arxiv:0908.2330v1 [astro-ph.IM] 17 Aug 2009

Astronomy& Astrophysicsnanuscript no. main © ESO 2009
August 17, 2009

A fundamental figure of merit for radio polarimeters
T.D. Carozzi and G. Woan

Department of Physics and Astronomy, University of Glasg@lasgow G12 8QQ
Received 17 Aug 2009
Abstract

Context. Modern radio astronomy requires high-precision polarignahd makes heavy demands on the design and construction
of radio polarimeters (telescope systems that can medsengolarization state of sources). It would therefore bérdele to have

a figure of merit (FoM) with which to assess the polarimetecfprmance of these instruments. The parameter commogly fias

this purpose, the cross-polarization ratio, is not weitexlias a FoM as it depends on the choice of coordinate syssehfor the
polarimetry. In this way a given polarimeter can have alnamst cross-polarization ratio.

Aims. To introduce a fundamental FoM for radio polarimeters sjeto polarimetry.

Methods. We use the singular values of the measurement matrices pbthemeter, either Jones matrix or Mueller matrix, to defin

an invariant cross-polarization parameter.

Results. We find that the polarimeténtrinsic cross-polarization ratio (IXR) can be used as a fundamental FoM for a polarimeter.
We give real examples of the IXR for polarimeters such as #r&d? radio telescope, the Westerbork Synthesis radisctgbe, the
Effelsberg telescope, and dipole array interferometers (simpdel for future telescopes such as LOFAR and SKA).

Conclusions. The polarimeter IXR is found to be related to the polarimeteeasurement matrix’s condition number, and so it is a
crucial parameter in the total relative error in a polarienstmeasurements. We find that it can also be used to assesalithration

of a polarimeter and in determining the quality of an intesfaetric measurement equation.

Key words. Instrumentation: polarimeters

1. Introduction negative, but no concise parameter for assessing the amefar
- . . . ter's performance is provided.

Precision polarimetry is now an mte_gra! part .Of moder_n oadi In this paper we introduce a FoM parameter, which we call
science. Indeed, many of the key scientific objectives fa8tex o o arimeteintrinsic cross-polarization ratio (IXR), that ad-

ing and future radio telescopes_rely on highly accurate eas yoqqeg these two points. It is a cross-polarization ragfmeld
ments of the full state-of-polarization of celestial sign& his independently of coordinate system with properties thatrek

in turn places tough polarimetric requirements on the radio o\ a0t 1o polarimeters. It can be understood as the worst-cas
larimeters anp_l thglr design. These polarlmet(lc requirdmare cross-polarization ratio of a given polarimeter beforéwation,
usua[ly specn‘leq In terms of the cross-polanzatlon .raﬁthe nd it is closely related to the total relative error of thiyfaal-
polarimeter, which is often taken as a figure of merit (FoM) cﬁ)rated polarimeter. The IXR is therefore well-suited asrda-

the polarimeter. ;
— o . ._... mental polarimeter FoM.
Cross-polarization ratio is an IEEE radio standard definiti P

Based on a dual-polarized antenna model of a polarimetr, th

c_ross-polar|za}t|on ratio is, loosely spgakmg, the raﬂdje de- 5 Fundamentals of radio polarimetry

sired co-polarized power to the undesired cross-polappacer.

There are many possible reasons for a polarimeter to exhiBit definition, a polarimeter is an instrument which measures

cross-polarization including for example non-orthogaraten- some aspect of the polarization of electromagnetic ramhati

nas, electronic leakage between channels, and mutualiegupHowever, in what follows we will consider only polarimeters

between antennas. If the IEEE defined parameter actually avethat are capable of measuring til state of polarization of the

consistent measure of these types of phenomenathen it Weuldadiation, at least for some incidence direction. This démee

a suitable FoM of a polarimeter. However, it is our belietttiie be stated in terms of the two, complex-valued, transverge co

standard definition is not suitable as a FoM, for the follagvinponents of the electric field comprising the Jones vectother

reasons: First, the standard cross-polarization ratiesawith four real-valued Stokes parameters. If a polarimeter nreasu

the choice of coordinates and so it is not a measure of podarinthe full Jones vector we will refer to it asJanes polarimeter,

ter intrinsic (that is, independent of coordinate systemgpp and if the polarimeter measures the full set of Stokes paienne

erties. Second, cross-polarization is generally not eglein a  we will refer to it as aStokes polarimeter. Often a polarime-

fully calibrated polarimeter since if properly calibrateittually ter can been seen as both a Jones and a Stokes polarimeter, and

all cross-polarization can be removed, at least in priecipl in these cases we will refer to such a device aereesySokes
This second point raises a fundamental question posed pglarimeter. Furthermore, we will only consider Jori8okes

for instance| Thiel|(1976): is the performance of a polarim@olarimeters with linear responses.

ter ultimately arbitrary, in the sense that systematic rsroan Linear Jones polarimeters are modelled by a simple linear

be eliminated numerically with a full calibration? Thiel9@6) relationship between the true Jones vector at the inputef th

gives good reasons why the answer to this question shouldgmarimeter,e, and the measured Jones vector at the output of
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the polarimeter, i.e., not distort the polarimetry, as it is a unitary transforroatiNote
that this transformation need not involve the polarimeteala
f(w,8) =J(w, 9w, 9). (1) since it can be performed with high precision on the numérica

Here,J is the response, or Jones, matrix of the polarimeiés, Output.

the angular frequency of the incident radio wave associaitt The most general transformation of Eg. (1) is a simultaneous
the true Jones vector assds the unit vector along the directionc12nge in both local sky basis and the channel basis given by

of arrival of the radio wave. We take= s, to be the direction of =3
the polarimeters boresight, also known as the on-axis titrec ’
For simplicity we will suppress these(s) dependencies in the where

analysis below. If an explicit Jones matrix is considerezhtht

will be assumed to be with reference to the direcon sy and " =Uf,
thatw corresponds to the centre frequency of the polarimeter’s e =Ve,
receiver. 3 =ugvt

