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Abstract— A progressive second price (PSP) auction mech-
anism was proposed in [1] for network bandwidth allocation.
In this paper a quantized version of this mechanism (QPSP)
is analyzed where the agents have similar demand functions
and submit bids synchronously. It is shown that the non-linear
dynamics induced by this mechanism are such that the prices
bid by the various agents and the quantities allocated to these
agents converge in at most five iterations or oscillate indefinitely,
independently of the number of agents involved.

I. I NTRODUCTION

Progressive second price auctions (PSPs) were proposed
in [1] for dynamic network service market-pricing with the
objective of providing consistent services when the so-called
DiffServ customer access control protocols [2] are in use.
In particular, it was shown that for differentiated services
allocated between multiple agents there exist Nash market
equilibria when all players bid their real marginal valuation
of the bandwidth resource. In [3] and [4], an accelerated con-
vergence version of PSP was derived which avoids signaling
bursts but this is at the cost of multi-dimensional bidding.

The PSP dynamical auction mechanism introduced and
analyzed in [5] and [6] was defined in such a manner that
agents compute theǫ-best response to the current strategy
profile of their opponents as their bids. Each agent’s bid
consists of (i) a required quantity and (ii) a unit-price (cal-
culated using its own demand functions). All agents submit
bids cyclically until an (ǫ-Nash) equilibrium is reached where
ǫ corresponds to a bid fee. It was proved in [5], [6] that
PSP has the desirable properties of incentive compatibility
and efficiency (i.e. bids correspond to the actual level of
demand at a given price and the sum of all utility functions
are optimized); however, the rate of convergence is inversely
proportional to the bid feeǫ.

In this paper, a quantized version of this mechanism,
Q-PSP, is analyzed where all agents have similar demand
functions. In Q-PSP, each agent submits a bid which consists
of both a unit-price and a quantity as in PSP. Then it uses the
following quantized strategy: (i) it computes its best quantity
response with respect to the previous strategy profile of its
opponents; (ii) chooses a lowest quantized price as the unit
bid price; (iii) then calculates the bid quantity based on the
unit bid price and the agent’s own demand function (see
Sect. II B below for details). In Q-PSP auctions all agents
submit bids synchronously until a (Nash) equilibrium in the
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quantized framework is reached. It is generally believed that
PSP and Q-PSP constitute interesting classes of decentralized
dynamical optimization procedures.

We will show that the nonlinear dynamics induced by Q-
PSP are such that the prices bid by the various agents and
the quantities allocated to these agents converge in at most
five iterations or oscillate indefinitely, independently ofthe
number of agents involved.

Lazar and Semret suggested in [5] that each agent bids
successively itsǫ-best reply with respect to the current bids
of its opponents, whereas here we assume that all agents
make the quantized bids simultaneously with respect to
the previous bids of their opponents, these being the best
response dynamics described in [7] and [8]. Both the cyclic
and the simultaneous update rules are widely used in the
theory of learning in games [7], [8]. For PSP, one of main
disadvantages is its slow convergence, which brings about
signal bursts, i.e. a part of channel capacity has to be taken
for communication between agents and sellers. Here we
prove, in comparison with the successive bid system in [5],
that Q-PSP systems may converge in at most five steps when
all agents share similar demand functions. Such convergence
is independent of the number of agents. Hence synchronous
Q-PSP avoids the signaling overhead of PSP.

In the work of Maille and Tuffin (see [3] and [4]), a multi-
bid auction was constructed to achieve one step convergence
of PSP systems. In multi-bid auctions it is assumed that
each agent submits multiple bids simultaneously once and
only once; then the market clearing price [3] and the allo-
cations are calculated. It is known that the precision and the
efficiency of this mechanism depends upon the dimension
of each agent’s bid set: the more bids each agent submits,
the more efficient the equilibrium is. That is to say, in
order to achieve a satisfactory approximation of each agent’s
own valuation function (so that the final state is close to a
(Nash) Equilibrium), the dimension of each agent’s bid set
must be large. This latter fact engenders high computational,
communication, and transmission costs.

