
http://www.lsv.ens−cachan.fr/Publis/
In Proc. IEEE Conf. Systems, Man and Cybernetics (SMC’2000), Nashville, TN, USA, Oct. 2000, pages 2449−2454.

1

Towards the automatic verification of PLC
programs written in Instruction List

G. Canet1;3, S. Couffin2, J.-J. Lesage2, A. Petit3 and Ph. Schnoebelen3
(1)Alcatel CIT (2)LURPA (3)LSV

Corporate Research Center ENS de Cachan UMR 8643 CNRS & ENS deCachan
F-91461 Marcoussis Cedex F-94235 Cachan Cedex F-94235 Cachan Cedex

Abstract—We propose a framework for the automatic verification
of PLC (Programmable Logic Controllers) programs written i n In-
struction List, one of the five languages defined in the IEC 61131-3
standard. We propose a formal semantics for a significant fragment
of the IL language, and a direct coding of this semantics intoa model
checking tool. We then automatically verify rich behavioral proper-
ties written in linear temporal logic. Our approach is illustrated on
the example of the tool-holder of a turning center.

Keywords— Verification, Instruction List, IEC 61131-3, model
checking, operational semantics.

I. INTRODUCTION

With the emergence of standardized programming lan-
guages for PLCs (the IEC 61131-3 standard [6]), the inter-
est in general verification methods based on formal mod-
els [9] is growing. In this paper we consider programs writ-
ten in IL (Instruction List) and describe our approach to
the exhaustive formal verification of complex control ap-
plications. In this first work, we only focus on so-called
simpleprograms, i.e. programs made of one module, only
handling “Boolean” or “bounded integer” variables, and no
timer. As exemplified below, such simple IL programs of-
ten occur as part of a larger program.

Our approach combines two formal components: an op-
erational semantics for IL programs, and a temporal logic
in which we state properties to be checked. The verifica-
tion itself is performed by the Cadence SMV1 [11] model
checker. In order to verify a system by means of model
checking, we first build a formal model of it and we for-
mally state the expected behavioral properties, using a lan-
guage for property specification, a temporal logic for in-
stance. Then a model checking algorithm is able to say
whether the (model of the) system satisfies the properties
or not (Fig. 1). When a property is not satisfied, most
model checkers give an accompanying diagnosis, e.g. an
example of a system execution violating a property. A
symbolic model checker like SMV does not represent ex-
plicitly the whole transition system, but uses efficient sym-1We chose this model checker because of its powerful symbolictech-
niques, but our approach could be adapted to any model checker aware of
transitions systems.

Formal PropertiesFormal Model
(a transition system) (a temporal formula)

Properties
Expected

Program
IL

Model checker

A ϕ
?

Yes / No (+ diagnosis)

Fig. 1. General model checking scheme.

bolic representation techniques [12].
The operational semantics of IL programs is given under

the form of a transition system. Aconfiguration(or astate)
of the program is formally represented by a tuple contain-
ing the assignment of current values to all variables, in-
cluding implicit variables. Transitions between these states
formalize the effect of executing one instruction (or acquir-
ing the input variables). The resulting transition system
is described in Cadence SMV input language via a sim-
ple translation/compilation tool running on the original IL
program.

The expected properties are then written as LTL (Lin-
ear Temporal Logic, [2]) formulas, the temporal language
handled by Cadence SMV.

We illustrate our approach with the complete treatment
of the example of the control of the tool-holder of a turning
center. Some expected properties of the system are veri-
fied. These properties can be invariants, safety properties,
liveness properties, possibly nested and combined in arbi-
trary way. We will for instance show how behavioral prop-
erties can be verified.

The breakthrough aspect of our work relies on the fact
that it combines (1) a completely formal, but nevertheless

relatively simple, semantics of a significative fragment of
the IL language, (2) a direct coding of this semantics into
a model-checking tool, allowing (3) the automatic verifi-
cation of behavioral properties (more complex than reach-
ability, or invariant-based properties). If some models of
IL programs, based on timed automata [10], Petri Nets
([5] and [4]), Higher Order Logic [15], synchronous lan-
guages [7] or Condition/Event systems ([3] and [8]) have
been proposed, our approach makes it possible to deal fully
automatically and in-depth with some real examples of a
non elementary size.