In the basic polarimeter response relation, E§. (1), we take

the complex components & to be with respect to a real Thjs relationship betweehandJ’ implies that they arenitarily
Cartesian basig(s), y(s)}, which depends os, and we write  equivalent matrices/(Lancaster & Tismenet&ky 1985)UlE= V,

the components of the Jones vector as thenJ andJ’ areunitarily similar matrices. Therefore, in gen-
&9 eral, the Jones matrix of a polarimeter can be any unitagiljse
g9 = ( * ) W.r.t.{X(s), J(9)} . alent matrix to the original, which is given with respect t&
&(9) andC.
We will refer to this basis as thiecal sky basis for s, denoted We define arideal polarimeter to be one that has a Jones

S = {X(9),9(9)}, and for the special case = s this will Matrix that is exactly proportional to a unitary matrix. $hs
be denotedS,. The nominal local sky basisS, is the stan- ideal because a unitary matrix does not distort the trueslone
dard local basis given by the coordinate system used fomrobs¢ector, itis merely a change of the orthonormal basis.
vations. Examples are the spherical altitude-azimuthdioate In reality, a polarimeter is never ideal, and so to obtain the
system, or the coordinate systems based on Ludwig’s defisiti frue Jones vector one should invert Eg. (1) to give
in lLudwig (1973).f, on the left-hand side of Eq.](1), is also a o3l @)
two-dimensional complex vector. Its components are aatexati - ‘
with the two polarimeter channels, denoteandq, and we write | this context, thefull calibration of a Jones polarimeter is
the process of determining the polarimeték’snverting it, and

= ( f ) matrix-multiplying it with the measured data. The existernd

4 this solution is guaranteed here since we only considedfuies
with respect to the nominal basig, 4}, which we will call the pplanmeters, which by dgflnlt_lon will have invertible Jemaa-
channel basis C and refer to channelp, q respectively. The trices at least for some direction.

Jones matrix in Eq[{1) maps vectors with respec(s) to vec- Although the solution given by Ed.](4) is |n_pr|nc_|ple exdct,
tors with respect t@, so we write its components as assumes thdtandJ are known exactly. In reality noise corrupts
the polarimeter measurements so thaindJ are known with
J= Jox Jpy only limited precision, and this in turn limits the precisiwith
T Jgx gy ) which we can determine. There are, however, Jones matrices

for which the relative error in the estimateds less sensitive to
The Jones mgtrix components dependSgs). If we change noise than for others. From matrix algebra theory this seitgi
the local sky basis t&'(s), then they transform as is determined by theondition number of J, defined as

f=Jvive=J¢ ) condg@) =131l a7

whereV' is the Hermitian transpose 0f V is the unitary matrix where ||J|| is some matrix norm/(Lancaster & Tismenetsky
(i.e., V'V = | wherel is the unit matrix) that specifies the uni{1985). For the spectral norm, or 2-norm, the condition nube
tary transformation betwee® andS’. Note that generally§’ is  of J is

not the standard local basis associated with the globatiuae cond(J) =«(J) = ‘T_’V', (5)
system. Also, since we are considering unitary transfaonat Om

S’ may not be a set of real Cartesian base vectors, and sowteres andor, are the largest and smallest singular values of
will not denote its componentsandy, but rather 1 and 2, re- J, respectively. Although other norms could be adopted we wil
spectively. Of course this change of basis hasffieceat all on  only consider the spectral norm since, as we shall see, asi$ye
the measurements of the components @t it does &ect their related to the polarimeters intrinsic cross-polarizatatio.

interpretation. _ There are some important properties of the condition number
Similarly, the Jones matrix and the measured Jones veciigst we will use. We see from Edq](5) thais real and never
under changes in the channel basiare transformed as smallerthan 1, i.e.,
< .
f' = Uf = Ule=J% 3) 1<«

Also, the condition of a unitary matrix is equal to the greate

whereU is another unitary matrix. In contrast to changing thgyer bound for the condition number, i.e., for any compleacm
sky basis, changing the channel basis is an active tranat@m /iy j and unitary matris,

since it requires transforming the output through a matniktim
plication withU. Despite being an active transformation, it does condy) < condg).
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This gives additional, quantitative, support for our requaient and vice versa. Specifically, regard chanmak the co-polarized
that an ideal polarimeter have a unitary Jones matrix. Ingeof component. The ratio of the power in the co-polarized chhnne
the condition number there is no better matrix for the invgrs output from a purely co-polarized unit power source to thegro

of Eqg. (3). A final property we shall use is that the conditidn dn the co-polarized channel output from a purely cross-jxea

a matrix is not &ected by a unitary transformation, i.e., unit power source is /Idp|2. The analogous ratio for channgl
gives 1/|dq|2. These parameters are ttr@ss-polarization isola-
cond@U) = cond(). tions (XPIs) of channelg andq respectively(Stutzmén 1993).

Importantly, XPI is an IEEE radio standard (IEEE 1998) and is
ga[‘ ecognised way of specifying the cross-polarization oba p
lafimeter.
The IEEE standard also defines a dual to XPI catlexts-
polarization discrimination (XPD). XPD can be seen as the al-
ternative factorisation of

The condition number of a polarimeter’s Jones matrix ¢
be seen as a FoM for a polarimeter. Although this measur
not traditionally used in radio astronomy it is to be founap
tics (Sabatke et &l. 2000). In practice, the radio astronahpio-
larimetry community uses the polarimeter’'s cross-poéitn
ratio instead. Let us now introduce this concept.

