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Abstract—A progressive second price (PSP) auction mech- guantized framework is reached. It is generally believed th
anism was proposed in [1] for network bandwidth allocation. PSP and Q-PSP constitute interesting classes of deceattali
In this paper a quantized version of this mechanism (QPSP) dynamical optimization procedures.

is analyzed where the agents have similar demand functions . . L
and submit bids synchronously. It is shown that the non-linear We will show that the nonlinear dynamics induced by Q-

dynamics induced by this mechanism are such that the prices PSP are such that the prices bid by the various agents and
bid by the various agents and the quantities allocated to these the quantities allocated to these agents converge in at most
agents converge in at most five iterations or oscillate indefinitely, five iterations or oscillate indefinitely, independently the
independently of the number of agents involved. number of agents involved.

. INTRODUCTION Lazar and Semret suggested in [5] that each agent bids

Progressive second price auctions (PSPs) were proposs%&fesswely |t$t-bes';] reply V\r/:th respect to the t(;]urtrenlit bids N
in [1] for dynamic network service market-pricing with the 0! I'S opponents, whereas here we assume that all agents

objective of providing consistent services when the stedal mhake th_e quglr&tlze? tﬁ'd.s S|multante0L:§Iy W'tt)h. restpr)]ectb tot
DiffServ customer access control protocols [2] are in usé. € previous bids of their opponents, these being the bes
In particular, it was shown that for differentiated sergice response dynamics described in [7] and [8]. Both the cyclic

allocated between multiple agents there exist Nash mar l?d the S|mult§1ne(_)us update rules are widely used in _the
equilibria when all players bid their real marginal valoati t.eory of Iearm_ng.ln games [7], [8]. For PS.P’ one of main

of the bandwidth resource. In [3] and [4], an accelerated Corq!sadvantages_ Is its slow convergence, Wh'Ch brings about
vergence version of PSP was derived which avoids signali égnal bursts, i.e. a part of channel capacity has to be taken

bursts but this is at the cost of multi-dimensional bidding. - communication between agents and sellers. Here we

The PSP dynamical auction mechanism introduced afdove: in comparison with the succ_essive bid ;ystem in [5],
analyzed in [5] and [6] was defined in such a manner thé at Q-PSP systems may converge in at most five steps when

agents compute the-best response to the current strateg Iiz:gentsnzhi;e ‘;"{E'lar: drigarndffunctr:?nshs:ch co:vs:agﬁnc
profile of their opponents as their bids. Each agent's bi ependent of In€ number of agents. Hence synchronous

consists of (i) a required quantity and (ii) a unit-pricel{ca -PSP avoids the signaling overhead of PSP.

culated using its own demand functions). All agents submg_én thet_work of Maﬂl:z ar;dthJffln (r;s_ee [3] andt[4]), a multi-
bids cyclically until an §-Nash) equilibrium is reached where Id auction was consfructed to achieve one step convergence

e corresponds to a bid fee. It was proved in [5], [6] thaf)]c PhSP sy;sten;)s. .tln muI![tll—Ibldb%uctlpnsltlt IS aslsumed thag
PSP has the desirable properties of incentive compayibilife"’llC ager.1 tk?u Tr']s muklptel 'ds simu anzous;a (t)r?ce I?n
and efficiency (i.e. bids correspond to the actual level of 'y once, then the market clearing price [3] and the allo-

demand at a given price and the sum of all utility functions9at|ons are calculated. It is known that the precision aed th

are optimized); however, the rate of convergence is inV;erseeIf'C'enhCy of ttr?'sbrgeCh?'lﬁm depeg%s UPO?] the dt|merk;5|<_)tn
proportional to the bid fee. of each agent’s bid set: the more bids each agent submits,

In this paper, a quantized version of this mechanisnwe more efﬂment thg equilibrium IS That 'S o say, in
Q-PSP, is analyzed where all agents have similar demaider to achieve a satisfactory approximation of each &ent

functions. In Q-PSP, each agent submits a bid which consis n valuati(_)_n f_unction (SO. that '_[he final state is cylose_ toa
of both a unit-price and a quantity as in PSP. Then it uses t eaSh) Eq“"'b”“m)- the dimension of eac_h agents b'o.l set
following quantized strategy: (i) it computes its best ditgn must be !arg.e. This latter faqt e_ngenders high computationa
response with respect to the previous strategy profile of i&ommunlcatloq, and trap smission costs.

