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Abstract

Context. Modern radio astronomy requires high-precision polarimetry and makes heavy demands on the design and construction
of radio polarimeters (telescope systems that can measure the polarization state of sources). It would therefore be desirable to have
a figure of merit (FoM) with which to assess the polarimetric performance of these instruments. The parameter commonly used for
this purpose, the cross-polarization ratio, is not well-suited as a FoM as it depends on the choice of coordinate system used for the
polarimetry. In this way a given polarimeter can have almostany cross-polarization ratio.
Aims. To introduce a fundamental FoM for radio polarimeters specific to polarimetry.
Methods. We use the singular values of the measurement matrices of thepolarimeter, either Jones matrix or Mueller matrix, to define
an invariant cross-polarization parameter.
Results. We find that the polarimeterintrinsic cross-polarization ratio (IXR) can be used as a fundamental FoM for a polarimeter.
We give real examples of the IXR for polarimeters such as the Parkes radio telescope, the Westerbork Synthesis radio telescope, the
Effelsberg telescope, and dipole array interferometers (simple model for future telescopes such as LOFAR and SKA).
Conclusions. The polarimeter IXR is found to be related to the polarimeters measurement matrix’s condition number, and so it is a
crucial parameter in the total relative error in a polarimeter’s measurements. We find that it can also be used to assess the calibration
of a polarimeter and in determining the quality of an interferometric measurement equation.
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1. Introduction

Precision polarimetry is now an integral part of modern radio
science. Indeed, many of the key scientific objectives for exist-
ing and future radio telescopes rely on highly accurate measure-
ments of the full state-of-polarization of celestial signals. This
in turn places tough polarimetric requirements on the radiopo-
larimeters and their design. These polarimetric requirements are
usually specified in terms of the cross-polarization ratio of the
polarimeter, which is often taken as a figure of merit (FoM) of
the polarimeter.

Cross-polarization ratio is an IEEE radio standard definition.
Based on a dual-polarized antenna model of a polarimeter, the
cross-polarization ratio is, loosely speaking, the ratio of the de-
sired co-polarized power to the undesired cross-polarizedpower.
There are many possible reasons for a polarimeter to exhibit
cross-polarization including for example non-orthogonalanten-
nas, electronic leakage between channels, and mutual-coupling
between antennas. If the IEEE defined parameter actually were a
consistent measure of these types of phenomena then it wouldbe
a suitable FoM of a polarimeter. However, it is our belief that the
standard definition is not suitable as a FoM, for the following
reasons: First, the standard cross-polarization ratio varies with
the choice of coordinates and so it is not a measure of polarime-
ter intrinsic (that is, independent of coordinate system) prop-
erties. Second, cross-polarization is generally not relevant in a
fully calibrated polarimeter since if properly calibrated, virtually
all cross-polarization can be removed, at least in principle.

This second point raises a fundamental question posed by,
for instance, Thiel (1976): is the performance of a polarime-
ter ultimately arbitrary, in the sense that systematic errors can
be eliminated numerically with a full calibration? Thiel (1976)
gives good reasons why the answer to this question should be

negative, but no concise parameter for assessing the a polarime-
ter’s performance is provided.

In this paper we introduce a FoM parameter, which we call
the polarimeterintrinsic cross-polarization ratio (IXR), that ad-
dresses these two points. It is a cross-polarization ratio defined
independently of coordinate system with properties that are rel-
evant to polarimeters. It can be understood as the worst-case
cross-polarization ratio of a given polarimeter before calibration,
and it is closely related to the total relative error of the fully cal-
ibrated polarimeter. The IXR is therefore well-suited as a funda-
mental polarimeter FoM.

2. Fundamentals of radio polarimetry

By definition, a polarimeter is an instrument which measures
some aspect of the polarization of electromagnetic radiation.
However, in what follows we will consider only polarimeters
that are capable of measuring thefull state of polarization of the
radiation, at least for some incidence direction. This can either
be stated in terms of the two, complex-valued, transverse com-
ponents of the electric field comprising the Jones vector, orthe
four real-valued Stokes parameters. If a polarimeter measures
the full Jones vector we will refer to it as aJones polarimeter,
and if the polarimeter measures the full set of Stokes parameters
we will refer to it as aStokes polarimeter. Often a polarime-
ter can been seen as both a Jones and a Stokes polarimeter, and
in these cases we will refer to such a device as aJones/Stokes
polarimeter. Furthermore, we will only consider Jones/Stokes
polarimeters with linear responses.

Linear Jones polarimeters are modelled by a simple linear
relationship between the true Jones vector at the input of the
polarimeter,e, and the measured Jones vector at the output of
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the polarimeter,f, i.e.,

f(ω, s) =J(ω, s)e(ω, s). (1)

Here,J is the response, or Jones, matrix of the polarimeter,ω is
the angular frequency of the incident radio wave associatedwith
the true Jones vector ands is the unit vector along the direction
of arrival of the radio wave. We takes = s0 to be the direction of
the polarimeters boresight, also known as the on-axis direction.
For simplicity we will suppress these (ω, s) dependencies in the
analysis below. If an explicit Jones matrix is considered then it
will be assumed to be with reference to the directions = s0 and
thatω corresponds to the centre frequency of the polarimeter’s
receiver.

In the basic polarimeter response relation, Eq. (1), we take
the complex components ofe to be with respect to a real
Cartesian basis{x̂(s), ŷ(s)}, which depends ons, and we write
the components of the Jones vector as

e(s) =
(

ex(s)
ey(s)

)

, w.r.t.{x̂(s), ŷ(s)} .

