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Abstract

We present a detailed study on the design of decentralized Receding Horizon Control (RHC) schemes for decoupled systems.
We formulate an optimal control problem for a set of dynamically decoupled systems where the cost function and constraints
couple the dynamical behavior of the systems. The coupling is described through a graph where each system is a node and,
cost and constraints of the optimization problem associated with each node are only function of its state and the states of its
neighbors. The complexity of the problem is addressed by breaking a centralized RHC controller into distinct RHC controllers
of smaller sizes. Each RHC controller is associated with a different node and computes the local control inputs based only on
the states of the node and of its neighbors. We analyze the properties of the proposed scheme and introduce sufficient stability
conditions based on prediction errors. Finally, we focus on linear systems and show how to recast the stability conditions into
a set of matrix semi-definiteness tests.
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1 Introduction

Research on decentralized control dates back to the pi-
oneering work of Wang and Davison in [26] and since
then, the interest has grown significantly. Decentral-
ized control techniques today can be found in a broad
spectrum of applications ranging from robotics and for-
mation flight to civil engineering. Such a wide interest
makes a survey of all the approaches that have appeared
in the literature very difficult and goes also beyond the
scope of this paper. Approaches to decentralized control
design differ from each other in the assumptions they
make on: (i) the kind of interaction between different
systems or different components of the same system
(dynamics, constraints, objective), (ii) the model of the
system (linear, nonlinear, constrained, continuous-time,
discrete-time), (iii) the model of information exchange
between the systems, and (iv) the control design tech-
nique used.

? This paper was not presented at any IFAC meeting. Cor-
responding author T. Keviczky. Tel. +1-612-625-6561. Fax
+1-612-626-1558.

Email addresses: keviczky@aem.umn.edu (Tamás
Keviczky), francesco.borrelli@unisannio.it (Francesco
Borrelli), balas@aem.umn.edu (Gary J. Balas).

Dynamically coupled systems have been the most stud-
ied [6, 8, 23, 25, 26]. In particular the authors in [6, 11]
consider distributed min-max model predictive control
problems for large scale systems with coupled linear
time-invariant dynamics and propose a scheme using
stability-constraints and assuming a one-step communi-
cation delay. Sufficient conditions for stability with infor-
mation exchange between the local controllers are given
by treating neighboring subsystem states as diminishing
disturbances.

In this paper, we focus on decoupled systems. Our inter-
est in decentralized control for dynamically decoupled
systems arises from the abundance of networks of inde-
pendently actuated systems and the necessity of avoid-
ing centralized design when this becomes computation-
ally prohibitive. Networks of vehicles in formation, pro-
duction units in a power plant, network of cameras at an
airport, mechanical actuators for deforming surface are
just a few examples.

In a descriptive way, the problem of decentralized con-
trol for decoupled systems can be formulated as follows.
A dynamical system is composed of (or can be decom-
posed into) distinct dynamical subsystems that can be
independently actuated. The subsystems are dynami-
cally decoupled but have common objectives and con-
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straints which make them interact between each other.
Typically the interaction is local, i.e., the objective and
the constraints of a subsystem are function of only a sub-
set of other subsystems’ states. The interaction will be
represented by an “interaction graph”, where the nodes
represent the subsystems and an edge between two nodes
denotes a coupling term in the objectives and/or in the
constraints associated with the nodes. Also, typically it
is assumed that the exchange of information has a spe-
cial structure, i.e., it is assumed that each subsystem
can sense and/or exchange information with only a sub-
set of other subsystems. Often the interaction graph and
the information exchange graph coincide. A decentral-
ized control scheme consists of distinct controllers, one
for each subsystem, where the inputs to each subsystem
are computed only based on local information, i.e., on
the states of the subsystem and its neighbors.

In this paper we make use of Receding Horizon Control
(RHC) schemes. The main idea of RHC is to use the
model of the plant to predict the future evolution of the
system [19]. Based on this prediction, at each time step
t a certain performance index is optimized under oper-
ating constraints with respect to a sequence of future in-
put moves. The first of such optimal moves is the control
action applied to the plant at time t. At time t+1, a new
optimization is solved over a shifted prediction horizon.

A decentralized RHC scheme for decoupled systems has
recently appeared in [9], which uses a continuous time
formulation with unconstrained subsystems (decoupled
input constraints only). The authors make use of in-
formation exchange between subsystems and establish
lower bounds on the update rate and upper bounds on
the mismatch between actual and predicted state evo-
lutions, which are sufficient for stability of the over-
all system. A different, sequential information exchange
scheme can be found in [21,22], which is valid for a spe-
cial graph structure based on a leader-follower architec-
ture. In this latter work, authors formulate their prob-
lem in discrete time using robust RHC and assume the
presence of coupling constraints between subsystems.

In this manuscript we propose a rigorous mathematical
framework for designing decentralized receding horizon
controllers in discrete time. In our framework a central-
ized RHC controller is broken into distinct RHC con-
trollers of smaller sizes. Each RHC controller is associ-
ated with a different node and computes the local con-
trol inputs based only on the states of the node and of
its neighbors. We take explicitly into account constraints
and use the model of the neighbors to predict their be-
havior. In the second part of the paper, we analyze the
properties of the proposed scheme and introduce suffi-
cient stability conditions. Such conditions (i) highlight
the role of prediction errors between neighbors in the sta-
bility of the overall system, (ii) are local to each node and
function only of neighboring nodes that can be reached
trough at most two edges, thus leading to complexity

reduction for interconnection graphs of large diameter,
and (iii) help understand the importance of information
exchange between neighbors and its role in stabilizing
the entire system. Finally, in the last part of the paper
we focus on linear systems and show how to recast the
stability conditions into a set of semi-definiteness tests.

2 Problem formulation

We consider a set of Nv linear decoupled dynamical sys-
tems, the i-th system being described by the discrete-
time time-invariant state equation:

xi
k+1 = f i(xi

k, ui
k), (1)

where xi
k ∈ R

ni

, ui
k ∈ R

mi

, f i : R
ni

× R
mi

→ R
ni

are state, input and state update function of the i-th

system, respectively. LetX i ⊆ R
ni

and U i ⊆ R
mi

denote
the set of feasible states and inputs of the i-th system,
respectively:

xi
k ∈ X i, ui

k ∈ U i, k ≥ 0, (2)

where X i and U i are given polytopes.

