small fraction of the time epoch, as in [Szewczyk et al. 2004], a similar strategy
can also be developed for Surge-RFSN.

The last and perhaps the foremost reason for increased energy consumption of
Surge-RFSN is the additional CPU utilization in performing the density-based out-
lier detection and updating the reputation of the nodes accordingly. As reputation
update is a simple addition operation, the key bottleneck becomes the density-based
outlier detection. Our objective was to profile the time needed by a Mica2 mote in
executing LOF. This time profiling was conducted using Avrora [Titzer et al. 2005].
Avrora provides a cycle-accurate simulation of the AVR microcontroller, allowing
real programs to be executed with precise timing. In addition, it also provides
analysis and profiling tools to gauge the program cycle count. Avrora provides a
flexible framework to set up profile points at any places in the code. Using these
profile points, the accurate cycle count can be derived for any code snippet. In our
scenario, the profile points were set to the beginning and end of the density-based
outlier detection respectively. The time measurement was derived by multiplying
the cycle count with the frequency of the atmega128 microcontroller (∼ 8Mhz).

The time taken is a function of the neighborhood size as well as the percentage
of faulty nodes within the neighborhood. Figure 8(a) plots the time needed for
varying neighborhood sizes, whereas Figure 8(b) plots the time needed for a fixed
neighborhood size of 10 but for a varying fraction of faulty nodes. The most inter-
esting observation is the scale of the y-axis in both Figure 8(a) and Figure 8(b).
Even for a neighborhood sizes of 12 and even when the percentage of faulty nodes
was the maximum allowed (<50%), the time taken in running the density-based
outlier detection is under a second.

To put into perspective, this energy overhead of LOF can only be evaluated
vis-a-vis the frequency with which it will be run. LOF will be run whenever a
new observation is taken in a data collecting application or whenever a new event
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happens in a data monitoring application. This will be typically of the order of
a few minutes in a data collecting application, a representative real-life example
is discussed in the next section, and can be up to a few hours in a monitoring
application. Given this, the energy overhead of an extra second of CPU processing
every few minutes will be negligible.

Thereby, overall the energy overhead due to the additional CPU utilization of
running the RFSN middleware service is negligible.

4.6 Graphical front-end

RFSN can help us identify the misbehaving nodes in real time, while the network
is in operation. In order to supplement this functionality, we have developed a
real-time visualization tool. This user interface is provided through an Apache
web server. The visualization tool can be run either on a desktop, laptop or even
on a handheld IPAQ. Every sensor node is configured to periodically transmit a
visualization tool packet that contains the trust metrics of the other nodes in the
network that it has established so far. The graphical front-end can either receive
these packets directly, if it also equipped with a corresponding radio interface (for
example CC1010 radio for receiving packets from Mica2 nodes), or it can also
receive them over the UART from a specific sensor node. As we will show in the
next section, in our lab scale testbed, an Apple laptop acts as the GUI front-end,
and it is connected to one specific node through the UART. After receiving these
packets, the GUI front-end parses them, extracts the reputation information, and
stores it in a temporary database. Each database entry is in the form of a triplet,
(source-id, node-id, trust metric), which represents the trust metric formed by the
node, source-id, about the neighboring node, node-id. To realize a graphical user
interface that reflects this reputation information in real-time, we use a mechanism
that combines perl/cgi script (runs on web server) and javascript (runs on browser
client). Each time a user browses the perl/cgi script that executes on the GUI
front-end, the script triggers the GUI front-end to read database files that contain
the reputation information. This information is transformed to a javascript which
is transmitted back to the user. In this way, we achieve a graphic visualization of
the trust metrics. The real-time update of the reputation information is achieved
by the javascript’s mechanism that reloads the perl/cgi script periodically.