We will refer to this basis as thelocal sky basis for s, denoted
S(s) ≡ {x̂(s), ŷ(s)}, and for the special cases = s0 this will
be denotedS0. The nominal local sky basis,S, is the stan-
dard local basis given by the coordinate system used for obser-
vations. Examples are the spherical altitude-azimuth coordinate
system, or the coordinate systems based on Ludwig’s definitions
in Ludwig (1973).f, on the left-hand side of Eq. (1), is also a
two-dimensional complex vector. Its components are associated
with the two polarimeter channels, denotedp andq, and we write

f =
(

fp
fq

)

with respect to the nominal basis{p̂, q̂}, which we will call the
channel basis C and refer to channelsp, q respectively. The
Jones matrix in Eq. (1) maps vectors with respect toS(s) to vec-
tors with respect toC, so we write its components as

J =
(

Jpx Jpy

Jqx Jqy

)

.

The Jones matrix components depend onS(s). If we change
the local sky basis toS′(s), then they transform as

f = JV†Ve = J′e′ (2)

whereV† is the Hermitian transpose ofV. V is the unitary matrix
(i.e., V†V = I whereI is the unit matrix) that specifies the uni-
tary transformation betweenS andS′. Note that generallyS′ is
not the standard local basis associated with the global coordinate
system. Also, since we are considering unitary transformations,
S′ may not be a set of real Cartesian base vectors, and so we
will not denote its componentsx andy, but rather 1 and 2, re-
spectively. Of course this change of basis has no effect at all on
the measurements of the components off, but it does affect their
interpretation.

Similarly, the Jones matrix and the measured Jones vector
under changes in the channel basisC are transformed as

f′ = Uf = UJe = J′e, (3)

whereU is another unitary matrix. In contrast to changing the
sky basis, changing the channel basis is an active transformation
since it requires transforming the output through a matrix multi-
plication withU. Despite being an active transformation, it does

not distort the polarimetry, as it is a unitary transformation. Note
that this transformation need not involve the polarimeter at all
since it can be performed with high precision on the numerical
output.

The most general transformation of Eq. (1) is a simultaneous
change in both local sky basis and the channel basis given by

f′ = J′e′,

where

f′ =Uf,
e′ =Ve,

J′ =UJV†.

This relationship betweenJ andJ′ implies that they areunitarily
equivalent matrices (Lancaster & Tismenetsky 1985). IfU = V,
thenJ andJ′ areunitarily similar matrices. Therefore, in gen-
eral, the Jones matrix of a polarimeter can be any unitarily equiv-
alent matrix to the originalJ, which is given with respect toS
andC.

We define anideal polarimeter to be one that has a Jones
matrix that is exactly proportional to a unitary matrix. This is
ideal because a unitary matrix does not distort the true Jones
vector, it is merely a change of the orthonormal basis.

In reality, a polarimeter is never ideal, and so to obtain the
true Jones vector one should invert Eq. (1) to give

e =J−1f. (4)

In this context, thefull calibration of a Jones polarimeter is
the process of determining the polarimeter’sJ, inverting it, and
matrix-multiplying it with the measured data. The existence of
this solution is guaranteed here since we only consider fullJones
polarimeters, which by definition will have invertible Jones ma-
trices at least for some direction.

Although the solution given by Eq. (4) is in principle exact,it
assumes thatf andJ are known exactly. In reality noise corrupts
the polarimeter measurements so thatf andJ are known with
only limited precision, and this in turn limits the precision with
which we can determinee. There are, however, Jones matrices
for which the relative error in the estimatede is less sensitive to
noise than for others. From matrix algebra theory this sensitivity
is determined by thecondition number of J, defined as

cond(J) = ‖J‖
∥

∥

∥J−1
∥

∥

∥ ,

where ‖J‖ is some matrix norm (Lancaster & Tismenetsky
1985). For the spectral norm, or 2-norm, the condition number κ
of J is

cond2(J) ≡ κ (J) =
σM

σm
, (5)

whereσM andσm are the largest and smallest singular values of
J, respectively. Although other norms could be adopted we will
only consider the spectral norm since, as we shall see, it is easily
related to the polarimeters intrinsic cross-polarizationratio.

There are some important properties of the condition number
that we will use. We see from Eq. (5) thatκ is real and never
smaller than 1, i.e.,

1 ≤ κ (J) .

Also, the condition of a unitary matrix is equal to the greatest
lower bound for the condition number, i.e., for any complex ma-
trix J and unitary matrixU,

cond(U) ≤ cond(J).
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This gives additional, quantitative, support for our requirement
that an ideal polarimeter have a unitary Jones matrix. In terms of
the condition number there is no better matrix for the inversion
of Eq. (1). A final property we shall use is that the condition of
a matrix is not affected by a unitary transformation, i.e.,

cond(JU) = cond(J).

The condition number of a polarimeter’s Jones matrix can
be seen as a FoM for a polarimeter. Although this measure is
not traditionally used in radio astronomy it is to be found inop-
tics (Sabatke et al. 2000). In practice, the radio astronomical po-
larimetry community uses the polarimeter’s cross-polarization
ratio instead. Let us now introduce this concept.

3. Existing definitions of cross-polarization and
feed leakage

The concept of cross-polarization is widely used in the anal-
ysis of polarimeter performance as is evident from the large
number synonymous terms used to refer to it, including feed
leakage, polarization purity,D-terms, instrumental polariza-
tion, cross-coupling, mutual-coupling, channel cross-talk, cross-
polarization isolation, cross-polarization discrimination and
so on (Reid et al. 2008; Massi et al. 1997; Sault et al. 1996;
Leppänen et al. 1997). All these terms are associated with the
situation in which a fraction of one polarimetric componentis
added to the other component, and without compensation this
will lead to erroneous polarimetry. This long list of similar terms
should convince the reader that there is a need for standardising
and consolidating a concept which we will simply callcross-
polarization. Having said that, the last two concepts in the list
(cross-polarization isolation and cross-polarization discrimina-
tion) are part of radio engineering standards (IEEE 1998), and
do have clear definitions.

The standard cross-polarization ratio is used as a specifica-
tion for radio polarimeters, and is often interpreted as a FoM for
the polarimeter quantifying the amount of detrimental leakage
that is acceptable. Clearly there is a need for a FoM specific to
the polarimetric performance of the polarimeter, but is thestan-
dard cross-polarization ratio parameter suitable? We now briefly
review these standard definitions of cross-polarization from the
perspective of radio astronomy. In doing so we will use termi-
nology and formalism of Hamaker et al. (1996).

