
1106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004

Overlapped Message Passing for Quasi-Cyclic
Low-Density Parity Check Codes

Yanni Chen, Member, IEEE, and Keshab K. Parhi, Fellow, IEEE

Abstract—In this paper, a systematic approach is proposed to de-
velop a high throughput decoder for quasi-cyclic low-density parity
check (LDPC) codes, whose parity check matrix is constructed
by circularly shifted identity matrices. Based on the properties
of quasi-cyclic LDPC codes, the two stages of belief propagation
decoding algorithm, namely, check node update and variable node
update, could be overlapped and thus the overall decoding latency
is reduced. To avoid the memory access conflict, the maximum
concurrency of the two stages is explored by a novel scheduling
algorithm. Consequently, the decoding throughput could be
increased by about twice assuming dual-port memory is available.

Index Terms—High throughput, low-density parity check
(LDPC) codes, overlapped message passing (MP), quasi-cyclic
codes.

I. INTRODUCTION

S INCE its recent rediscovery [1], low-density parity check
(LDPC) codes first introduced by Gallager [2] have been

of great research interest in terms of exploring good code con-
struction methods [3]–[7] as well as efficient VLSI implemen-
tation architectures [8]–[10]. LDPC codes are considered a se-
rious competitor to the turbo codes [11], [12] because they push
the performance closer to the Shannon limit [7], [13]. On the
other hand, like block turbo codes [14], parallel decoder struc-
ture could also be developed for LDPC codes to achieve high de-
coding throughput. However, due to its typical sparse, random,
and large parity check matrix used to construct LDPC code, the
data routing and large memory requirement imposes great de-
sign challenges for the efficient hardware implementations.

In the current literature, most LDPC code designs rely on
random construction of the parity check matrix [1]. However,
the resulting lack of structure makes the code difficult to de-
scribe efficiently, hard to implement and also requires exten-
sive testing to assure the performance. Recently, as opposed
to random construction of LDPC codes, the group-structured
quasi-cyclic LDPC codes are proposed [15], [16]. This partic-
ular type of codes is of interest because they provide good per-
formance and are hardware friendly. It has been shown that
the regular quasi-cyclic LDPC codes can achieve comparable

Manuscript received June 11, 2003; revised December 6, 2003. This work
was supported by the Army Research Office under Grant DA/DAAD19-01-1-
0705. This paper was presented in part at the ACM Great Lake Symposium on
VLSI, April 26–29, 2003, Washington, DC. This paper was recommended by
Associate Editor Y. Wang.

Y. Chen is with DSP Solutions R & D Center, Texas Instruments Incorporated,
Dallas, TX 75243 USA (e-mail: ynchen@ece.umn.edu).

K. K. Parhi is with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail: parhi@ece.
umn.edu).

Digital Object Identifier 10.1109/TCSI.2004.826194

performance to randomly constructed codes if the codeword
length is less than 10000 bits [5]. The performance could be
further improved by optimizing the check node as well as vari-
able node degrees [6]. Moreover, the decoder implementation of
quasi-cyclic LDPC codes significantly simplifies the memory
address generation and wire interconnections [17].

For many real-world applications, the high-speed fully par-
allel decoder architecture such as [8], where the Tanner graph
corresponding to the parity check matrix is exactly instantiated
to the hardware, is too complicated due to the large number of
functional units and prohibitive routing. To reduce the hardware
complexity, a partly parallel architecture, where certain logic de-
vices have to be utilized in a time-multiplexed manner, is also
implemented using either application specified integrated cir-
cuit (ASIC) [9] or field programmabel gate array (FPGA) [18].
Among several different partly parallel decoders, the approach
in [19] achieves higher speed with larger memory requirement
compared to the design in [10]. The latter architecture requires
simpler control logic, minimum memory size, namely, the total
nonzero elements of parity check matrix, and hence is of our in-
terest in this paper.