II. DEFINITION AND OPERATIONAL SEMANTICS OF

THE IL LANGUAGE

A. Definition of a program written in IL

An IL program consists of a declaration of variables fol-
lowed by a program body containing instructions.

A.1 Declaration of variables

Declaring a variable means giving a symbolx for the
variable, its typet(x) and an optional initial valueinit(x).
In this paper we only consider booleans and bounded inte-
gers. A typet of bounded integer is defined by two integersmint andmaxt, with minint � mint < maxt � maxint,
whereminint andmaxint are constants (depending on the
hardware, e.g.�215 and215 � 1).

A.2 Program body

The body of an IL program is a finite sequence of com-
mand lines. Each command line is a couple(li; insi),
where li is an optional label andinsi is an instruction.
An instruction is an operator followed by an optional ar-
gument.

IL operators perform some computations over the vari-
ables of the program, using mostly the accumulator, (also
called the “current result”). The main instructions are:
LD x loads the accumulator with the value ofx

(LDN loads:x);
ST x stores the value of the accumulator intox;
AND x computes a logical ‘and’ betweenx and the

accumulator, then stores the result into the ac-
cumulator;

EQ x checks if the value of the accumulator is equal
to x, and loads the result (a Boolean) into the
accumulator;

LT x checks if the accumulator is strictly lower thanx, and loads the result into the accumulator;
JMP l jumps to labell (JMPC : jumps only if the

value of the accumulator isTrue, JMPCN
only if it is False);

RET terminates the program execution (RETC ter-
minates only if the value of the accumulator is

True, RETCN if it is False).
Every declaration followed by a sequence of command
lines does not give necessarily a well formed program.
There exist several simple rules (unicity of declaration,
type consistency,. . .) by which one can decide whether
a given program is well formed or not. An IL compiler
requires these rules to be fulfilled.

B. Operational semantics

We consider an IL program composed ofk lines. Let�
be the set of all the variable names declared in the program,
andE be the subset of� containing the names of the input
variables. A valuation of� is a function which associates
a value with any variablex in �. A value isFalse orTrue
if x is a Boolean, or an element of[mint(x);maxt(x)℄ if x
is a bounded integer.

B.1 Cyclic behavior

The industrial controllers that we are interested in be-
have in a cyclic way. The three steps of the cycle are:
1. input acquisition;
2. program execution;
3. output assignment.
In our formal model, we define anend of cyclephase,
which indicates that the program execution has terminated.
This is the phase in which the outputs can be observed.
This phase precedes a new input acquisition, and so on.

B.2 Transition system associated with an IL program

We represent the behavior of an IL program by a transi-
tion systemhQ;!; Ii, whereQ is the set of states (also
called configurations). Q contains tuples of the form(V; a;m), where:� V is a valuation of�;� a 2 fFalse; Trueg [[minint; maxint℄ is the value of
the accumulator;� m 2 [1; k + 1℄ [ferrg is the value of the program
counter.I � Q is the set of theinitial states: (V; a;m) is ini-
tial if and only if the program counterm equals1, and ifV (x) = init(x) for all variablex for which an initial value
was declared.

A state(V; a;m) with 1 � m � k corresponds to the
state of the system before executing the linem of the IL
program. The states of the form(V; a; k + 1) are the end-
of-cycle states.

There remains to define the transition relation!� Q�Q accounting for the IL program. Each program line gives
rise to a set of transitions: linei yields transitions starting
from states of the form(V; a; i), (i.e. where the program
counter equalsi) and going to some(V 0; a0; i0). Usually

chuck
tool-holder
turret

machining tools

Fig. 2. A turning center and its tool-holder turret.