We will refer to the set of Nv constrained systems as
the overall system. Let x̃k ∈ R

ñ with ñ =
∑

i ni and
ũk ∈ R

m̃ with m̃ =
∑

i mi be the vectors which collect
the states and inputs of the overall system at time k, i.e.,
x̃k = [x1

k, . . . , xNv

k ], ũk = [u1
k, . . . , uNv

k ], with

x̃k+1 = f(x̃k, ũk), (3)

where f(x̃k, ũk) = [f1(x1
k, u1

k), . . . , fNv (xNv

k , uNv

k )] and
f : R

ñ × R
m̃ → R

ñ. We denote by (xi
e, u

i
e) the equilib-

rium pair of the i-th system and (x̃e,ũe) the correspond-
ing equilibrium for the overall system. The state update
functions f i are assumed to be continuous and stabiliz-
able at the equilibrium for all i = 1, . . . , Nv.

So far the subsystems belonging to the overall system
are completely decoupled. We consider an optimal con-
trol problem for the overall system where cost function
and constraints couple the dynamic behavior of individ-
ual systems. We use a graph structure to represent the
coupling in the following way. We associate the i-th sys-
tem to the i-th node of the graph, and if an edge (i, j)
connecting the i-th and j-th node is present, then the
cost and the constraints of the optimal control problem
will have coupling terms, which are functions of both xi

and xj . The graph will be defined as

G = {V,A}, (4a)

A(i, j) =

{

1, if (i, j) ∈ A

0, otherwise
(4b)
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where V is the set of nodes V = {1, . . . , Nv}, A ⊆ V ×V
is the sets of edges (i, j) with i ∈ V, j ∈ V and A ∈
R

Nv×Nv is the adjacency matrix of the graph.

Remark 1 Often the graph edges are chosen to be time-
varying, based on a particular neighbor selection policy.
For instance in the case of formation flight, the intercon-
nection graph is full due to collision avoidance (since each
vehicle has to avoid every other), but it is usually replaced
with a time-varying “closest spatial neighbor” relation-
ship. For simplicity, a time-invariant graph structure is
assumed throughout the paper. References to decentral-
ized RHC using time-varying graphs can be found in [5].

Once the graph structure has been fixed, the optimiza-
tion problem is formulated as follows. Denote with x̃i

the states of all neighboring systems of the i-th sys-

tem, i.e., x̃i = {xj ∈ R
nj

|(i, j) ∈ A}, x̃i ∈ R
ñi

with

ñi =
∑

j|(i,j)∈A nj . Analogously, ũi ∈ R
m̃i

denotes the

inputs to all the neighboring systems of the i-th system,
and (x̃i

e, ũ
i
e) represent their equilibria. Let

gi,j(xi, xj) ≤ 0 (5)

define the coupling constraints between the i-th and the

j-th systems, where (i, j) ∈ A, with gi,j : R
ni

× R
nj

→

R
nci,j

being a continuous function. We will often use
the following shorter form of the coupling constraints
defined between the i-th system and all its neighbors:

gi(xi, x̃i) ≤ 0, (6)

with gi : R
ni

×R
ñi

→ R
nci

, where nci =
∑

j|(i,j)∈A nci,j .

Consider the following cost:

l(x̃, ũ) =

Nv∑

i=1

li(xi, ui, x̃i, ũi), (7)

where li : R
ni

× R
mi

× R
ñi

× R
m̃i

→ R is the cost
associated with the i-th system and is a function only of
its states and the states of its neighbor nodes.

li(xi, ui, x̃i, ũi) = li,i(xi, ui) +
∑

(i,j)∈A

li,j(xi, ui, xj , uj)

(8)

where li,i : R
ni

× R
mi

→ R and li,j : R
ni

× R
mi

×
R

nj

× R
mj

→ R is the cost function for two adjacent
nodes. We assume throughout the paper that li,i and
li,j are positive convex continuous functions such that
li,j(xi, ui, x̃i, ũi) ≥ c‖(xi, ui, x̃i, ũi)‖2, c > 0 and that
li(xi

e, u
i
e, x̃

i
e, ũ

i
e) = 0.

We design a controller by repeatedly solving finite time
optimal control problems in a receding horizon fashion

as described next. At each sampling time, starting at
the current state, an open-loop optimal control problem
is solved over a finite horizon. The optimal command
signal is applied to the process only during the follow-
ing sampling interval. At the next time step a new op-
timal control problem based on new measurements of
the state is solved over a shifted horizon. The resultant
controller is often referred to as Receding Horizon Con-
troller (RHC). Assume at time t the current state x̃t to
be available. Consider the following constrained finite
time optimal control problem:

J̃∗
N (x̃t) , min

Ũt

N−1∑

k=0

l(x̃k,t, ũk,t) + lN (x̃N,t) (9a)

subj. to xi
k+1,t = f i(xi

k,t, u
i
k,t), (9b)

i = 1, . . . , Nv, k ≥ 0

xi
k,t ∈ X i, ui

k,t ∈ U i, (9c)

i = 1, . . . , Nv,

k = 1, . . . , N − 1

gi,j(xi
k,t, x

j
k,t) ≤ 0, (9d)

i = 1, . . . , Nv, (i, j) ∈ A,

k = 1, . . . , N − 1

x̃N,t ∈ Xf , (9e)

x̃0,t = x̃t, (9f)

where N is the prediction horizon, Xf ⊆ R
ñ is a termi-

nal region, lN is the cost on the terminal state. In (9)

Ũt , [ũ0,t, . . . , ũN−1,t] ∈ R
s, s , m̃N denotes the op-

timization vector, xi
k,t denotes the state vector of the

i-th node predicted at time t + k obtained by starting
from the state xi

t and applying to system (1) the input
sequence ui

0,t, . . . , u
i
k−1,t.

Let Ũ∗
t = [ũ∗

0,t, . . . , ũ
∗
N−1,t] be an optimal solution of (9)

at time t. Then, the first sample of Ũ∗
t is applied to the

overall system (3)
ũt = ũ∗

0,t. (10)

The optimization (9) is repeated at time t + 1, based on
the new state x̃t+1.