The message passing (MP) (also called belief propagation or
sum product) algorithm [20] is commonly used to iteratively
decode the LDPC codes. By using the MP algorithm, two dif-
ferent types of messages, i.e., variable-to-check message and
check-to-variable message, are computed and exchanged along
the edges in the corresponding Tanner graph. Conventionally,
these two stages of computation cannot be overlapped because
one stage needs the updated information passing from the other
stage. Otherwise, conflicts are inevitable during the memory ac-
cess for information exchange. However, due to the inherent
characteristics of quasi-cyclic LDPC codes, certain concurrency
exists between the two stages, which could be utilized to reduce
the decoding latency.

In this paper, based on [17], the maximum concurrency be-
tweenthe twostages forquasi-cyclicLDPCcodes isexploredbya
novel schedulingalgorithm, whichsystematically determines the
memory address generation and perfectly resolves the memory
access conflict for the partly parallel decoder architecture. Con-
sequently, the major disadvantage of low hardware utilization
efficiency (HUE) for the design presented in [10] is overcome
and the decoding throughput could be increased by about two
times assuming dual-port memory is available. To evaluate our
scheme, a case study with the (155, 64, 31) code is employed
to verify the correctness of the proposed scheduling algorithm.

The structure of this paper is as follows. In Section II, we
first briefly review the quasi-cyclic LDPC code construction and
its top-level decoder structure. Section II also presents the MP

1057-7122/04$20.00 © 2004 IEEE

CHEN AND PARHI: OVERLAPPED MP FOR LDPC CODES 1107

Fig. 1. Code construction of regular (3, 5) quasi-cyclic LDPC codes. (a) Block
matrixH . (b)m�m circularly shifted identity matrix with certain offset.

iterative decoding algorithm and block diagrams of functional
units. The proposed overlapped MP is presented in Section III.
All the details on how to solve the memory access conflict as
well as a case study are also explained in this section. Finally,
some conclusions are drawn in Section IV.

II. QUASI-CYCLIC LDPC CODES

In this section, the code construction and their performance
curves of quasi-cyclic LDPC codes will be briefly reviewed. Its
decoder architecture will then be illustrated.

A. Code Construction

The LDPC code may be described in terms of a parity check
matrix , which satisfies modulo for all code-
words . The matrix for quasi-cyclic LDPC codes can be
constructed as follows: for a desired code, first construct
the block all-one matrix with size of ; then, replace each
element in with cyclically shifted identity matrix with
certain offsets, where is a prime number and , are among
the prime factors of . One example of (3, 5) code is shown
in Fig. 1. The offsets are given by modulo ,
where , and , have multiplicative or-
ders of , , respectively. Dependent on the locations, the
offsets might be different for different identity matrices within

, for the sake of clarity, a subscript denoting as will
be adopted in later sections.

Following the construction method described above, the
obtained code has parity check matrix with size of

and code rate (there are at least
dependent rows in). This code is regular code since both the
variable node degrees and check node degrees are constants.
To achieve better decoding performance, irregular quasi-cyclic
LDPC codes could also be constructed by optimizing the node
degrees. The block matrix for one irregular quasi-cyclic
LDPC code as an example of rate 1/2 code is shown in Fig. 2
[6]. It is also in the category of quasi-cyclic codes since each
element within is actually a circularly shifted
identity matrix with certain offset as regular quasi-cyclic LDPC
codes.

B. MP Decoding Algorithm

The MP algorithm is generally employed to decode LDPC
codes. Following the original MP algorithm, in every iteration,
two types of messages passed between variable nodes and check
nodes have to be updated. The check-to-variable message
for the check node and variable node using the incoming

Fig. 2. Block matrixH of irregular quasi-cyclic LDPC code with rate 1/2.

variable-to-check messages is computed by the check node
functional unit (CNFU) as follows:

(1)

(2)

where is the sign part of and denotes the set
of variable nodes connected to the check node . The func-
tion can be implemented by look-up-
table (LUT) operations and each LUT normally has 32 5-bit en-
tries [9].