V 0, a0, andi0 are obtained by modifyingV , a andi accord-
ing to the program line. If, e.g., the line is “ST s”, thena0
is a andV 0 is like V except thatV 0(s) now equalsa. If
the line is “AND s” then V 0 is V unmodified anda0 is the
conjunction ofa andV (s). i0 equalsi + 1 unless the line
is aJMP, RET, or some other jump instruction.

In the case of operations over bounded integers, some
transitions lead to an error state, e.g. when a value
should be assigned to some variable and it overflows the
range of the variable. For instance, if theith command
line is “ST x” where x is a bounded integer variable,
there are transitions(V; a; i) ! (V; a; err) for all a =2[mint(x);maxt(x)℄.

Finally there are transitions representing the acquisition
of the input variables (we assume that during this phase in-
put variables can take arbitrary values): for all valuationsV andV 0, if V andV 0 only differ on input variables (for-
mally, x 2 � n E) V0(x) = V(x)) then there exists a
transition(V; a; k + 1)! (V 0; a; 1).

We do not explicitly represent the output assignment
phase, but the output variables can be observed in all states(V; a;m) wherem = k + 1.

III. EXAMPLE

A. Description

The example deals with the control of the tool-holder
turret (fig. 3) of a turning center (as represented in fig. 2).
The tool-holder turret is for twelve places (for live or
fixed tools), it can rotate clockwise (CW) or anti-clockwise
(CCW). The control has to minimize the time for tool chang-
ing.

The global architecture of the turning center, represented
in figure 4, is made of two major components:� the numerical controller manages the interaction with the

CWCCW

PI

Fig. 3. Detail of the tool-holder turret.

Numerical
Controller PLC

XaxisZaxis Yaxis

Numerical
axes

tool-holder turret

lubrication
M6 M6

CRM

Fig. 4. Global architecture of the turning center control.

user, and performs all the real-time computations that re-
quire some precision (like managing the axes);� the PLC controls the operations that require more com-
plex and flexible computations. In our case, the manage-
ment of the position of the tool-holder turret is made by a
program implemented in the PLC.
When the numerical control director of the turning center
receives the codeM6 (the tool changing order), it trans-
mits it to the PLC, which computes at each PLC cycle the
current position of the turret (integer position from a 4-
bit coding position), determines the rotating sense (RH or
RAH), defines whether the indexing position (the position
just following the goal position) is reached (PI), and con-
trols the turret actuators. When the tool is changed, the or-
derCRM is sent. Sensors give information about the current
position of the turret (4-bit coding position), the indexing
of the turret (CCI) and the locking of the turret (CCB).

B. Tool changing program

The tool changing program (in SFC) is represented in
figure 5.

We focus on the Action4 of the program. This action
is described in IL. The aim of this program is to control
the turret actuators (rotating motorCW andCCW, indexing
electro-magnetEAI, brakeBr) using the rotating sense
(RH andRAH calculated previously by Action2), depend-
ing on the results of Action1 and Action3 (these actions
are performed in parallel with Action4 to determine the in-
dexing position and if it is reached) and with regards to the
value of the sensors (current position reachedPI, index-
ing CCI and locking of the turretCCB). When the tool has
been changed, the orderCRM is sent.

The body of IL program, without the variable declara-
tions, can be found below. In the following code we add

S1

M6

S2 N Action1

(* calculates
the current
position of
the turret *)

S4 N Action3

(*calculates
if the indexing
position is
reached *)

S5 N Action4

(* controls
the
actuators *)

rotating sense *)
(* determines the

Action2PS3

TRUE

CRM

Fig. 5. Tool changing program

line numbers for readability; they are not part of the pro-
gram.

