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Abstract

Many of the phenomena of object classification can be derived from a representation specifying
a nonaccidental characterization of an object's parts (geons) and relations, termed a geon
structural description (GSD). Such a representation: a) enables the facile recognition of depth-
rotated objects, even when they are novel, b) provides the information that is employed not only
to distinguish basic-level but also highly similar members of subordinate-level classes, and c)
enables mapping onto verbal and object-reasoning structures. Recent psychophysical and neural
investigations of object recognition have provided additional support to this theory of object
representation.

|. Introduction

Theories of the representation mediating object recognition are often termed
“controversial,” particularly in accounting for the effects of rotation in depth. The apparent
controversy centers on whether “view-based” templates (e.g., Poggio & Edelman, 1990) are to
be preferred to structural descriptions that posit simple viewpoint-invariant part primitives
(geons) and explicit categorized relations (i.e., geon structural descriptions, GSDs) (Biederman,
1987, Hummel & Biederman, 1992). GSDs place heavy reliance on nonaccidental properties
(NAPs), which are largely unaffected by rotation in depth. NAPs provide a ready basis for
distinguishing one object’s parts and relations from another. In contrast, neither NAPs nor
explicit parts nor explicit relations are specified by view-based templates. We note here that
some of the leading proponents of view-based templates (e.g., Riesenhuber & Poggio, 1999)
have very recently abandoned templates in favor of feature lists in which features are
trandationally and scale invariant. Thisdevelopment is discussed in alater section.

After an initial demonstration contrasting object recognition with and without distinctive
GSDs, recent empirical and theoretical work on the issue of the recognition of depth-rotated
objects will be considered. Insofar as the evidence for the employment of NAPs (and parts)
provided a strong evidential basis for the abandonment of templates, thisreview is still timely.

1.1 A Demonstration

Imagine performing a matching task in which you are to determine if two sequentially
presented novel objects are the same or different, irrespective of their orientation in depth.
Before scrutinizing Figure 1, please cover the objects with your hand. The figure illustrates
some possible trials in which the object on the left is aways S1, the first object. The objects in
the right column are possible S2s. Take a quick peek at S1. Y ou probably can describe it. Now
take a quick peek at the top object in the S2 column. It should be trivially easy to respond
“different.” The same would be true of the second object in the S2 column. Or the third. You
might judge the bottom object to be “same,” even though the object is now rotated in depth, asis
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the wedge in the previous object. The first three trials differed in at least one geon and the
discrimination is trivially easy. The last object had the same geons and it looks the same as S1,
despiteits depth rotation. Little or no rotation costs would be expected with such objects.

Fig. 1. (Next page) Anillustration of four trialsin a Same-Different matching task of two-geon novel objects taken
from Biederman and Bar (1999). The object on the left is S1, the first stimulus for al four trials. The four objectsin
the right column are possible S2s. The top object differs in both geons; the second and third in one geon, and the
bottom object is the same, but rotated in depth. Observers should have no trouble accurately performing same-
different judgments. Nor should they have any difficulty in describing the objects and how they differ from each
other. Only the third and fourth S2s would have been trials in the Biederman and Bar (1999) experiment.
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In contrast to the types of objects shown in Figure 1 are the bent paper clips (and stimuli
with similar characteristics) where neither the parts nor the relations (the angles between the
segments for such objects) are distinguished by NAPs. NAPs are to be distinguished from metric
properties (MPs), such as aspect ratio of a part or the angle between parts, which do vary with
orientation in depth. Figure 2 allows the reader to try to match such stimuli, used extensively in
the study of object recognition under variations in orientation, under the same conditions as used
for the objects in Fig. 1. If you are like most people, you experienced considerably more
difficulty in performing this task. Many judge the top three S2sto be ‘same’ and the bottom one
to be ‘different’. Thisis precisely wrong. Not surprising, enormous rotation costs are incurred
in matching such objects (e.g., Edelman & Bulthoff, 1992).

Given the ease of matching the objects in Figure 1 compared to the extraordinary
difficulty in matching those in Figure 2, it is a wonder that there is any controversy at al about
the representations mediating object recognition over depth orientations.