opponents; (ii) chooses a lowest quantized price as the ult_1>i Vge rizr:hrgiirgzrﬁsthaesd;ztlllg\(/:\fls?n?i)bﬁfwg?g nge aiigoﬁgd zﬁ_
bid price; (iii) then calculates the bid quantity based oa th _ S . ' ; o
unit bid price and the agent's own demand function (Se%gents submit their bids simultaneously, while the cyciit b

Sect. Il B below for details). In Q-PSP auctions all agentglgor'thm is applied in PSP. (i) The strategies in Q-PSP

submit bids synchronously until a (Nash) equilibrium in theé''® qgantlzeq and aI.I agents’.blds are baseq upon a set of
guantized prices, while there is no quantization in PSP. To
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1 is a measure of the quantization level and the divergence Agent A;’s utility is defined as

between the demand functions), but, in PSP, convergence to

an e-Nash equilibrium is shown to be inversely proportional ui(s) = Oi(ai(s)) — cils),

to e. (iv) there is no bid fee in Q-PSP, i.e= 0, but in PSP which implies the agent’s preferences.

e>0. Under the PSP rule above, it is shown in [5], [10] that
given the opponent bids_;, AgentA;’s e-best responseg;, =

Il. THE QUANTIZED PROGRESSIVESECOND PRICE (w;, v;) in the sense of a Nash move (i.e. wherds chosen
AUCTION AND THE ASSOCIATEDDYNAMICAL SYSTEM  tg maximize its utility withs_; held constant) is given by:

A. Progressive Second Price Auctions

o ) ) oy = sup{zZO:@£(z)>Pi(z),/ Pi(n)dngbl}
To begin with we give a summary of the PSP auction first 0

introduced in [5] which forms a part of the overall market _ /6 (best quantity reply) (Il.4a)
based bandwidth allocation model. 6;(0)
Consider a noncooperative game whéfeagents buy the , = 6(v;) (best unit-price reply) (11.4b)

fixed amount of bandwidtl’ from one seller. Suppose each ) ) ) ,
agent4;, 1 <i < N, makes aid s; = (p;, ¢;) to the seller, wheree > 0 is the bid feg,bi is Agent A; s budget, and_ .
wherep; is the unit-price the agent is willing to pay andis €€y agent has an elastic demand function. Further it is

the quantity the agent desires= [s;];<;< is the bidding shown'in [5] that in case t.he bidding itera'tions converge
T they will converge at a rate inversely proportionaletto an

profileands_; = [s1, - ,8i—1,Si+1, -, Sn] IS the profile Vel
of Agent A;’s opponents. Thenarket price function (MPF) ¢-Nash equilibrium.
of Agent 4; is defined as: B. Quantized Progressive Second Price Auctions (Q-PSP)

We now analyze the Quantized Progressive Second Price
Pi(z,5_4) =infqy>0:C — Z g >z v, (I.1) Auction introduced in [12]. Adopting a similar framework
Pr>y ki to the original PSP scheme, we assume for Q-PSP that all

o o . ~agents follow quantized strategies where their bids aredas
which is interpreted as the minimum price an agent bids I0pon a set of quantized prices as described below.
order to obtain the bandwidth given the opponents’ profile | ot s define

s_;. Its inverse function); is defined as follows:
horP; = {(x,y);0 <z < C,y = Pi(x)};

vertP; = {(x,y); Pi(x) <y and for all§ > 0
sufficiently small,y’ = P;(z + ) satisfiesy < y'}.

