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Abstract Chemical messengers are the primary mode of

intracolony communication in the majority of social insect

species. Chemically transmitted information plays a major

role in nestmate recognition and kin recognition. Physical

and behavioral castes often differ in chemical signature, and

queen effects can be significant regulators of behavior and

reproduction. Chemical messengers themselves differ in

molecular structure, and the effects on behavior and other

variables can differ as a consequence of not only molecular

structure of the chemical messenger itself but also of its

temporal expression, quantity, chemical blends with other

compounds, and effects of the environment. The most

studied, and probably the most widespread, intracolony

chemical messengers are cuticular hydrocarbons (CHCs).

CHCs are diverse and have been well studied in social

insects with regard to both chemical structure and their role

as pheromones. CHCs and other chemical messengers can

be distributed among colony members via physical contact,

grooming, trophallaxis, and contact with the nesting sub-

strate. Widespread intracolony distribution of chemical

messengers gives each colony a specific odor whereby

colony members are integrated into the social life of the

colony and non-members of the colony are excluded. Col-

ony odor can vary as a function of genetic diversity within

the colony, and the odor of a colony can change as a func-

tion of colony age and environmental effects. Chemical

messengers can disseminate information on the presence of

reproductives and fertility of the queen(s) and workers, and

queen pheromone can play a significant role in suppressing

reproduction by other colony members. New analytical

tools and new avenues of investigation can continue to

expand knowledge of how individual insects function as

members of a society and how the society functions as a

collective.

Keywords Colony closure � Colony cohesion �
Colony odor � Cuticular hydrocarbons � Kin recognition �
Nestmate recognition � Pheromones � Social interactions

[The antenna of the ant is] covered with olfactory,

tactile (or aural) organs, able to taste, touch, and hear

all sides of an object at once, without division or

separation, without lapse of time between one mode of

apprehension and another.

from The Feel of the Smell Itself by Mary Mackey

Colwell

(Mary Mackey Colwell is a pseudonym for Mary

Mackey, used with permission)

Introduction

Communication among members of a social group is nec-

essary to delineate group membership, coordinate activities,

and identify castes or individuals and their roles in the

society. Indeed, without communication there could be no
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society. Social communication can be chemical, visual,

acoustical, tactile, or substrate-borne. The most common

mode of communication in social insects is chemical, and

one of the challenges in the study of chemical communi-

cation is to understand the cues and signal patterns involved

in colony cohesion that are essential for recognition of

species, populations, colonies, castes, and individuals.

Elucidation of the mechanisms underlying these different

types of recognition is crucial to our understanding of

communication between social insects and the evolutionary

advantages they may confer (Hölldobler and Wilson, 1990).

Chemical communication is the most ancient and wide-

spread sensory information mode in animals (Candolin,

2003). It is efficient under almost all conditions and can be a

rapid and efficient mode of disseminating information

concerning traits such as sex recognition, sexual receptivity,

health status, motivation to fight, dominance, and task-

specificity. Most social insects employ chemicals as their

major mode of communication to coordinate important life

processes. Social insects can be thought of as ‘‘chemical

factories’’ due to their high number of exocrine glands

(Billen and Morgan, 1998). At least, 75 anatomically dis-

tinct exocrine glands have been found across all ant species

(Billen, 2011). The exocrine glands of social insects pro-

duce diverse chemicals, collectively called semiochemicals,

which have intraspecific (pheromonal) and/or interspecific

(allelochemical) actions (Glossary box). Colony activities

are often coordinated via pheromones, and in some cases

individuals can change the meaning of transmitted infor-

mation by varying the concentration of a pheromone or by

mixing pheromones from multiple glands (Billen, 2011).

The capacity to recognize nestmates is well developed in

most social insect species (Crozier and Pamilo, 1996), and

the majority of social insects use chemical communication

in doing so. The ability to distinguish familiar nestmates

from unfamiliar intruders can trigger agonistic defensive

behaviors directed toward intruders, which can be either

allospecific or non-nestmate conspecific, and thereby

maintain colony integrity and colony closure (Glossary

box). Nestmate recognition is a vital adaptation with strong

selective pressure for accuracy. For example, nestmate

recognition and aggressive behavior are needed to prevent

robbers from stealing honeybees’ colony resources (Seeley,

1985). Colony closure can be based on different recognition

systems. One hypothesis is that workers discriminate nest-

mates from unfamiliar intruders by comparing intruders’

odor with a template of the colony odor and reject indi-

viduals carrying unfamiliar cues while admitting

individuals with familiar cues (Guerrieri et al., 2009), a

‘‘desirable-present’’ system (Sherman et al., 1997). In a

second hypothesis, inspection of an individual’s odor could

be to search for undesirable cues that are independent of the

presence of desirable cues to determine acceptance or

rejection, an ‘‘undesirable-absent’’ system (Couvillon and

Ratnieks, 2008).

Chemical nestmate discrimination systems in social

insects are based primarily on cuticular hydrocarbon com-

pounds (CHCs), and these have been described in many

species (Martin and Drijfhout, 2009a; Ozaki and Wada-

Katsumata, 2010 and reference therein). In addition to

CHCs, peptides and proteins are present on the cuticle of

social insects such as honeybees (Zupko et al., 1993), and

these compounds could play a role as pheromones.

Although cuticular peptides are potentially involved in

nestmate recognition, chemical analyses and behavioral

observations show that polar cuticular compounds such as

peptides are not colony-specific and not involved in colony

recognition cues (Bruschini et al., 2011). Similarly, even

though cuticular peptide patterns may vary with reproduc-

tive status and age in termites (Hanus et al., 2010), they do

not play a role in intracolony recognition cues (Dapporto

et al., 2008).

Several reviews on the roles of semiochemicals in social

insects will be mentioned in this review, but none of these

have compared chemical communication in all intracolony

aspects across the four major taxa of social insects: ter-

mites, social wasps, ants, and social bees. Eusociality

evolved independently in these taxa, noneless they

evolved similar modalities and patterns of chemical com-

munication (Brady et al., 2006; Hines et al., 2007; Nowak

et al., 2010). In addition to comparisons across taxa, the

review highlights proximate factors that influence intra-

colony chemical communication. A comparative approach

and attention to proximate factors can enhance an under-

standing of the evolution, success, and maintenance of

chemical communication in insect societies. Topics

included in this review are chemical messengers them-

selves, behaviors that transmit chemical information,

recognition of nestmates and kin, environmental effects,

castes and task specialization, and queen effects on colony

cohesion.