On the other hand, the variable-to-check message for the
check node and variable node using the incoming check-to-
variable messages and received channel information is
computed by the variable node functional unit (VNFU)

(3)

(4)

where is the set of check nodes connected to variable node
and is the intrinsic information while stands for

the estimated standard deviation of the additive white Gaussian
noise (AWGN) channel. The soft output for the variable node

is later sliced to check whether all the parity check equations
are satisfied, i.e., the decoded output is a codeword or not.

1) Simulated Results: According to the above MP decoding
algorithm, the simulation results of some codes are
shown in Fig. 3, where stands for the codeword length,
is the information length, and is the prime number used to
construct the circularly shifted identity matrix. The solid lines
are for regular codes with code rate of around 0.4 while the
dashed line is for the irregular code with code rate of 0.5. All the
performance are evaluated over the AWGN channel with BPSK
modulation.

As expected, we can easily see that in Fig. 3, the bit error rate
(BER) performance is significantly improved with larger code-
word length . Furthermore, the performance of regular codes
could be ameliorated by optimizing the node degrees to con-
struct irregular LDPC codes [6]. For the (4632, 2316, 193) code,
the BER of could be achieved at the signal-to-noise ratio
of about 1.4 dB. Using the inherent early termination feature of
LDPC codes, namely, the iterative process will be stopped ear-
lier if the codeword is found based on the sliced soft outputs at
the end of every iteration, the average number of iteration for

1108 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004

Fig. 3. Simulated performance of quasi-cyclic LDPC codes.

Fig. 4. Average number of iterations for quasi-cyclic LDPC codes.

all the four considered codes are depicted in Fig. 4 assuming
the maximum number of iterations is set to 30.

From Fig. 4, it is observed that both regular and irregular
quasi-cyclic LDPC codes almost converge at the same speed in
spite of better coding gain for irregular code. In later sections,
the (3, 5) regular code will be our example due to its relatively
smaller , values for easier explanations.

2) Node Functional Units: In terms of hardware implemen-
tation, the structures of CNFU and VNFU for the (3, 5) regular
code could be illustrated as in Figs. 5 and 6, respectively.

For the sake of clarity, the parity checking part is not shown in
Fig. 5 and the intrinsic information is represented by

in Fig. 6. It is also worth noting that the data format transforma-
tion block, either from sign magnitude (SM) to two’s (2’s) com-
plement format or vice versa, exists in both types of functional
units. The major advantage of using SM format for LUT oper-
ations is that each LUT size can be reduced by half by making
use of the symmetry properties of function. However, it is
still more convenient to use 2’s complement format in VNFU
computations.

C. Decoder Structure

For the regular quasi-cyclic LDPC code, one straightfor-
ward approach similar to [18] adopts -input CNFUs, -input

CHEN AND PARHI: OVERLAPPED MP FOR LDPC CODES 1109

Fig. 5. CNFU.

Fig. 6. VNFU.

Fig. 7. Partly parallel decoder for quasi-cyclic (3, 5) LDPC code.

VNFUs and extrinsic information memories , where
and . The case of and is

depicted in Fig. 7. Note that the intrinsic information is retrieved
in memories while memories store the hard decisions of soft
outputs used for parity checking in the subsequent iter-
ation, where . In this partly parallel decoder struc-
ture, each memory contains memory words. The wordlength
is dependent on whether it is extrinsic information, intrinsic in-
formation or 1-bit hard decision bit. Furthermore, there is one
modulo- counter associated with each memory to generate the
corresponding memory address, which always counts up to
starting from certain initial value and then wraps around to zero.

For the considered decoder structure in Fig. 7, the decoding
process can be carried out as follows.

• Initialization: Flush the received intrinsic information to
both the memories and the corresponding ex-
trinsic information memories . The data are stored

column-wise in the memories and row-wise in
memories. However, in order to store the incoming in-
trinsic information row-wise in the memories while
they are received column-wise, during the initialization
process, the starting memory addresses for the mem-
ories have to be different for different block rows and
dependent on the offsets computed by
modulo . Here, block row means those rows sharing
the same value.