A Jones matrix model of a polarimeter can be given as fol-
lows: labeling the two polarimeter channelsp andq, the Jones
matrix is factored as

J = GDC, (6)

where

G =
(

gp 0
0 gq

)

is the complex receiver gain,

D =
(

1 dp
−dq 1

)

is the feed-error, or leakage, matrix andC is the idealized nomi-
nal feed configuration. We assume thatC is a given unitary ma-
trix so it is known exactly a priori.

In this model, the off-diagonal parametersdp and dq are
seen as being related to cross-polarization, or leakage terms (see
e.g. Hamaker et al. (1996)). Due toD, the signal at the input
of one channel finds its way to the output of the other channel,

and vice versa. Specifically, regard channelp as the co-polarized
component. The ratio of the power in the co-polarized channel
output from a purely co-polarized unit power source to the power
in the co-polarized channel output from a purely cross-polarized
unit power source is 1/|dp|2. The analogous ratio for channelq
gives 1/|dq|2. These parameters are thecross-polarization isola-
tions (XPIs) of channelsp andq respectively(Stutzman 1993).
Importantly, XPI is an IEEE radio standard (IEEE 1998) and is
a recognised way of specifying the cross-polarization of a po-
larimeter.

The IEEE standard also defines a dual to XPI calledcross-
polarization discrimination (XPD). XPD can be seen as the al-
ternative factorisation ofJ

J = D′G′C, (7)

where

G′ =
(

g′1 0
0 g′2

)

and

D′ =
(

1 d′2
−d′1 1

)

.

The XPDs ofJ are the reciprocals of|d′1|2 and|d′2|2 with respect
to components 1 and 2 of the Jones vector with basis vectors
given by the configuration matrixC. In generalG′ andD′ will
not be equal toG andD so the two XPDs will be different from
two XPIs.

The model expressed in Eq. (6), or alternatively Eq. (7),
is very flexible and can express every possible configuration.
Unfortunately it is precisely this flexibility that makes itdifficult
to discern the extrinsic, coordinate system dependent, properties
of the polarimeter from the intrinsic, coordinate system indepen-
dent, properties. Consider for instance a change in the channel
basis, see Eq. (3), in which the sum and the difference of chan-
nels p andq are taken as two new channels. It is not difficult
to see that such a change, which is in fact sometimes employed
in practice, will change all of the XPIs and XPDs. Indeed, take
a perfectly orthonormal pair of receptors which in some coordi-
nate system will have an XPI of 0, and rotate that system through
45◦. One finds that this rotated system has an XPI of 100%. So
even though nothing has changed electrically or mechanically
with the polarimeter, it would seem that its leakage, as quanti-
fied by the XPI, has changed from one extreme to the other. This
illustrates that XPI and XPD are extrinsic properties of thepo-
larimeter, with a large dependence on the arbitrary choice of the
local basis.

4. Intrinsic cross-polarization ratio ( IXRJ) of Jones
polarimeters

Having found that XPI and XPD are extrinsic properties of a
polarimeter, we now ask whether it is possible to define a intrin-
sic measure of cross-polarization. By this we mean a parame-
ter analogous to XPI or XPD, but which does not vary with the
choice of basis. We do this by finding a matrix unitarily equiva-
lent to the polarimeter’s Jones matrix which is invariant.

Say we are given the on-axis Jones matrix,J = J(s0), with
respect to channel basisC and the on-axis basisS0, for some po-
larimeter. We introduce a unique Jones matrixJ̌ unitarily similar
to J that can be factored as

J̌ = T†JT = GĎČ (8)
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Figure 1. Cross-polarization definitions in a polarimeter. These figurative sketches show the components of the polarimeter’s Jones
matrixJ for channelsp andq due to the components 1 and 2 of the Jones (transverse electric) vector. Nominally, components 1 and
2 correspond to the basis vectors given by the complex conjugate of the first and second rows, respectively, of the polarimeter’s feed
configuration matrixC. The polarimeter channels are shown symbolically as cylinders labeled “Chn”. The arrows represent (sym-
bolically) the complex output signal from these channels due to the corresponding Jones vector components. The cross-polarization
isolation (XPI) for p andq are shown in a) and b), respectively computed as|Jp1/Jp2|2 and |Jq1/Jq2|2. The cross-polarization dis-
crimination (XPD) for components 1 and 2 are shown in c) and d), respectively computed as|Jp1/Jq1|2 and|Jp2/Jq2|2.

whereG is a positive real scalar,̌C is a unitary matrix and

Ď ≡ 1√
1+ d2

(

1 d
d 1

)

,

where 0≤ d ≤ 1. Furthermore,

G ≡

√

σ2
M + σ

2
m

2

and
d ≡ σM − σm

σM + σm
(9)

whereσM andσm are the largest and smallest singular values
of J respectively. One can easily prove that the decomposition
in Eq. (8) is always possible using the singular value decom-
position theorem (Lancaster & Tismenetsky 1985) onJ. Clearly
Eq. (8) is analogous to Eq. (6), the important difference is that
decomposition in Eq. (8) is invariant. The unique factorisation
of the Jones matrix̌J specifies a unique local basis, given by the
transformation matrixT, rather than an arbitrary basis such as
C andS0. Its manifestly obvious features is that its gain matrix,
G = GI, is a scalar and that its leakage matrix,D = Ď, is sym-
metric along both diagonals, thus all the XPI and XPD ofJ′ are
equal.

Indeed, each of the factors in factorisation above is unique.
Let us go them one by one and highlight their relevance to radio
polarimetry.

The amplitude gainG in Eq. (8) is exactly the positive square
root of the total power gain of the polarimeter for an unpolarized
source. This makesG unique.