It is well known that stability is not ensured by the RHC
law (9)–(10). Usually the terminal cost lN and the ter-
minal constraint set Xf are chosen to ensure closed-loop
stability. A treatment of sufficient stability conditions
goes beyond the scope of this work and can be found
in the surveys [7, 18, 19]. We assume that the reader is
familiar with the basic concept of RHC and its main is-
sues, we refer to the above references for a comprehen-
sive treatment of the topic. In general, the optimal input
ui

t to the i-th system computed by solving (9) at time
t, will be a function of the overall state information x̃t.
In the next section we propose a way to decentralize the
RHC problem defined in (9)-(10).
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3 Decentralized control scheme

We address the complexity associated with a central-
ized optimal control design for the class of large scale
decoupled systems described in the previous section by
formulating Nv decentralized finite time optimal con-
trol problems, each one associated with a different node.
Each node has information about its current states and
its neighbors’ current states. Based on such information,
each node computes its optimal inputs and its neigh-
bors’ optimal inputs. The input to the neighbors will
only be used to predict their trajectories and then dis-
carded, while the first component of the optimal input
to the node will be implemented where it was computed.

A more formal description follows. Let the following fi-
nite time optimal control problem Pi with optimal value
function J i∗

N (xi
t, x̃

i
t) be associated with the i-th system

at time t:

min
Ũi

t

N−1∑

k=0

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t)

subj. to xi
k+1,t = f i(xi

k,t, u
i
k,t), (11a)

xi
k,t ∈ X i, ui

k,t ∈ U i, (11b)

k = 1, . . . , N − 1

xj
k+1,t = f j(xj

k,t, u
j
k,t), (i, j) ∈ A, (11c)

xj
k,t ∈ X j , uj

k,t ∈ U j , (i, j) ∈ A, (11d)

k = 1, . . . , N − 1

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0, (11e)

(i, j) ∈ A, k = 1, . . . , N − 1

xi
N,t ∈ X i

f , xj
N,t ∈ X j

f , (i, j) ∈ A (11f)

xi
0,t = xi

t, x̃i
0,t = x̃i

t, (11g)

where Ũ i
t , [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t] ∈ R

si

,

si , (m̃i + mi)N denotes the optimization vector,
xi

k,t denotes the state vector of the i-th node pre-
dicted at time t + k obtained by starting from the
state xi

t and applying to system (1) the input sequence
ui

0,t, . . . , u
i
k−1,t. The tilded vectors denote the predic-

tion vectors associated with the neighboring systems
by starting from their states x̃i

t and applying to their
models the input sequence ũi

0,t, . . . , ũ
i
k−1,t. Denote by

Ũ i∗
t = [u∗i

0,t, ũ
∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t] an optimizer of

problem Pi.

Note that problem Pi involves only the state and input
variables of the i-th node and its neighbors at time t. We
will define the following decentralized RHC scheme. At
time t

(1) Each node i solves problem Pi based on measure-
ments of its state xi

t and the states of all its neigh-
bors x̃i

t.

(2) Each node i implements the first sample of Ũ i∗
t

ui
t = u∗i

0,t. (12)

(3) Each node repeats steps 1 to 3 at time t + 1, based
on the new state information xi

t+1, x̃i
t+1.

In order to solve problem Pi each node needs to know its
current states, its neighbors’ current states, its terminal
region, its neighbors’ terminal regions and models and
constraints of its neighbors. Based on such information
each node computes its optimal inputs and its neighbors’
optimal inputs. The input to the neighbors will only be
used to predict their trajectories and then discarded,
while the first component of the i-th optimal input of
problem Pi will be implemented on the i-th node. The
solution of the i-th subproblem will yield a control policy
for the i-th node of the form ui

t = ci(xi
t, x̃

i
t), where ci :

R
ni

× R
ñi

→ R
mi

is a time-invariant feedback control
law implicitly defined by the optimization problem Pi.

Remark 2 In the formulation above, a priori knowl-
edge of the overall system equilibrium (x̃e, ũe) is assumed.
The equilibrium could be defined in several other different
ways. For instance, in a problem involving mobile agents
we can assume that there is a leader (real or virtual)
which is moving and the equilibrium is given in terms of
distances of each agent from the leader. Also, it is pos-
sible to formulate the equilibrium by using relative dis-
tances between agents and signed areas.The approach of
this paper does not depend on the way the overall system
equilibrium is defined, as long as this is known a priori.
In some decentralized control schemes, the equilibrium is
not known a priori, but is the result of the evolution of
decentralized control laws such as in [10]. The approach
of this paper is not applicable to such schemes.

Remark 3 The problem formulation of (11) lends itself
to generalization and is flexible enough to describe ad-
ditional characteristics of a particular application. For
instance, delayed information and additional communi-
cation between neighbors can be incorporated in the for-
mulation as well. Additional terms that represent cou-
pling between any two neighbors of a particular node can
be included in the local cost function (8) as well. This
leads to a better representation of the centralized prob-
lem and based on our numerical simulations, more accu-
rate predictions regarding the behavior of neighbors. The
derivation of results presented in this paper can be found
in [16] for such case. One can also assume that terminal
set constraints of neighbors are not known exactly. For
the sake of simplicity, we will not consider these possible
modifications and focus on problem (11).

Even if we assume N to be infinite, the decentralized
RHC approach described so far does not guarantee that
solutions computed locally are globally feasible and sta-
ble. The reason is simple: at the i-th node the prediction
of the neighboring state xj is done independently from
the prediction of problem Pj . Therefore, the trajectory
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of xj predicted by problem Pi and the one predicted by
problem Pj , based on the same initial conditions, are dif-
ferent (since in general, Pi and Pj will be different). This
will imply that constraint fulfillment will be ensured by
the optimizer u∗i

t for problem Pi but not for the central-
ized problem involving the states of all nodes.

Stability and feasibility of decentralized RHC schemes
are currently active research areas [6, 9, 15, 21]. In the
following section the stability of the decentralized RHC
scheme given in (11) and (12) is analyzed in detail.