+

Qily;s—i)=[C— > a| ,
Pr>Y,kFi
which means the maximum available quantity at a bid pric%se? the horizontal _and verticgjl segme_nts in F?g. 1). Furthe
of y given s_;. With this notation, the PSP allocation rule gflng Fhemarket price gu.r\./ePi (_somenmes writter?; for
[10] is defined as S|mpI|C|ty) to be the d!510|nF unlon{hc_)rPi U pert._PZ-}. A
relation R on i’ x R’ is said to be increasing if for all
ai(s) = min{g, = Qi(pi,s_)}, (1.2) (v.y) € R, (a',y) € Randz <z’ imply y < y'. Taken
Zk;pk:pi Ak together these definitions malk” an increasing relation in
ij [a;(0;5_;) — aj(si;s—i)],  (1.3) the.(:c,y) = (quantz’ty,pm‘ce) space such that t.hf-z relation is
g a piece-wise constant function at all except a finite number o
points where it is given by a vertical segment. Whes 0,
wherea; denotes the quantity Agemt; obtains by a bid the intersection in (11.4) between any agent's demand curve
price p; (when the opponents bid_;) and the charge t0 and its market price curve has the interpretation that itidou
Agent A; by the seller is denoted;. ¢; is interpreted to be pe the best reply of each agent once the agent senses, via
the total cost incurred in the system if Agedt is removed (1 1), how much the other agents are collectively bidding.

ci(s)

from the auction. In the context of the equations (I1.4), we shall adopt the
Definition 1 (see Assumption 1 of [5]). following hypotheses:
_ A real valu_ed functiord(-) is an (elastic) valuation func- (1) All bid quantitiesq are bounded by, i.e.0 < ¢ < C,
tion on [0, C7 if (2) There is no bid fee, i.e. =0,
e 6(0)=0; (3) The budgeb; of each agent is sufficiently large that the
« 0 is differentiable; condition [, P;(n)dn < b; in (11.4) is always satisfied.
« 6 >0, andd is non-increasing and continuous; An intersection between a demand curve and a market

o There existsy,y > 0, such that for allz,z € price curve can occur in two distinct ways, namely the
[0,C1,60 (2) > 0 implies that for ally € [0,2), 0 (2) < demand curve may either interséatr P; or vertP;. Under
0 (n) —~v(z—mn). the quantization assumption, in the first case, agents make
The functiond'(-) on [0,C] is called an(elastic) demand normal bid as in (I1.4), i.e. the values of the price and the
function O quantity at the intersection. In the second case, the unique



point of intersectior(z*, p**) lies invertP;. Agents are then maximized givens_,. If the demand functiord; intersects
assumed to take the prig¢ corresponding to the value ¢f  the corresponding market price cuniZ” on (wf“,vf’“)
at the limit 2* from the left of {z > 0,6,(z) > P;(2)} and at the(k + 1)th iteration andp, < wf™ < p,; with two
the corresponding quantized price satisfig¢s= P;(z*) € adjacent quantized prices,, p,+1 € Bg, the best quantized
B,,. I;i/nallzy ;htle_l cor;esporrl]dinbg quantity;" isOI definid py reply for AgentA4; is @5;1’9;-1(]);;;1)) with

q; =6,” (p}). Here B, is the basic quantized set of prices. , ., K1 5 i

These two cases are shown in Fig. 1 and Fig. 2 respectively’bst — 479 _ Hax a; (p,s2;) < Qi(pn,sZ;)-

PE{Pn Pn+1}
here three agents are considered. o . -
W gents ! More specifically, the allocated quantity within the best

) "\ P strategy is
5 R N B X ai_c-i-l _ /U7];§;+1;
E 2 ‘: " the allocated quantity within the best quantized strategy i
-q-q E c-q-q "2 clo-q z af*l - max{Hgfl(/pian)’
c-g c-q C-q, 0, (Pn) in(pm Slii)};

9;_1(pn) + Zl:pl“:pnj;éi q

Fig. 1. Market price curve®*" and demand functions’ of agentsA1,  and the quantized strategy in (I1.5) brings about the atteta
Az, Az. w1 = p5 = p2, w2 = p5 = p1 andws = p} = p1.

quantity as
'—1/ k41
kit — 0; (pz'Jr ) Q'(karl sk )
i T =1 k1l ke o=
pA 6.(2) 07 (i) + Lphmpttt 1 @

B per whereprr1 is calculated from (l.5b). Here the quantized
2 strategy in (11.5) may not be the best (quantized) strategy f
P, WZ\ each agent, but it is the strategy that provides the lowest bi
price such that the maximum available quantity is greater
than the desired quantity;. Hence the quantized strategy is
a y-best reply with

~Y

C-4-g C-gq k+1 _k

v = u;(v; * ;825)
On the other hand, if a Q-PSP dynamical system converges
Fig. 2. Demand curve of agent 2 intersecting the market priceecl;”  to a quantized pricg*, thens* is ad-Nash equilibrium in the

on a vertical segment ands 7 pj = ps. quantized framework with* = (p*,0; ' (p*)) in the sense

ak+1( k+1 _k ),Sk )