• Check node update: In each subsequent iteration, the
updated variable-to-check messages are simultaneously
read from all the memories by all the CNFUs,
each CNFU read memories in a block row. For instance,
memories are read by the same
second CNFU in Fig. 7. Then, after CNFU computation
the updated check-to-variable messages are written back
to the same address in the order of for all
the memories in a block row. Therefore, in one
clock cycle rows are updated simultaneously, namely,
rows . Consequently,
in one iteration totally clock cycles are required to
complete the updating process of all the rows.

• Variable node update: Similarly, in the same iteration, the
updated check-to-variable messages are simultaneously
read from all the memories by all the VNFUs,
each VNFU read memories in a block column. Here,
block column means those columns sharing the same
value. For instance, memories , , are read
by the same first VNFU in Fig. 7. Then, after the VNFU
computation, the updated variable-to-check messages are
written back to the same address as read operations in the
order of .
Consequently, in one clock cycle columns are updated
simultaneously, namely, columns

, where . In one iteration, totally
clock cycles are required to complete the updating process
of all the columns. It is worth noting that for the
check node update, all the memories in one block row
share the same memory address while this is not the case
for the variable node update since all the memories in
one block column have different values thus dif-
ferent addresses.

• Parity checking: At the end of every iteration, all the soft
outputs computed during the variable node update are
sliced to check the parity equations for all the
rows. The iterative process will be terminated when either
all the parity check equations are satisfied, that is to
say, one codeword satisfying is found, or the
pre-assigned maximum number of iterations is reached.
This step could also be concurrently proceeded with the
check node update as well.

The decoder structure in Fig. 7 has the obvious advantage of
memory requirement. Let the wordlengths of the extrinsic and
intrinsic information are and , respectively. The total re-
quired data storage is for all the extrinsic information (size equal
to the number of nonzero elements in the parity check matrix
multiplied by), the intrinsic information (size equal to the
codeword length multiplied by) and the hard decision

1110 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004

Fig. 8. Scheduling of CNFUs and VNFUs.

bits of soft outputs (size equal to the codeword length). This
is the least memory requirement if the original MP decoding
algorithm is strictly followed without introducing any perfor-
mance degradation. Furthermore, this structure possesses some
other nice features including straightforward memory address
generation, localized memory access and simple routing.

From the decoding process outlined above, we know that in
one iteration both check node update and variable node update
operations have to be performed, one after another. This leads
to the merely 50% HUE of the logic core for the decoder in
Fig. 7 because all the VNFUs are idle when CNFUs are busy
during the check node update and vice versa during the variable
node update. To improve the HUE of logic core, the approach
we considered is to overlap the check node update and variable
node update operations by making use of inherent properties of
quasi-cyclic LDPC codes to get higher throughput design.

III. OVERLAPPED MP DECODING

In this section, the proposed overlapped MP for the consid-
ered partly parallel decoder structure will be explained in detail.

A. Scheduling of CNFU and VNFU

Due to the randomness characteristics of parity check matrix
, the computation by CNFUs and VNFUs generally could not

be overlapped; thus, they are always computed one after another
in one iteration. This sequential process can be illustrated as in
Fig. 8(a). Totally, iterations are assumed.

As discussed in Section II-C, both CNFUs and VNFUs need
clock cycles to finish computing one block row and one block

column, respectively. Therefore, in Fig. 8(a) for one iteration,
altogether clock cycles are required to update all the

rows and columns if CNFUs and VNFUs are sequentially
executed. By realizing the data independence among the rows,
not all the CNFUs have to start from the same initial address
as long as the cyclic order is assured, this sequence tie between
CNFUs and VNFUs can be naturally broken.