5. EVALUATION

In this section, we evaluate the performance of the RFSN middleware service in
identifying misbehaving nodes using multiple contexts and experiments. First, we
describe an evaluation performed on a lab-scale temperature monitoring system
consisting of Mica2 Motes. In order to gather sufficient statistics, we repeated
the experiments (same network topology and similar sensor data) on simulations
using Avrora [Titzer et al. 2005]. We deliberately fabricate faults at one of the
nodes in the experiments. The taxonomy of the faults has been adopted from our
own preliminary work in [Balzano and Srivastava 2006]. We do not claim this list
to be exhaustive; albeit it is a good representation of the faults that have been
witnessed in existing sensor network deployments. Next, we describe an evaluation
performed on data collected from the James Reserve. In this way we demonstrate
the usefulness of RFSN on real-world sensor network application data.
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5.1 Lab Experiments

First, we explain the experimental setup and the system model.
Lab-scale testbed The lab-scale testbed consists of five motes, numbered 1 to

5. Each one of these motes was equipped with a MTS300 sensor board to take
a temperature reading in every time epoch. The duration of the time epoch was
set to 5 minutes. These motes were placed in the center and the four corners of a
6’ x 6’ room. All the motes lie in the direct communication range of each other.
Each of these motes was compiled with exactly the same Surge-RFSN application
that consisted of the SOS kernel and the modules: surge, tree routing, temperature
sensor driver, rfsn-monitor, reputation and watchdog. The mote numbered 1, which
lies in the center of the room, was connected to an Apple Laptop through the UART.
In addition to performing exactly the same steps as rest of the nodes, mote 1 was
configured to tunnel the reputation metrics that it has established for the other
nodes to the UART in every time epoch. The Apple laptop was running the GUI
application that was discussed in the previous section. This allowed us to visualize
the trust metrics that mote 1 has established for rest of the motes, 2-5, in real time.
In order to gauge the efficacy of Surge-RFSN, we emulated a vast variety of sensor
faults at the mote numbered 5. This emulation was done by adding a data filter
in the temperature sensor driver (only at mote numbered 5), wherein the readings
from the ADC were manipulated to follow the desired data model. Our objective
was to find out whether the reputation metric for this node at mote 1 differed from
the other motes, that were numbered 2-4. The following subsections summarizes
the results that were obtained for different types of faults.

Avrora simulations In order to gather sufficient statistics for accurately gauging
the performance of RFSN under the impact of different fault models, we use simu-
lations in Avrora [Titzer et al. 2005]. Avrora provides a cycle-accurate simulation
of the AVR microcontroller, allowing real programs to be executed with precise
timing. One of Avrora’s main features is that the same embedded code that runs
on Mica2 Motes can be directly executed by the simulator, thus leaving little pos-
sibility of experimental errors in moving from real world setting to simulations. In
fact, we were able to recreate the same network topology and were using the same
embedded code as in the lab-scale temperature monitoring system. The only hurdle
is that Avrora cannot simulate the physical world and hence, we had to emulate
the temperature readings measured by the different sensors. For the non-faulty
nodes, numbered 2-4, the sensor reading during any time epoch was set to 25 +
calibration error. In one of our previous works [Jew et al. 2004], we had performed
a detailed experimental study to find out the calibration error model for temper-
ature sensor on the MTS300 board. We adopt the same calibration error model,
whereby it is modeled using a Gaussian distribution, N(0, 2). The reading for
the faulty node, mote 5, was emulated in accordance with the corresponding fault
model. The statistics using Avrora simulations are averaged over 100 independent
experimental runs.

RFSN parameter settings As discussed in Section 3, the three parameters required
by the RFSN middleware are: aging weight, aging period and integration period.
In all our experiments, we fix the aging weight to be equal to 0.95. The aging
period is fixed to the duration of a time epoch, equal to 5 minutes. No reputation
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Fig. 9. Trust evolution in presence of offset faults

integration is performed in any of these experiments, i.e., integration period is set
to −1.

5.1.1 Offset fault. The offset fault most commonly manifests itself as an additive
constant on top of the pre-fault measurement value and is represented as follows:

f = x+m with probability c (18)
f = x with probability 1− c (19)

Here x represents the pre-fault value measured by the temperature sensor. Note
that x also includes the possible calibration error from the true value of the am-
bient temperature. The faulty value, f , is obtained by adding the offset m, with
probability c, to the pre-fault value, x. Figure 9 plots the evolution of trust for the
4 motes in the presence of offset faults at mote 5, as observed at the Apple laptop
acting as the GUI frontend. Note that we introduce the fault at mote 5 after the
10th epoch.