— ui( Py 55-i)S—;

that:
The result of applying the hypotheses (1)-(3) leads (e S o e oF )
to the recursively defined market price functions (MPFs) uilsi,s%i) = pflelgg ui(sirs23) =0 (11-6)

{PF1:1 < i < N,k > 0} (see (Il.1)), and the following _
qguantized PSP (Q-PSP) dynamical (state space) systéin whered is such that

state ¢, p,q)) equations. § > max|ui(s*) —ui((p™, 0, (p™)), s*,)|(1.7)
ot = sup {z >0:0,(z) > Pf“(z,s’ii)}(ll.Sa) p*™* = min{p:p>p*,pe B}
pitt = PEFL(FT SR (11.5b) It is to be noted that in PSP and Q-PSP it is assumed
¢t = (11.5¢) that each agentd; makes bids only based upon its own

) knowledge, i.e. only based upon its own demand function

with the initial conditionsp? € BY, ¢ = 6,"(p?), 0 <  and the bidding profiles of the other agents.

k < o00,1<1i < N.One may verify thaf (p¥, ¢¥);1 <i <

N,k > 0} constitutes a minimum dimension state process

for the dynamica' System (“5) and for dﬂ {pf?7]_ S 7 g It will be shown in Sect. IV that a Q'PSP dynamical

N} c B, system converges to a limit or settles into an oscillation in
! ) a limited number of iterations, regardless of the number of

C. Best Reply Bids for Q-PSP agents. To illustrate this, assume there afeagents and

In this subsection we analyze the difference between theitially,

best quantized strategy of each agent (which is effectively i

uncomputable) and the dynamical recursion prescribed by P, = pi= N (1.8a)

(I1.5). The best quantized strategy of each agent should be 0 i

the quantized pricg; € BY such that the agent's utility is 4% = ¢G=-pitn=-+n (111.8b)

IIl. EXAMPLE OF FAST CONVERGENCE



Market Price Functions

For simplicity the demand curve is taken to be linear and and Demand Curve

identical for all agents. Most adjacent steps of the market 5

price curve of Agentd;, P;, are of equal height; except B
R

where a discontinuity of more than a single price difference ”

of the form {p;,1 < i < N} takes place; this discontinuity P

will be termed ajump. A jump in P; will occur when both > -

pi—1 andp;+, are present in the s€0, p1, p2,p3, ..., PN }- RRRAY : Dr—— ~
ConsequentlyPy contains no price jump. In other words, T = 3

the price jump is due to the fact that Agedt’s price is C-3%-a C -4a, c-3a, 2

necessarily absent in its own MPF.

Let N = 5 and initial conditions are based on (l11.8). Thus
p1 < p2 <p3 <ps<ps andq >q2 >qz > qs > qs. The
market price curves for all 5 a_ge_nts are sh_own !n Fig. 3. Fig. 4. Atk = 1: The market price curves of 5 agents with one linear

Assume the demand curve is linear and identical for all Bemand curve
agents, and assume that it passes through their market price
curves in the middle range as shown in Fig. 3 Thus there
are cases Whe_re the_ price jum_p is abo_ve, below and closey | et the initial condition for the Q-PSP system:
to the intersection point respectively. To illustrate wtekes
place at the first iteration, all 5 market price curves and the s = (p,q) = [(p1,q1),---» (PN, qN)], N >2
demand curve are drawn on the same plot.

- be such thad < p;, 0 < ¢;, 1 <1i < N, wherep; < p;y1,
Consequently, ak = 1, each agent would change to a, <i<N_1, and seth S pul<i<N}U{0}. O

new bid in the next iteration as follows: H2. Let all agentsA;,1 < i < N, have the single demand
Agent 1 : from (pl, ql) to (pg, QQ) function

Agent 2 : from(ps, g2) to (p1,q1) , .