The feed configuration matrix̌C in Eq. (8) is the Jones ma-
trix of the ideal polarimeter “closest” tǒJ, or equivalently,TČT†

is the unitary matrix closest toJ. Closeness in terms of matrix
distance is defined as‖A − B‖ where‖·‖ is a unitarily invariant
matrix norm (Fan & Hoffman 1955), and so two matrices are
closest to each other when the matrix distance between them is
minimal. If J has the polar decomposition

J = J̄C̄, (10)

whereJ̄ is a positive semi-definite Hermitian matrix and̄C is a
unitary matrix, then for any unitary matrixW

∥

∥

∥J̄ − I
∥

∥

∥ =
∥

∥

∥J − C̄
∥

∥

∥ ≤ ‖J −W‖ , (11)

see Fan & Hoffman (1955). This equation also says thatJ̄, and
all its unitarily similar matrices, is the closest to the unit matrix
out of all the unitarily equivalent matrices toJ, and hencēJ is
also closest to an ideal polarimeter. This motivates calling J̄ the
aligned Jones matrix ofJ with respect toC, since the unitary
transformation of the original Jones matrixJC̄

†
can be seen as

aligning the channel basis with the local sky basis.Č in Eq. (8)
is obtained fromC̄ by same unitary transformation as above,

Č = T†C̄T.
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It is useful to think ofC̄ as the empirically determined feed con-
figuration matrix with respect toS0 andC.

The leakage matrix̌D in Eq. (8) has the unique property
that it can be understood as the “worst case” of leakage in the
aligned polarimeter (the polarimeter given byJ̄). Let us define
theJones polarimeter’s intrinsic cross-polarization ratio, IXRJ,
as the XPIs (or XPDs as they are all equal) in this case, so that

IXRJ ≡
1
d2
. (12)

It can be shown that the IXRJ of the given (generic) Jones matrix
J is the greatest lower bound to both the arithmetic mean of the
XPIs over the channels,

IXRJ ≤
XPIp + XPIq

2
, w.r.t.J̄, (13)

and the arithmetic mean of the XPDs over the sky components.
The same is also true for the geometric mean: it can be shown
that

IXRJ ≤
√

XPIpXPIq, w.r.t.J̄ (14)

The XPIs on the right-hand side in these inequalities are with
respect to the aligned polarimeters Jones matrix,J̄, while the
IXRJ on the left-hand side is with respect to eitherJ̄ or J, since
IXRJ(J) = IXRJ(J̄). These inequalities motivate the view of
IXRJ as the worst-case leakage in a polarimeter.

The property that the IXRJ is the minimum XPD can be con-
trasted with the concept of the maximum XPD, under rotations,
put forth in Franco et al. (2003). Note that, for our more gen-
eral considerations (unitary rather than merely orthogonal trans-
formations), there is no greatest upper bound to an aligned po-
larimeter’s cross-polarization so, for instance, the XPD (or XPI)
of a channel (or the average XPD over the channels) can be in-
finite for some bases. Also, there are no bounds, either loweror
upper, for the XPD (or XPI) ofJ, due to its arbitrariness.

The defining property of the IXRJ is that it is directly related
to the (spectral) condition numberκ (J) of J through

IXRJ =

(

κ (J) − 1
κ (J) + 1

)2

. (15)

This follows from the fact that, from equations (5) and (9), we
can express the condition number as

κ (J) =
1+ d
1− d

, (16)

which has the inverse

d =
κ (J) − 1
κ (J) + 1

, (17)

and so from Eq. (12) we arrive at Eq. (15). Eq. (15) implies that

1 ≤ IXRJ

sinceκ ≥ 1. Ideal conditioning (κ = 1) therefore corresponds to
IXRJ = 0, or no intrinsic cross-polarization in the polarimeter.
Maximum ill-conditioning,κ → ∞, corresponds to IXRJ = 1
or maximum intrinsic cross-polarization in the polarimeter. It is
interesting to note that equations (16) and (17) are identical to
the relations that define the Smith chart transformation.

It is important to understand that, while cross-polarization is
sometimes understood as a measure of non-orthogonality of the
antenna elements, neither the XPIs, the XPDs nor the IXRJ can

generally be understood in this way. For instance, considertwo
geometrically orthogonal linear dipoles with no mutual leakage,
but with imbalanced gains. The Jones matrix is then simply

J(g) =

(

gp 0
0 gq

)

, gp , gq. (18)

For this case, the IXRJ is therefore

IXRJ

(

J(g)
)

=

( |gp| − |gq|
|gp| + |gq|

)2

(19)

which is not zero. So even though these channels are orthog-
onal, the polarimeter intrinsic cross-polarization is non-zero.
This is not indicative of a problem in IXRJ. IXRJ is not meant
to describe the cross-polarization of a given configuration, but
rather it is a measure of the worst-case of leakage out of all
configurations of the aligned polarimeter. In the configuration
given by Eq. (18), the difference in the gains of the channels
leads to a condition number greater than one, and the larger
this difference is the more ill-conditioned the Jones matrix is
due to the difference in numerical resolution required to mea-
sure each channel. This ill-conditioning is equivalent to having
a polarimeter with Jones matrix equal to the matrix in Eq. (8)
with d = (|gp| + |gq|)/(|gp| − |gq|). The reference frame in this
case would be the coordinate system along the±45◦ diagonals
to the antennas. Such an X-alignment of antennas is often used
by antenna engineers to increase the gain balance between ver-
tical and horizontal components. In passing, we mention that if
one is looking for a measure of the antenna non-orthogonality
with respect to a fixed channel basis, rather than IXRJ, we sug-
gest using Eq. (27), which is still the polarimeter intrinsic cross-
polarization but in the Mueller formalism.

Conversely, there are feed configurations that have non-zero
D-term leakage but have zero IXRJ. To see this, consider a po-
larimeter with equal gains,g1 = g2 = g and equal (non-zero)
amplitudeD-leakage termsdp = d∗q = d. Its Jones matrix is

J(d) = g

(

1 d
−d∗ 1

)

, |d| , 0

but its IXRJ is zero,

IXRJ

(

J(d)
)

= 0.