J=D'GC, (7)
3. Existing definitions of cross-polarization and
where
feed leakage g 0
*=(% g)

The concept of cross-polarization is widely used in the anal 0 g
ysis of polarimeter performance as is evident from the lar

number synonymous terms used to refer to it, including feed 1 o
leakage, polarization purityD-terms, instrumental polariza- D’ :(—d' 12)
tion, cross-coupling, mutual-coupling, channel crodk;taoss- 1

polarization isolation, cross-polarization discrimioat and The XPDs ofJ are the reciprocals ¢tﬂ'1|2 and|dé|2 with respect

so _on (Reid etal._200&; Massietal. 1997; Saultetal. 1996 components 1 and 2 of the Jones vector with basis vectors
Leppénen et al. 1997). All these terms are associated wéth Eﬁ]ven by the configuration matri€. In generalG’ andD’ will
situation in which a fraction of one polarimetric component i pe equal t& andD so the two XPDs will be dferent from
added to the other component, and without compensation this) xp|s.

will lead to erroneous polarimetry. Thisllong list of simiter.ms . The model expressed in EqJ (6), or alternatively Eg. (7),
should convince the reader that there is a need for starsitegdi j5 ery flexible and can express every possible configuration
and consolidating a concept which we will simply calbss- ynforiunately it is precisely this flexibility that makediifficult
polarization. .Ha\./mg. sa|d.that, the last two cqncepts in .the |I5tb discern the extrinsic, coordinate system dependempgpties
(cross-polarization isolation and cross-polarizatioscdmina-  f the polarimeter from the intrinsic, coordinate systeneipen-
tion) are part of radio engineering standards (IEEE 1998, agen; properties. Consider for instance a change in thenehan
do have clear definitions. . __basis, see EqLI3), in which the sum and thedeénce of chan-
~ The standard cross-polarization ratio is used as a specifiggg p andq are taken as two new channels. It is nofidult
tion for radio polarimeters, and is often interpreted as®l Far 5 see that such a change, which is in fact sometimes employed
the polarimeter quantifying the amount of detrimental Bg& i practice, will change all of the XPIs and XPDs. Indeedgtak
that is acceptable. Clearly there is a need for a FOM speoific perfectly orthonormal pair of receptors which in some dior
the polarimetric performance of the polarimeter, but isst#- 56 system will have an XPI of 0, and rotate that system tfrou
dard cross-polarization ratio parameter suitable? We m®flp 45 One finds that this rotated system has an XPI of 100%. So
review th_ese stano_lard definitions of ctoss-polariza_\tiomfthe even though nothing has changed electrically or mechdical
perspective of radio astronomy. In doing so we will use termy;ith the polarimeter, it would seem that its leakage, as tjuan
nology and formalism cf Hamaker et al. (1996). fied by the XPI, has changed from one extreme to the other. This
A Jones matrix model of a polarimeter can be given as fqsirates that XPI and XPD are extrinsic properties of pioe
lows: labeling the two polarimeter channgsandg, the Jones |5rimeter, with a large dependence on the arbitrary chdites

matrix is factored as local basis.
J = GDC, (6)
where . o .
g O 4. Intrinsic cross-polarization ratio ( IXR ) of Jones
G =( 0 gq) polarimeters
is the complex receiver gain, Having found that XPI and XPD are extrinsic properties of a
polarimeter, we now ask whether it is possible to define anintr
(1 dp sic measure of cross-polarization. By this we mean a parame-
D= -dq 1 ter analogous to XPI or XPD, but which does not vary with the

choice of basis. We do this by finding a matrix unitarily equiv

is the feed-error, or leakage, matrix a@ids the idealized nomi- lent to the polarimeter's Jones matrix which is invariant.
nal feed configuration. We assume tiais a given unitary ma- Say we are given the on-axis Jones matlix J(), with
trix so it is known exactly a priori. respect to channel bagisand the on-axis basisy, for some po-

In this model, the fi-diagonal parameterd, anddy are |arimeter. We introduce a unique Jones malrixnitarily similar
seen as being related to cross-polarization, or leakagestésee to J that can be factored as
e.g..Hamaker et all (1996)). Due [ the signal at the input . .
of one channel finds its way to the output of the other channel, J=TJT =GDC (8)
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XPI
p b) € I Cg‘p
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Chn,, d)
Chn q
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Figurel. Cross-polarization definitions in a polarimeter. Theserfigiue sketches show the components of the polarimetemisslo
matrixJ for channelg andqg due to the components 1 and 2 of the Jones (transverse €leetcior. Nominally, components 1 and
2 correspond to the basis vectors given by the complex catguaf the first and second rows, respectively, of the poltén’s feed
configuration matrixC. The polarimeter channels are shown symbolically as cgliethbeled “Chn”. The arrows represent (sym-
bolically) the complex output signal from these channeks iuthe corresponding Jones vector components. The codaszation
isolation (XPI) forp andq are shown in a) and b), respectively computetlag Jpz|* and|Jq/Jqel®. The cross-polarization dis-
crimination (XPD) for components 1 and 2 are shown in ¢) ande$pectively computed agl/Jqllz and|Jp2/Jq2|2.

whereG is a positive real scalag is a unitary matrix and The amplitude gaif® in Eq. (8) is exactly the positive square
root of the total power gain of the polarimeter for an unpiatzd
5 _ 1L ( 1 d) source. This makeS unique.
Vit 2 d1i) The feed configuration matrig in Eq. (8) is the Jones ma-

trix of the ideal polarimeter “closest” tb, or equivalentlyTCT"
is the unitary matrix closest td. Closeness in terms of matrix

distance is defined a# — B|| where||-|| is a unitarily invariant
Uf,l + 03 matrix norm [(Fan & H&fman| 1955), and so two matrices are
V 2

where 0< d < 1. Furthermore,

G= closest to each other when the matrix distance between them i
minimal. If J has the polar decomposition
and __
d= M ~9m ) J=1JC, (10)

evghereJ_ is a positive semi-definite Hermitian matrix aads a

whereoy andoy, are the largest and smallest singular valu Hitary matrix, then for any unitary matrif

of J respectively. One can easily prove that the decompositiH
in Eq. (8) is always possible using the singular value decom-
position theorem (Lancaster & Tismeneisky 1985)o€learly
Eqg. (8) is analogous to Ed.1(6), the importanfelience is that ) ) _
decomposition in EqL{8) is invariant. The unique factdia S€€_Fan & H@man (1955). This equation also says thaand
of the Jones matrid specifies a unique local basis, given by th@!l its unitarily similar matrices, is the closest to thetumatrix
transformation matrisT, rather than an arbitrary basis such agut of all the unitarily equivalent matrices 8 and hencé is
C andsSy. Its manifestly obvious features is that its gain matriﬁ:?ong(ljoigi? rigtlgf%lﬂp(\a\llﬁﬂr?ee;ere.;htl(?cmgitrlw\(lzaetiﬁe@ﬂ\ﬁ;?
G=GClisa scalar gnd that its leakage matiix= D, is sym- 9 ) o P '__‘_ y
metric along both diagonals, thus all the XPI and XPD3'0ére transformation of the original Jones matd ' can be seen as
equal. aligning the channel basis with the local sky ba€isn Eq. (8)
Indeed, each of the factors in factorisation above is unique obtained fronC by same unitary transformation as above,
Let us go them one by one and highlight their relevance tmradi . _
polarimetry. C=TCT.