We summarize the distinctions between the PSP and Q-
PSP mechanisms as follows: (i) In Q-PSP auctions, all
agents submit their bids simultaneously, while the cyclic bid
algorithm is applied in PSP. (ii) The strategies in Q-PSP
are quantized and all agents’ bids are based upon a set of
quantized prices, while there is no quantization in PSP. To
support the quantization assumption we note that bidding
with quantized prices often occurs in real auctions due to
standard institutional rules. [9] (iii) 5-step (absolute)conver-
gence toµ-Nash equilibrium is achieved in Q-PSP (where



µ is a measure of the quantization level and the divergence
between the demand functions), but, in PSP, convergence to
an ǫ-Nash equilibrium is shown to be inversely proportional
to ǫ. (iv) there is no bid fee in Q-PSP, i.e.ǫ = 0, but in PSP
ǫ > 0.

II. T HE QUANTIZED PROGRESSIVESECOND PRICE

AUCTION AND THE ASSOCIATEDDYNAMICAL SYSTEM

A. Progressive Second Price Auctions

To begin with we give a summary of the PSP auction first
introduced in [5] which forms a part of the overall market
based bandwidth allocation model.

Consider a noncooperative game whereN agents buy the
fixed amount of bandwidthC from one seller. Suppose each
agentAi, 1 ≤ i ≤ N, makes abid si = (pi, qi) to the seller,
wherepi is the unit-price the agent is willing to pay andqi is
the quantity the agent desires.s ≡ [si]1≤i≤N is thebidding
profile ands−i ≡ [s1, · · · , si−1, si+1, · · · , sN ] is the profile
of Agent Ai’s opponents. Themarket price function (MPF)
of Agent Ai is defined as:

Pi(z, s−i) = inf







y ≥ 0 : C −
∑

pk>y,k 6=i

qk ≥ z







, (II.1)

which is interpreted as the minimum price an agent bids in
order to obtain the bandwidthz given the opponents’ profile
s−i. Its inverse functionQi is defined as follows:

Qi(y, s−i) =



C −
∑

pk>y,k 6=i

qk





+

,

which means the maximum available quantity at a bid price
of y given s−i. With this notation, the PSP allocation rule
[10] is defined as

ai(s) = min{qi,
qi

∑

k:pk=pi
qk

Qi(pi, s−i)}, (II.2)

ci(s) =
∑

j 6=i

pj [aj(0; s−i) − aj(si; s−i)] , (II.3)

where ai denotes the quantity AgentAi obtains by a bid
price pi (when the opponents bids−i) and the charge to
Agent Ai by the seller is denotedci. ci is interpreted to be
the total cost incurred in the system if AgentAi is removed
from the auction.

Definition 1 (see Assumption 1 of [5]).
A real valued functionθ(·) is an (elastic) valuation func-

tion on [0, C] if

• θ(0) = 0;
• θ is differentiable;
• θ

′ ≥ 0, andθ
′

is non-increasing and continuous;
• There existsγ, γ > 0, such that for all z, z ∈

[0, C], θ
′

(z) > 0 implies that for allη ∈ [0, z), θ
′

(z) ≤
θ
′

(η) − γ(z − η).

The functionθ
′

(·) on [0, C] is called an(elastic) demand
function. �

Agent Ai’s utility is defined as

ui(s) = θi(ai(s)) − ci(s),

which implies the agent’s preferences.
Under the PSP rule above, it is shown in [5], [10] that

given the opponent bidss−i, AgentAi’s ǫ-best responsesi =
(wi, vi) in the sense of a Nash move (i.e. wheresi is chosen
to maximize its utility withs−i held constant) is given by:

vi = sup

{

z ≥ 0 : θ
′

i(z) > Pi(z),

∫ z

0

Pi(η)dη ≤ bi

}

− ǫ

θ
′

i(0)
(best quantity reply) (II.4a)

wi = θ
′

i(vi) (best unit-price reply), (II.4b)

where ǫ > 0 is the bid fee,bi is Agent Ai’s budget, and
every agent has an elastic demand function. Further it is
shown in [5] that in case the bidding iterations converge
they will converge at a rate inversely proportional toǫ to an
ǫ-Nash equilibrium.

B. Quantized Progressive Second Price Auctions (Q-PSP)

We now analyze the Quantized Progressive Second Price
Auction introduced in [12]. Adopting a similar framework
to the original PSP scheme, we assume for Q-PSP that all
agents follow quantized strategies where their bids are based
upon a set of quantized prices as described below.