Chemical communication is also a significant component

of alarm reactions, recruitment to food sources, nest finding,

and territoriality (Hölldobler and Wilson, 1990), but because

this review focuses on within-colony chemical communi-

cation between individuals or via the nesting substrate, these

topics are not covered here. The review emphasizes behav-

ioral contexts for chemical modalities in the intracolony life

of these social insects, with a target readership of social

insect biologists broadly rather than specialized chemical

ecologists. Vibroacoustic modalities of intracolony com-

munication, which also play significant roles in social

insects, are treated in a companion review (Hunt and Richard,

in press).
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Origin and dynamics of colony label recognition cues

Genetic diversity plays a role in nestmate, matriline

and patriline recognition

Genetic diversity varies between species and among popu-

lations of a single species. In social insects genetic diversity

can also vary among nestmates (Ross, 2001), depending on

the number of queens and their mating history: monogyny,

polygyny, monandry, and/or polyandry. Components of

chemical recognition cues can be inherited, therefore

polygyne colonies with different matrilines possess greater

cue diversity than monogyne colonies (Vander Meer and

Morel, 1998). This is reflected in workers from polygyne

colonies being less aggressive toward intraspecific non-

nestmates than are workers in monogyne colonies (Bennett,

1989; Sundström, 1997), which could be due to subtle dif-

ferences of chemical profiles between monogyne and

polygyne workers (Lin et al., 2010). A correlation between

aggression and genetic distance between workers from

different colonies and different populations exists in the

polygynous and polydomous ants Formica polyctena and F.

pratensis (Beye et al., 1997; Beye et al., 1998). However,

the degree of colony social closure and genetic diversity are

not correlated in the socially polymorphic (both monogyne

and polygyne colonies) species F. selysi (Rosset et al.,

2007).

Chemical communication could play a significant role in

the evolution of ant unicoloniality (Helanterä et al., 2009,

Glossary box). In the Argentine ant, Linepithema humile, compar-

ative studies between native and introduced populations

suggest that loss of genetic diversity and correspondingly

lower levels of aggression could be primarily responsible

for the evolution of unicoloniality (Tsutsui et al., 2000).

Unicoloniality could also be due to selective mixing of non-

nestmates that share high levels of phenotypic similarity

(Giraud et al., 2002). A correlation of between-colony

similarity in CHC profiles of both workers and queens and

between-colony genetic similarity (Vasquez et al., 2009)

could be a proximate factor that facilitates colony fusion.

Nestmate recognition cues and the production of CHCs are

influenced by genetic background in the Argentine ant and

three other unicolonial species in the genus Temnothorax

(Tsutsui et al., 2000; Suarez et al., 2002; Tsutsui et al., 2003;

Foitzik et al., 2007). Unicoloniality does not always depend

on genetic similarity, however, as it also exists in highly

polygyne species such as Formica paralugubris in which

individuals discriminate among nestmates (Holzer et al.,

2006).

Many studies published before 2000 examined matriline

and patriline discrimination in ant and wasp colonies

without confirming such discrimination. However, different

matrilines’ cuticular compound profiles provide sufficient

information for matriline discrimination in the wood ant

Formica truncorum and the wasps Polistes dominula

[dominulus] and Vespa crabro (Boomsma et al., 2003; Dani

et al., 2004b). In monogyne colonies composed of different

patrilines, full sisters and half sisters differ in their cuticular

hydrocarbon profiles in Acromyrmex octospinosus (Nehring

et al., 2011), Formica truncorum (Boomsma et al., 2003),

Formica exsecta (van Zweden et al., 2011), the hornet

Vespa crabro (Dani et al., 2004b), and several species of

Apis honeybees (Getz and Smith, 1986; Arnold et al., 1996).

Although the information conveyed by cuticular com-

pounds may be accurate enough to permit potential within-

patriline cooperation in A. octospinosus, the heritable

component of recognition cues appears to be too weak and

error-prone in F. truncorum, F. exsecta, and V. crabro. In

honeybee colonies, which are monogynous and polyan-

drous, CHCs differ between patrilines (Arnold et al., 1996).

It cannot be ruled out that patriline discrimination in hon-

eybees exist due to different conclusions in data

interpretation, and a study found no evidence for subfamily

discrimination among honeybee dancers and their followers

(Kirchner and Arnold, 2001).

The presence or absence of an efficient queen affects

worker recognition

The role played by the queen in colony closure and colony

recognition has been well documented in several species

and has revealed a high variability among species.

The presence of the queen’s pheromones that serve as

recognition cues can influence nestmate recognition and

intraspecific interactions in several ant species (Carlin and

Hölldobler, 1987; Provost, 1987; Keller and Passera, 1989;

Lahav et al., 1998; Vander Meer and Alonso, 2002). In

orphaned Solenopsis invicta colonies, worker aggression

toward non-nestmate conspecifics drops (but still exists with

interspecific interactions) and re-establishes following

acceptance of a newly mated queen (Vander Meer and

Alonso, 2002). The new queen exposes workers to her

queen primer pheromone, the level of which correlates with

workers’ sensitivity to colony-level differences in cuticular

hydrocarbons. Increased sensitivity is linked to higher lev-

els of octopamine in workers’ brains of queenright colonies

compared with orphan colonies (Vander Meer et al., 2008).

However, the presence of the queen does not influence

nestmate recognition cues in several other ant species

(Boulay et al., 2004; Caldera and Holway, 2004; Richard

et al., 2004; van Zweden et al., 2009).

Honeybee queens produce pheromones that act as

releaser pheromones and regulate many aspect of colony

organization, worker behavior, and physiology (Slessor

et al., 2005; Le Conte and Hefetz, 2008); therefore, removal

of the queen has dramatic consequences for colony

Intracolony chemical communication in social insects 277

123



functioning. Queenless workers exposed to queen mandib-

ular pheromone have significantly different CHC profiles

than those of queenright workers in the colony from which

the queenless sample was taken. Bees of the queenright

colony respond with agonistic behavior toward re-intro-

duced bees from queenless fragments of the original colony,

which are no longer recognized as nestmates even if treated

with queen mandibular pheromone. However, queenright

workers can discriminate re-introduced queenless nestmate

workers treated with queen mandibular pheromone from

non-nestmates (Fan et al., 2010).