Thus, even though a polarimeter has potentially significantD-
term leakage, it does not necessarily have any intrinsic cross-
polarization.

Summarising this section, we have found a way of express-
ing the cross-polarization in the Jones matrix of a polarimeter
directly and uniquely in terms of the matrix’s condition number.
This leads us to propose IXRJ as a single fundamental FoM for
the Jones polarimeter that can be used in place of XPI or XPD.

5. Intrinsic cross-polarization ratio ( IXRM) of Stokes
polarimeters

In the previous section we considered the polarimeter in the
Jones formalism. In practice many situations require the polari-
metric state of a signal to be expressed in terms of Stokes pa-
rameters, so we should also consider the previous discussion in
terms of the Stokes polarimeter.

While the IXRJ, which we introduced in the previous section,
relates to the Jones matrix, the analogous quantity for a Stokes
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polarimeter is the Mueller matrix. The Mueller matrix of an ar-
bitrary Jones polarimeter with the Jones matrixJ can be found
through the formula

M = S−1 (

J ⊗ J∗
)

S, (20)

where⊗ is the Kronecker product and

S ≡ 1
2



























1 1 0 0
0 0 1 i
0 0 −1 i
1 −1 0 0



























see, e.g., Hamaker et al. (1996). The Mueller matrix is a real4×4
matrix with componentsMαβ for α, β = 0, 1, 2, 3.

In the Mueller formalism we take cross-polarization to
represent the leakage in the polarimetry between the total
power (StokesI) and one of the polarized power components
(StokesQ,U,V). This is also sometimes called the instrumen-
tal polarization. As with cross-polarization in Jones polarimeters
there are two general possibilities: there can be leakage from the
total power to a polarized component, or from the polarized com-
ponent to the total power. We define the former Mueller leakage
as

Di0 =

∣

∣

∣

∣

∣

Mi0

M00

∣

∣

∣

∣

∣

, for i = 1, 2, 3

and we define the latter Mueller leakage as

D0i =

∣

∣

∣

∣

∣

M01

M00

∣

∣

∣

∣

∣

, for i = 1, 2, 3.

It can be shown thatDi0 ≤ 1 andD0i ≤ 1 for i = 1, 2, 3.
As with the Jones polarimeters, the Mueller leakages vary

with the choice of local sky basis and channel basis. The sim-
ilarities with the Jones polarimeter case makes it reasonable
to expect the previously introduced concept of intrinsic cross-
polarization to be relevant for Stokes polarimeters. We will
therefore consider an arbitrary Jones polarimeter which, as we
have shown in the previous section (Eq. (8)), can be written
GUĎV†, whereG is total amplitude gain,̌D is the intrinsic feed
leakage matrix andU andV are two unitary matrices. Its corre-
sponding Mueller matrix is

M =
G2

1+ d2



























1+ d2 2v1d 2v2d 2v3d
2u1d m11 m12 m13
2u2d m21 m22 m23
2u3d m31 m32 m33



























, (21)

whereui, vi ∈ R for i = 1, 2, 3, andmi j, for i, j = 1, 2, 3, are
functions ofui, vi, andd. The parametersu1, u2, u3 andv1, v2, v3
depend onU andV as follows:

u1 = 2ℜ (U11U12)

u2 = −ℜ
(

U2
11 − U2

12

)

u3 = ℑ
(

U2
11− U2

12

)

and

v1 = 2ℜ (V11V12)

v2 = −ℜ
(

V2
11 − V2

12

)

v3 = ℑ
(

V2
11 − V2

12

)

,

and they fulfill

u2
1 + u2

2 + u2
3 = v2

1 + v2
2 + v2

3 = 1. (22)

From Eq. (21) one can easily read off the Mueller leakages
for M,

Di0 =
2uid

1+ d2

D0i =
2vid

1+ d2

which clearly depend onui andvi respectively, but their root sum
square

√

D2
10 + D2

20 + D2
30 =

√

D2
01 + D2

02 + D2
03 =

2d
1+ d2

≡ D

does not depend on eitherui nor vi. We therefore introduceD
as theMueller intrinsic leakage term, echoing the results of the
previous section.

If we consider cross-polarization in the Mueller formalismto
be the reciprocal of the Mueller leakages, then we can generate
an IXR in the Mueller formalism as

IXRM =
1
D
, (23)

which we will call the Mueller polarimeter intrinsic cross-
polarization ratio (IXRM). As with IXRJ, IXRM is also a lower
bound on the Mueller cross-polarizations,

IXRM ≤
1

D0i
, for i = 1, 2, 3 (24)

and

IXRM ≤
1

Di0
, for i = 1, 2, 3. (25)

Note however, that this is valid only for the class of Mueller
polarimeters that can be constructed according to Eq. (20),that
is, non-depolarizing polarimeters.

The similarity between IXRJ and IXRM is not confined to
similarities in leakage bounds, it extends also to the relation
with their respective matrix condition numbers. In the caseof
the Mueller matrix, its condition is

κ (M) = κ
(

J ⊗ J∗
)

=
σ2

M

σ2
m
= κ2 (J) .

So while IXRJ was related to the condition numberκ(J) through
a Smith chart-type transformation, (see Eq. (17)), we find that
IXRM has exactly the same relation toκ(M), that is,

D =
κ (M) − 1
κ (M) + 1

=
κ2 (J) − 1
κ2 (J) + 1

.

The inverse of this transformation is

κ (M) = κ2 (J) =
1+ D
1− D

=

(

1+ d
1− d

)2

.

This clearly shows that both IXRM and IXRJ are directly re-
lated to the condition number of both the Mueller matrix and the
Jones matrix. Fig. 2 shows the strictly monotonic relationships
between IXRJ, IXRM and the condition number of the Jones (or
Mueller) matrix.