4 Stability analysis

Without loss of generality, we assume the origin to be
an equilibrium for the overall system. In this section,
we rely on the general problem formulation introduced
in Section 2 and focus on systems with input and state
constraints, no coupling constraints and terminal point
constraint to the origin X i

f = 0. Thus the decentralized
finite time optimal control problem associated with the
i-th node at time t will have the following form:

min
Ũi

t

N−1∑

k=0

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t)

subj. to xi
k+1,t = f i(xi

k,t, u
i
k,t), (13a)

xi
k,t ∈ X i, ui

k,t ∈ U i, (13b)

k = 1, . . . , N − 1

xj
k+1,t = f j(xj

k,t, u
j
k,t), (i, j) ∈ A, (13c)

xj
k,t ∈ X j , uj

k,t ∈ U j , (i, j) ∈ A, (13d)

k = 1, . . . , N − 1

xi
N,t = 0, xj

N,t = 0, (i, j) ∈ A (13e)

xi
0,t = xi

t, x̃i
0,t = x̃i

t. (13f)

We will make the following assumption on the structure
of individual cost functions:

Assumption 1 The cost term li in (8) associated with
the i-th system can be written as follows

li(xi, ui, x̃i, ũi) = ‖Qxi‖p + ‖Rui‖p

+
∑

j|(i,j)∈A

‖Qxj‖p +
∑

j|(i,j)∈A

‖Ruj‖p

+
∑

j|(i,j)∈A

‖Q(xi − xj)‖p. (14)

where ‖Mx‖p denotes the p-norm of the vector Mx if
p = 1,∞ or x′Mx if p = 2.

Remark 4 The cost function structure in Assumption 1
can be used to describe several practical applications in-
cluding formation flight, paper machine control and mon-
itoring network of cameras [5]. The relative state term
in (14) also assumes ni = ñ/Nv for all i = 1, . . . , Nv.

In classical RHC schemes, stability and feasibility is
proven by using the value function as a Lyapunov func-
tion. We will investigate three different approaches to
analyzing and ensuring stability of the overall system:

(1) Use of individual cost functions as Lyapunov func-
tions for each node (Sections 4.1, 4.2 and 4.3).

(2) Use of the sum of individual cost functions as Lya-
punov function for the entire system (Section 4.4).

(3) Exchange of optimal solutions between neighbors
(Section 4.5).

The following notation will be used to describe state and
input signals. For a particular variable, the first super-
script refers to the index of the corresponding system,
the second superscript refers to the location where it is
computed. For instance the input ui,j represents the in-
put to the i-th system calculated by solving problem Pj .
Similarly, the state variable xi,j stands for the states of
system i predicted by solving Pj . The lower indices con-
form to the standard time notation of RHC schemes. For
example, variable xk,t denotes the k-step ahead predic-
tion of the states made at time instant t.

4.1 Individual value functions as Lyapunov functions

In order to illustrate the fundamental issues regarding
stability in a simple way, we first consider two systems
(Nv = 2). The general formulation for an arbitrary num-
ber of nodes is treated later in Section 4.2. We consider
two decentralized RHC problems P1 and P2 according
to (13). In order to simplify notation, we define

`1(x1
t , U

1,1
t , x2

t , U
2,1
t ) =

N−1∑

k=0

l1(x1,1
k,t , u

1,1
k,t , x

2,1
k,t , u

2,1
k,t), (15)

where x1
t and x2

t are the initial states of systems 1 and

2 at time t, and U1,1
t , U2,1

t are the control sequences for
node 1 and 2, respectively, calculated by node 1. Let
[U1,1∗

t , U2,1∗
t ] be an optimizer of problem P1 at time t:

U1,1∗
t =

[

u1,1
0,t , . . . , u

1,1
N−1,t

]

, U2,1∗
t =

[

u2,1
0,t , . . . , u

2,1
N−1,t

]

,

(16)
and

x1,1
t =

[

x1,1
0,t , . . . , x

1,1
N,t

]

, x2,1
t =

[

x2,1
0,t , . . . , x

2,1
N,t

]

,

be the corresponding optimal state trajectories of node
1 and 2 predicted at node 1 by P1.

Analogously, let [U1,2∗
t , U2,2∗

t ] be an optimizer of prob-
lem P2 at time t:

U1,2∗
t =

[

u1,2
0,t , . . . , u

1,2
N−1,t

]

, U2,2∗
t =

[

u2,2
0,t , . . . , u

2,2
N−1,t

]

,

(17)
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and

x1,2
t =

[

x1,2
0,t , . . . , x

1,2
N,t

]

, x2,2
t =

[

x2,2
0,t , . . . , x

2,2
N,t

]

,

be the corresponding optimal state trajectories of node
1 and 2 predicted at node 2 by P2. By hypothesis, neigh-
boring systems either measure or exchange state infor-
mation, so the initial states for both problems are the
same at each time step, i.e., x1,1

0,t = x1,2
0,t and x2,1

0,t = x2,2
0,t .

Remark 5 It should be noted that although the two prob-
lems P1 and P2 involve the same subsystems, multiple
optima can arise from non-strictly convex cost functions.
Furthermore, in a more general setting, for larger num-
ber of nodes with an arbitrary graph interconnection,
adjacent nodes have different set of neighbors and thus
are solving different subproblems Pi. Non-convex cou-
pling constraints would be a source of multiple optimal
solutions as well. These factors lead to different opti-
mal solutions for neighboring problems and warrant dis-
tinguishing between U 1,1∗, U1,2∗ and U2,1∗, U2,2∗ in (16)
and (17).

We denote the set of states of node i at time k feasible
for problem Pi by

X i
k =

{
xi | ∃ui ∈ U i such that f i(xi, ui) ∈ X i

k+1

}
∩ X i,

with X i
N = X i

f . (18)

Since we are neglecting coupling constraints, the set of
feasible states for the decentralized RHC scheme de-
scribed by (13) and (12) applied to the overall system is
the cross product of the feasible set of states associated
with each node:

Xk =

Nv∏

i=1

X i
k, (19)

where the symbol
∏

denotes the standard Cartesian
product of sets.