As it can be observed from Figure 9, the trust metric for mote 5 is significantly
different from the trust metrics of the rest of the nodes. Furthermore, the trust
metric is relatively higher for mote 5, when the offset faults happen with lower
probability, c = 0.25 as compared to c = 0.75. We repeated the experiment in
Avrora simulations with several other settings of m and c. Table II shows the final
trust metrics that were established for the 4 motes after 100 epochs. The values
in the table have been obtained after averaging over 100 independent runs. As
can be observed from Table II, the trust metric degrades, almost linearly, with the
likelihood of mote 5 being faulty (c). However, a keen observation to be made is
that the value of m, as far as it is not too small for classifying mote 5 to be faulty
(for example when m = 2), does not have much impact on the final trust metric of
mote 5.

5.1.2 Variance Degradation Fault. The variance degradation fault is a fault
where over time the sensors becomes less and less accurate. The variance of the
reported measurement is much higher than that of other new sensors. This fault
can be represented as follows:

f = x+N(0, σ) (20)
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Fault Model Node 2 Node 3 Node 4 Node 5

m=100, c = 0.25 0.95 1.0 0.9 0.42

m=100, c = 0.75 0.99 1.0 0.97 0.12

m=100, c = 0.5 0.99 1.0 0.94 0.23

m=10, c = 0.5 0.98 1.0 0.99 0.25

m=5, c = 0.5 0.99 1.0 0.97 0.26

m=2, c = 0.5 1.0 0.9 0.95 0.68

Table II. Trust evolution in presence of offset faults
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Fig. 10. Trust evolution in presence of variance degradation faults

Fault Model Node 2 Node 3 Node 4 Node 5

σ = 2 0.95 1.0 0.98 0.97

σ = 5 1.0 0.93 0.89 0.34

σ = 10 1.0 0.952 0.964 0.18

σ = 20 0.99 1.0 0.99 0.11

Table III. Trust evolution in presence of variance degradation faults

Note that the mean value of this faulty sensor, over large durations of time, will
be the same as an accurate sensor, but its value cannot be trusted with the same
magnitude. Figure 10 plots the evolution of trust in this scenario for two different
values of σ. In both cases, motes 2-4 are able to establish significantly higher trust
metrics than mote 5.

As can be observed from Table III, the trust metric for mote 5 is higher for a
lower value of variance and vice-versa. Note that σ = 2 corresponds to the case
when all the motes are indistinguishable from one another. This is because we have
configured the non-faulty nodes, 2 − 4, to have a slight variance in there readings
due to calibration error, which is also equal to 2.

5.1.3 Stuck-At Fault. The stuck-at fault represents a sensor getting stuck at a
particular value s, i.e.

f = s,∀x (21)

Figure 11 plots the evolution of trust for the 4 motes in the presence of variance
degradation faults at mote 5. As can be observed from Figure 11, mote 5 can be
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Fig. 11. Trust evolution in presence of Stuck-At faults

Fault Model Node 2 Node 3 Node 4 Node 5

s = 10 0.98 0.99 1.0 0.06

s = 20 0.99 0.99 1.0 0.08

s = 22.5 1.0 0.97 0.99 0.1

s = 25.0 1.0 0.97 0.99 0.9

Table IV. Trust evolution in presence of stuck-at faults

easily classified as a faulty node in these two scenarios.
The stuck-at faults can be very dangerous depending on the value of s. If this

value lies within the sensing range, it might be very hard to discover such a fault.
Table IV summarizes the trust metrics for different values of s. As the values of
the non-faulty nodes also have a mean value of 25.0, we were unable to distinguish
mote 5, when s = 25.0.

5.1.4 Sleeper attacks. In a real world deployment, a node can become completely
non-functional after some time and stop reporting any values. Note that this is
different from reporting a zero reading, which can be classified as a stuck-at fault.
In this scenario, the node does not transmit any data reading, as if it does not exist
in the network. Figure 12 plots the evolution of trust in this scenario when mote 5
stops reporting after 25 and 50 epochs respectively. Note that unlike the previous
subsections, we plot the absolute value of trust metrics (and not the normalized
trust metrics) in Figure 12.

As it can be observed from Figure 12, the four motes are completely indistin-
guishable until the time interval when mote 5 stops reporting. Afterwards, the
trust metric of mote 5 degrades continuously. This is the result of the continuous
aging of the reputation metrics, using aging weight and aging period.