But what is the controversy? All theories are view-based. Whereas GSDs are a theory of
the representation of an object, “view-based” is merely an effect—a cost of rotation--that
distinguishes no current theoretical alternative. That there would be costs of rotation was
explicitly discussed by Biederman (1987) who noted that rotation in depth would alter the GSDs,
as parts were occluded or revealed, and that a cost function was required based on the similarity
of the GSDs. Insofar as| aso noted that different representations (i.e., different GSDs) would be
required for substantialy different views, | probably should be regarded as the originator of
view-based theories.

To the extent that “view-based” is taken to be a specific template representation of the
kind proposed by Poggio & Edelman (1990); Edelman, (1995) and Ullman (1996 to account for
costs in the recognition of a set of depth-rotated bent paper clip stimuli, they can be evaluated
against GSDs. It must be acknowledged that neither competing account of object recognition is
complete. For example, the Poggio & Edelman model (also employed by Logothetis, Pauls,
Bulthoff, & Poggio, 1994) by which vertices of the clip segments are mapped onto a set of
radial-basis classifiers does not specify how the classifiers can be ordered to correspond to the
specific vertices. If the segments were connected to the same vertices in a different order than a
vastly different appearing clip would be defined.

Fig. 2. (Next page.) Anillustration of possible trials in Biederman and Bar’s (1998) Same-Different matching task
with bent paper clips. The scheme isthe same asin Fig. 1. Contrary to initial impressions, the top three S2 objects
are different from S1; the bottom oneis the same. In Biederman and Bar’s (1998) experiment, high false alarm rates
were associated with the top three S2s and high miss rates with the bottom S2.
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Biederman and Hummel (1992) provide a number of images where their implementation
of geon theory, JIM, would fail to account adequately for the perceived object. Computer vision
engineers are apt to criticize generalized cylinder representations (of which geons are a special
case) on the grounds that it is difficult to extract generalized cylinder models of objects from
gray level images. Indeed, JIM’sinput was limited to line drawings (and abstracted ones at that).
However, such criticism may be more appropriately directed to the state of the art of current
edge finders than to biological representations. People have no trouble determining the
orientation and depth discontinuities—the important edges for GSDs--of novel objects and
scenes. They readily distinguish such edges from those produced by reflectance variations,
shadows, and surface markings. So we have an existence proof that rapid, accurate bottom-up
edge extraction is possible and done billions of times a second by human brains on this planet.
Recently Zerroug and Nevatia (1996) have shown that the generalized cylinders comprising a
complex object can be extracted from a single gray-level image.

2. Current Accountsof Visual Object Classification

Another shortcoming of GSDs is that they require a solution to the binding problem. A
concern is that the binding mechanism of JIM—correlated firing—may to be too slow to produce
the 100 msec real-time object and scene recognition that is so evident in human performance.
JM activated geon representations from the synchrony of firing of the features that comprised
each geon. Hummel and Stankiewicz (1996) perhaps offer some progress along this front with a
hybrid model that assumes spatially enumerated templates of the geons.

Although a template representation, of the kind proposed by Lades, Vortbriggen,
Buhmann, Lange, von der Malsburg, Wiirtz, & Konen (1993), may well characterize the earlier
stages of cortical processing, from V1 through V4, the later stages would appear to map more
readily into GSDs, as discussed below. By making part types and relations explicit, GSDs allow
ready mapping of such descriptions to language and structures that can mediate reasoning.
When the reader first looked at S1 in Fig. 1, no doubt he or she could easily describe the object
as something like “avertical cylinder on atilted wedge.” (In general, people describe objects in
terms of their parts, Tversky & Hemenway, 1984.) Note that the relation, “on,” was explicit in
the description. One can also readily characterize, and hence reason about, the differences
between S1 and the first three S2 objects, e.g., the third S2 object differs from S1 in that its top
part (i.e., what is“on”) is a curved rather than a straight cylinder. It isnot at all clear how to do
such mapping with templates or feature lists-- a serious shortcoming of such accounts as
characterizations of human object cognition. Whereas metric templates may be inadequate for
object representation, they likely are the representation mediating face recognition (Biederman &
Kalocsai, 1997; Wiscott, Fellous, Kriiger, & von der Malsburg, 1997). With respect to the
current discussion, Biederman and Kalocsai (1997) note how difficult it is for people to describe
the differences among a set of similar faces that they can otherwise readily discriminate.