Let us define

horPi = {(x, y); 0 ≤ x ≤ C, y = Pi(x)};
vertPi = {(x, y);Pi(x) < y and for allδ > 0

sufficiently small,y′ = Pi(x + δ) satisfiesy ≤ y′}.
(see the horizontal and vertical segments in Fig. 1). Further
define themarket price curveP cv

i (sometimes writtenPi for
simplicity) to be the disjoint union{horPi ∪ vertPi}. A
relation R on ℜ′ × ℜ′ is said to be increasing if for all
(x, y) ∈ R, (x′, y′) ∈ R and x < x′ imply y ≤ y′. Taken
together these definitions makeP cv

i an increasing relation in
the(x, y) ≡ (quantity, price) space such that the relation is
a piece-wise constant function at all except a finite number of
points where it is given by a vertical segment. Whenǫ = 0,
the intersection in (II.4) between any agent’s demand curve
and its market price curve has the interpretation that it would
be the best reply of each agent once the agent senses, via
(II.1), how much the other agents are collectively bidding.
In the context of the equations (II.4), we shall adopt the
following hypotheses:

(1) All bid quantitiesq are bounded byC, i.e.0 ≤ q ≤ C,
(2) There is no bid fee, i.e.ǫ = 0,
(3) The budgetbi of each agent is sufficiently large that the

condition
∫ z

0
Pi(η)dη ≤ bi in (II.4) is always satisfied.

An intersection between a demand curve and a market
price curve can occur in two distinct ways, namely the
demand curve may either intersecthorPi or vertPi. Under
the quantization assumption, in the first case, agents make
normal bid as in (II.4), i.e. the values of the price and the
quantity at the intersection. In the second case, the unique



point of intersection(z∗, p∗∗) lies in vertPi. Agents are then
assumed to take the pricep∗i corresponding to the value ofPi

at the limit z∗ from the left of{z ≥ 0, θ
′

i(z) > Pi(z)} and
the corresponding quantized price satisfiesp∗i = Pi(z

∗) ∈
Bp. Finally the corresponding quantityq∗i is defined by
q∗i = θ

′−1

i (p∗i ). HereBp is the basic quantized set of prices.
These two cases are shown in Fig. 1 and Fig. 2 respectively,
where three agents are considered.
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The result of applying the hypotheses (1)-(3) leads
to the recursively defined market price functions (MPFs)
{P k+1

i ; 1 ≤ i ≤ N, k ≥ 0} (see (II.1)), and the following
quantized PSP (Q-PSP) dynamical (state space) system(with
state (v, p, q)) equations.

vk+1

i = sup
{

z ≥ 0 : θ
′

i(z) > P k+1

i (z, sk
−i)

}

(II.5a)

pk+1

i = P k+1

i (vk+1

i , sk
−i) (II.5b)

qk+1

i = θ
′−1

i (pk+1

i ), (II.5c)

with the initial conditionsp0
i ∈ B0

p , q0
i = θ

′−1

i (p0
i ), 0 ≤

k < ∞, 1 ≤ i ≤ N . One may verify that{(pk
i , qk

i ); 1 ≤ i ≤
N, k ≥ 0} constitutes a minimum dimension state process
for the dynamical system (II.5) and for allk, {pk

i ; 1 ≤ i ≤
N} ⊂ B0

p .

C. Best Reply Bids for Q-PSP

In this subsection we analyze the difference between the
best quantized strategy of each agent (which is effectively
uncomputable) and the dynamical recursion prescribed by
(II.5). The best quantized strategy of each agent should be
the quantized pricepi ∈ B0

p such that the agent’s utility is

maximized givens−i. If the demand functionθ
′

i intersects
the corresponding market price curveP cv

i on (wk+1

i , vk+1

i )
at the(k + 1)th iteration andpn ≤ wk+1

i < pn+1 with two
adjacent quantized pricespn, pn+1 ∈ B0

p , the best quantized
reply for AgentAi is (pk+1

bst , θ
′−1

i (pk+1

bst )) with

pk+1

bst = arg max
p∈{pn,pn+1}

ak+1

i (p, sk
−i) ≤ Qi(pn, sk

−i).