Environmental factors affect nestmate recognition

Environmental factors including temporal and seasonal

variation, nesting substrate, diet, social environment, and

the presence of symbionts and pathogens can affect nest-

mate recognition. Colony odor can change seasonally and

over the lifetime of a colony (Vander Meer et al., 1989;

Bowden et al., 1998; Nielsen et al., 1999). For example,

workers of the same Formica truncorum colony collected a

few months apart had quantitative differences in individual

CHC profiles (Nielsen et al., 1999).

Laboratory colonies live in different environments

compared with conspecifics in their natural habitat, and they

differ in both quantitative and qualitative CHC profiles. For

example, in the harvester ant Pogonomyrmex barbatus the

quantity of alkanes is higher in laboratory colonies (Tissot

et al., 2001). Nesting substrate can influence chemical

profiles used for nestmate recognition in the ants Lepto-

thorax nylanderi (Heinze et al., 1996), Acromyrmex

octospinosus, and A. echinatior (Richard et al., 2007a).

Aggression tests show that workers of colonies maintained

in the laboratory are less aggressive toward conspecific non-

nestmates than field colonies (Obin, 1986; Obin and Vander

Meer, 1988; Crosland, 1989). Nest substrate is also involved

in wasp colony odor (Pfennig et al., 1983; Singer and Es-

pelie, 1992; Gamboa et al., 1996; Singer and Espelie, 1996).

Recognition cues also can vary due to diet changes

(Silverman and Liang, 2001; Richard et al., 2004; Sorvari

et al., 2008). CHCs from prey newly present in a worker’s

chemical profile can alter nestmate recognition and elicit

aggression from colony mates (Liang and Silverman, 2000;

Liang et al., 2001). In the leaf-cutting ant Acromyrmex

subterraneus, workers from divided colonies fed with

leaves from different species than the mother colony are

attacked by workers kept in their mother colony, whereas

workers from divided colonies fed with the same diet as the

mother colony are accepted by workers in their mother

colony (Richard et al., 2004). Individual workers’ CHC and

postpharyngeal gland profiles were similar among experi-

mental groups receiving the same diet, and even more

similar between individuals from the same sub-group,

thereby suggesting odor homogenization may occur via

individual interactions including grooming and also via

contact with the symbiotic fungus (Richard et al., 2004). In

addition, workers of different colonies of Acromyrmex oc-

tospinosus fed with the same diet were less aggressive

toward each other in comparison with workers from dif-

ferent colonies fed with different diets (Jutsum et al., 1979).

These studies demonstrate a strong impact of leaf diversity

on colony odor and the ants’ capacity to update it via

grooming (Richard and Errard, 2009). In Formica aquilo-

nia, environmental changes due to anthropogenic action

increase levels of colony aggression in correlation with

increased differences in between-colony cuticular chemical

profiles attributable to diet composition (Sorvari et al.,

2008). Rearing colonies under uniform conditions and

receiving the same food source diminishes aggressive

behavior in Solenopsis invicta and the wasp Polistes fusc-

atus (Gamboa et al., 1986; Obin and Vander Meer, 1988)

and favors colony fusion (Buczkowski et al., 2005).

The intestinal bacteria community composition in ter-

mites is diverse and colony-specific (Matsuura, 2001 and

reference therein). Experiments with the termite Reticuli-

termes speratus revealed that changing the composition of

the bacterial community changed the recognition behavior

toward nestmates, resulting in aggressive behavior. Thus,

gut symbionts play an important role in nestmate recogni-

tion (Matsuura, 2001), but the proximate mechanisms

involved in recognition pattern changes remain unknown.

Chemical aspects of nestmate recognition

The insect cuticle is covered by a layer of waxy substances

that provide waterproofing. This waxy layer consists pre-

dominantly of lipids and contains aldehydes, alcohols,

esters, fatty acids, and hydrocarbons (Fig. 1). Among CHCs

(Glossary box) n-alkanes are often the dominant group and

have a key role in reducing water loss due to their high

melting point and structure (Gibbs, 1998), whereas alkenes

are believed to be inefficient waterproofing compounds

(Gibbs, 1995). High levels of n-alkanes are associated with

species living in arid environments (Hadley and Schultz,

1987), and in a number of ant species n-alkanes are produced

in higher quantities by foragers than nest workers (Wagner

et al., 1998; Martin and Drijfhout, 2009b). Honeybee for-

agers have more n-alkanes than newly emerged and nurse

bees (Kather et al., 2011), indicating protection from water

loss for the foragers. In addition to a role in waterproofing,

CHCs convey information about species identification, sex

recognition, nestmate recognition, task-specificity (mor-

phological and behavioral caste, fertility, age), and health
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(De Biseau et al., 2004; Howard and Blomquist, 2005;

Monnin, 2006; Richard et al., 2007a; Richard et al., 2007b;

Richard et al., 2008; Nunes et al., 2009; Weil et al., 2009;

Blomquist and Bagnères, 2010; Backx et al., 2012; Borges

et al., 2012; Richard et al., 2012).

Cuticular hydrocarbons play the major role in kin

recognition

Nestmate discrimination is generally based on complex

mixtures of CHCs (Boomsma and Franks, 2006). Perception

of CHCs usually is possible at a short distance, but can

necessitate direct contact to enable perception of compo-

nents with no or low volatility (Brockmann et al., 2003;

Brandstaetter et al., 2008), although analysis at high tem-

perature reveals volatile properties of alkanes of up to 29

carbons in honeybee foragers (Schmitt et al., 2007). The

diversity and proportions of CHCs play a fundamental role in

colony and nestmate recognition cues in wasps (Dani et al.,

1996; Lorenzi et al., 1997; Ruther et al., 1998; Panek and

Gamboa, 2000; Dani et al., 2001; Sledge et al., 2001; Cervo

et al., 2002; Tannure-Nascimento et al., 2007), in honeybees

(Breed, 1998b), in ants (Lahav et al., 1999; Boulay et al., 2000;

Akino et al., 2004; Richard et al., 2004; Greene and Gordon,

2007; Richard et al., 2007a; Martin and Drijfhout, 2009a), and

in termites (Kaib et al., 2004; Dronnet et al., 2006).