Denote with

c(x̃k) =
[

u1,1∗
0,k (x̃k), u2,2∗

0,k (x̃k)
]

, (20)

the control law obtained by applying the decentralized
RHC policy in (13) and (12) with cost function (15),
when the current state is x̃k = [x1

k, x2
k]. Consider the

overall system model (3) consisting of two nodes (Nv =
2), and denote with

x̃k+1 = f (x̃k, c(x̃k)) , (21)

the closed-loop dynamics of the entire system. In the
following theorem we state sufficient conditions for the
asymptotic stability of the closed-loop system.

Theorem 1 Assume that

(A0) Q = Q′ � 0, R = R′ � 0 if p = 2 and Q,R are
full column rank matrices if p = 1,∞.

(A1) The state and input constraint sets X 1,X 2 and
U1,U2 contain the origin in their interior.

(A2) The following inequality is satisfied for all xi
t ∈ X i

0,

xj
t ∈ X j

0 with i = 1, j = 2 and i = 2, j = 1:

ε ≤ ‖Qxi
t‖p+‖Qxj

t‖p+‖Q(xi
t−xj

t )‖p+‖Rui,i
0,t‖p+‖Ruj,i

0,t‖p,

(22)
where

ε =

N−1∑

k=1

(

2‖Q(xj,j
k,t − xj,i

k,t)‖p + ‖R(uj,j
k,t − uj,i

k,t)‖p

)

.

(23)

Then, the origin of the closed loop system (21) is asymp-
totically stable with domain of attraction X 1

0 ×X 2
0 .

Proof: We will show that the value function of each
individual node is a Lyapunov function, which de-
creases along the closed-loop trajectories at each time
step J i∗

N (xi
t+1, x̃

i
t+1) ≤ J i∗

N (xi
t, x̃

i
t), if the assumptions

of the theorem hold. Although this condition involves
the closed-loop evolution of only local variables, it is
required to hold for each individual node, leading to
J∗

N (x̃t+1) ≤ J∗
N (x̃t) and the stability of the overall sys-

tem. Without loss of generality we will consider problem
P1 first and its optimal solution U 1,1∗

t and U2,1∗
t at time

t. The shifted sequences U 1,1
t+1 = [u1,1

1,t , . . . , u
1,1
N−1,t,0]

and U2,1
t+1 = [u2,1

1,t , . . . , u
2,1
N−1,t,0] of problem P1, are not

necessarily feasible at the next time step t + 1 since the
state of system 2 at time t + 1 is x2,2

1,t and not x2,1
1,t , even

assuming no model uncertainty (see Remark 5). This

means that elements of the state sequence x2,1
t+1 may

not be in X 2 and X 2
f = 0, respectively, even though

they were produced by the input sequence U 2,1
t+1 whose

elements belong to U2. However, one can construct a
feasible shifted sequence for problem P1 by using the
optimizer of problem P2:

U2,2
t+1 =

[

u2,2
1,t , . . . , u

2,2
N−1,t,0

]

. (24)

This is possible, since the dynamics of both subsystems
are decoupled. Furthermore, we have assumed no cou-
pling constraints, which implies that U 1,1

t+1 and U2,2
t+1 will

be feasible at time t + 1 for problem P1.

At the next time step (t + 1), the current states of the

two systems are denoted by x1,1
0,t+1 and x2,2

0,t+1. Since
the neighboring state information is exchanged between
nodes, or assumed to be measured, we have x1,2

0,t+1 =

x1,1
0,t+1 and x2,1

0,t+1 = x2,2
0,t+1 as well. We use the following
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notation:

x1
t = x1,1

0,t = x1,2
0,t , x1

t+1 = x1,1
0,t+1 = x1,2

0,t+1,

x2
t = x2,2

0,t = x2,1
0,t , x2

t+1 = x2,2
0,t+1 = x2,1

0,t+1,

x̃t = (x1
t , x

2
t ), x̃t+1 = (x1

t+1, x
2
t+1).

We can compute a bound on the value function as fol-
lows:

J1∗
N (x̃t+1) ≤ `1(x1

t+1, U
1,1
t+1, x

2
t+1, U

2,2
t+1) (25a)

= J1∗
N (x̃t) − ‖Qx1

t‖p − ‖Qx2
t‖p − ‖Q(x1

t − x2
t )‖p

−‖Ru1,1
0,t‖p − ‖Ru2,1

0,t‖p

(25b)

−
N−1∑

k=1

(‖Qx2,1
k,t‖p − ‖Qx2,2

k,t‖p) (25c)

−
N−1∑

k=1

(‖Ru2,1
k,t‖p − ‖Ru2,2

k,t‖p) (25d)

−
N−1∑

k=1

(‖Q(x1,1
k,t − x2,1

k,t)‖p − ‖Q(x1,1
k,t − x2,2

k,t)‖p). (25e)

It should be emphasized that in (25a) the cost function
`1 of problem P1 is evaluated using the feasible shifted
input sequence U2,2

t+1 for node 2 and the corresponding
state trajectory.

The cost function J1∗
N (x̃t) in (25b) is associated with the

optimal control solution U 2,1∗
t of P1. The cost `1 in (25a)

instead is evaluated at the sequence U 2,2
t+1 associated with

P2. The mismatch between the two control sequences
U2,2

t+1 in (24) and U2,1∗
t in (16) generates the terms in

(25d). The difference between these control sequences
generates also a mismatch between the state trajectories
of node 2 predicted at node 1 and predicted at node 2.
These are represented by the terms in (25c) and (25e).

Using the homogenity axiom of vector norms and apply-
ing ‖α‖p − ‖β‖p ≤ ‖α − β‖p leads to

J1∗
N (x̃t+1) ≤ J1∗

N (x̃t) − (terms in (25b)) (26a)

+

N−1∑

k=1

(

2‖Q(x2,2
k,t − x2,1

k,t)‖p + ‖R(u2,2
k,t − u2,1

k,t)‖p

)

. (26b)

Notice that the term (26b) arises from the control so-
lution mismatch between P1 and P2, and it represents

ε =
∑N−1

k=1 (2‖Q(xj,j
k,t − xj,i

k,t)‖p + ‖R(uj,j
k,t − uj,i

k,t)‖p) de-

fined in (23) for i = 1, j = 2. It follows that if inequal-
ity (22) holds, then J1∗

N (x̃t+1) ≤ J1∗
N (x̃t). This implies

that under the assumptions of Theorem 1, J1∗
N (x̃) is pos-

itive and non-increasing along the closed-loop trajecto-
ries, thus can be used as a Lyapunov function for node 1.