3. NAPs(geons) vs. MPs. Experimental Results

GSDs specify both parts and relations. | will here concentrate on the NAP
characterization of the parts (see Biederman, 1995, for a summary of the evidence supporting the
role of simple parts in the representation mediating visual object recognition).

Distinctive NAPs can confer an enormous benefit in attempting to determine whether two
bent paper clips are the same or different when they are viewed at different orientations in depth
(Biederman & Gerhardstein, 1993). These investigators substituted a different geon for each
center segment of a set of 10 line drawings of bent paper clips. The addition of the distinctive
geon dramatically reduced rotation costs (to 5,000°/sec) from alevel with error rates so high that
RTswere, essentially, uninterpretable.
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View-based template accounts, in assigning no special status to NAPs or parts, would
require familiarity with the specific views of novel objects, with only a modest generalization
gradient around a nearby view. Some (Tarr & Bllthoff, 1995) protested this demonstration,
arguing that NAPs were of value only with a small set of known stimuli where people could
anticipate a distinguishing NAP. That people would spontaneously exploit distinguishing NAPs
was, indeed, one of the points that Biederman and Gerhardstein wished to make, but is
familiarity required to get immediate viewpoint-invariance with novel objects?

Moshe Bar and | (Biederman & Bar, 1999) compared directly the rotation costs for
detecting differences in either a Metric Property (MP) or a NAP in a same-different sequential
matching task. We used novel, rendered two-part objects, such as those shown in Fig. 1,
presented at either the same or different orientations-in-depth. On half the trials the objects were
identical; on half the trials they differed in either an MP, e.g., aspect ratio, of a single part or a
NAP, e.g., straight vs. curved axis (producing a different geon) of a single part. The contrast of
the object on the left and the third object in the right hand column of Fig. 1 illustrates a NAP
difference (straight- vs. curved-axis cylinder). The MP variation would have been a cylinder
with a different length (aspect ratio) or angle of attachment to the wedge. The subjects saw a
given stimulus sequence only once, so they could not predict whether a part would change, or, if
there was a change, which part would change and how it would be changed.

How much of an MP difference is equivalent to a given NAP difference? To address this
apples-and-oranges problem, the MP and NAP differences were selected to be equally
discriminable (as assessed by RTs and error rates) when the objects were at the same orientation
in depth (0° orientation difference). The MP image differences were also approximately the
same magnitude (actually dlightly larger) then the NAP image differences when the images were
scaled according to a wavelet-like similarity measure (Lades, 1993). Rotation angles that
averaged 57° produced only a 2% increase in error rates in detecting the NAP differences but a
44% increase in error rates (to alevel that was below chance) in detecting MP differences.

The benefit conferred by NAPs, documented by Biederman and Gerhardstein (1993), and
confirmed by Biederman and Bar (1999) is quite dramatic and is among the largest effects in
shape recognition. Another enormous effect is the difference in recognizability between
recoverable and nonrecoverable contour deletion (Biederman, 1987). Neither of these effects are
handled by metric template accounts.

Nonetheless, rotation costs, though small, are often apparent even with distinguishing
GSDs (Biederman & Gerhardstein, 1993; Biederman & Bar, 1999; Hayward & Tarr, 1997; Tarr,
Bulthoff, Zabinski, & Blanz, 1997; Tarr, Williams, Hayward, & Gauthier, 1998). What might be
producing these costs? It is possible, as noted by Biederman and Gerhardstein (1993), that an
orientation-specific representation underlies these costs. This representation may be of one of
two types, given current theorizing: a) an episodic representation that binds view information
along to an invariant representation of shape, as detailed by Biederman and Cooper (1992, see
below), that could be employed on some percent of the trials to mediate performance (though not
necessarily object perception), or b) that there are viewpoint specific representations directly
mediating object perception. But before the latter alternative is accepted merely on the basis of
some costs with distinguishing GSDs present, other possible bases for the costs must be ruled
out.