If assuming dual-port memories are available, CNFUs and
VNFUs can be computed as shown in Fig. 8(b). Instead of
waiting for clock cycles, VNFUs can begin to update the
variable-to-check messages only after clock cycles’ compu-
tation of CNFUs, here is referred to as waiting time in later
sections and . Likewise, CNFUs in the subsequent
iteration can start after clock cycles’ computation of
VNFUs. In this way, the number of clock cycles of the entire
iterative process for the two cases in Fig. 8(a) and (b) are

and , respectively. The throughput
gain through the overlapped decoding compared to the original
decoding is

throughput gain (5)

To achieve this, the following three constraints need to be satis-
fied.

• No performance degradation is introduced, which means
the data flow should not be changed.

• No memory access conflict since both CNFUs and VNFUs
exchange message through the same memories.

• We minimize waiting time to achieve throughput gain
closer to two according to (5).

B. Waiting Time Minimization

An algorithm is developed to systematically minimize the
waiting time for the scheduling scheme depicted in Fig. 8(b).
Intuitively, the minimal waiting time could be obtained
through the following five steps.

1) Choose the first block row as a reference basis, where
memory addresses of memories start from 0 and
counts up to . On the other hand, for all the other

block rows except for the reference basis, the
memory addresses start from constants ,
respectively.

2) Independently determine these constants
such that they individually minimize

values in a block row, namely, the maximum
of the values is minimized
by one constant. Here, stands for the column index
difference between the block row and
the reference basis block row for block column

; thus,
modulo . It can be easily observed that in order to ob-
tain the minimum value,
should be equal to
modulo . As a result, the
for different values are denoted as ,
respectively.

3) The waiting time for this first reference basis is thus
the maximum column index difference among all the

block rows, i.e., .
4) Change the reference basis to the other block

rows, repeat the steps from step 1 to step 3 for each ref-
erence basis, and denote the obtained waiting times as

.
5) The minimum waiting time is thus given by

. For the winner basis
giving , its corresponding CNFUs memory

address is still in the order of as the
original decoding while for all the other CNFUs the
starting memory addresses are merely those constants

for the chosen basis , respectively.
On the other hand, during the variable-node update
operations, starting memory addresses for the overlapped
decoding should be modulo

instead of modulo for the original
decoding.

CHEN AND PARHI: OVERLAPPED MP FOR LDPC CODES 1111

Fig. 9. Constraint model for CNFUs and VNFUs.

Since all the five steps above could be pre-computed, that is
to say, for any specified code the minimal waiting time , the
winner basis and the constants for other block rows other than
the winner basis can be determined before the decoding process
is actually started, no hardware overhead is introduced.

C. Constraint Satisfaction

To verify the validity of the algorithm described in Sec-
tion III-B, a constraint model for the overlapped MP decoding
is developed as depicted in Fig. 9 based on the Fig. 8(b). For
the sake of clarity, only the first two iterations are shown here.

In the first iteration, CNFUs are divided into region and
while VNFUs are divided into regions and . Similarly,
and are the two regions of CNFUs in the second iteration.

To meet the constraint of no memory access conflict, both, the
so-called intra-iteration constraint, and the inter-iteration con-
straint have to be satisfied. Here, the former constraint means
that all the starting addresses in region should have al-
ready been updated in region (or), which guarantees that
VNFUs have to start only after all the check-to-variable mes-
sages in the same column passed by CNFUs are already avail-
able. On the other hand, the latter constraint states that all the
starting addresses in region should have been computed
in region (or), which implies that CNFUs start only after
all the variable-to-check messages in the same block row passed
by VNFUs have already been updated.

D. Slightly Modified Memories Addressing

The algorithm of computing itself assures there is no
memory access conflict for the very first iteration. However, in
the case of large values, some conflicts might happen if in the
following iteration all the CNFUs still use the same memory
starting addresses as in the previous iterations. Therefore,
some modifications of the initial addresses in later iterations
are necessary. For even iterations, the worst case conflict
happens if the first memory word need to be updated by any of
CNFUs in the current iteration is the last memory word utilized
by any of VNFUs in the previous iteration. In this case, the
maximum memory miss is clock cycles. This problem can
be solved like this: subtract all the memory starting addresses
during CNFUs and VNFUs operations in even iterations by .
Likewise, subtract all the memory starting addresses during
CNFUs and VNFUs operations in odd iterations by ,
which actually return to the same value as the first iteration.