CHC blends are diverse, with each species generally

possessing a unique CHC profile (Richard et al., 2007b;

Martin and Drijfhout, 2009a) and each colony of that spe-

cies having a unique chemical signature characterized by

differences in the mixture of the hydrocarbon groups. For-

eign CHC mixtures elicit agonistic behavior (Greene and

Gordon, 2007; Torres et al., 2007; Yusuf et al., 2010), and

acceptance of introduced unrelated foragers workers by

guards can be experimentally facilitated by washing the

CHCs from the foragers (Breed et al., 2004). In most cases,

nestmate recognition is linked to a mixture of CHCs, but in

Formica japonica and F. exsecta Z9-alkenes are key nest-

mate recognition components (Akino et al., 2004; Martin

et al., 2008). The role of these compounds in colony sig-

nature was confirmed by topical application on live ants of

both naturally occurring and synthetic compounds that

resulted in increased aggression directed toward coated

nestmates (Martin et al., 2008). Several social insect species

have homologous hydrocarbons with different carbon chain

lengths but the methyl group is in the same position. In

Linepithema humile, topical application of worker CHC

extract enriched of one out of eight different synthetic

compounds revealed differences in aggressive behavior

according to the chain length with the same branch position

and also to the branch position when the chain length is

identical (van Wilgenburg et al., 2010).

Martin and Drijfhout (2009a) found no association

between CHC profile and phylogeny. In contrast, a phylo-

genetic analysis by van Wilgenburg et al. (2011) indicates

gradual evolution of CHC profiles, reveals structural types

of CHCs occur only in some ant species, and suggests abrupt

evolutionary transitions in the biosynthetic pathway of

different lineages.

In wasps, chemically washed non-nestmates were attacked

less than unwashed non-nestmates (Lorenzi et al., 1997;

Cervo et al., 2002). CHCs washed from single individuals

of the wasps Polistes dominula [dominulus], P. biglumis

bimaculatus, Liostenogaster flavolineata, and Vespa crabro

that then were reapplied on either dead or on washed living

individuals, and also the application of synthesized hydro-

carbons on the cuticles of workers, revealed that some CHC

structural groups play a greater role in recognition than

others (Dani et al., 1996; Lorenzi et al., 1997; Ruther et al.,

1998; Dani et al., 2001; Sledge et al., 2001; Cervo et al.,

2002). Topical application on live wasps of methyl-bran-

ched alkanes or alkenes elicits agonistic behavior when

treated wasps enter the colony, but similar behavior does not

occur in response to n-alkanes (Dani et al., 2001). In addi-

tion to playing a role in species, colony, and nestmate

recognition, CHCs have been shown to mediate discrimination

among individuals (Breed, 1998a; Howard and Blomquist,

2005).

Fig. 1 Chemical structure of the organic compounds
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Behavioral mechanisms for chemical circulation

Cuticular hydrocarbons are transferred

within and among individuals

Insect hydrocarbons are synthesized by specific cells called

oenocytes (Martin and Ramalho-Ortigao, 2012) in the fat

body of adult insects (Ferveur et al., 1997; Fan et al., 2003).

In several insects including ants, newly synthesized

hydrocarbons are internally transferred by lipophorin to

storage tissues and organs including the cuticle and the

postpharyngeal gland (Van der Horst, 1990; Soroker and

Hefetz, 2000; Schal et al., 2001). Newly synthesized

hydrocarbons move bidirectionally between the cuticle and

the postpharyngeal gland during both selfgrooming and

allogrooming (Dahbi et al., 1999; Soroker and Hefetz, 2000;

Lucas et al., 2004). During selfgrooming, hydrocarbons

accumulate on the basitarsal brushes and then are trans-

ferred to the postpharyngeal gland as the forelegs are

groomed. Subsequently, the hydrocarbons are distributed

among all colony members via allogrooming, as described

for Pachycondyla apicalis (Hefetz et al., 2001; Soroker

et al., 2003). Full understanding of the transport and the

deposition of hydrocarbons remains a challenge for future

research (Bagnères and Blomquist, 2010).

Trophallaxis and allogrooming distribute chemicals

used for colony odor

Trophallaxis occurs in termites (Suàrez and Thorne, 2000),

ants (Hölldobler and Wilson, 1990; Moreira et al., 2006;

Richard and Errard, 2009; Buffin et al., 2011), wasps (Hunt,

2007; Hunt, 2012), and bees (Winston, 1987) (Glossary box).

Transfer of liquid can also occur by pseudotrophallaxis, or the

‘‘social bucket,’’ in which liquid moves via capillarity

between individuals during contact of one another’s mandi-

bles (Hölldobler and Wilson, 1990). Trophallaxis plays a role

in the dynamic processes of colony odor homogenization

including recognition cues (Vander Meer and Morel, 1998;

Boulay et al., 2000; Lenoir et al., 2001; Chapuisat et al., 2005;

Richard and Errard, 2009) or behavior appeasement effects

between nestmates in Leptothorax nylanderi (Heinze, 1996).

Allogrooming also facilitates colony odor homogeniza-

tion and is an efficient way to continually update colony

odor in response to endogenous and exogenous variation.

Self-grooming enables an individual to update its individual

odor and maintain chemical perception acuity of the

antennae (Böröczky et al., 2013). Cuticular compounds can

also be passively transferred by body contact (Vauchot

et al., 1998). In many ant species allogrooming distributes

cuticular hydrocarbons from the postpharyngeal gland, in

which compounds groomed from other individuals have

been stored, making this gland an organ that mixes chemical

cues (Meskali et al., 1995; Soroker et al., 1998; Lenoir et al.,

2001). Hydrocarbon biosynthesis appears to be lower in

queens than in workers, but the amount of CHCs in queens’

postpharyngeal glands is higher (Lahav et al., 1998), indi-

cating that queens receive more CHCs than they give during

social interactions. Isolated groups of Camponotus fellah

and Acromyrmex subterraneus workers have different

postpharyngeal and CHC chemical profiles than those in the

colony of origin (Boulay et al., 2000; Richard et al., 2004).

Reunification leads to reconvergence of workers’ chemical

profiles (Boulay et al., 2004). Both trophallaxis and

grooming are important modes for the distribution of colony

odor in C. fellah (Boulay et al., 2000; Boulay et al., 2004),

Formica polyctena (Aubert and Richard, 2008), and Cata-

glyphis iberica (Dahbi and Lenoir, 1998b; Dahbi et al.,

1999).

The rate of interindividual hydrocarbon transfer is

affected by species-specific frequency of both trophallaxis

and allogrooming (Soroker et al., 2003, and references

therein). In the ponerine ant Pachycondyla apicalis workers

perform little allogrooming and no trophallaxis, so little

hydrocarbon is transferred, but it is sufficient for colony

odor homogenization in small colonies (Soroker et al.,

1998).