Look again at Fig. 1 and consider what one would have to do to make it difficult, under
rotation, to determine that the third S2 object was different from the first and the fourth S2 object
was the same. One way would be to render the object in such away that it would be difficult to
determine if the distinguishing geon was curved or straight. Biederman and Bar (1999), in a
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critical review of those studies reporting high rotation costs, noted that low resolution of the
distinctive geon was a common characteristic in such studies. Biederman and Bar (1998) showed
that factors that increased the discriminability of distinguishing geons in rendered images, such
as avoiding near accidents or using increased exposure durations, greatly reduced rotation costs

There is another, more subtle, effect that could have contributed to the apparent costs of
rotation in the Tarr et al. (1997; 1998) and Hayward and Tarr (1997) same-different matching
studies. On rotated Same trials and all Different trials in a Same-Different matching task, a
“difference” signal might be produced by the change in luminance of specific display positions.
This signa may be related to Nowak and Bullier's (1997) finding that marked changes—a
transient--in a stimulus produce a signal that rapidly propagates through the ventral pathway all
the way to frontal cortex. (Because of the intervening mask, the difference signal would be
between S2 and an actively maintained representation of S1, as noted by Biederman and Bar,
1999.) No difference signal would be produced when S1 and S2 are the same, unrotated, object
in the same position. So the subject could readily use the absence of a difference signa to
respond Same on unrotated (0°) trias, artifactually lowering reaction times (RTS) on such trials
with the consequence that the slope of the RT X Rotation Angle function would be increased.
Biederman and Bar (1998) showed that the effect of this artifact in increasing rotation costs
could be greatly reduced by merely shifting S2 with respect to S1 on al trials, so that the
difference signal was always present. The trandation, by producing a difference signal on all
trials, served to raise the RTs and error rates for 0 trials relative to rotated trials. This had the
effect of greatly reducing the apparent costs of rotation. Biederman and Bar's (1999)
experiment, which found near invariance over rotation, also translated S2 with respect to S1 on
al trials.

Despite the length of the preceding paragraphs as to the origin of rotation costs when
distinctive GSDs are available, it must be emphasized that these rotation costs (against zero
costs) are small relative to the gigantic costs that are evident when distinctive GSDs are not
present. We also note that even view-based theorists always find that objects with distinctive
geons show lower rotation costs than those without distinctive geons (Tarr et a., 1997,
Logothetis, et a., 1994). Tarr and his associates had suggested that “ mental rotation” is required
to match such stimuli although this position has recently been abandoned by Tarr (Hayward &
Tarr, 2000). It isdifficult to believe that mental rotation (whatever its ultimate nature), with its
attendant high costs, would be required to judge the objectsin figure 1.

3.1 Can view-based accounts incor porate geons as a unique or diagnostic feature?

A reviewer, responding to my earlier point that “view-based accounts assign no special
status to NAPs,” asked whether view-based theorists could regard geons as some kind of unique
or diagnostic feature extracted from a 2D view. The answer is, “of course.” But there is a
serious problem with an account that holds that a unique or diagnostic feature will be employed
for recognition. How does the perceiver know what is unique or diagnostic the first time he or
she views an object? Consider, again, an individual seeing the nonsense object on the left side
of Fig. 1. The coding of that object would, roughly, appear to be a vertical cylinder on top of a
wedge. That is, the object is described in terms of its simple parts and the relations among these
parts (Tversky & Hemenway, 1984). This type of representation, a geon structural description
(GSD), may well be the default description that the visual system generates in the absence of
explicit knowledge about the other to-be-discriminated objects. GSDs often convey the
functionality—or affordances—of the object. Moreover, GSDs often readily map on to verba
descriptions and allow reasoning about objects. We can readily say how the four objects on the
right side differ from the one on the left (or from each other).
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The important question is not whether a representation is view-based, but what that
representation is (as, again, all representations are view-based). The phenomena of: &) small
rotation costs with distinctive GSDs b) the sizable costs in recognizing new views of objects,
such as a set of bent paper clips, that are not distinguished by GSDs (as discussed in the next
section), and c) the reduction in the costs in b) from learning the new views, has obscured the
issue of representation, insofar as the nature of what was learned was often not considered. In
allowing trandational and scale feature invariance, the recent Riesenhuber and Poggio (1999)
scheme resembles an earlier proposal by Bartlett Mel (19997). There is nothing in the
Riesenhuber and Poggio model to suggest the enormous inferential leverage and invariance to
rotation costs provided by distinctive NAPs or the difference in recognizability between
recoverable and nonrecoverable contour deletion. These models are, essentially, feature lists in
that they do not posit explicit structures, such as parts and relations among parts, by which
objects might be represented--and described. Instead, different arrangements of the parts merely
produce new features. A potential serious shortcoming of such modelsisthat it is not clear how
well they would do with novel objects that are to be distinguished from unknown sets of other
objects, such aswith the task illustrated in Figure 1.