More specifically, the allocated quantity within the best
strategy is

ak+1

i = vk+1

i ;

the allocated quantity within the best quantized strategy is

ak+1

i = max{θ′−1

i (pn+1),

θ
′−1

i (pn)

θ
′−1

i (pn) +
∑

l:pk
l
=pn,l 6=i qk

l

Qi(pn, sk
−i)};

and the quantized strategy in (II.5) brings about the allocated
quantity as

ak+1

i =
θ
′−1

i (pk+1

i )

θ
′−1

i (pk+1

i ) +
∑

l:pk
l
=p

k+1

i
,l 6=i

qk
l

Qi(p
k+1

i , sk
−i),

where pk+1

i is calculated from (II.5b). Here the quantized
strategy in (II.5) may not be the best (quantized) strategy for
each agent, but it is the strategy that provides the lowest bid
price such that the maximum available quantity is greater
than the desired quantityvi. Hence the quantized strategy is
a γ-best reply with

γ = ui(v
k+1

i , sk
−i) − ui(a

k+1(pk+1

i , sk
−i), s

k
−i).

On the other hand, if a Q-PSP dynamical system converges
to a quantized pricep∗, thens∗ is aδ-Nash equilibrium in the
quantized framework withs∗i = (p∗, θ−1

i (p∗)) in the sense
that:

ui(s
∗
i , s

∗
−i) ≥ sup

pi∈B0
p

ui(si, s
∗
−i) − δ (II.6)

whereδ is such that

δ > max
i

|ui(s
∗) − ui((p

∗∗, θ−1

i (p∗∗)), s∗−i)|(II.7)

p∗∗ = min{p : p > p∗, p ∈ B0
p}.

It is to be noted that in PSP and Q-PSP it is assumed
that each agentAi makes bids only based upon its own
knowledge, i.e. only based upon its own demand function
and the bidding profiles of the other agents.

III. E XAMPLE OF FAST CONVERGENCE

It will be shown in Sect. IV that a Q-PSP dynamical
system converges to a limit or settles into an oscillation in
a limited number of iterations, regardless of the number of
agents. To illustrate this, assume there areN agents and
initially,

p0
i = pi =

i

N
(III.8a)

q0
i = qi = −pi + η = − i

N
+ η. (III.8b)



For simplicity the demand curve is taken to be linear and
identical for all agents. Most adjacent steps of the market
price curve of AgentAi, Pi, are of equal heighti

N
except

where a discontinuity of more than a single price difference
of the form{pi, 1 ≤ i ≤ N} takes place; this discontinuity
will be termed ajump. A jump in Pi will occur when both
pi−1 and pi+1 are present in the set{0, p1, p2, p3, ..., pN}.
Consequently,PN contains no price jump. In other words,
the price jump is due to the fact that AgentAi’s price is
necessarily absent in its own MPF.

Let N = 5 and initial conditions are based on (III.8). Thus
p1 < p2 < p3 < p4 < p5, andq1 > q2 > q3 > q4 > q5. The
market price curves for all 5 agents are shown in Fig. 3.

Assume the demand curve is linear and identical for all 5
agents, and assume that it passes through their market price
curves in the middle range as shown in Fig. 3 Thus there
are cases where the price jump is above, below and close
to the intersection point respectively. To illustrate whattakes
place at the first iteration, all 5 market price curves and the
demand curve are drawn on the same plot.

Consequently, atk = 1, each agent would change to a
new bid in the next iteration as follows:

Agent 1 : from(p1, q1) to (p2, q2)
Agent 2 : from(p2, q2) to (p1, q1)
Agent 3 : from(p3, q3) to (p2, q2)
Agent 4 : from(p4, q4) to (p2, q2)
Agent 5 : from(p5, q5) to (p2, q2)

which is shown in Fig. 3.
Thus, atk = 1, the resulting market price curves and the

demand curve are shown in Fig. 4. Atk = 2, all 5 agents
would settle down to(p2, q2). Therefore, with one identical
demand curve for all 5 agents, the top prices get cleared out
in the first iteration, whereas the bottom prices are eliminated
in the following iteration.