Immune stimulation modulates social interactions

In honeybees, immunochallenged-stimulated workers have

different cuticular chemical profiles than untreated indi-

viduals of the same colony (Richard et al., 2008; Richard

et al., 2012). Individuals with changed profiles elicit more

social contact, fewer trophallactic exchanges, and potential

segregation of unhealthy individuals (Aubert and Richard,

2008; Richard et al., 2008; Richard et al., 2012). The de-

crease of social interactions could limit the spread of patho-

genic infection. When ants are infected with a generalist

insect pathogenic fungus, social interactions between infected

and uninfected ants decrease, but cuticular chemical profiles

were not altered (Bos et al., 2012).

Chemical regulation of intracolony division of labor

Odor is acquired during a sensitive period

Colony odor recognition may be innate via a recognition

template, or it may be acquired during development through

processes such as learning or imprinting during a sensitive

period (Jaisson, 1987). The sensitive period may occur

during development (Isingrini et al., 1985; Cotoneschi et al.,

2007) and/or during the first hours after eclosion when it can

be learned during interactions with nestmates via transfer of

hydrocarbons from adults to callows (recently emerged
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adults with soft cuticle) during maturation (Hölldobler and

Wilson, 1990; Dahbi et al., 1998a; Lenoir et al., 1999;

Errard et al., 2006). Larvae of the wasp Polistes dominula

[dominulus] possess a colony-specific CHC pattern that is

distinct from that of adults (Cotoneschi et al., 2007). Newly

emerged Polistes paper wasps learn the colony odor tem-

plate from the odor of the nest material (Singer and Espelie,

1996; Gamboa, 2004). Newly emerged honeybees have a

lower quantity of cuticular lipids than old bees and gradu-

ally acquire their colony-specific hydrocarbon profile in part

from compounds present in the wax of the honeycomb

(Breed et al., 1998; Kather et al., 2011). The low quantity of

cuticular lipids facilitates their easy acceptance into foreign

colonies (Kather et al., 2011). In the ant Cataglyphis iber-

ica, hydrocarbon content in the postpharyngeal glandular

secretions of callows increases until the ants reach 10 days

of age (Dahbi et al., 1998a), but early isolation of callows

decreases the rate of hydrocarbon accumulation in their

postpharyngeal glands. Transfer of hydrocarbons from

mature workers to previously isolated callows enables those

callows to acquire the colony odor and integrate into the

colony (Dahbi et al., 1998a). The quantity of hydrocarbons

involved in recognition increases as workers get older in

Polistes, honeybees, ants, and probably other social species.

This is the result of both social transfer and the production

by individuals.

Chemical signals change with age, caste, and task

Division of labor can be determined by physical castes or

age, and it also can be flexible through aggression between

nestmates or pheromone effects. Chemical signals related to

caste- and task-specific patterns have been shown in ter-

mites (Sevala et al., 2000; Liebig et al., 2009; Weil et al.,

2009), honeybees (Dani et al., 2004a; Dani et al., 2005; Del

Piccolo et al., 2010; Kather et al., 2011), and ants (Greene

and Gordon, 2003; Richard et al., 2007a). Termite CHC

profiles are caste-specific and could also encode individual-

specific information (Sevala et al., 2000), but fertility cues

in the higher termite Zootermopsis nevadensis include

polyunsaturated alkene compounds that do not differ

between soldiers, workers, and reproductively inactive

secondary reproductives (Liebig et al., 2009).

Honeybee cuticular chemical profiles, especially n-

alkanes, alkenes, and fatty acids, exhibit a task specific pat-

tern (Kather et al., 2011). Forager honeybees have more n-

alkanes than newly emerged and nurse workers (Dani et al.,

2004a; Del Piccolo et al., 2010; Kather et al., 2011). Young

workers interact with bees of all ages with equal frequency,

whereas older bees preferentially interact with nestmates of

the same age and actively choose social partners (Scholl and

Naug, 2011). In the queenless ant Diacamma ceylonense,

the CHCs of nestmate workers vary in their proportions

according to worker age (Cuvillier-Hot et al., 2001). Task-

specific cues also regulate task allocation in ant colonies

(Wagner et al., 1998; Greene and Gordon, 2003). Experi-

mentally CHC-treated red harvester ants (Pogonomyrmex

barbatus) recognize an encountered nestmate’s task, and this

influences the performance by treated workers of particular

tasks (Greene and Gordon, 2003). CHC profiles of the ant

Myrmicaria eumenoides are influenced by Juvenile Hor-

mone III, which accelerates CHC changes and the long-term

modulation of task shifting (Lengyel et al., 2007).

Reproductive status, fertility recognition, and queen

pheromone

Reproductive and non-reproductive castes often produce

specific chemical signatures, and chemical differences

between reproductive and non-reproductive castes can

communicate individual reproductive status to nestmates

(Monnin, 2006; Le Conte and Hefetz, 2008; Peeters and

Liebig, 2009), including individual fertility and/or repro-

ductive dominance (Liebig, 2010). CHCs that correlate with

reproductive status in social Hymenoptera include n-

alkanes, methyl-branched alkanes, and alkenes (Monnin,

2006). Reproductive caste identification can be via direct

contact to detect non-volatile pheromones such as CHCs,

and volatile signals can enable detection of active repro-

ductives at a distance. CHC profiles correlate with ovarian

activity of workers in some ants, some halictid bees, and

some paper wasps (Denis et al., 2006; Monnin, 2006; Le

Conte and Hefetz, 2008; Peeters and Liebig, 2009). Queen-

specific hydrocarbon signatures exist in ants, bees, termites,

and wasps (Vargo, 1998; Liebig et al., 2000; Liebig et al.,

2009; Weil et al., 2009; Liebig, 2010). The presence of the

queen elicits variable responses across species in behavior,

ovary development, chemical profile, gland secretion, and

gene expression. Identified pheromones and their biological

function have been studied in the honeybee Apis mellifera

(reviewed in Le Conte and Hefetz, 2008; Kocher and

Grozinger, 2011), the fire ant Solenopsis invicta (reviewed

in Vargo, 1998), and termites (reviewed in Matsuura, 2012).