5.1.5 Summary. The experimental study in the above section demonstrates the
efficacy of RFSN in identifying misbehaving nodes for a variety of fault scenarios.
However, we would like to point out that the current outlier detection mechanisms
do not provide an effective countermeasure against all possible malicious attacks
and faulty scenarios. Consensus-based schemes inherently rely on the redundancy
of sensor data information in the system. We note that there are several ongoing
research efforts that deal with the design of complex outlier detection schemes. The
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Fig. 12. Trust evolution in presence of Sleeper attacks

notable ones are: (1) In [Koushanfar et al. 2002; 2003; Koushanfar and Potkon-
jak 2005], the authors have developed a suite of model based outlier detection
protocols for identifying the misbehavior of the light sensing modality, and (2)
In [Ramanathan et al. 2006], the authors have developed a comprehensive outlier
detection strategy for their soil monitoring sensor networking system. Although
these schemes can be extremely useful, none of them provide a complete system
that maintains the misbehaving information of the nodes over time and uses it in
future to make in-network decisions. The RFSN middleware service provides this
generalized framework. While designing the RFSN service, we have taken special
care to make it flexible enough to allow the integration of other outlier detection
schemes. Schemes such as [Koushanfar et al. 2002; 2003; Koushanfar and Potkon-
jak 2005; Ramanathan et al. 2006] can be easily integrated in the Watchdog of the
RFSN middleware to provide a complete reliable operation of a sensor networking
system.

5.2 Sensor Data Experiments

In this section, we evaluate the performance of the RFSN using real data sets col-
lected from the James Reserve deployment. Our objective, in this subsection, is to
demonstrate the reputation that would have been established for different nodes,
had they been using RFSN. We show RFSN could be instrumental in identify-
ing misbehaving nodes or sensors. To show this, we took two sensor data traces
collected at a James Reserve deployment. After this, we replayed this trace in simu-
lations and enabled the motes to use the RFSN middleware service for establishing
reputation for other neighboring nodes. These simulations were done in Avrora.
We note that Avrora provides a tool for doing trace-based simulations, wherein the
readings measured by any sensor can be read from a file. Furthermore, Avrora also
allows us to create exactly the same spatial and temporal scales in these simula-
tions as the real deployment. The RFSN parameters, aging weight and integration
period were set to 0.95 and -1 respectively, consistent with the lab experiments.
The aging period was set to be equal to the sampling period of the corresponding
application.

5.2.1 Measuring the Cold Air Drainage. The first representative example comes
from sensor network deployment done in a valley at James Reserve. In this appli-
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Fig. 13. Temperature measurements from the James Reserve sensor network deployment

cation, motes are collecting temperature measurements over time and space. The
scientists are interested in a cold air drainage event, which is a moment before
dawn when cold air rushes down a valley to the lowest point. The motes are placed
perpendicularly to the cold air front. Currently, each data point is of interest to
the scientsts and thus is transmitted to a sink. However, the average temperature
also reveals the cold air drainage event, and this single value could be sent to save
energy when the nodes are deployed in a longer lived or more remote deployment.

In all, the deployment consists of 26 motes, each taking a new reading approx-
imately after every 4 seconds. Of these, readings were collected from all but the
two motes numbered 5 and 22.

Figure 13(a) plots the temperature readings measured by these nodes throughout
the course of the experiment. Figure 13(b) provides a better resolution of the tem-
perature readings measured by the non-faulty nodes (all nodes other than 23). Two
observations can be made from these figures: (1) The motes measure slightly dif-
ferent readings depending on their location, but they show almost the same trends
of the increase and decrease in temperature, and (2) Mote 23 gets intermittently
stuck at a considerably lower temperature value. Clearly, the corrupted measure-
ment from the mote 23 can adversely affect the final average calculated at the sink,
resulting into false positives and false negatives for a cold air drainage event.

Another fault which is not prominent in the above figures is the variable number
of readings obtained from different motes. This can be attributed to a bad commu-
nication channel or to malfunctioning software/hardware components at the corre-
sponding nodes. Figure 15 plots the histogram of the total number of measurements
collected at the base station corresponding to different nodes. It is hard to quantify
the effects of this fault. If there are a large number of missed measurements, it
can potentially result in a false positive. Furthermore, if the communication am-
biguities are localized, the final average temperature calculated at the sink can be
potentially many degrees off from the accurate value.