Following the scheme described above, both the inter- and
intra- iteration constraints are satisfied. There is no memory ac-
cess conflict, and the old messages are always utilized before
they are updated. Unfortunately, in a small amount of clock cy-
cles there is such an undesirable case where CNFU and VNFU
have to update the same memory word in the same clock cycle.

Fig. 10. Offsets of identity matrices for the (155, 64, 31) code.

Fig. 11. Memory starting addresses for CNFUs and VNFUs.

To avoid the contradiction, the operations order in that clock
cycle has to be arranged like this: the CNFU first fetches that
memory word, then updates the check-to-variable message. Be-
fore the new message is written back to the same memory ad-
dress, it is immediately utilized by the corresponding VNFU,
which updates its variable-to-check message and store it back
to that memory address. To completely eliminate this case, the
slightly modified overlapped scheduling is proposed and sum-
marized as follows.

1) Based on the five steps in Section III-B, pre-compute the
waiting time and other related information including
winner basis, memories starting addresses for CNFUs and
VNFUs in the first iteration. Let the new minimal waiting
time .

2) At the end of check node or variable node computations
in every iteration, either CNFUs or VNFUs are idle for
one clock cycle. Consequently, the new throughput gain
becomes .

3) Taking the worst case memory miss into consideration,
all the memories starting addresses have to be subtracted
accordingly at the end of each iteration by .

E. Case Study of the (155, 64, 31) Code

Applying the proposed overlapped decoding in Section III-D
to the regular (155, 64, 31) code, we found that the required
number of clock cycles is indeed reduced by about two times
without introducing any memory access conflict or performance
degradation.

For the (155, 64, 31) code, its prime number is and
. The code generators , are equal to 5 and

2, respectively. According to the code construction method de-
scribed in Section II-A, the following offsets listed in Fig. 10 for
each of 3 5 identity matrices could be obtained by computing

modulo 31.

1112 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004

Fig. 12. Alternatively interpretation of partly parallel decoder. (a) Original decoding. (b) Overlapped decoding.

Then, by following the five steps explained in Section III-B,
we can find that the winner basis is the second block row, the
waiting time is equal to 15 and, thus, is 16 clock cycles. Fur-
thermore, the constants for the first and third block rows are
16 and 26, respectively. Based on the iteration flow in Fig. 8(b),
the corresponding starting addresses of each individual memory
for the first two iterations, during either CNFUs or VNFUs op-
erations, are listed in the four tables shown in Fig. 11.

From Fig. 11, we know that the entries in Table 1 in Fig. 11
directly reflect the values obtained from the pre-computation,
where all zeros are in the second row since it is the winner basis.
Obviously, the values in the first row and third row are the con-
stants and , respectively. For Table 2 in Fig. 11, one easy
way to prove the correctness of our method is that by adding the
entries with their corresponding offsets in Fig. 10, the exactly
same value is obtained for each column, which flags the same
starting column of VNFUs operations for each block column. It
is perfectly synchronized without any memory access conflict.
Furthermore, it is easily seen that those columns have already
been updated by CNFUs; thus, the intra-iteration constraint is
met. For later iterations, it is very straightforward to determine
the memories starting addresses by simply subtracting 16 from

the previous iteration for both CNFUs and VNFUs. A similar
verification method could be adopted to check whether inter-it-
eration and intra-iteration constraints are met. For the sake of
brevity, the details are omitted here.

Our proposed overlapped decoding could also be alterna-
tively interpreted in time order as illustrated in Fig. 12. The
numbers beside the arrows denote the corresponding memories
addresses in the current clock cycle.