The IXRM is related to diattenuation as defined in
Lu & Chipman (1994). Indeed the two parameters are equal
when the Jones matrix is homogeneous since in this case the
singular values of the Jones matrix are equal to its eigenvalues.
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Figure 2. Plots of IXRJ and IXRM as functions of the condition
number of the Jones matrix minus one.

In the above we have looked at polarimeters that are charac-
terised by their Jones matrices (non-depolarizing polarimeters),
but there are also polarimeters that only have a Mueller matrix
M. For such polarimeters IXRJ is of course not defined, but the
IXRM can still be defined as

IXRM ≡
κ(M) + 1
κ(M) − 1

(26)

Having shown how leakage in the Mueller formalism can
be expressed in terms of Jones matrix leakage we can now show
the converse, expressing leakage in the Jones formalism in terms
of leakage in the Mueller matrix. We do this in following way:
imagine that we wanted an invariant expression for the leak-
age between thep andq channels of a Jones polarimeter with
the Jones matrixJ. Let us take the first row inJ to be the
vector Jp ≡

(

Jp1 Jp2

)

and the second row to be the vector

Jq =
(

Jq1 Jq2

)

, and let us call them the channel vectors of the
polarimeter. The channel vectors of the polarimeter are similar
to effective antenna length vectors, but include the effects of po-
larimeter leakage, etc. In analogy with the polarization efficiency
parameter between a transmitting antenna and a receiving an-
tenna, which is defined as the normalised inner product between
their effective antenna length vectors (Stutzman 1993), we in-
troduce the normalised inner product of the polarimeter channel
vectors as a measure of the non-orthogonality between channel
vectors. This parameter can be understood as a (sky invariant)
measure of the leakage between thep andq channels, and it is
easy to show that this inner product fulfills

∣

∣

∣Jp · J∗q
∣

∣

∣

∣

∣

∣Jp

∣

∣

∣

∣

∣

∣Jq

∣

∣

∣

≤ D (27)

whereD is the Mueller polarimeter intrinsic leakage for Mueller
matrix corresponding toJ. This means that the Mueller po-
larimeter intrinsic leakage sets the upper bound (or worst-case
scenario) for the leakage between the channel vectors of thepo-
larimeter.

6. Interferometric polarimeters

Having developed IXRs for Jones- and Mueller-based radio po-
larimeters our final concern is with interferometric polarimeters.

There are many different types of radio interferometers, but we
will only examine interferometers comprising a combination of
at least two Jones polarimeters. Although we have already con-
sidered Jones polarimeters, the models for the interferometer re-
sponse are sufficiently different to warrant special attention.

The most fundamental model of a radio interferometer is ex-
pressed in terms of coherence matrices. For our proposes we
only need to consider the simplest case: a single partially polar-
ized point source in the directions with a brightness coherence
matrixB measured by a two-element interferometer. If elements
A and B have (approximately) known Jones matrices,JA(s) and
JB(s), the interferometer output is the visibility coherence matrix
VAB. The response of the interferometer is called the (paraxial)
measurement equation of radio interferometry, and in this case
is simply

VAB = JA(s)B(s)J†B(s) exp(+iDAB · s) (28)

whereDAB is the baseline vector between the positions of A and

B. If J−1
A and

(

J†B
)−1

exist, the solution to this measurement equa-
tion is

B(s) = J−1
A VAB

(

J†B
)−1

exp(−iDAB · s). (29)

The important point here is that even ifJA and JB are very
good estimates, the estimate of the brightness matrix, Eq. (29),
can still be poor ifJA or JB are ill-conditioned. This is be-
cause in practice there is noise in all the measurements, andill-
conditioning in the Jones matrices acts as noise amplification.
In the worst-case scenario, one or both of the Jones matrices
are singular (with infinite condition number) so Eq. (29) is not
valid and a full solution is not possible. Thus Eq. (29) suggests
that the condition number of the Jones polarimeter elementsthat
make up the interferometer relate to the accuracy of the bright-
ness estimates. In other words, the IXRJ of the individual Jones
matrices of an interferometer can be used to assess the totalpo-
larimetry of the interferometer.

A more holistic assessment of a Jones interferometer can be
found if we express the measurement equation in terms of Stokes
vectors. This involves converting the polarimetric response from
a Jones formalism to a Mueller formalism. The Mueller matrix
that corresponds to the interferometer in Eq. (28) is

MAB = S−1 (

JA ⊗ J∗B
)

S (30)

where we have put the phase reference centres = 0 along source
direction. Characteristically, this interferometric Mueller matrix
(MAB) is complex rather than real, mapping brightness Stokes
vectors to visibility Stokes vectors.

For an interferometer withN Jones polarimeter elements, the
total interferometric Mueller matrix is the sum of all contribu-
tions from the interferometer arms, Eq. (30), so

MInt = S−1























N
∑

i=1

N
∑

j=1
j,i

Ji ⊗ J∗j























S (31)

for the direction along the phase reference centre, which wehave
set tos = 0.

Unlike the ordinary (real) Mueller matrix, the interferometer
Mueller matrix involves visibilities and is complex, but the defi-
nition of IXRM in Eq. (26) can still be used, and its interpretation
is analogous to our earlier discussion.

One should note that for imaging interferometric polarime-
ters, errors in the polarimetry do not only affect the measurement
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of the state-of-polarization of a source, but also the measurement
of its direction, see, e.g., Bhatnagar & Nityananda (2001).Thus
IXR is also a measure of the pointing accuracy in interferometric
imaging.

7. Examples

In this section we compute the IXRJ and IXRM parameters for
a selection of radio polarimeters, based mostly on data in the
public domain. The results we present should in no sense be
seen as an authoritative assessment of the performance of the
respective polarimeters, but rather as illustrations of how the po-
larimetric parameters can be used and the sort of values these
parameters may typically attain. For this reason we refrainfrom
passing judgments on the individual instruments and only men-
tion that in general (barring all caveats) the higher the values of
IXR, the better the polarimeter, according to the assertions made
in this paper.