Our objective was to gauge if RFSN middleware can identify these faults. In order
to achieve this, we replayed the same scenario as was witnessed by the motes in the
real deployment in Avrora simulations. In addition, we ran the RFSN middleware
service at the sink, so that it can establish reputation metrics for every node over
the course of the experiment. For ease of analysis, we focus on just 10 motes for
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Fig. 15. Trust metric at the base station

evaluation. These 10 motes were randomly selected; mote 1-4, 10, 16, 20, 23, 24
and 26. Figure 15(a) plots the trust metric that the base station establishes for
different nodes. As can be observed from Figure 15(a), the trust metric of the faulty
node, mote 23, goes down when it starts misbehaving. Note that mote 23 is not
branded as a faulty node permanently. When the temperature reading of mote 23
is non-faulty, it does gain reputation.

In order to understand the impact of the variable number of readings from dif-
ferent nodes, we need to zoom in on the first few minutes of the experiment. Fig-
ure 15(b) plots the evaluation of trust for different nodes in the starting 20 minutes
of the experiment. Note that all the motes, even the mote 23, are non-faulty during
this duration. As a result, ideally every mote should have been able to establish
the same trust metric at the base-station. However, each of the motes has a slightly
different rate of the increase in the reputation. This is not an artifact of the dif-
ferent rating from the outlier detection scheme. All the motes are assigned exactly
the same rating, as all of them are equally consistent. This is an artifact of missed
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Fig. 16. Average temperature calculated at the base station

measurements at the base-station. Note that mote 23 has the slowest rate as it
also has the minimum number of readings (refer Figure 15). We note that eventu-
ally, over the complete course of the experiment, this disparity among the different
motes goes away because of the large number of measurements.

Figure 16(a) and 16(b) plot the average temperature calculated at the sink, both
with and without the system running RFSN, respectively. In both the cases, we
compare the average temperature with the true value of the average temperature.
We note that we do not have access to the ground truth of the average temperature
value; we calculate the average temperature over the rest of the non-faulty nodes
and use it as a representative of the true value. As can be seen, the average calcu-
lated in the system using RFSN closely follows the true value. There are moments
when there is huge disparity; this corresponds to the scenarios when the behavior
of mote 23 suddenly changes. RFSN does take some time in converging to the ac-
curate trust metric that can be associated with the mote 23. However, it eventually
establishes the right metric and hence, the calculated average temperature closely
tracks the true value.

5.2.2 Humidity monitoring in a styrofoam box. The second representative ex-
ample comes from the deployment done in lab to find the variability in temperature
and humidity sensors. In all the deployment consisted of 10 Mica2 motes, placed
inside a styrofoam box, with MDA300 sensor boards to take the temperature and
humidity measurements. As mentioned earlier in Section 2, one of the nodes had its
temperature and humidity sensor shorted to one another, causing the temperature
measurement to track the wrong phenomenon. It was easy for us to detect this fault
using RFSN, and we do not cover it in detail in this paper due to space constraints.
However, a more interesting behavior to observe is that of the humidity sensors.

The humidity sensor requires a 3.3V excitation voltage. The battery voltage
is stepped up to this point for excitation. During the course of the experiments,
the batteries drained to around 2.3-2.6V. As a result, some of the humidity sensors
recorded inconsistent readings when the batteries were very low. Figure 17(a) shows
the humidity readings measured at the 10 nodes over the course of the complete
experiment. Figure 17(b) shows the zoom in version of the end of the experiment,
wherein some of the humidity sensors started producing inconsistent readings.
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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Fig. 17. Humidity data from an experiment with ten sensors inside a styrofoam box.
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Fig. 18. Reputation for the ten sensors taking humidity measurements inside a styrofoam box.

This scenario is interesting because of several reasons - (1) The corrupted value
from the humidity sensors are still within the range of the non-faulty values, and
hence a simple consensus-based outlier detection on the humidity measurements
will not be able to identify these misbehaving nodes, (2) There are multiple nodes,
numbered 2, 3, 4 and 5, that go bad at some time during the experiment, and (3)
Different motes have different faulty scenarios: Mote 4 is bad only for a very small
duration, Mote 3 goes bad for a long period but it starts giving out good reading
after that, Mote 5 goes bad for a small duration, then becomes good, again goes
bad for a long time and then starts giving out correct readings, Mote 2 shows the
same behavior as mote 5 but it breaks down completely and stops giving out any
readings towards the end of the experiment.