For the considered partly parallel decoder for the (3, 5) reg-
ular code, three check nodes or/and five variable nodes are pro-
cessed in one clock cycle. In the original decoding in Fig. 12(a),
the check node update and variable node update are processed
one after another. During the check node update, in the first
clock cycle, the first check nodes in the three block rows are first
updated, and then the three second check nodes are updated in
the second clock cycle. Therefore, the last three check codes are
updated in the the 31st clock cycle. In a similar manner, during
the variable node update, the first variable nodes in the five block
columns are updated in the 32nd clock cycle, and then another
subsequent five variable nodes are updated. Finally, in the 62nd
clock cycle the last five variable nodes are updated, which com-
pletes one iteration.

CHEN AND PARHI: OVERLAPPED MP FOR LDPC CODES 1113

In contrast, for overlapped decoding shown in Fig. 12(b), in the
first clock cycle, three check nodes, which are not necessarily the
first check nodes in the respective block row except the winner
basis, from three block rows are updated. Then, as original de-
coding, another three neighbor check nodes are updated in the
next clock cycle. However, after 16 (minimal waiting time) clock
cycles, three check nodes and five variable nodes are updated si-
multaneously in the s17th clock cycle. This is exactly what we
are trying to achieve for overlapped decoding. Certainly, those
check and variable nodes have to be chosen by strictly following
the steps described in Sections III-B and D to avoid memory ac-
cess conflict. Obviously, in the 18th clock cycle another imme-
diate three check nodes and five variable nodes are updated until
the 31st clock cycle when the check node update is finished for
the first iteration. Then, starting from the 33rd clock cycle, the
variable node update in the first iteration and check node update
in the second iteration will be overlapped. This process con-
tinues until the iterative process is terminated.

IV. CONCLUSION

In this paper, for the so-called quasi-cyclic LDPC codes, a
new scheme is proposed on how to generate memory address
for the overlapped MP decoding. The considered decoder archi-
tecture significantly simplifies the memory address generation
and wire interconnections. The new scheme exploits the max-
imum concurrency between two stages of belief propagation al-
gorithm and entirely eliminate the memory access conflict. The
application of the proposed approach to the real example verifies
its correctness. If dual-port memory is available, the decoding
throughput could be increased almost twice, which provides a
good tradeoff between area and speed. This approach can also
be easily extended to irregular quasi-cyclic LDPC codes as long
as the similar decoder structure is adopted.

REFERENCES

[1] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low-density parity check codes,” Electron. Lett., vol. 32, p. 1645, 1996.

[2] R. G. Gallager, “Low-density parity check codes,” IRE Trans. Info.
Theory, vol. IT-8, pp. 21–28, 1962.

[3] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes
based on finite geometries: A rediscovery and new results,” IEEE Trans.
Inform. Theory, vol. 47, pp. 2711–2736, Nov. 2001.

[4] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity approaching irregular low-density parity-check codes,” IEEE
Trans. Inform. Theory, vol. 47, pp. 619–637, 2001.

[5] D. Sridhara, T. Fuja, and R. M. Tanner, “Low-density parity check codes
from permutation matrices,” in Proc. Conf. Information Sciences and
Systems, Baltimore, MD, Mar. 2001.

[6] D. Hocevar, “LDPC code construction with flexible hardware imple-
mentation,” in Proc. IEEE Int. Conf. Communications, vol. 4, May
11–15, 2003, pp. 2708–2712.

[7] S.-Y. Chung, G. D. Forney Jr, T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,” IEEE Commun. Lett., vol. 5, pp. 58–60, Feb. 2001.

[8] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits,
vol. 37, pp. 404–412, Mar. 2002.

[9] Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate
1/2, 8088-b irregular low-density parity check decoder,” in Proc. Global
Telecommunications Conf. GLOBECOM’03, vol. 1, Dec. 1–5, 2003, pp.
113–117.

[10] T. Zhang and K. K. Parhi, “VLSI implementation oriented (3; k)-reg-
ular low-density parity-check codes,” in Proc. IEEE Workshop Signal
Processing Systems, Sept. 26–28, 2001, pp. 25–36.

[11] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error
correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf.
Communications, vol. 2, May 1993, pp. 1064–1070.