The same derivation applies to node 2 and its associated
cost function.

The rest of the proof follows from Lyapunov arguments,
close in spirit to the arguments of [13] where it is estab-
lished that the value function J∗

N (·) of the receding hori-
zon problem is a Lyapunov function for the closed-loop
system. Based on the hypothesis (A0) on the matrices
Q and R, inequality (22) is sufficient to ensure that the
state of the closed-loop system (21) converges to zero as
k → ∞. Stability follows from the fact that J1∗

N (x) and
J2∗

N (x) can be lower and upper bounded by functions
α(‖x̃‖) and β(‖x̃‖), where α, β : R

+ → R
+ are of class

K [19]. 2

Theorem 1 highlights the relationship between the sta-
bility of the decentralized scheme given in (13) and (12),
and the allowable prediction mismatch at all points in
the state space of the overall system. The term ε in in-
equality (22) is a function of the error between the tra-
jectories of node 2 predicted by node 1 and the one pre-
dicted by node 2 itself. The smaller the error, the larger
the set of initial states for which the value function will
decrease along the overall system trajectories.

Similar ideas can be used if instead of a terminal point
constraint, nonzero terminal cost and terminal set con-
straints Xf 6= 0 are used. In this case, the terminal set
has to be control invariant and the terminal cost is cho-
sen as a control Lyapunov function [19]. In the following
section we show how to extend the previous arguments
to a graph with more than two nodes.

4.2 Generalization to arbitrary number of nodes and
graph

The development of Section 4.1 carries over to any num-
ber of nodes and general graph structure. Let us denote
the decentralized receding horizon control law for the
overall system with

c(x̃k) =
[

u1,1∗
0,k (x1

k, x̃1
k), . . . , uNv,Nv∗

0,k (xNv

k , x̃Nv

k )
]

, (27)

obtained by applying the decentralized RHC policy of
each subproblem Pi described in (13) and (12) when the

current state is x̃k = [x1
k, . . . , xNv

k ]. Note that since there
are no coupling constraints, the feasible states for the
overall system is the cross product of the feasible states
associated with each node as defined in (18) and (19).
Consider the system model (3) and denote by

x̃k+1 = f (x̃k, c(x̃k)) , (28)

the closed-loop dynamics of the overall system. Suffi-
cient conditions for asymptotic stability of the closed-
loop system are given next.
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Theorem 2 Assume

(A0) Q = Q′ � 0, R = R′ � 0 if p = 2 and Q,R are
full column rank matrices if p = 1,∞.

(A1) The state and input constraint sets X i and U i con-
tain the origin for each node in their interior.

(A2) The following inequality is satisfied for each node
and all xi

t ∈ X i
0:

∑

j|(i,j)∈A

εi,j ≤ J i∗
0 , (29)

where

ε
i,j =

N−1∑

k=1

(

2‖Q(xj,j

k,t − x
j,i

k,t)‖p + ‖R(uj,j

k,t − u
j,i

k,t)‖p

)

, (30)

and

J
i∗
0 = ‖Qx

i
t‖p + ‖Ru

i,i
0,t‖p +

∑

j|(i,j)∈A

(‖Qx
j
t‖p + ‖Ru

j,i
0,t‖p)

+
∑

j|(i,j)∈A

‖Q(xi
t − x

j
t)‖p. (31)

Then, the origin of the closed loop system (28) is asymp-

totically stable with domain of attraction
∏Nv

i=1 X
i
0.

Proof: The proof follows along the lines of Theorem 1.
The difference is the derivation of stability condition
(29) for any particular node within an arbitrary graph
interconnection A. This is given next.

Consider the cost function (14) in Assumption 1 for any
node i. For more compact notation, we can define li,j as

li,j(xi, ui, xj , uj) = ‖Qxj‖p + ‖Q(xi − xj)‖p + ‖Ruj‖p,
(32)

and construct `i,j as

`i,j(xi
t, U

i,i
t , xj

t , U
j,i
t ) =

N−1∑

k=0

li,j(xi,i
k,t, u

i,i
k,t, x

j,i
k,t, u

j,i
k,t).

(33)

The value function J i
N (xi

t, x̃
i
t) = `i(xi

t, U
i,i
t , x̃i

t, Ũ
ı̃,̃ı
t ) of

node i will then have the following form:

`i(xi
t, U

i,i
t , x̃i

t, Ũ
ı̃,̃ı
t ) =

N−1∑

k=0

(‖Qxi,i
k,t‖p + ‖Rui,i

k,t‖p)

+
∑

j|(i,j)∈A

`i,j(xi
t, U

i,i
t , xj

t , U
j,j
t ),

(34)

where Ũ ı̃,̃ı
t = {U j,j

t |(i, j) ∈ A} and for a neighboring
node j, the shifted feasible solution sequence of problem
Pj is denoted by U j,j

t = [uj,j
1,t−1, . . . , u

j,j
N−1,t−1,0].

Using the notation introduced above, we can construct
the following upper bound on the cost function:

J
i∗
N (xi

t+1, x̃
i
t+1) ≤ `

i(xi
t+1, U

i,i
t+1, x̃

i
t+1, Ũ

ı̃,ı̃
t+1)

= J
i∗
N (xi

t, x̃
i
t)

− ‖Qx
i
t‖p − ‖Ru

i,i
0,t‖p −

∑

j|(i,j)∈A

‖Qx
j
t‖p −

∑

j|(i,j)∈A

‖Ru
j,i
0,t‖p

(35a)

−
∑

j|(i,j)∈A

‖Q(xi
t − x

j
t)‖p (35b)

−

N−1∑

k=1

∑

j|(i,j)∈A

(‖Qx
j,i

k,t‖p − ‖Qx
j,j

k,t‖p) (35c)

−

N−1∑

k=1

∑

j|(i,j)∈A

(‖Ru
j,i

k,t‖p − ‖Ru
j,j

k,t‖p) (35d)

−

N−1∑

k=1

∑

j|(i,j)∈A

(‖Q(xi,i

k,t − x
j,i

k,t)‖p − ‖Q(xi,i

k,t − x
j,j

k,t)‖p). (35e)

Using the homogenity axiom of vector norms and apply-
ing ‖α‖p − ‖β‖p ≤ ‖α − β‖p leads to

J i∗
N (xi

t+1, x̃
i
t+1) ≤ J i∗

N (xi
t, x̃

i
t) (36a)

− ‖Qxi
t‖p − ‖Rui,i

0,t‖p

−
∑

j|(i,j)∈A

‖Qxj
t‖p −

∑

j|(i,j)∈A

‖Ruj,i
0,t‖p

(36b)

−
∑

j|(i,j)∈A

‖Q(xi
t − xj

t )‖p (36c)

+
∑

j|(i,j)∈A

εi,j , (36d)

where εi,j was defined in (30).