3.2 Observations about bent paper clips as experimental stimuli

The central motivation for devising bent paper clip stimuli (and others of similar design)
was that they would be unfamiliar, so that the learning of different poses could be studied.
However, one must consider an obvious characteristic that accounts for much of the
extraordinary difficulty in classifying members of sets of such stimuli: They lack of
distinguishing GSDs.

The absence of distinguishing GSDs in the standard set of bent paper clips means that the
critical information for everyday shape recognition is absent from these stimuli so the relevance
of such objects to normal recognition can be questioned. Some bent paper clip devotees have
suggested that their stimuli are relevant for subordinate-level recognition, such as the difference
between different kinds of tables. However, a review of the vast mgjority of subordinate-level
classifications that people make in their lives suggests that it is extremely rare that distinguishing
GSDs are not available. A sguare table can be distinguished from a round table without appeal to
metric information and certainly without engaging in mental rotation. Biederman, Subramaniam,
Bar, Kalocsai, and Fiser (1999) note that NAPs of small regions, rather than metric templates,
are specified for discriminating among highly similar classes such as birds on the same page in
the bird guides.

Think of how you would discriminate two different chairs of the same manufacturer’s
model. Without fail, visitors to my office look for a distinctive scratch or stain or other such
nonaccidental difference, at a small scale. They never consider what is readily expressed by
metric templates--a template of the whole chair or, in selecting a small feature, those that might
differ metrically (at amodest scale).

The objects shown in Fig. 1 meet the criteria of being unfamiliar, yet in retaining
distinctive geons they allow one to study how such information might be used. Although a set of
paper clips lack distinctive GSDs, their projections often provide an accidental or near accidental
characteristic that people try to interpret in terms of GSDs (Biederman & Gerhardstein, 1993;
1995). For example, the bottom S2 aobject in Fig. 2 resembles an arrow that would normally be
produced by actual cotermination of segments but is here an accident of viewpoint. Biederman
and Bar (1998) observed that when there were such qualitative differences in
appearance—typically well captured by differences in GSDs—miss rates were extremely high.
When S1 and S2 were actually different clips but with smilar GSDs, as in the upper three S2s of
Fig 2, then the false alarm rates were extremely high.
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As rotation angles increase from 0 to 90°, there is an increasing chance of changesin the
qualitative characterization of such stimuli. The oft reported increase in matching costs with
increasing rotation angles may be more a consequence of an increasing chance for a changein an
accidental GSD then in the rotation of atemplate. Consistent with this interpretation are the low
rotation costs for 180° rotations. Such rotations often approximate mirror reflections under
which the GSDs are preserved.

3.3 When GSDs are Insufficient

There is no doubt that aspects of early cortical representation are well described by a 2D
array of local filters at a variety of scales and orientations. The view expressed here is that the
outputs of such a representation are mapped onto nonaccidental classifiers—such as units
distinguishing straight from curved lines or various vertices produced by cotermination of end
stopped activity. A vector representing the activity of these nonaccidental classifiers (which, in
JM, are bound through correlated firing), in tern, activate units akin to Hummel and
Biederman’'s (1992) geon feature assemblies, representing single or pairwise combinations of
geons and their invariant nonaccidental relations, such as
VERTICAL_CYLINDER_ABOVE_PERPENDICULAR_SMALLER THAN_X. The output of
such geon feature assemblies could readily map onto language, as evidenced by the manner in
which people describe the objects in figure 1, as well as memory structures supporting object
cognition.