Ants

Pheromone characteristics can reveal fertility status in ants

(Heinze, 2004; Monnin, 2006; Peeters and Liebig, 2009;

Moore and Liebig, 2010). Reproductive queens’ primer

pheromone production suppresses nestmate fertility and

prevents ovary development (Le Conte and Hefetz, 2008).

Queen and worker ants can adjust their fecundity in

response to brood quantity or presence of other reproduc-

tives, thereby enabling adaptive behavioral and physiolo-

gical responses to changes in colony composition (Holman
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et al., 2013). Pheromone signals can affect worker repro-

duction, and variation among workers in ovary activation is

best modeled as a threshold response (Barron and Robinson,

2008).

Queens and workers differ significantly in chemical

profiles, including CHCs, in Leptothorax acervorum and

L. gredleri (Cuvillier-Hot et al., 2002; Tentschert et al.,

2002; Endler et al., 2004; Peeters and Liebig, 2009). Hydrocarbon

extracts of reproductive queens of the ant Myrmecia gulosa

are more attractive to workers than similar extracts from

non-reproductive workers (Dietemann et al., 2003). For-

mica fusca queens exhibit different CHC profiles according

to their reproductive status, and they receive more care from

workers when their fertility increases (Hannonen et al.,

2002), which suggests higher worker investment in the most

productive queens. In Lasius niger, one important hydro-

carbon (3-methyl hentriacontane) that is characteristic of

the chemical profile of queen-laid eggs could be considered

to be a queen pheromone (Holman et al., 2010).

Queen pheromone of the fire ant Solenopsis invicta is a

mixture of compounds from the postpharyngeal gland and

the poison gland (Vargo and Hulsey, 2000) that elicits both

primer and releaser responses. It elicits antennating and

licking (Vander Meer et al., 1980; Rocca et al., 1983;

Glancey et al., 1984), prevents virgin queens from losing

their wings and activating their ovaries (Vargo, 1998), and

suppresses mated queens’ ovary development in polygyne

colonies (Fletcher and Blum, 1981). Removal of the active

queens affects gene expression in reproductively inactive

queens that causes them to shed their wings and activate

their ovaries (Wurm et al., 2010). Such changes in repro-

duction activity imply that chemicals produced by the

previous active queens inhibited reproductive development

of the other queens and suggests that these chemicals could

be the queen pheromone.

Honeybees

In Apis mellifera, queen pheromone (Glossary box), affect

many aspects of worker behavior and physiology (Le Conte

and Hefetz, 2008). The queen mandibular pheromone con-

sists of five major compounds that act in synergy with an

additional four compounds (Keeling et al., 2003). Other

components have significant effects but remain chemically

unidentified (Richard et al., 2007c). Synthetic mixtures of

the known queen mandibular pheromone compounds have

similar but less pronounced effects than does the presence

of a live queen (Slessor et al., 1988). Queen mandibular

pheromone elicits diverse behaviors and physiological

responses including attraction of workers from a distance,

antennating and licking the queen (Slessor et al., 1988),

inhibition of workers’ ovary development (Butler and Fai-

rey, 1963; Hoover et al., 2003), prevention of the rearing of

new queens (Pettis et al., 1995; Melathopoulos et al., 1996),

delay the transition from nursing to foraging behavior,

and reduction in juvenile hormone secretion (Pankiw

et al., 1998). The composition of queen pheromone differs

between virgin and mated queens (Slessor et al., 1990;

Plettner et al., 1997; Richard et al., 2007c; Le Conte and

Hefetz, 2008; Fierro et al., 2011; Richard et al., 2011). The

quantity and the relative proportions of all queen mandib-

ular gland compounds affect the number of workers

attracted to the live queen or to the extract (Richard et al.,

2007c). In one study, demandibulated queens induced

workers’ retinue behavior and inhibited their ovary devel-

opment, suggesting the presence of pheromones other than

queen mandibular pheromone that affect colony cohesion

(Maisonnasse et al., 2010).

Content of the Dufour’s gland is qualitatively associated

with individual fertility in honeybees. In queens and ovary-

developed workers, the Dufour’s gland (Fig. 2) profile

contains hydrocarbons and esters, whereas the Dufour’s

gland of sterile workers synthesizes only hydrocarbons

(Katzav-Gozansky et al., 1997). The secretion of the

queen’s Dufour’s gland and the mandibular glands are both

attractive to workers (Richard et al., 2011), and their

chemical composition differs between virgin and mated

queens (Le Conte and Hefetz, 2008). Insemination quantity

(semen volume) and quality affect chemical profile of both

the mandibular gland (Fig. 2) and Dufour’s gland, in turn

affecting queen-worker interactions (Richard et al., 2007c;

Richard et al., 2011). Exposing workers to both queen

mandibular pheromone and Dufour’s gland extracts simul-

taneously elicits a stronger inhibition of ovary development

than queen mandibular pheromone alone (Katzav-Gozansky

et al., 2006). Queen pheromone quality based on both

mandibular gland and Dufour’s gland chemical composition

provides information on a queen’s number of mates

(Richard et al., 2007c; Richard et al., 2011) and her fertility

(Kocher et al., 2008; Kocher et al., 2009). This could be

used by workers as an honest signal with positive conse-

quences of genetic diversity on colony fitness (Mattila and

Seeley, 2007).

Fig. 2 Generic head (a) and abdomen (b) of social insect for gland

location
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Differences in pheromones or diet have larger mean

effects on worker ovary activation than genetic factors such

as patriline or strain (Backx et al., 2012); moreover, genes

for social interactions can be conditionally expressed,

depending on the environmental circumstance (Bourke,

2011).

Termites

Termites have both non-volatile and volatile components

of queen pheromones. Non-volatile polar compounds of

proteinaceous origins are secreted by functional reproduc-

tives in the termites Prorhinotermes simplex, Reticulitermes

santonensis, and Kalotermes flavicollis (Hanus et al., 2010).

The cuticular hydrocarbon cuticular profile differs between

neotenic reproductives and workers in Cryptotermes sec-

undus (Weil et al., 2009) and Zootermopsis nevadensis

(Liebig et al., 2009). In Z. nevadensis, four polyunsaturated

alkenes are present in significant amounts on reproductives

but almost absent in soldiers, workers, and neotenic repro-

ductives with inactive gonads (Liebig et al., 2009). In

Reticulitermes speratus, queen pheromone consist of vola-

tile compounds which are an ester, n-butyl-n-butyrate, and an

alcohol, 2-methyl-1-butanol, and these compounds are not

produced by nymphs and workers (Matsuura et al., 2010).