The positive value function J i∗
N (xi, x̃i) is non-increasing

along the closed-loop trajectories and thus can be used
as a Lyapunov function for node i if the sum of terms in
(36b)+(36c)+(36d) is nonpositive:

∑

j|(i,j)∈A

εi,j + (terms in (36b) and (36c))
︸ ︷︷ ︸

−Ji∗
0

≤ 0, (37)

which leads to the inequality
∑

j|(i,j)∈A εi,j ≤ J i∗
0 shown

in the stability condition (29) of Theorem 2. 2

Remark 6 Assumption (A2) of Theorem 2 extends As-
sumption (A2) of Theorem 1 to arbitrary graphs and
number of nodes. In general, nodes may have multiple
neighbors, which lead to additional terms in inequality
(29) compared to (22).

Theorem 2 presents a sufficient condition for testing the
stability of the decentralized scheme introduced in Sec-
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tion 3. It involves local conditions to be tested at each in-
dividual node and requires bounding the prediction mis-
match between neighboring subsystems. These results
follow in the footsteps of one of the stability analysis
methods presented in the survey paper [12], where sta-
bility tests for large-scale interconnected systems are for-
mulated in terms of the individual Lyapunov functions
and bounds on subsystem interconnections. In our work,
the concept of these bounds has an exact relationship
with the prediction mismatch between neighboring sub-
systems. It is clear that for large scale systems, the sta-
bility condition (29) leads to complexity reduction. The
formulation of these local stability tests is highlighted in
the next section for the case of linear systems.

4.3 Heterogeneous unconstrained LTI subsystems

For heterogeneous unconstrained linear time-invariant
(LTI) subsystems, with state matrices Ai ∈ R

n×n, Bi ∈
R

n×m, i = 1, . . . , Nv, the stability condition (29) when
p = 2 is used in Assumption 1 leads to testing the semi-
definiteness of Nv matrices. The stability condition (29)
for a particular node i involves the states of its neighbors
xj,j

k,t predicted at time t by the neighbor j itself, (i, j) ∈

A. A predicted neighboring state xj,j
k,t is a function of the

input sequence uj,j
k,t computed at node j, which is then a

function of the initial states of all the neighbors of node
j. This implies that the test for node i involves the states
of node i, all its neighbors’ states, and the states of the
neighbors of neighbors. Thus the dimension of the local
stability tests are limited by the maximum size of any
subgraph with diameter less than or equal to four. In this
section, we will describe the local semi-definiteness tests
deriving from (29). An example for the case of identical
subsystems can be found in [16].

Since the local RHC problems are time-invariant, with-
out loss of generality we set the generic initial time to
t = 0 for notational simplicity. Consider node i with
initial state xi

0. As defined in Section 2, x̃i
0 denotes

the states of its neighbors at the same time instant.
We denote the states of the neighbors of neighbors to
node i (which are not connected to the i-th node) by
x̆i

0 =
{
xq ∈ R

nq

|∃j (j, q) ∈ A, (i, j) ∈ A, (i, q) /∈ A
}
.

We use x̄i
0 = [xi

0, x̃i
0, x̆i

0] to denote the collection of self,
neighboring and two-step neighboring states of node i.
Using the notation ui,i

[0,N−1],0 = [ui,i
0,0, . . . , u

i,i
N−1,0] for

time sequences, the solution to problem (13) associated
with node i can be expressed as







ui,i

[0,N−1],0

ũi,i

[0,N−1],0

ŭi,i

[0,N−1],0







=







Ki
11 Ki

12 0

Ki
21 Ki

22 0

0 0 0













xi
0

x̃i
0

x̆i
0







=







Ki
1

Ki
2

0







x̄i
0, (38)

when the subsystems (1) are unconstrained LTI systems.
Based on (38), we will use the following notation for k-

step ahead predicted input values:

ui,i
k,0 =

[

Ki
11,k Ki

12,k 0
]

︸ ︷︷ ︸

Ki
1,k

x̄i
0, uj,i

k,0 =
[

Kj,i
21,k Kj,i

22,k 0
]

︸ ︷︷ ︸

K
j,i

2,k

x̄i
0,

(39)

where Ki
1,k and Kj,i

2,k are submatrices of Ki
1 and Ki

2,
respectively.

We use the above notation to express the solu-
tion uj,j

[0,N−1],0 to problem (13) associated with node

j, (i, j) ∈ A as an explicit function of the initial states:

uj,j

[0,N−1],0 =
[

i
K

j
11

i
K

j
12

i
K

j
13

]

x̄i
0, (40)

and thus

uj,j
k,0 =

[
i
K

j
11,k

i
K

j
12,k

i
K

j
13,k

]

︸ ︷︷ ︸

i
K

j
1,k

x̄i
0. (41)

Note that the control input uj,j
k,0 can also be expressed

as a function of x̄j
0 (e.g. in the local stability condition

associated with node j), thus the upper left index i is
needed to distinguish the above controller gain matrix
entries.

Using (39) and (41), we can express predicted states for
any node j, (i, j) ∈ A as

xj,j
k,0 = Ψj,j

k x̄i
0, xj,i

k,0 = Ψj,i
k x̄i

0, (42)

where the matrix Ψj,j
k is a function of Ai, {Aj |(i, j) ∈

A}, Bi, {Bj |(i, j) ∈ A} and i
K

j
1 . Similarly, matrix Ψj,i

k

is a function of Ai, {Aj |(i, j) ∈ A}, Bi, {Bj |(i, j) ∈ A}

and Kj,i
2 .