As shown in Figure 17(b), the absolute value of the humidity measurements
cannot be designated as corrupted because it falls well within the range of the non-
faulty values. It is only when we observe the change of these humidity measurements
over time, we can identify the ongoing misbehavior in the network. Motivated by
this, we decided to use the rate of the increase/decrease in humidity over time as
the classifying metric for identifying misbehavior.

Figure 18 plots the reputation established at the sink using RFSN. Since the
Watchdog mechanism (or the consensus-based outlier detection) works completely
agnostic to the application context, it was trivial for us to use the rate of in-
crease/decrease in humidity over time as the input to the Watchdog mechanism

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.



32 · ...

rather than the absolute humidity measurements. In order to provide a better vi-
sualization, we demonstrate the reputation using three graphs, one for each mote 2,
3 and 5 respectively. Note that the results were obtained using just one experimen-
tal run and not three separate runs. In fact, we wanted to gauge the performance
of RFSN under the influence of multiple misbehaving nodes.

As can be observed from Figure 18, RFSN is able to identify the misbehavior of
the four motes, 2, 3, 4 and 5. Note that the Figure 18 shows the reputation for the
nodes towards the end of the experiment. The actual experiment was started at a
time, equal to 260, much before the starting time scale of Figure 18, 263.5. Thereby,
all the nodes have already been able to establish a good reputation, around 1.0,
by the time scale reaches 263.5. Figure 18 clearly demonstrates the flexibility of
RFSN. The trends of the reputation evolution for different misbehaving nodes are
only dependent on their corresponding faulty behavior.

5.2.3 Summary. The experimental study in this subsection demonstrates the
applicability of RFSN in identifying misbehavior in the context of real deploy-
ments. The sink, using the RFSN middleware service, is not only able to identify
the misbehaving nodes in real time, it is also able to establish a relative magnitude
of each node’s misbehavior as compared to other misbehaving or good nodes. It
can greatly help the end-user to reconfigure the system or take appropriate counter-
measures, especially for short-term deployments such as Intel Research [int 2004],
CENS Bangladesh [Ramanathan et al. 2006], when the real-time feedback about
the operation of the network is paramount.

The sink, using the RFSN middleware service, is also able to fuse the data from
multiple sensor nodes, simultaneously being resilient to corrupted readings from
misbehaving or fault nodes. This can be especially useful in sense-response appli-
cations such as intruder detection, remote healthcare, home automation, etc., where
actuation is performed based on the aggregated information from multiple nodes
and a single corrupted reading can have huge life-critical or economic implications.

Although RFSN is lightweight and can be easily added to a sensor networking
system, as shown in Section 4, it cannot function completely independently from
the application context. The end-user does need to configure the RFSN middleware
service appropriately. We saw an instantiation of this in our second representative
example, wherein we had to change the input to the Watchdog from the absolute
humidity measurements to the rate of increase/decrease of humidity in time. The
modular architecture and the design of each building block of RFSN is free from
any application specific context, and this allowed easy addition of a new outlier
metric. All the application specific customization can be done through the APIs
provided by the middleware service. Therefore, although we had to change the
input to the Watchdog, it was a trivial change requiring no additional code.

In none of our experiments, we have used the concept of reputation integration
and still we were able to identify faulty misbehavior successfully. This raises ques-
tions about its applicability to RFSN. Note that reputation integration step does
not come at a free cost. If this is enabled, each node will be transmitting an extra
packet (at a period, which can be configured by the application writer) contain-
ing its reputation metrics about other nodes. Having said so, the benefits of this
step will be significant in dynamic topologies, wherein a node does not get enough
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chances to interact with other nodes to establish a meaningful reputation about
them. Another domain, where reputation integration will be very useful is when
RFSN is extended to counter malicious misbehavior, as discussed in the next sec-
tion. Both these areas have not been covered in this paper and we leave a detailed
analysis of the benefits vs cons of the reputation integration step for future work.

6. DISCUSSION

In this section, we will briefly discuss some of the related works that lie in the
domain of resilient data aggregation and the applicability of RFSN to counter ma-
licious attacks.

6.1 Resilient data aggregation

In [Wagner 2004], the authors propose a concrete mathematical framework for for-
mally evaluating the security of several resilient aggregation techniques. The main
focus of this work is to attract the attention of the researchers towards this area
and make them realize the pitfalls of doing insecure data aggregation. Although
no concrete solutions were proposed in the paper, a very simple and intuitive ap-
proach of throwing away the abnormal data was evaluated. In a way, this approach
is equivalent to a single run of RFSN. We not only discard the bad data readings,
but we integrate this information in reputation metrics which help us do efficient
prediction in the future.