Fig. 3. At k = 0: The market price curves of 5 agents with one linear
demand curve

IV. RAPID CONVERGENCE FORMULTIPLE USERS

A. Convergence Analysis for Multiple Users with Identical
Linear Demand Functions

Consider the hypotheses:
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Fig. 4. At k = 1: The market price curves of 5 agents with one linear
demand curve

H1. Let the initial condition for the Q-PSP system:

s ≡ (p, q) = [(p1, q1), ..., (pN , qN )] , N > 2

be such that0 < pi, 0 < qi, 1 ≤ i ≤ N , wherepi < pi+1,
1 ≤ i ≤ N − 1, and setB0

p = {pi; 1 ≤ i ≤ N} ∪ {0}. �

H2. Let all agentsAi, 1 ≤ i ≤ N , have the single demand
function

q = θ
′−1(p) = −αp + η, p ∈ [0, θ

′

(0)].

�

Theorem 1. ([11], [12])
Subject to H1 and H2, the Q-PSP system trajectoriessk =

[sk
i ] = [(pk

i , qk
i )], 1 ≤ i ≤ N, 1 ≤ k < ∞, exhibit one of four

distinct characteristics, namely:

(1) Convergence to a vector of (price, quantity) bids for
all agentss = ((p, q), . . . , (p, q)) in at most three
iterations, wherep ∈ (p1, ...pN ) andq = θ

′−1(p).
(2) Convergence to((0, η), . . . , (0, η)) in at most three

iterations.
(3) Convergence in at most three iterations to a non-trivial

order-two orbit (i.e. an order two sustained oscillation)
such that at Iteration2k + 1 (k ≥ 1), r agents have
the (price, quantity) pair(p∗, θ

′−1(p∗)) and N − r

agents have the pair of(p∗∗, θ
′−1(p∗∗)); at Iteration

2k (k ≥ 2), r agents have the (price, quantity) pair
of (p∗∗, θ

′−1(p∗∗)) and N − r agents have the pair
(p∗, θ

′−1(p∗)), where q∗ < q∗∗, p∗ = pj+1, and
p∗∗ = pj for somej with 1 ≤ j ≤ N − 1.

(4) Convergence in at most three iterations to an order two
sustained oscillation between0 andp∗∗.

�

Outline of proof:
The principle of the proof argument is summarized in

the following steps: first we show that all prices strictly
above and strictly below the (at most two) intersection
prices{p∗, p∗∗} given by{demand curve}∩

{

∪N
i=1P

cv
i,0

}

are
eliminated atk = 1; then we recompute the market price
curves of all agents atk = 1 and we show that the resulting
market price functions’ domains have at most three prices
{p∗, p∗∗, 0}. The set of new market price curves atk = 1



has five distinguished zones, and the intersections{demand
curve}∩

{

∪N
i=1P

cv
i,1

}

give rise to convergence in three cases;
at k = 2 we show that the five possible cases repeat the
situations atk = 1; finally at k = 3, there is either one
price left on which all agents have converged, or oscillations
initiate betweenp∗, p∗∗ or between0, p∗∗. Herep∗, p∗∗ are
time-invariant and the quantized price set atk ≥ 1 includes
at most0, p∗, andp∗∗. �

In fact we may show [12] that under the hypotheses of
Theorem 1, oscillations betweenp∗ andp∗∗ (or, respectively,
p∗∗ and 0) will happen if and only ifN is even andC

satisfies

(
N

2
+ 1)q∗ > C ≥ N

2
q∗,

(

or, respectively,(
N

2
+ 1)q∗∗ > C ≥ N

2
q∗∗

)

.

Fig. 5 displays a dynamical quantized PSP system with
20 agents and one demand curve which converges atk = 1.
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Fig. 5. Rapid convergence of a Q-PSP system with 20 agents anda single
demand curve, fork = 0, 1.

Efficiency
In those cases where the Q-PSP system converges to a

quantized pricep∞ 6= 0, each agent obtains the returnC
N

based on the allocation rule (II.2) and the equilibrium is
efficient, i.e.

∑N
i=1

θi(ai) is maximized. This is clear, since
by the decreasing property H2,θi(·) is convex upwards.
Hence, for alli, q1, q2, and q3 satisfying θ

′−1

i (0) > q1 >

q2 > q3 > 0 and q1 − q2 = q2 − q3, it implies 2θi(q2) >

θi(q1) + θi(q3). The oscillatory case is discussed in [12].

B. Convergence Analysis for Multiple Users with a Family
of L∞ Perturbations of a Given Demand Function

We let Φ be the family of (elastic) demand functions on
[0, C]. We observe that any functionθ

′ ∈ Φ is continuous
on the compact set[0, C] and is1 : 1 on [0, C]; it follows
that θ

′−1 is continuous and1 : 1 on θ
′

([0, C]).