Based on equations (39), (41) and (42), all the terms
in the stability condition (29) can be expressed as a
quadratic form of x̄i

0. The terms on the left side of (29)
can be expressed using the following two matrices:

Θi
N =

N−1∑

k=1

∑

j|(i,j)∈A

2(Ψj,j
k − Ψj,i

k )′Q(Ψj,j
k − Ψj,i

k ),

(43a)

Γi
N =

N−1∑

k=1

∑

j|(i,j)∈A

( i
K

j
1,k −Kj,i

2,k)′R( i
K

j
1,k −Kj,i

2,k).

(43b)

Denoting the number of neighbors of node i by N i
v, the

following matrices are used to express terms on the right
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side of (29):

Ri
1 = (Ki

1,0)
′R(Ki

1,0), (44a)

Ri
2 = (Ki

2,0)
′(INi

v
⊗ R)(Ki

2,0), (44b)

Q1 =







Q 0 0

0 0 0

0 0 0







, Qi
2 =







0 0 0

0 INi
v
⊗ Q 0

0 0 0







, (44c)

Qi
3 = D′

1

(
INi

v
⊗ Q

)
D1, (44d)

D1 =





[

1Ni
v
−INi

v

]

⊗ In

0



 , (44e)

where 1Ni
v

denotes a column vector of ’1’-s of size N i
v.

Using the matrices in (43)-(44), the stability condition
(29) for node i is equivalent to testing whether

Θi
N + Γi

N ≤ Q1 + Ri
1 + Qi

2 + Ri
2 + Qi

3. (45)

Stability of the overall system can be concluded if (45)
holds for all i ∈ {1, . . . , Nv}.

4.4 Sum of value functions as Lyapunov function

If we consider the sum of individual cost functions as a
Lyapunov function for the entire system, the value func-
tion inequality such as the one in (26) will involve signif-
icantly more terms than the case presented in the previ-
ous sections [14]. In fact, this condition might be less re-
strictive than the one presented in (29). Even if the indi-
vidual inequalities (26) presented in the previous section
do not hold for every subproblem Pi, the sum of indi-
vidual value functions could still be used as a Lyapunov
function for the entire system. This will be the case
if

∑

i∈I

∑

j|(i,j)∈A εi,j < −
∑

i∈Ī

∑

j|(i,j)∈A εi,j , where

I is the set of nodes for which the Lyapunov function
J i∗

N (xi, x̃i) is decreasing and Ī is its complement.

4.5 Exchange of information

Stability conditions derived in the previous sections
show that it is the mismatch between the predicted
and actual control solutions of neighbors that plays a
central role in the stability problem. Therefore we are
prompted to investigate how sufficient conditions for
stability could be improved by allowing the exchange of
optimal solutions between neighbors. Examining con-
dition (22) from this standpoint, we can immediately
make two general observations:

(1) Using bounds on the mismatch between the pre-
dicted and actual inputs and states of neighbors, the
stability condition (22) could be made less restric-
tive by reducing the size of positive terms in (26b),
which adversely affect the value function variation

of (26). In other words, using a coordination scheme
based on information exchange, it may be possible
to reduce the size of ε to decrease the left side of
inequality (22).

(2) Also, one can observe that as each node is getting
closer to its equilibrium (in our example the origin)
the right side of inequality (22) starts to diminish,
which leads to more stringent restrictions on the
allowable prediction mismatch between neighbors,
represented by the left side of the inequality.

These observations suggest that information exchange
between neighboring nodes has a beneficial effect in
proving stability, if it leads to reduced prediction mis-
match. As each system converges to its equilibrium,
assumptions on the behavior of neighboring systems
should get more and more accurate to satisfy the sta-
bility condition (22). In fact, as system (21) approaches
its equilibrium the right hand side of inequality (22)
decreases. In turn, the left hand side of inequality (22)
has to diminish as well. This leads to the counter-
intuitive conclusion that an increasing information ex-
change rate between neighbors might be needed when
approaching the equilibrium. These conclusions are in
agreement with the stability conditions of a distributed
RHC scheme proposed in [9], where it is shown that
convergence to a smaller neighborhood of the system
equilibrium requires more frequent updates. However,
our simulation examples [5,15,20] suggest that the pre-
diction errors between neighbors tend to disappear as
each node approaches its equilibrium, and the predic-
tion mismatch converges to zero at a faster rate than
the decay in the right hand side. A different, sequential
information exchange scheme can be found in [21, 22],
which is valid for a special graph structure based on a
leader-follower architecture.

Remark 7 If coupling constraints are present, ensur-
ing feasibility in a decentralized receding horizon control
scheme without introducing excessively conservative as-
sumptions is a challenging problem. We refer the reader
to the works [4–6,11,14,17,21,24] and references therein
for a detailed discussion on various approaches to con-
straint fulfillment in such decentralized schemes.

5 Conclusions

A decentralized receding horizon control scheme for de-
coupled systems has been proposed and its stability in-
vestigated. We have highlighted how the derived sta-
bility conditions lead to complexity reduction in sta-
bility analysis and as an example, local matrix semi-
definiteness tests have been provided for the case of het-
erogeneous unconstrained LTI systems. Each test in-
volves the states of as many nodes as are included in
the “one-neighbor-expansion” of the subgraph associ-
ated with each subproblem. This means that the size
of these local tests are limited by the maximum size of
any subgraph with diameter less than or equal to four.
Thus the largest reduction in complexity can be expected
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when the diameter of the overall interconnection graph
is large.

Systematic design of decentralized RHC controllers and
the appropriate choice of weighting matrices is a topic
of current research. As a first step in this direction, the
work in [3] studies properties of stabilizing distributed
LQR control solutions for decoupled systems. Using al-
gorithms described in [1, 2], the decentralized receding
horizon framework proposed in this paper has been ap-
plied in simulation to a number of large scale control
problems with success. Different methodologies of han-
dling the feasibility issue were implemented on numer-
ous examples. References to formation flight application
examples and to a paper machine control problem can
be found in [5, 14].
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