3= =l -c|l<m-wi. (11)
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It is useful to think ofC as the empirically determined feed congenerally be understood in this way. For instance, conswer

figuration matrix with respect t8y andC. geometrically orthogonal linear dipoles with no mutuakiage,
The leakage matrix® in Eq. (8) has the unique propertybut with imbalanced gains. The Jones matrix is then simply

that it can be understood as the “worst case” of leakage in the

aligned polarimeter (the polarimeter given by Let us define 39 - (gp 0 ) Up # g (18)

the Jones polarimeter’sintrinsic cross-polarization ratio, IXR, 0 gq) P75

as the XPIs (or XPDs as they are all equal) in this case, so that

For this case, the IXRs therefore
1
IXR;= —. (12) 2
o? IXR;(39@) = (7) (19)
It can be shown that the IXff the given (generic) Jones matrix 9ol + 1l
J is the greatest lower bound to both the arithmetic mean of th@ich is not zero. So even though these channels are orthog-

|9pl — 194

XPls over the channels, onal, the polarimeter intrinsic cross-polarization is ramo.
_ This is not indicative of a problem in IXRIXR; is not meant

XPlp + XPlq . Lo 5 :
IXR; < — w.r.tJ, (13) to describe the cross-polarization of a given configuratimn

rather it is a measure of the worst-case of leakage out of all
and the arithmetic mean of the XPDs over the sky componerg@nfigurations of the aligned polarimeter. In the configiorat
The same is also true for the geometric mean: it can be shogiven by Eq. [(IB), the diierence in the gains of the channels

that leads to a condition number greater than one, and the larger
IXR; < /XPIpXPIq, W.rtd (14) this difference is the_more |II-§:ond|t|oneq the Jor]es matrix is
due to the dierence in numerical resolution required to mea-

The XPIs on the right-hand side in these inequalities ar wigure each channel. This ill-conditioning is equivalent &wihg
respect to the aligned polarimeters Jones mafjxyhile the @ polarimeter with Jones matrix equal to the matrix in . (8)
IXR; on the left-hand side is with respect to eiteor J, since  With d = (Igpl + I9ql)/(I9pl - 19ql). The reference frame in this
IXR,(J) = IXRy(J). These inequalities motivate the view ofcase would be the coordinate system along44&° diagonals
IXR; as the worst-case leakage in a polarimeter. to the antennas. Such an X-alignment of antennas is ofteh use
The property that the IXRs the minimum XPD can be con- by antenna engineers to increase the gain balance between ve
trasted with the concept of the maximum XPD, under rotatiorfécal and horizontal components. In passing, we mentionitha
put forth in[Franco et all (2003). Note that, for our more ger@ne is looking for a measure of the antenna non-orthoggnalit
eral considerations (unitary rather than merely orthogmans- With respect to a fixed channel basis, rather than XiR sug-
formations), there is no greatest upper bound to an aligoed @est using EqL(27), which is still the polarimeter intrisioss-
larimeter’s cross-polarization so, for instance, the XBDXPI)  polarization but in the Mueller formalism.
of a channel (or the average XPD over the channels) can be in- Conversely, there are feed configurations that have nom-zer
finite for some bases. Also, there are no bounds, either lowerD-term leakage but have zero IXRTo see this, consider a po-
upper, for the XPD (or XP!I) of, due to its arbitrariness. larimeter with equal gaingh = g2 = g and equal (non-zero)
The defining property of the IXRs that it is directly related amplitudeD-leakage termel, = dj = d. Its Jones matrix is
to the (spectral) condition numbe(J) of J through

K@) - 1\? J(d)zg(-%j* i) di =0
«( but its IXR; is zero,
This follows from the fact that, from equatiorid (5) abdl (9§ w g
can express the condition number as IXRJ(J( )) =0.
1+d Thus, even though a polarimeter has potentially signifiént
x(J) = 1-d° (16) term leakage, it does not necessarily have any intrinsissero
. . polarization.
which has the inverse Summarising this section, we have found a way of express-
k(@) -1 ing the cross-polarization in the Jones matrix of a polaténe
= m 17) directly and uniquely in terms of the matrix’s condition nien.

This leads us to propose 1%Rs a single fundamental FoM for
and so from Eq[(12) we arrive at Ef.{15). Hg.J(15) implies thahe Jones polarimeter that can be used in place of XPI or XPD.

1<IXR,
5. Intrinsic cross-polarization ratio ( IXRyp) of Stokes

sincex > 1. Ideal conditioningK = 1) therefore corresponds to polarimeters

IXR; = 0, or no intrinsic cross-polarization in the polarimeter.
Maximum ill-conditioning,x — oo, corresponds to IXR= 1 In the previous section we considered the polarimeter in the
or maximum intrinsic cross-polarization in the polarinteteis  Jones formalism. In practice many situations require tHarpo
interesting to note that equatioris16) ahd (17) are idehtac metric state of a signal to be expressed in terms of Stokes pa-
the relations that define the Smith chart transformation. rameters, so we should also consider the previous discugsio
Itis important to understand that, while cross-polarais terms of the Stokes polarimeter.
sometimes understood as a measure of non-orthogonaligoft  While the IXR;, which we introduced in the previous section,
antenna elements, neither the XPIs, the XPDs nor thg B&R  relates to the Jones matrix, the analogous quantity for keSto
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polarimeter is the Mueller matrix. The Mueller matrix of an a From Eq.[[21) one can easily reaff the Mueller leakages
bitrary Jones polarimeter with the Jones ma®izan be found for M,
through the formula