What if the stimulus does not have distinguishing parts and nonaccidental properties, as
with the set of smooth blobby shapes studied by Shepard and Cermak (1973)? In such a case the
nonaccidental classifiers would not be differentially activated to distinguish the members of the
stimulus set and the observer would have to rely on whatever metric information distinguished
the stimuli, in which case the similarity space would be that established by the early local,
multiscale, multioriented Gabor-like filters (Biederman & Subramaniam, 1997). It should also
be the case that discrimination among such stimuli should be more difficult than if distinctive
GSDs were available (at the same level of spatial filter similarity), show more rotation costs, be
difficult to articulate, and not be the basis of natural concept distinctions.

Discrimination performance among a set of highly similar faces shows such
characteristics (Biederman & Kalocsai, 1997), as well as similar pairs of the Shepard and
Cermak (1973) shapes (Biederman & Subramaniam, 1997) and objects with irregular parts
(Cooper, Subramaniam, & Biederman, 1995). See Biederman (1995) for areview.

4. Recent Neural Evidence for GSDs

It has long been known that macaque inferior temporal (IT) neurons are highly shape
selective and that different neurons show different shape preferences. Tanaka (1993)
demonstrated that these preferences can be elicited quite strongly to features of “moderate
complexity,” typically composed of one or two parts. This level of complexity closely matches
what would be expected from single geons, invariant shape features, and, most frequently, geon
feature assemblies (Hummel & Biederman, 1992), in which two geons are bound in a specific
relation. To a first approximation, Tanaka's (1993) and Kobatake and Tanaka's (1994),
moderately complex features would seem to be viewpoint invariant. Consistent with this
interpretation is Esteky and Tanaka's (1998) results showing that metric variation, viz., changes
in aspect ratio that would be produced by arotation in depth, had only aminimal effect on IT cell
activity.
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Vogels, Biederman, Bar, and Lorincz (In press) tested macaque IT (area TE) neurons with
the identical set of two-geon stimuli used by Biederman and Bar (1999) to determine if greater
modulation in cell activity would be produced by a change in a geon compared to a change in an
MP (Metric Property). They found that geon changes, despite their smaller image changes (as
assessed by wavelet similarity measures), produced greater modulation (up or down) in cell
activity. Moreover, when the original objects were rotated (i.e., those without an MP or geon
change), the modulation attributable to the rotation itself was highly correlated with the
modulation produced by MP changes for that cell but completely independent of the modulation
produced by the geon changes. Such a tuning pattern would be expected given the results of
Biederman and Bar (1999) that only geon-changed stimuli were readily discriminable from the
originals under rotation.

There have been a number of reports of TE cell preferences reflecting experimental
manipulations of familiarity (e.g., Logothetis, et al., 1994; Tanaka, 1996). There are two points
to be made about such demonstrations. First, tens, if not hundreds, of thousands of trials are
required to obtain such preferences (Logothetis, 1999). Second, as discussed previoudly, it is not
unlikely that there are at least two functions of object recognition subserved by IT. Oneisto
provide descriptions of objects, novel or familiar, such as what the reader experienced when first
viewing Sl in Fig. 1. Such a system is likely well developed by late infancy. The second
function is to provide an episodic record of the perceptual experience with particular objects or
scenes. It is possible that the cells found in the training experiments are those subserving this
second episodic memory function. That there may be these two representations of objects was
documented by Biederman and Cooper (1992) who showed that the priming of object naming
was invariant with size changes but that such changes produced considerable interference on
episodic old-new judgments of the shape of the object (in which size was to be ignored).
Distractors in that experiment were objects with the same name but a different shape. Similar
results were found for changes in position and reflection (Biederman & Cooper, 1991) and
orientation (Cooper, Biederman, & Hummel, 1993). Although the first function probably
supports lion’s share of human object recognition, it would certainly be possible to employ the
second problem to solve particular classification tasks. If | know that achair is on theright and a
table on the left, a flash of an object on the right could lead me to infer that it was a chair rather
than a table. Such view information could be employed whenever there was difficulty in
determining an object’s GSD.

5. Conclusions

The evidence suggests that GSDs provide a suitable representation with which to
understand the large body of results that have recently accumulated in the study of depth rotated
objects. In addition, GSDs provide a basis for understanding the general problem of object
perception and reasoning.
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