7.1. Parameterisation of Jones matrices for the Parkes
Telescope

van Straten (2004) determines the Jones matrix for the Parkes
telescope over a range of frequencies. Based on Jones matrices
similar to these, we compute the IXRJ for the Parkes polarimeter.

van Straten (2004) employs two parametrization of the Jones
matrix: one is what he calls the “phenomenological parameteri-
sation” based on Britton (2000), and the other is what he calls the
“algebraic parameterisation” based on Hamaker et al. (1996). In
both cases the Jones matrices are obtained by fitting observed
Stokes pulsar profiles to templates of pulsar profiles.

Fig. 3 shows IXRJ values for the Jones matrices parame-
terised according to these two parameterisations over a range
of frequencies. We see that Parkes performs ‘better’ in the phe-
nomenological parameterisation than in the algebraic parame-
terisation over the entire frequency range. Since the polarimeter
is the same in both parameterisations the differences are most
likely due to differences in the numerical accuracies of the pa-
rameterisations at the template matching stage. Although it is not
entirely obvious which of the two parameterisation is more cor-
rect, it is intuitive to think that the lower the numerical accuracy
in the computation of a Jones matrix, the more ill-conditioned
that Jones matrix would be, and hence it is natural to expect the
phenomenological parameterisation to be the more correct of the
two.

This example suggests that the IXRJ could be used not only
to assess polarimeters themselves, but also to assess a calibration
of the polarimeter.

7.2. The Effelsberg Telescope

Xilouris (1991) presented a Mueller matrix for the Effelsberg
telescope. Based on this matrix we find that the Effelsberg tele-
scope, when seen as a Stokes polarimeter, has IXRM=9.7dB.
This corresponds to a polarimeter intrinsic Mueller leak-
age of 10.7%. However, the root mean square of its in-
strumental polarization,

√

|M10|2 + |M20|2 + |M30|2/ |M00| where
Mi j are the components of the Mueller matrix, is 11.0%,

while
√

|M01|2 + |M02|2 + |M03|2/ |M00| is 10.6%. Thus in this
case, IXRM is the worst-case leakage forD0i, but not for
Di0. This does not violate the result of the previous sec-
tion (Eqs. (25)): this Mueller matrix exhibits depolarization,

Figure 3. The IXRJ of the Parkes telescope for various frequen-
cies based on two different parameterisations of the Jones ma-
trix. The two Jones matrix parameterisation are the phenomeno-
logical (full line) and the algebraic (dashed line). The twoshow
a clear difference, with the phenomenological parameterisation
having a better IXRJ in this case.

as
√

|M01|2 + |M02|2 + |M03|2 ,
√

|M10|2 + |M20|2 + |M30|2 as re-
quired by Eq. (21).

7.3. Off-axis aberrations in a short dipole interferometer

In this example we compute analytically the IXRJ for crossed
dipoles as function of incidence direction. The crossed dipoles
are fixed to the ground and set up so their symmetry axis is ver-
tical, pointing to zenith. The model is an approximation of sev-
eral future radio telescopes, including LOFAR and SKA, at low
frequencies.

Carozzi & Woan (2009), derived the Jones matrix in this
case to be

J(l,m) =
1√

1− m2

( √
1− l2 − m2 −lm

0 1− m2

)

(32)

wherel,m are the direction cosines of the source. We can deter-
mine the condition of this Jones matrix by computing the eigen-
values ofJJ † and taking the square root of their ratio. The result
is

κ (J) =
1√

1− l2 − m2

so the IXRJ is

IXRJ =















1+
√

1− l2 − m2

1−
√

1− l2 − m2















2

. (33)

Fig. 4 shows the dependence of IXRJ on the zenith angle,
equal to arcsin

(√
l2 + m2

)

), according to Eq. (33). If one were to
design an array in which the scientific objectives required mea-
surements better than some prescribed cross-polarization, then
this curve shows the limit of the maximum possible field-of-
view (FoV) that could be attained. Vice versa, if the design had
a prescribed FoV, then this curve gives the best possible cross-
polarization ratio at the edges of the FoV. For a FoV of, say, 250
square degrees, the edge of the FoV will have an IXRJ of 45 dB.
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Figure 4. IXRJ as a function of the zenith angle for short dipole
interferometers.

It is also interesting to consider the IXRM in this case since
Carozzi & Woan (2009) used a Mueller matrix based on the
Jones matrix in Eq. (32) to show that short dipole interferom-
eters are polarimetrically aberrated. With the IXRM introduced
in the present paper, we can now assess more concisely the po-
larimetry in this case. The result is

IXRM =
2− l2 − m2

l2 + m2

This agrees with the ratio of the measured polarized power tothe
measured unpolarized power for unpolarized radiation according
to the Mueller matrix presented in Carozzi & Woan (2009).

7.4. The WSRT Interferometer

The Westerbork synthesis radio telescope (WSRT) is an East-
West interferometer consisting of fourteen, 25-m parabolic
dishes with dual-polarized feeds.

We analysed estimates of the Jones matrices for each of
the 14 dual linearly-polarized feeds over a band of frequen-
cies, based on a dataset similar to that used in Brentjens (2008).
For one of the frequency channels, centred on 346.0MHz, we
computed the IXRM of each the individual polarimeters and the
IXRM of all 14 taken together as an interferometer.

The IXRM value for each of the 14 dishes is plotted in Fig. 5,
along with the IXRM of the interferometer based on Eq. (31).
We see that the interferometric IXRM is, here, approximately an
average of the individual IXRM values. Thus, in this case, the
whole is not much better than its parts. From Eq. (31), this may
suggest that the Jones matrices for the individual telescopes can
be modelled as having small, random deviations from a non-
ideal mean Jones matrix.

Naturally these results are specific to the feed used in this
case, and different results are expected for other WSRT feeds.