Wasps

CHCs in primitively social wasps provide cues for nestmate

discrimination and also discrimination of fertile and non-

fertile individuals (Turillazzi et al., 2004). Wasps’ Dufour’s

gland and the abdominal sternal glands (Fig. 2) contain a

mixture of lipids similar to the mixture of the cuticular

hydrocarbons (reviewed in Bruschini et al., 2010) that could

be involved in nestmate recognition in Polistes (Dani et al.,

1996; Dani et al., 2003). Queens of the primitively eusocial

wasp Ropalidia marginata appear to maintain reproductive

monopoly using secretions from the Dufour’s gland that

correlate with the state of ovarian activation of queens,

suggesting that such compounds may indicate the fecundity

of a queen and function as honest signals of fertility (Mitra

and Gadagkar, 2011a; Mitra and Gadagkar, 2012). More

investigation is needed to determine the possible role of

Dufour’s gland secretion in the recognition template in

Stenogastrinae (Bruschini et al., 2010).

Chemical communication regulates between-worker

competition over reproduction

In some social insects, worker sterility can be permanent

under queen pheromone and/or behavioral control (Fletcher

and Ross, 1985; Dijkstra et al., 2005). In honeybees, some

wasps, and some ants, however, orphaned workers and

workers that are not exposed to queen pheromone can

develop their ovaries and may commence laying eggs that

develop into either males or trophic eggs (Winston, 1987;

Hölldobler and Wilson, 1990; Dietemann and Peeters, 2000;

Dijkstra et al., 2005; Hunt, 2007). Reproductive monopoly

over other workers can be subsequently sustained via a

queen pheromone (Bhadra et al., 2010). Individual fertility

status (queen or egg-laying workers vs. non-egg laying

worker) of these species is characterized by different Dufour’s

gland chemical profiles, which are not colony specific (Mitra

et al., 2011b).

Among queenless ant species, the cuticular hydrocarbons

of nestmate workers vary with individual reproductive

activity in Diacamma ceylonense and Dinoponera quadri-

ceps (Monnin et al., 1998; Cuvillier-Hot et al., 2001). In D.

quadriceps, reproductive monopoly of the queen over a

pretender (potential egg-laying worker) can result from

queen vs. queen pretender interactions in which the pre-

tender is chemically marked by the queen and is then

physically punished by non-reproductive workers (Monnin

et al., 2002). Dominant, subordinate, and infertile nestmates

differ in their relative proportion of the cuticular hydro-

carbon 9-hentriacontene (9-C31), and these differences are

an honest cue of differences in egg-laying ability between

nestmates (Peeters et al., 1999). In the ant Streblognathus

peetersi the result of agonistic interaction between high-

ranking workers determines the future reproductive, and

chemical signaling is sufficient to maintain reproductive

monopoly when the hierarchy is established (Cuvillier-Hot

et al., 2004). In Gnamptogenys striatula, reproductive and

infertile workers have qualitative and quantitative differ-

ences in their CHC profile characterized by five long-chain

methyl-alkanes that occur only on the cuticles of unmated

and mated egg layers (Lommelen et al., 2006). After queen

removal, workers of the ponerine Pachycondyla goeldi

develop their ovaries, and their CHC profiles also change

(11 compounds identified) in an apparent fertility signal

(Denis et al., 2006). However, the hydrocarbons in the

postpharyngeal gland of P. goeldi did not change with the

physiological status of workers, thus supporting the hypo-

thesis that the postpharyngeal gland content is involved only

in the colony recognition template (Denis et al., 2006).

Reproductive and non-reproductive castes are often

morphologically different, and pheromones often play an

active role in reproductive/non-reproductive discrimination.

In the ant Myrmecia gulosa, in which queens and the largest

workers are morphologically discrete but queens and the

largest workers overlap in size (Dietemann et al., 2002),

workers can distinguish queens from fertile workers by

means of chemical signatures of CHC (characterized by

long-chained hydrocarbons) and the postpharyngeal gland

of queens. Queen chemical signature is attractive to workers

and can maintain worker sterility without agonistic behav-
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iors (Dietemann et al., 2003, 2005). In the ant Aphaenogaster

cockerelli, in which queen and worker castes are morpho-

logically distinct, an n-alkane provides enough information

to reveal the reproductive status of workers (Smith et al.,

2009).

Summary and looking ahead

Chemical communication is the most prevalent mode of

communication among social insects. It plays fundamental

roles in information transfer between and among individu-

als, nestmate recognition, colony cohesion, behavior, and

task regulation. Chemical cues can inform colony members

of the presence of reproductive individuals, and in some

cases the cues are sufficiently finely tuned to ascertain a

reproductive’s level of fertility. Cuticular hydrocarbon

profiles and secretions of the post-pharyngeal, Dufour’s,

and mandibular glands are dynamic over time and generally

have multiple functions.

Cuticular hydrocarbons (CHCs) are the class of chemi-

cals most widely involved in chemical communication.

CHCs are ubiquitous and chemically diverse. Specific CHC

compounds usually differ between species. In addition,

correlations exist between classes of CHCs or specific

CHCs and variables of age, castes, fertility, and health.

Qualitative and/or quantitative differences of CHCs can

convey information on reproductive status, environmental

changes, and characteristics of individuals such as caste and

age. In addition to CHCs, compounds such as proteins can

also influence individual behaviors.

The relative contributions of heritable, environmentally

derived, socially acquired components of colony odor, and

individual chemical profile are unknown and pose a chal-

lenge for future researchers. The diversity and structural

complexity of chemical compounds involved in nestmate

and caste recognition may be linked to colony closure by

providing enough variation for such discrimination. These

chemical compounds change qualitatively and/or quantita-

tively in response to environmental changes, and environ-

mental effects on colony odor differ from one species to

another. At the same time, however, colony and individual

odors need to be updated constantly to maintain social

functionality and a homogenous colony-specific blend

across individuals in the colony. In consequence, colony and

individual odors can change over time and also differ among

colonies of the same species. A challenge is to discover the

chemical cues that social insects use for kin recognition and

the genetic encoding of such cues.

Chemical communication often occurs in combination

with other sensory channels (Hölldobler, 1999), and the nature

and role of chemical communication as part of multimodal

communication merits increased attention. New avenues of

research could be opened by interdisciplinary research that

combines the approaches of physiologists, behavioral ecolo-

gists, chemists, ecotoxicologists, and geneticists.