Diq = 2Uid
M=5S10®J9s, (20) 0= 172
whereg is the Kronecker product and Dgi = 2vd
1+d?
1100 . . .
1|00 1 i which clearly depend on andyv; respectively, but their root sum
SZE 00 -1i square
1-100

2d
D2, + D2, +D2 = /D2, +D2,+D2,=—— =D
see, e.gl, Hamaker et/al. (1996). The Mueller matrix is adedl \/ 107 720 0 T30 \/ 01" T2 7m0 14 2
matrix with componentd/, for @, = 0,1,2, 3. does not depend on eithar nor v;. We therefore introduc®

In the Mueller formalism we take cross-polarization Q¢ heMueller intrinsic leakage term, echoing the results of the
represent the leakage in the polarimetry between the totﬁ?slevious section.
S

power (Stoked) and one of the polarized power COMponents ¢\ e consider cross-polarization in the Mueller formaligm

(SltokleQ_, U’.V)' Zh's.'ﬁ also sorr|1et_|mgs c_allgd the Lr;;rumerbe the reciprocal of the Mueller leakages, then we can gémera
tal polarization. As with cross-polarization in Jones poteters .- \vr in the Mueller formalism as

there are two general possibilities: there can be leakage fine
total power to a polarized component, or from the polarized-c 1

ponent to the total power. We define the former Mueller leakag IXRy = D’ (23)
as
Div = Mig fori= 123 which we will call the Mueller polarimeter intrinsic cross-
i0 = M_oo > fori=24,2, polarization ratio (IXRy). As with IXR;, IXRy is also a lower

' bound on the Mueller cross-polarizations,
and we define the latter Mueller leakage as P

1 .
Do = |29 fori=123 XRu < g fori=123 (24)
MOO Oi
It can be shown thdD;yp < 1 andDg; < 1 fori =1,2,3. and 1
As with the Jones polarimeters, the Mueller leakages vary IXRy < —, fori=1,23. (25)
with the choice of local sky basis and channel basis. The sim- i0

ilarities with the Jones polarimeter case makes it readenaNote however, that this is valid only for the class of Mueller
to expect the previously introduced concept of intrinsiessr  polarimeters that can be constructed according to[Ed. (&8,
polarization to be relevant for Stokes polarimeters. Wel wiks, non-depolarizing polarimeters.

therefore consider an arbitrary Jones polarimeter whishwe The similarity between IXRand IXRy is not confined to
have shown in the previous section (Edl (8)), can be writtgfinilarities in leakage bounds, it extends also to the imat
GUDV', whereG is total amplitude gainD is the intrinsic feed with their respective matrix condition numbers. In the case
leakage matrix antd andV are two unitary matrices. Its corre-the Mueller matrix, its condition is

sponding Mueller matrix is

2
(o
1+d 2vid 2vd 2vsd k(M) = k(I ®J3%) = = =«£*(J).
_ G? 2u1d M1 M2 M3 (21) Im
1+d2| 202d My My Mp3 |’ So while IXR; was related to the condition numbeéd) through
2uzd Mg Mz Mg a Smith chart-type transformation, (see HgJ (17)), we firad th

whereu,v; € R fori = 1,2,3, andmy, fori,j = 1,2,3, are IXRy has exactly the same relation#(M), that is,

functions ofu;, vi, andd. The parametens,, U, uz andvy, vy, V3 _ 207y _
depend orJ andV as follows: = k(M) -1 . ) 1.
k(M)+1 «k2J)+1

up = 2R (U11U12)

) ) The inverse of this transformation is
up = =R (U%, - UZ)

1+D  (1+d)’

b= 9 (U3, UZ) «n =20 =15 (1)
and This clearly shows that both IXR and IXR; are directly re-

vi = 2R (V11Vi2) lated to the condition number of both the Mueller matrix amel t

5 5 Jones matrix. Fid.]2 shows the strictly monotonic relatiops
Vo = -R (Vn - Vlz) between IXR, IXRy and the condition number of the Jones (or
_ 2 _\2 Mueller) matrix.

vi=J (Vll Vlz)’ The IXRy is related to diattenuation as defined in

and they fulfill Lu & Chipman (1994). Indeed the two parameters are equal

when the Jones matrix is homogeneous since in this case the
W+us+U3=V2+V3+Vva=1 (22) singular values of the Jones matrix are equal to its eigepgal
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There are many élierent types of radio interferometers, but we
<R will only examine interferometers comprising a combinatd
- = =70 at least two Jones polarimeters. Although we have already co
\ IXR,, | ] sidered Jones polarimeters, the models for the interfeteme-
sponse are shiciently different to warrant special attention.

The most fundamental model of a radio interferometer is ex-
pressed in terms of coherence matrices. For our proposes we
only need to consider the simplest case: a single partiallgrp
ized point source in the directigwith a brightness coherence
matrix B measured by a two-element interferometer. If elements
A and B have (approximately) known Jones matridags) and
Jg(9), the interferometer output is the visibility coherencerixa
Vag. The response of the interferometer is called the (paraxial
measurement equation of radio interferometry, and in thgec
is simply

50

IXR [dB]

10 Vag = JA(9B(9)3},(S) expliDag - 9) (28)

(Condition number) - 1

Figure2. Plots of IXR; and IXRy as functions of the condition WhereDag is the baseline vector between the positions of A and