Definition 2.
The δ-neighborhood of an inverse demand function

θ
′−1, θ

′ ∈ Φ, is the set ofφ
′−1, φ

′ ∈ Φ, satisfying

sup
z≥0

|θ′−1(z) − φ
′−1(z)| < δ,

i.e.

||θ′−1(·) − φ
′−1(·)||L∞

< δ.

�

Hδ (δ-neighborhood hypothesis).
There exists a functionθ

′ ∈ Φ such that{θ′−1

i ; 0 < i ≤
N, θ

′

i ∈ Φ} lie in a δ-neighborhood ofθ
′−1 with

δ =
1

2N
min

0<m,n≤N,m 6=n
|θ′−1(pm) − θ

′−1(pn)|,

where{pm, pn} ⊂ B0
p . �

This hypothesis guarantees that the family of demand
curves will intersect the corresponding market price func-
tions sufficiently closely that at most three quantized prices
result after the first iteration.

Theorem 2.
Subject to H1 and theδ-neighborhood hypothesis Hδ, the

Q-PSP system trajectoriessk = [sk
i ] = [(pk

i , qk
i )], 1 ≤ i ≤

N, 1 ≤ k < ∞, exhibit the properties (1)-(4) of Theorem
1, but (i) with convergence taking place in at most five
iterations, or (ii) with the oscillations of properties (3)and
(4) being established in at most five iterations. �

Outline of Proof:
The proof is summarized by the following sequential steps:

first we prove all prices strictly above and strictly below the
(at most three) intersection prices{pn, pn−1, pn−2} given
by {demand curves} ∩

{

∪N
i=1P

cv
i,0

}

are eliminated atk = 1;
then we recompute the market price curves of all agents at
k = 1 and we show that the resulting market price functions’
domains have at most three prices{pn, pn−1, 0} based on the
relations betweenpn, pn−1, N , andC; next the intersections
{demand curve}∩

{

∪N
i=1P

cv
i,1

}

give convergence in two cases
at k = 1; at k = 2, we recompute the market price curves
under the non-convergence condition ofk = 1, and show that
the three possible cases repeat the situations atk = 1; this is
continued untilk = 5, when all possible relations between
pn, pn−1, N , and C are proved to satisfy either converge
conditions or oscillation conditions. Herepn, pn−1 are time-
invariant and the quantized price set atk ≥ 1 includes at
most0, pn, andpn−1. See [12] for the detailed proof. �

Theorem 1 is evidently a special case of Theorem 2, and
Fig. 6 illustrates the convergence in the case where 8 agents
share similar demand curves.

Efficiency
In those cases where the Q-PSP system converges to a

quantized pricep∞ 6= 0 and the quantity allocation isa∗,
the steady state is aδ-Nash equilibrium in the quantized
framework as described in Sect. II. Applying Proposition 3
in [5], we obtain

max
a∈A

∑

i

θi(ai) −
∑

i

θi(a
∗
i ) = O(

√
δκ)
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Fig. 6. Rapid convergence of a Q-PSP system with 8 agents and similar
demand curves, fork = 0, 1, 2.

whereA describes the set of all possible quantity allocations
under the quantization assumption, and it is assumed that for
all i, 0 < i ≤ N , the elastic demand functionsθ

′

i satisfy

θ
′

i(z) − θ
′

i(z
′) > −κ(z − z′),

wheneverz > z′ ≥ 0 (see Assumption 2 in [5]).

V. FUTURE WORK

1) Simulations appear to demonstrate that the rapid con-
vergence property still holds for dynamical Q-PSP
systems in cases where the agents have significantly
different demand functions (see Fig. 7). This is the
subject of current research [12].

2) The bids of the agents in a Q-PSP system may be
viewed as decentralized feedback controls. In this
context, a current topic of study is the extent to which
one can further control dynamical Q-PSP systems so
as to avoid oscillatory behaviour and to manipulate the
value of the social welfare function. The three principal
control methods under analysis are: (i) manipulation
of C, (ii) manipulation of a bid feeǫ, and (iii) the
existence of an independent control agent.
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Fig. 7. Rapid convergence of a Q-PSP system with 5 agents and
significantly distinct demand curves, fork = 0, 1, 2.
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