A related domain of work is of secure data aggregation. In [Du et al. 2003] and
SIA [Przydatek et al. 2003], authors proposes a mechanism that allows the base
station to check the aggregated values submitted by several designated aggregators,
based on the endorsements provided by a certain number of witness nodes around
the aggregators. In this model, the base station is the only aggregator. On the other
hand, works such as [Zhu et al. 2004] and SDAP [Yang et al. 2006] focus on hop-
by-hop secure data aggregation. We note that these works try to solve a different
problem and cannot be simply extended for tolerating faulty node measurements.
Note that a faulty measurement can come from a well authenticated node. We
visualize RFSN working alongside one of these protocols to provide both resilient
as well as secure data aggregation.

6.2 Malicious misbehavior

In this paper, we have focused on the applicability of RFSN to counter non-
malicious faults resulting from corrupted data readings. The readings can also
be deliberately corrupted if a few nodes in the network have been compromised.
RFSN will be equally effective in countering such behavior, provided the number
of compromised nodes are in a minority. This is mainly because RFSN acts on the
misbehavior without figuring out the actual cause of the misbehavior.

Having said so, RFSN should not be envisioned as a scheme that can provide
secure aggregation as well. First, RFSN does not provide any confidentiality or the
authentication of the readings being reported by individual sensor nodes. Second,
there is a big difference between malicious and non-malicious misbehavior. Faulty
misbehavior is typically random and can be categorized in one of the classes as
mentioned in the previous sections. As we have shown, RFSN can easily counter
such misbehavior. On the other hand, RFSN will not be able to tolerate a much
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more planned attack that tries to abuse weaknesses in different building blocks of
the framework. For example, a malicious attacker can modify the readings just
enough so that they still pass the outlier detection. It can also try to abuse the
reputation system or can potentially block the network traffic. We believe that
RFSN functionality would need to be extended and perhaps supplemented with
other schemes to provide a comprehensive solution against malicious misbehavior.

7. SUMMARY

Applications involving embedded sensing technology are slowly moving from aca-
demic contexts to wider scientific, industrial and social contexts. When used in life-
critical or economic applications such as healthcare, entertainment, urban sensing,
etc., a paramount challenge is to provide explicit data authentication mechanisms.
This is because the misbehavior resulting from faulty nodes can drastically corrupt
the information provided by the sensor network.

In this paper, we presented a generalized and unified approach for providing
data authentication by modeling it as a problem of developing a community of
trustworthy sensor nodes. We developed a Reputation-based Framework for Sensor
Networks (RFSN), where each sensor node maintains reputation for other nodes.
This reputation can be used as an inherent aspect in predicting the future behavior
of the nodes, thereby allowing the identification of misbehaving nodes. RFSN
integrates tools from statistics and decision theory into a comprehensive, distributed
and completely scalable framework. We employ a Bayesian formulation, specifically
a beta reputation system, for reputation representation, updates, integration and
trust evolution. Consensus-based outlier detection schemes are used to associate a
level of confidence with each data reading.

RFSN is available as a middleware service on Motes. The memory and energy
overhead of using this service is negligible. It can be easily integrated in existing
sensor networking deployments without making any modifications to the existing
application software. The software design of RFSN is modular and the design of
each building block os RFSN is free from any application specific context. This
allows the end-user to easily customize the operation of RFSN to its desired ap-
plication needs by appropriately configuring the RFSN parameters and making
changes at the API level.

We evaluated the efficacy of RFSN using multiple contexts: (1) a lab-scale testbed
of Mica2 motes, (2) Avrora simulations, and (3) real data sets collected from the
sensor network deployment in James Reserve. RFSN is able to identify the misbe-
having nodes for a variety of fault scenarios. Besides identifying the misbehavior of
the nodes, we are also able to establish a relative magnitude of each node’s misbe-
havior as compared to other misbehaving or good nodes. RFSN can be used in two
ways. First, since RFSN provides a real time feedback about the node’s misbehav-
ior, it can greatly help the end-user to reconfigure the system or take appropriate
countermeasures. Second, it can be used to aggregate information from multiple
sensor nodes in a resilient manner, without getting affected by the corrupted read-
ings generated by faulty nodes.
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