AN -1 . .
number of the Jones matrix minus one. B.If J;l and(Jé) exist, the solution to this measurement equa-
tion is )
In the above we have looked at polarimeters that are charac- B(s) = J;\lvAB (JTB)_ exp(iDag - 9). (29)

terised by their Jones matrices (non-depolarizing poletens), ) ) )
but there are also polarimeters that only have a Muellerimatd he important point here is that evenJf andJg are very
M. For such polarimeters IXfs of course not defined, but thegood estimates, the estimate of the brightness matrix,[B), (
IXRu can still be defined as can still be poor ifJa or Jg are ill-conditioned. This is be-
cause in practice there is noise in all the measurementsiland
k(M) +1 TS - ; o
77— (26) conditioning in the Jones matrices acts as noise ampliicati
k(M) -1 In the worst-case scenario, one or both of the Jones matrices
Having shown how leakage in the Mueller formalism caf® Singular (with infinite condition number) so EQ.1(29) & n
be expressed in terms of Jones matrix leakage we can now sfygi{d and a full solution is not possible. Thus Eg.1(29) sugge
the converse, expressing leakage in the Jones formalisrrirst that the condition number of the Jones polarimeter elenikats
of leakage in the Mueller matrix. We do this in following way:Make up the interferometer relate to the accuracy of thenbrig
imagine that we wanted an invariant expression for the leaR€SS estimates. In other words, the @R the individual Jones
age between the andq channels of a Jones polarimeter Wmfnatrlces of an interferometer can be used to assess thetotal
a

the Jones matrix. Let us take the first row i to be the ‘arimetry of the interferometer. _
vectorJ, = (Jpl Jpz) and the second row to be the vectO{; A more holistic assessment of a Jones interferometer can be

ound if we express the measurement equation in terms oéStok
Jq = (Jar Jez ), and let us call them the channel vectors of thgectors, This involves converting the polarimetric resgfiom
polarimeter. The channel vectors of the polarimeter arél@m a Jones formalism to a Mueller formalism. The Mueller matrix

to effective antenna length vectors, but include tife@s of po- that corresponds to the interferometer in Eq] (28) is

larimeter leakage, etc. In analogy with the polarizatifficency

parameter between a transmitting antenna and a receiving an Mag = S (Ja ®Jp)S (30)
tenna, which is defined as the normalised inner product testwe

their efective antenna length vectofs (Stutzhhan 1993), we iwhere we have put the phase reference cestr@ along source
troduce the normalised inner product of the polarimetenoka direction. Characteristically, this interferometric Mige matrix
vectors as a measure of the non-orthogonality between ehar{Mag) is complex rather than real, mapping brightness Stokes
vectors. This parameter can be understood as a (sky intjariatgctors to visibility Stokes vectors.

measure of the leakage between thandq channels, and it is For an interferometer withl Jones polarimeter elements, the
easy to show that this inner product fulfills total interferometric Mueller matrix is the sum of all cabtr-
tions from the interferometer arms, EQ.130), so

IXRm =

9p - 34
9o/ 134 ~

whereD is the Mueller polarimeter intrinsic leakage for Mueller
matrix corresponding td. This means that the Mueller po-
larimeter intrinsic leakage sets the upper bound (or weeisE  for the direction along the phase reference centre, whichave
scenario) for the leakage between the channel vectors githe set tos = 0.

larimeter. Unlike the ordinary (real) Mueller matrix, the interferotae
Mueller matrix involves visibilities and is complex, bugtiefi-
nition of IXRy, in Eg. (26) can still be used, and its interpretation
is analogous to our earlier discussion.

Having developed IXRs for Jones- and Mueller-based radio po One should note that for imaging interferometric polarime-
larimeters our final concern is with interferometric pataeiers. ters, errors in the polarimetry do not onlffect the measurement

27) YN
M =S Y > 3@3;|s (31)
i=1 =1

j#

6. Interferometric polarimeters
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T T T
Phenomenological ——
55+ Algebraic — - -

of the state-of-polarization of a source, but also the nyemsant
of its direction, see, e.d., Bhatnagar & Nityananda (200hus

IXR is also a measure of the pointing accuracy in interferime
imaging. S0¢ Il ]

45+
7. Examples

XR, [dB]

In this section we compute the IX¥Rind IXRy parameters for = 40y | !
a selection of radio polarimeters, based mostly on dataen th O 1)
public domain. The results we present should in no sense be35 7" "
seen as an authoritative assessment of the performance of th !
respective polarimeters, but rather as illustrations @f tiee po- 30 T
. . " X
larimetric parameters can be used and the sort of values thes s
parameters may typically attain. For this reason we refraim ‘ ‘ ‘ ‘ ‘ ‘ ‘
passing judgments on the individual instruments and onlg-me 1310 1320 1330 1340 1350 1360 1370

tion that in general (barring all caveats) the higher the@slof Frequency [MHZ]
:?Eyi;hr?a%eetrter the polarimeter, according to the assestioade  ¢q,re3 The IXR; of the Parkes telescope for various frequen-

cies based on two flerent parameterisations of the Jones ma-

trix. The two Jones matrix parameterisation are the phenome

7.1. Parameterisation of Jones matrices for the Parkes logical (full line) and the algebraic (dashed line). The stow
Telescope a clear dfference, with the phenomenological parameterisation

having a better IXRin this case.
van Straten| (2004) determines the Jones matrix for the Barke

telescope over a range of frequencies. Based on Jones @satric
similar to these, we compute the IXRr the Parkes polarimeter. as v|Mol? + [Moz? + [Moa® # v|Mio? + [Magl + |M30l? as re-

van Straten (2004) employs two parametrization of the Jonggired by Eq.[(211).
matrix: one is what he calls the “phenomenological paramete
sation” based on Britton (2000), and the other is what he ¢tlad
“algebraic parameterisation” based on Hamaker let al. (1996
both cases the Jones matrices are obtained by fitting oluserirethis example we compute analytically the IXRr crossed
Stokes pulsar profiles to templates of pulsar profiles. dipoles as function of incidence direction. The crossealéip

Fig. 3 shows IXR values for the Jones matrices parameare fixed to the ground and set up so their symmetry axis is ver-
terised according to these two parameterisations over geratical, pointing to zenith. The model is an approximation efs
of frequencies. We see that Parkes performs ‘better’ in Hee p eral future radio telescopes, including LOFAR and SKA, at lo
nomenological parameterisation than in the algebraicrpara frequencies.
terisation over the entire frequency range. Since the poéer Carozzi & Woah |(2009), derived the Jones matrix in this
is the same in both parameterisations th@edénces are most case to be
likely due to diferences in the numerical accuracies of the pa-
rameterisations at the template matching stage. Althdlighot J(,m) = ( Vi-12-n? —Im )
entirely obvious which of the two parameterisation is maye c ’ Vi-m 0 1-n?
rect, it is intuitive to think that the lower the numericatacacy . .
in the computation of a Jones matrix, the more ill-condition Wherel, mare the direction cosines of the source. We can deter-
that Jones matrix would be, and hence it is natural to expect {Nin€ the condition of this Jones matrix by computing the eige
phenomeno|ogica| parameterisation to be the more corfédoto yalues of)J" and taklng the square root of their ratio. The result

7.3. Off-axis aberrations in a short dipole interferometer

(32)

two. IS
This example suggests that the IX&buld be used not only k@) = __ 1
to assess polarimeters themselves, but also to assessratiafi V1-12-n?
of the polarimeter. so the IXR is
2
7.2. The Effelsberg Telescope IXR, = (1 +V1-12— mz] . (33)
1- Vi-12-n?