The identification of specific compounds used in nest-

mate discrimination can be advanced using tools such as

gas chromatography coupled with electroantennographic

detection (GC/EAD). Columns for gas chromatography

with temperatures up to 400 �C can increase the range of

compound detection to 60 carbons. In addition, it is now

possible to identify hydrocarbon profiles and other surface

molecules from living individuals by direct analysis in real-

time (DART) mass spectral analysis, thereby enabling

individual chemical profiling in parallel with behavioral

studies (Yew et al., 2008). The role of proteins in social

insect communication can be studied through application of

MALDI-TOF (matrix-assisted laser desorption ionization

time of flight) mass spectrometry analysis.

Purification of synthesized cuticular hydrocarbons is

difficult, and enantiomeric forms and different stereoiso-

metric forms of hydrocarbons are unknown and not taken

into account in compound identification. However, insect

antennae carry receptors that discriminate between enan-

tiomeric forms, and it has been shown that insect behaviors

can be strongly antagonized by the incorrect stereoisomer

(Mori, 2007). The role in social insects that molecular varia-

tion of this kind may play is currently unknown. Different

separation methods exist, and methods used to synthesize

several classes of cuticular hydrocarbons are summarized

by Millar (2010).

Identification of a pheromone is the essential step for arti-

ficially synthesized pheromones to be used in applied research.

Synthesized pheromones could be used to attract a large

number (mass attraction) of target organisms, or to disturb

colony organization to decrease the colony productivity and

minimize the species’ impact on the environment, or also as a

sex attractant during mating season to reduce male mating

success and thereby reduce the number of new mated queens in

the spread of invasive or undesired species (Baker, 2011).

Chemical communication may be subject to rapid evolu-

tionary change (Symonds and Elgar, 2008), and evolutionary

aspects of chemical communication merit attention. For

example, queen pheromones that effectively eliminate worker

reproduction must have been preceded by less effective

pheromones, and those pheromones may have been co-opted

from another functional class of pheromones. Genes for social

actions can be conditionally expressed, depending on envi-

ronmental pressure including the behavioral environment

(Bourke, 2011; Hunt, 2012). Might evolutionary changes in

molecular structure have played a role in increased phero-

mone effectiveness? What about pheromone blends? The

queen pheromone of honeybees is a highly complex mixture

of components and has been the focus of a substantial body

of research, yet some components of the mixture remain
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unknown. Queen pheromones exist in other bee species as

well as in ants, wasps, and termites. These queen pheromones

have been much less studied. Does complexity of chemical

structure or chemical blend correspond to complexity of social

organization? This and similar evolutionary questions might

be addressed via a comparative approach.
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Brockmann A., Groh C. and Fröhlich B. 2003. Wax perception in

honeybees: contact is not necessary. Naturwissenschaften 90: 424-427

Bruschini C., Cervo R., Cini A., Pieraccini G., Pontieri L., Signorotti

L. and Turillazzi S. 2011. Cuticular hydrocarbons rather than

peptides are responsible for nestmate recognition in Polistes

dominulus. Chem. Senses 36: 715-723

Bruschini C., Cervo R. and Turillazzi S. 2010. Pheromones in social

wasps. In: Vitamins and Hormones (Klitwack G., Ed). Academic

Press, Burlington, Massachusetts, pp 447-492

Buczkowski G., Kumar R., Suib S.L. and Silverman J. 2005. Diet-

related modification of cuticular hydrocarbon profiles of the

Argentine ant, Linepithema humile, diminishes intercolony

aggression. J. Chem. Ecol 31: 829-843

Buffin A., Mailleux A.C., Detrain C. and Deneubourg J.L. 2011.

Trophallaxis in Lasius niger: a variable frequency and constant

duration for three food types. Insect. Soc. 58: 177-183

Butler C.G. and Fairey E.M. 1963. The role of the queen in preventing

oogenesis in worker honey bees. J. Apic. Res. 2: 14-18

Caldera E.J. and Holway D.A. 2004. Evidence that queens do not

influence nestmate recognition in Argentine ants. Insect. Soc. 51:

109-112

Candolin U. 2003. The use of multiple cues in mate choice. Biol. Rev

78: 575-595

Carlin N.F. and Hölldobler B. 1987. The kin recognition system of

carpenter ants (Camponotus spp.) II. Larger colonies. Behav.

Ecol. Sociobiol. 20: 209 - 217

Cervo R., Dani F.R., Zanetti P., Massolo A. and Turillazzi S. 2002.

Chemical nestmate recognition in a stenogastrine wasp, Liosteno-

gaster flavolineata (Hymenoptera: Vespidae). Ethol. Ecol. Evol. 14:

351-363

Chapuisat M., Bernasconi C., Hoehn S. and Reuter M. 2005. Nestmate

recognition in the unicolonial ant Formica paralugubris. Behav.

Ecol. 16: 15-19

Cotoneschi C., Dani F.R., Cervo R., Sledge M.F. and Turillazzi S.

2007. Polistes dominulus (Hymenoptera: Vespidae) larva possess

their own chemical signature. J. Insect Physiol. 53: 954-963

Couvillon M.J. and Ratnieks F.L.W. 2008. Odour transfer in stingless

bee marmelada (Frieseomelitta varia) demonstrates that entrance

guards use an ‘‘undesirable-absent’’ recognition system. Behav.

Ecol. Sociobiol. 62: 1099-1105

Crosland M.W.J. 1989. Kin recognition in the ant Rhytidoponera

confusa. I. Environmental odour. Anim. Behav. 37: 912-919

Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect Colonies.

Oxford University Press, Oxford

Cuvillier-Hot V., Cobb M., Malosse C. and Peeters C. 2001. Sex, age

and ovarian activity affect cuticular hydrocarbons in Diacamma

ceylonense, a queenless ant. J. Insect Physiol. 47: 485-493

Cuvillier-Hot V., Gadagkar R., Peeters C. and Cobb M. 2002. Regulation

of reproduction in a queenless ant: aggression, pheromones and

reduction in conflict. Proc. R. Soc. Lond. B 269: 1295-1300

Cuvillier-Hot V., Lenoir A., Crewe R., Malosse C. and Peeters C.

2004. Fertility signaling and reproductive skew in queenless ants.

Anim. Behav. 68: 1209-1219

286 F.-J. Richard, J. H. Hunt

123
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