Agent 3 : from(ps, ¢3) 0 (p2, q2) q=0"p)=—ap+n,  pel0,6(0)

Agent 4 : from(ps, qs) to (p2, g2) 0
Agent 5 : from(ps, g5) to (p2, g=2)

Theorem 1. ([11], [12])

which is shown in Fig. 3. i ) Subject to H1 and H2, the Q-PSP system trajectories
Thus, atk = 1, the resulting market price curves and the[sk] — (%, ¢")],1 < i < N,1 <k < oo, exhibit one of four
demand curve are shown in Fig. 4. At= 2, all 5 agents ictinct characteristics. ne;me_ly' '

would settle down tdp., g2). Therefore, with one identical . . .

demand curve for all 5 agents, the top prices get cleared ougl) C"onvergtenceito a vector of (p”C% ql:antltyg ?r']ds for

in the first iteration, whereas the bottom prices are elieida all agentss = ((p,q),---, (p,g)) In & Jmost fhree
iterations, where € (p1,...px) andg = 0 ~*(p).

in the following iteration. (2) Convergence td(0,7),...,(0,n)) in at most three
Vot e e iterations.

(3) Convergence in at most three iterations to a non-trivial
order-two orbit (i.e. an order two sustained oscillation)
such that at Iteratior2k + 1 (k > 1), » agents have
the (price, quantity) pair(p*,e'*l(p*)) and N —r
agents have the pair df**,0' ~!(p**)); at Iteration
2k (k > 2), r agents have the (price, quantity) pair
. of (p*,0 ~1(p**)) and N — r agents have the pair

| ‘ (p*.0 " (p*)), where ¢* < ¢**, p* = pj41, and
p** = p; for somej with 1 <j <N —1.
(4) Convergence in at most three iterations to an order two

Heration #1

0,070 0

]

o

P, P, P,| P, P

C-q,-9,-9,4q, C-q,-9,-9,9; C-9,9,9; T Cq, C-q z . ) R
Cararara, / Caraa T Caa, ] sustained oscillation betwedénand p**.
C-9,9,79,5 C-q,9,9; C-q,4; |:|
C-q,-9,49,79; C-9,-9,4; C4q,q;

Outline of proof:
Fig. 3. Atk = 0: The market price curves of 5 agents with one linear The principle of the proof argument is summarized in
demand curve the followin s ; ;
g steps: first we show that all prices strictly
above and strictly below the (at most two) intersection
H ko kk H N cv
IV. RAPID CONVERGENCE FORMULTIPLE USERS pr'|cgs{p P g|ver1 by {demand curven {Ui=1p7370} are
. ) . _eliminated atk = 1; then we recompute the market price
A. Convergence Analysis for Multiple Users with Identicakrves of all agents dt = 1 and we show that the resulting
Linear Demand Functions market price functions’ domains have at most three prices
Consider the hypotheses: {p*,p**,0}. The set of new market price curves fat= 1



has five distinguished zones, and the intersectimesnand Definition 2.

curvet N{UY, PV} give rise to convergence in three cases; The d-neighborhood of an inverse demand function
at k = 2 we show that the five possible cases repeat the ! 6" € ®, is the set ofp 1, ¢ € @, satisfying

situations atk = 1; finally at £ = 3, there is either one
price left on which all agents have converged, or oscilfetio

initiate betweerp*, p** or between), p**. Herep*, p** are

time-invariant and the quantized price setkat 1 includes

at most0, p*, andp**.

O

sup [0 71 (z) — ¢ TL(2)] < 6,
z2>0
i.e.

167C) = ¢ T Ollpw < 0.

In fact we may show [12] that under the hypotheses of

Theorem 1, oscillations between andp** (or, respectively,

p** and 0) will happen if and only ifN is even andC

satisfies

N N
(5 +1)¢" >C> Eqﬂ

. N N
(or, respecuvely,(g + 1) > C > 2q**> )

O
H° (s-neighborhood hypothesis) ,
There exists a functiod’ € ® such that{ei‘l;o <i <
N, 0; € ®} lie in a 6-neighborhood of ~! with

1 / /
~oN i 9 -t m) 9 -t n
N ocm 8N, 10 () (pn)l

where{p,,, pn} C B). O
This hypothesis guarantees that the family of demand

Fig. 5 displays a dynamical quantized PSP system witburves will intersect the corresponding market price func-
20 agents and one demand curve which convergés=at.

(k=0)

0.4

0.3

0.2

0.1

0 5 10 15 20

25

30

35

40

Fig. 5. Rapid convergence of a Q-PSP system with 20 agents aile

demand curve, fok = 0, 1.