Xilouris (1991) presented a Mueller matrix for théf@sberg
telescope. Based on this matrix we find that tiiteBberg tele- Fig.[ shows the dependence of IXBn the zenith angle,

scope, when seen as a Stokes polarimeter, hag,$9=7dB. YN ) ;
This corresponds to a polarimeter intrinsic Mueller lea equalto arc5|(| ! +mz)),acc0rd|ngt0 EqL(33). I one were to

age of 10.7%. However, the root mean square of its iﬁi_esign an array in which the scientific objectives require@dm

- > > > surements better than some prescribed cross-polarizatien
strumental polarizationy/|Msol” + [Maof” + [Mao*/ [Mool Where yis” curve shows the limit of the maximum possible field-of-

Mij are the components of the Mueller matrix, is 11.0%jew (Fov) that could be attained. Vice versa, if the desigd h
while \/|M01|2 + [Mo2l® + [Moal?/ IMogl is 10.6%. Thus in this a prescribed FoV, then this curve gives the best possibksero
case, IXR, is the worst-case leakage fddg, but not for polarization ratio at the edges of the FoV. For a FoV of, s&g, 2
Dijp. This does not violate the result of the previous sesquare degrees, the edge of the FoV will have an;lofRi5 dB.
tion (Egs. [2h)): this Mueller matrix exhibits depolariiat,
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Figured. IXR; as a function of the zenith angle for short dipolé&igure5. The IXRy values of the WSRT at frequency 346 MHz.
interferometers. The IXRy of the individual polarimeters are in given in dB as a
function of the telescope number. The telescope numberedark

. ) . . . . “Int” represents all of the 14 telescopes taken togethenas-a
It is also interesting to consider the IXRn this case since igrferometer.

Carozzi & Woah |(2009) used a Mueller matrix based on the

Jones matrix in EqL(32) to show that short dipole interferom

eters are polarimetrically aberrated. With the Iitroduced cross-polarization refers to a Jones polarimeter or a Stpke
in the present paper, we can now assess more concisely the|g@meter, respectively. We now discuss the proposal afigusi

larimetry in this case. The result is IXR as a FoM of a polarimeter rather than a parameter such as
22 XPI in radip ast.ronomical polarimetry. The ut!lity of the X
IXRy = 2-1°- parameter is in its dual propose use in assessing both ataibr
12+ m? and uncalibrated polarimeters.

For uncalibrated polarimetry, XPI is essentially a sigtal-
noise (SNR) parameter. It gives the ratio of desired powanto
desired power when there is an equal amount of power in both of
the Jones vector components. In such a context, the IXR param
eter serves as a FoM in that it represents the worst-casarszen
7.4. The WSRT Interferometer for that particular polarimeter. On the other hand, XPI dejse

) ) , on the choice of coordinate system. In any case it is impottan
The Westerbork synthesis radio telescope (WSRT) is an Eagfie that the XPI is not, in general, a measure of the errdran t
West interferometer consisting of fourteen, 25-m paraxbolfu"y calibrated polarimetry.

dishes with dual-pola_rlzed feeds. . The main justification for using IXR as a polarimeter FoM
We analysed estimates of the Jones matrices for eachiOhqgyever its direct relation to the condition number of the

the 14 dual linearly-polarized feeds over a band of frequeps|arimetric response matrix, making it a good indicator of

cies, based on a dataset similar to that used in Brentje]20 ¢ rejative errors in the final, calibrated, polarimetrieasure-

For one of the frequency channels, centred on 346.0MHz, W\t This property of the polarimeter is completely indepe

computed the IXkw of each the individual polarimeters and thejent of the particular choice for the sky and channels bases,

IXRw of all 14 taken together as an interferometer. as one would expect from an intrinsic FOM characterising the
The IXRy value for each of the 14 dishes is plotted in Eig. S,y sical instrument. For a full calibration, the relativeroe

along with the IXRy of the inFerferometer based on EB.X31)i4 the estimated Jones vectdnel / |ell, can be shown to be
We see that the interferometric IXRs, here, approximately an (Lancaster & Tismenetsky 1985)

average of the individual IXR values. Thus, in this case, the
whole is not much better than its parts. From gl (31), thig ma lAg)| P IAJI]  [IAF]
suggest that the Jones matrices for the individual telescopn < 1 AT 0 ( 3 + I )
be modelled as having small, random deviations from a non- el —«lAJI/ DI 1N l

ideal mean Jones matrix. where||AJ|| / ]3] is the total relative error in the calibration of

Naturally these results are specific to the feed used in trghce polarimeter's Jones matrix||Af|2 / [If |2 is the reciprocal of
case, and dierent results are expected for other WSRT feeds.,, polarimeter's signal-to-noise ratio (SNR) anis the con-

dition number ofl. Most practical radio polarimeters will have
IXR; > 1 and will be well calibrated, sin\J|| / |J]| < d (where

d = 1/+IXR;). Under these conditions we can rewrite the in-
We have introduced the polarimeter intrinsic cross-paition equality [34) as

ratio parameters IXRand IXRy, which can be considered as

two versions of one concept: thmlarimeter intrinsic cross- lAel _ 1 2 lAJ]]  [IAF]]
polarization ratio, (IXR). They difer mainly in whether the el F + VIXR, te 19N + ifn )

This agrees with the ratio of the measured polarized powtieto
measured unpolarized power for unpolarized radiationraicg
to the Mueller matrix presented|in Carozzi & Woan (2009).