8. Discussion

We have introduced the polarimeter intrinsic cross-polarization
ratio parameters IXRJ and IXRM , which can be considered as
two versions of one concept: thepolarimeter intrinsic cross-
polarization ratio, (IXR). They differ mainly in whether the

Int 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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IX
R
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 [d
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Figure 5. The IXRM values of the WSRT at frequency 346 MHz.
The IXRM of the individual polarimeters are in given in dB as a
function of the telescope number. The telescope number marked
“Int” represents all of the 14 telescopes taken together as an in-
terferometer.

cross-polarization refers to a Jones polarimeter or a Stokes po-
larimeter, respectively. We now discuss the proposal of using
IXR as a FoM of a polarimeter rather than a parameter such as
XPI in radio astronomical polarimetry. The utility of the IXR
parameter is in its dual propose use in assessing both calibrated
and uncalibrated polarimeters.

For uncalibrated polarimetry, XPI is essentially a signal-to-
noise (SNR) parameter. It gives the ratio of desired power toun-
desired power when there is an equal amount of power in both of
the Jones vector components. In such a context, the IXR param-
eter serves as a FoM in that it represents the worst-case scenario
for that particular polarimeter. On the other hand, XPI depends
on the choice of coordinate system. In any case it is important to
note that the XPI is not, in general, a measure of the error in the
fully calibrated polarimetry.

The main justification for using IXR as a polarimeter FoM
is however its direct relation to the condition number of the
polarimetric response matrix, making it a good indicator of
the relative errors in the final, calibrated, polarimetric measure-
ment. This property of the polarimeter is completely indepen-
dent of the particular choice for the sky and channels bases,
as one would expect from an intrinsic FoM characterising the
physical instrument. For a full calibration, the relative error
in the estimated Jones vector,‖∆e‖ / ‖e‖, can be shown to be
(Lancaster & Tismenetsky 1985)

‖∆e‖
‖e‖ ≤

κ

1− κ ‖∆J‖ / ‖J‖

( ‖∆J‖
‖J‖ +

‖∆f‖
‖f‖

)

, (34)

where‖∆J‖ / ‖J‖ is the total relative error in the calibration of
the polarimeter’s Jones matrixJ, ‖∆f‖2 / ‖f‖2 is the reciprocal of
the polarimeter’s signal-to-noise ratio (SNR) andκ is the con-
dition number ofJ. Most practical radio polarimeters will have
IXRJ≫ 1 and will be well calibrated, so‖∆J‖ / ‖J‖ ≪ d (where
d = 1/

√
IXRJ). Under these conditions we can rewrite the in-

equality (34) as

‖∆e‖
‖e‖ /

(

1+
2√

IXRJ
+ . . .

) (‖∆J‖
‖J‖ +

‖∆f‖
‖f‖

)

. (35)
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It is clear from Eq. (35) that, for fixed‖∆J‖ / ‖J‖ and‖∆f‖ / ‖f‖,
the IXRJ is directly related to the total relative error of the po-
larimeter’s measurement of the Jones vector. The best (extreme)
case is when IXRJ → ∞, then the total relative error is just the
sum of the total relative errors in the Jones measurements and the
Jones matrix measurements. In general, the smaller the IXRJ, the
larger the error.

Although we have focused mainly on the IXR as a FoM for
the polarimeter instrument itself, the IXR can also be used to
assess aspects related to more general polarimetry. We saw in
Section 7.1 that the IXR effectively assessed the calibration of
the polarimeter. Another extended use of the IXR is in the assess-
ment of the complete measurement equation of a polarimeter:all
the phenomena that affect the polarimetry from the source to the
output signal can be expressed in terms of matrix factors that to-
gether make up a total effective Jones matrix for the polarimetry.
The IXR can be determined for this total, effective, Jones matrix
and can be understood as an assessment of the polarimetry as-
sociated with that particular measurement equation. The lower
the IXR of the effective Jones matrix of a measurement equa-
tion, the more difficult it will be to obtain high dynamic range
for the full polarimetry. In the extreme, but practically feasible,
case that the IXR is zero, full polarimetry is unobtainable as the
effective Jones matrix is singular.

The discussion above has been about the IXR as a function
of the source direction. Often, however, it is desirable to have a
FoM which is some aggregate over all directions. We will not
pursue this line of inquiry further here except to mention that
there are several possibilities for the overall polarimeter FoM
based on the direction dependent IXR, including the maximum
IXR over all directions, the IXR along the boresight, or simply
the IXR weighted with the gain, averaged over all directions.

To be useful and practical a FoM should of course be mea-
surable, preferably with minimal effort. As a final point in this
section we mention that the IXR is well-suited also in the re-
spect. This is because it is not necessary to measure the full
Jones, or Mueller, matrix to determine a polarimeter’s IXR.It
is sufficient to measure the polarimeter’s response to unpolar-
ized radiation only, which is much easier than a full calibration
which ordinarily requires at least three different polarized fidu-
cial measurements. The reason for this is that the IXR is based
just on the invariants of the Jones or Mueller matrices and not on
the full Jones or Mueller matrices themselves. For the XPI and
XPD, on the other hand, the full Jones matrix is required making
them generally harder to compute.

9. Conclusions

We find that the standard cross-polarization ratio parameters are
extrinsic properties of a polarimeter, that is, they dependon an
arbitrary choice of coordinate system. We argue that this makes
it difficult to interpret these standard cross-polarizations as a
genuine, intrinsic, leakage in a polarimeter. Furthermore, they
are not meaningful after full calibrations and for these reasons
we find that the standard cross-polarization ratios should not be
treated as a polarimeter figure of merit. However, we suggest
that the worst-case cross-polarization of the (aligned) polarime-
ter is unique and invariant, and so could serve as the intrinsic
polarimeter leakage. We present a parameter, which we call the
intrinsic polarimeter cross-polarization ratio (IXR) that satisfies
this worst case. We show how the parameter can be applied to
the various basic types of radio polarimeters and how it ulti-
mately determines the total relative error in a polarimeter. This
last property qualifies IXR as a fundamental figure of merit for

radio polarimeters. We also find that IXR can be used not only to
assess the polarimeters themselves, but also to assess a particular
calibration of a polarimeter.
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