Efficiency

tions sufficiently closely that at most three quantized gsic
result after the first iteration.

Theorem 2.

Subject to H1 and thé-neighborhood hypothesis’Hthe
Q-PSP system trajectoried = [s] = [(pF,¢F)],1 < i <
N,1 < k < oo, exhibit the properties (1)-(4) of Theorem
1, but (i) with convergence taking place in at most five
iterations, or (ii) with the oscillations of properties (&8hd
(4) being established in at most five iterations. |

Outline of Proof:

The proof is summarized by the following sequential steps:
first we prove all prices strictly above and strictly belove th
(at most three) intersection pricd®,,, p,—1,pn—2} given
by {demand curvesn {U}Y, P{} are eliminated ak = 1;
then we recompute the market price curves of all agents at
k =1 and we show that the resulting market price functions’
domains have at most three prices,, p,,—1,0} based on the
relations betweep,,, p,,_1, N, andC; next the intersections
{demand curvgn{U}Y, P7Y} give convergence in two cases
atk = 1; at £ = 2, we recompute the market price curves
under the non-convergence conditionkof 1, and show that
the three possible cases repeat the situatioks=atl; this is
continued untilk = 5, when all possible relations between

In those cases where the Q'PSP System converges t(?)na,. DPn_1, N’ and C are proved to Satisfy either converge
quantized pricep,, # 0, each agent obtains the retulﬁ\}l
based on the allocation rule (1.2) and the equilibrium isnvariant and the quantized price set/at> 1 includes at
efficient, i.e.>";_, 0;(a;) is maximized. This is clear, since most0, p,,, andp,_;. See [12] for the detailed proof. O

by the decreasing property H2,(-) is convex upwards.

Hence, for alli, ¢1,q2, and g3 satisfying 9;‘1(0) > qp >
g2 > q3 > 0andq — g2 = q2 — g3, it implies 20;(q2) >

0:(q1) + 0:(g3). The oscillatory case is discussed in [12].

B. Convergence Analysis for Multiple Users with a Family

of L., Perturbations of a Given Demand Function

We let ® be the family of (elastic) demand functions on
[0,C]. We observe that any functiofh € ® is continuous

on the compact s€b), C] and is1 : 1 on [0, C]; it follows

that ~! is continuous and : 1 on 6’ ([0, C]).

conditions or oscillation conditions. Hegg , p,,_1 are time-

Theorem 1 is evidently a special case of Theorem 2, and
Fig. 6 illustrates the convergence in the case where 8 agents
share similar demand curves.

Efficiency
In those cases where the Q-PSP system converges to a
quantized pricep,, # 0 and the quantity allocation ig*,
the steady state is &Nash equilibrium in the quantized
framework as described in Sect. Il. Applying Proposition 3
in [5], we obtain

max Y 0i(a;) — Y 0i(a)) = O(Vor)

a€A —
K3
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Fig. 6. Rapid convergence of a Q-PSP system with 8 agentsianidrs  Fig.

demand curves, fok =0, 1, 2.
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7. Rapid convergence of a Q-PSP system with 5 agents and

significantly distinct demand curves, far=0, 1, 2.

where A describes the set of all possible quantity allocations
under the quantization assumption, and it is assumed that fqi]

all i,0 < i < N, the elastic demand functior&é satisfy

’ ’

01,(2) - 91(‘2/) > 75(2 - Z/)v

wheneverz > 2’ > 0 (see Assumption 2 in [5]).

V. FUTURE WORK

(2]
(3]
(4]

1) Simulations appear to demonstrate that the rapid cong,
vergence property still holds for dynamical Q-PSP
systems in cases where the agents have significant%
different demand functions (see Fig. 7). This is the ]
subject of current research [12].

2) The bids of the agents in a Q-PSP system may be

viewed as decentralized feedback controls.

(7]

In this[8]

context, a current topic of study is the extent to which g
one can further control dynamical Q-PSP systems d&0]
as to avoid oscillatory behaviour and to manipulate the
value of the social welfare function. The three principal1i1]
control methods under analysis are: (i) manipulation

of C, (ii) manipulation of a bid fee:, and (iii) the
existence of an independent control agent.
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