(34)

8. Discussion

(35)
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It is clear from Eq.[(3b) that, for fixedAJ|| / ||3]| and||Af|| / |If||, radio polarimeters. We also find that IXR can be used not anly t
the IXR; is directly related to the total relative error of the poassess the polarimeters themselves, but also to assesisalpar
larimeter’s measurement of the Jones vector. The besefaglr calibration of a polarimeter.

case is when IXR— oo, then the total relative error is just the

sum of the total relative errors in the Jones measuremedtian Acknowledgements. We thank Michiel Brentjens for providing Jones matrices

. of the WSRT. We also thank Willem van Straten for providing dones matrices
Jones matrix measurements. In general' the smaller thg, th& of the Parkes telescope. This work is supported by the Earo@mmunity

larger the error. Framework Programme 6, Square Kilometre Array Design S8&ISKADS),
Although we have focused mainly on the IXR as a FOM fafontract no 011938, and the Science and Technology Fesiltouncil (STFC),
the polarimeter instrument itself, the IXR can also be used ¥K.
assess aspects related to more general polarimetry. Wensaw i
SectionZ.lL that the IXRfEectively assessed the calibration o
the polarimeter. Another extended use of the IXR is in thesss
ment of the complete measurement equation of a polarinadter:Bhatnagar, S. & Nityananda, R. 2001, A&A, 375, 344
the phenomena thaffact the polarimetry from the source to thedrentjens, M. A. 2008, A&A, 489, 69
output signal can be expressed in terms of matrix factotsdha 27", M. € 2000, Ap. J., 532, 2290
. . . arozzi, T. D. & Woan, G. 2009, MNRAS
gether make up a totalfective Jones matrix for the polarimetry.can "«.'s Hatman, A. J. 1955, Proceedings of the American Mathematical
The IXR can be determined for this totaffective, Jones matrix  Society, 6, 111
and can be understood as an assessment of the polarimetryr@sco, G., Fosalba, P., & Tauber, J. A. 2003, A&A, 405, 349
sociated with that particular measurement equation. Tiverlo Harsnakeivli- P Bregman, J. D.. & Sault, R. J. 1996, Astroropbys. Suppl.
the IXR of the dfective Jones matrix of a measurement equ%’EérIQQB,IEEE Std 211-1997
tion, the more diicult it will be to obtain high dynamic range Lancaster, P. & Tismenetsky, M. 1985, The Theory of Matic2sd edn.
for the full polarimetry. In the extreme, but practicallyafble, (Academic Press)
case that the IXR is zero, full polarimetry is unobtainalsletze '—eariég%fly K-}O'\ggz(sjiih Mé' 5?&2’3'\?& g &i‘/ng\‘/ifgi g %9%1};’5';“ Astronomy,
effective Jones matrix is singular. Lu, 5. & Chipman. R. A 1994, J. Opt. Soc. Am. A, 11, 766
The discussion above has been about the IXR as a funCtLQIGWig, A. 1973, Antennas and Propagation, IEEE Transastan, 21, 116
of the source direction. Often, however, it is desirableaeena Massi, M., Rioja, M., Gabuzda, D., et al. 1997, Vistas in Astmy, 41, 287 ,
FoM which is some aggregate over all directions. We will not proceedings of the 3rd EVNIVE VLBI Symposium S
pursue this line of inquiry further here except to mentioatth Reid, R. I.,SGray, A. D., Landecker, T. L., & Willis, A. G. 20pRadio Science,
there are several ppssibilities for the oyerall .polarimﬂnl\/.l Sabatke, D. S., Locke, A. M., Descour, M. R., et al. 2000, inafzation
based on the direction dependent |XR, |nC|ud|ng the ma.)(|ml.lrnAna|ysisY Measurement, and Remote Sensing lll, ed. D. Bnahig M. J.
IXR over all directions, the IXR along the boresight, or slgnp  Duggin, W. G. Egan, & D. H. Goldstein, Vol. 4133 (SPIE), 75-81
the IXR weighted with the gain, averaged over all directions SaggrRii]? "l'igﬂakeﬂ J. P, & Bregman, J. D. 1996, Astrotropbys. Suppl.
To be useful and Prac“.c"?" a FoM Shou'd of CO‘.”S? be .meﬁﬁtzrﬁ,an, W L. 1993, Polarization in electromagnetic esyst (Artech house,
surable, preferably with minimalfi@rt. As a final point in this ¢
section we mention that the IXR is well-suited also in the remiel, M. A. F. 1976, J. Opt. Soc. Am., 66, 65
spect. This is because it is not necessary to measure the Yaul Straten, W. 2004, Astrophys. J. Suppl. Ser., 152, 129
Jones, or Mueller, matrix to determine a polarimeter’s IXR. Xilouris, K. M. 1991, A&A, 248, 323
is suficient to measure the polarimeter’s response to unpolar-
ized radiation only, which is much easier than a full calilma
which ordinarily requires at least threefdirent polarized fidu-
cial measurements. The reason for this is that the IXR istase
just on the invariants of the Jones or Mueller matrices an@no
the full Jones or Mueller matrices themselves. For the Xl an
XPD, on the other hand, the full Jones matrix is required mgki
them generally harder to compute.

I?eferences

9. Conclusions

We find that the standard cross-polarization ratio pararsere
extrinsic properties of a polarimeter, that is, they depemédn
arbitrary choice of coordinate system. We argue that thisama

it difficult to interpret these standard cross-polarizations as a
genuine, intrinsic, leakage in a polarimeter. Furthermtrey

are not meaningful after full calibrations and for thesesoze

we find that the standard cross-polarization ratios shootda
treated as a polarimeter figure of merit. However, we suggest
that the worst-case cross-polarization of the (alignedgnmoe-

ter is unique and invariant, and so could serve as the imtrins
polarimeter leakage. We present a parameter, which welaall t
intrinsic polarimeter cross-polarization ratio (IXR) thsatisfies

this worst case. We show how the parameter can be applied to
the various basic types of radio polarimeters and how it ulti
mately determines the total relative error in a polarimekais

last property qualifies IXR as a fundamental figure of merit fo
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