[12] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near-optimum de-
coding of product codes,” in Proc. Global Telecommunications Conf.
GLOBECOM’94, vol. 1, Nov. 1994, pp. 339–343.

[13] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423 , 1948.

[14] R. Pyndiah, “Near-optimum decoding of product codes: Block turbo
codes,” IEEE Trans. Commun., vol. 46, pp. 1003–1010, Aug. 1998.

[15] R. M. Tanner, “A class of group-structured LDPC codes,” in Proc.
ICSTA, Ambleside, U.K., July 2001.

[16] A. Sridharan, D. J. Costello Jr, D. Sridhara, T. Fuja, and R. M. Tanner, “A
construction for low-density parity check convolutional codes based on
quasi-cyclic block codes,” in Proc. IEEE Int. Symp. Information Theory,
2002, p. 481.

[17] Y. Chen and K. K. Parhi, “High throughput overlapped message passing
for low-density parity check codes,” in Proc. IEEE/ACM GLSVLSI,
2003, pp. 245–248.

[18] T. Zhang and K. K. Parhi, “A 54 MBPS (3, 6)-regular FPGA LDPC de-
coder,” in Proc. IEEE Int. Symp. Information Theory, Oct. 16–18, 2002,
pp. 127–132.

[19] E. Boutillon, J. Castura, and F. R. Kschischang, “Decoder-first code de-
sign,” in Proc. Int. Symp. Turbo Codes and Related Topics, Sept. 2000,
pp. 459–462.

[20] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propa-
gation based decoding of low-density parity check codes,” IEEE Trans.
Commun., vol. 50, pp. 406–414, Mar. 2002.

Yanni Chen (S’00–M’03) received the B.S. and M.S.
degrees from Tongji University, Shanghai, China, and
the Ph.D. degree from the University of Minnesota,
Minneapolis, all in electrical engineering, in 1997,
1999, and 2003, respectively.

She is with DSP Solutions R & D Center, Texas
Instruments Incorporated, Dallas, TX. Her current
research interests are efficient very large-scale
integrated architecture designs for various building
blocks in communication systems.

Keshab K. Parhi (S’85–M’88–SM’91–F’96)
received the B.Tech., M.S.E.E., and Ph.D. degrees
from the Indian Institute of Technology, Kharagpur,
India, the University of Pennsylvania, Philadelphia,
and the University of California at Berkeley, in 1982,
1984, and 1988, respectively.

Since 1988, he has been with the University of
Minnesota, Minneapolis, where he is currently a
Distinguished McKnight University Professor in the
Department of Electrical and Computer Engineering.
His research addresses VLSI architecture design

and implementation of physical layer aspects of broadband communications
systems. He is currently working on error-control coders and cryptography
architectures, high-speed transceivers, ultra wideband systems, and quantum
error-control coders and quantum cryptography. He has published over 350
papers, has authored the textbook VLSI Digital Signal Processing Systems
(New York: Wiley, 1999) and coedited the reference book Digital Signal
Processing for Multimedia Systems (New York: Marcel Dekker, 1999).

Dr. Parhi is the recipient of numerous awards including the 2003 IEEE
Kiyo Tomiyasu Technical Field Award, the 2001 IEEE W.R.G. Baker prize
paper award, and a Golden Jubilee award from the IEEE Circuits and Systems
Society in 1999. He has served on Editorial Boards of IEEE TRANSACTIONS ON

VLSI SYSTEMS, IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE SIGNAL

PROCESSING LETTERS, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,
and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II, currently serves
on Editorial Boards of the IEEE Signal Processing Magazine and Journal
of VLSI Signal Processing Systems, and is the current Editor-in-Chief of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, for
2004–2005. He served as Technical Program Cochair of the 1995 IEEE VLSI
Signal Processing Workshop and the 1996 ASAP Conference, and as the
General Chair of the 2002 IEEE Workshop on Signal Processing Systems. He
was a Distinguished Lecturer for the IEEE Circuits and Systems Society from
1997 to 1999.