l1: LD x1
JMPCN l2
LD FALSE
ST CRM

5 ST Br
LD RH
JMPCN l1_test_rah
LD FALSE
ST CCW

10 LD TRUE
ST CW

l1_test_rah: LD RAH
JMPCN l1_trans
LD TRUE

15 ST CCW
LD FALSE

ST CW
l1_trans: LD PI

RETCN
20 LD TRUE

ST x2
LD FALSE
ST x1
RET

25 l2: LD x2
JMPCN l3
LD strobe
RETC
LD TRUE

30 ST x3
ST EAI
LD FALSE
ST x2
RET

35 l3: LD x3
JMPCN l4
LD CCI
RETCN
LD TRUE

40 ST x4
LD FALSE
ST x3

RET
l4: LD x4

45 JMPCN l5
LD t1
RETCN
LD RH
JMPCN l4_test_rah

50 LD TRUE
ST CCW
LD FALSE
ST CW

l4_test_rah: LD RAH
55 JMPCN l4_trans

LD FALSE
ST CCW
LD TRUE
ST CW

60 l4_trans: LD TRUE
ST x5
LD FALSE
ST x4
RET

65 l5: LD x5
JMPCN l6
LD CCB
RETCN
LD TRUE

70 ST x6
ST Br
LD FALSE
ST x5
ST CW

75 ST CCW
RET

l6: LD x6
RETCN

LD t2
80 JMPCN l6_trans

LD FALSE
ST EAI

l6_trans: LD CCI
RETC

85 LD TRUE
ST CRM
LD FALSE
ST x6
ST EAI

IV. PROGRAM VERIFICATION BY MEANS OF MODEL

CHECKING

A. Coding the operational semantics

We use the model checking technique ([1], [12], [14]) to
verify behavioral properties of the system. In this work, we
used Cadence SMV [11]. The main advantage of SMV is
the fact that it relies on powerful symbolic representation
techniques. SMV is therefore able to verify systems on
large scale.

In our coding, we declare additional variables represent-
ing the accumulator and the program counter. For instance,
the pc variable, corresponding to the current line, is a
bounded integer variable, whose values range from 0 to
90 (in our example, the program has 89 actual instruction
lines). The value 0 is used to represent the error state.

For instance, the evolution of theCRM variable is de-
scribed as follows in SMV syntax:
next(CRM) := switch (pc)
{

4 : a;
86 : a;
default : CRM;

};
This can be interpreted as follows: for each transition(V; a; i) ! (V 0; a0; i0) of the operational semantics, we
have:� V 0(CRM) = a if i = 4 or if i = 86,� V 0(CRM) = V(CRM) otherwise.
The value 4 and 86 correspond to the beginning of the tran-
sitions modelling the commandsST CRM.

The input variables only change in the transitions cod-
ing variable acquisition, whenp
 = 90. For instance, the
evolution ofPI is defined as follows:
next(PI) := switch (pc)
{

90 : {0, 1};
default : PI;

};
In the case wherep
 = 90, PI can take any possible
Boolean value.

B. Linear temporal logic

The properties we are interested in are mainly (but not
restricted to) the following ones:� static properties or invariants: “p always holds”;� safety properties: “p holds as long asq holds”;� liveness properties: “p will hold eventually”.
We use the LTL logic to verify our properties. LTL
is a logic which allows us to write behavioral proper-
ties of the system. We callpath a sequence of states� = s0; s1; s2; : : : where, for alli, there exists a transitionsi ! si+1. In this study we only consider infinite paths
(in fact, in our semantics, every state has at least one suc-
cessor). For each path, a given LTL property does or does
not hold. LTL expressions contain “atomic propositions”
(in our case, these are the Boolean variables, or predicates
over the integer variables, e.g.p
 = 10) and Boolean oper-
ators. For instance, ifa andb are atomic propositions, we
say thata ^ b holds for some path� if a andb are true in
the first state�0 of �.

LTL formulas also contain temporal operators, defined
as follows. If'1, '2 are LTL formulas,� = s0; s1; : : : is a
path, and�i the suffix of� starting from theith state, i.e.si; si+1; : : :, we say that:� X' holds in� if ' holds in�1 (“' holds in the next
state”);� '1 U'2 holds in � if '2 holds for some�i and, for
all j < i, '1 holds in�j (“'1 holds until'2 eventually
holds”);� F' holds in� if ' holds for some�i;� G' holds in� if ' holds for all�i.

C. Properties verification

In this section we show how to formally write some typ-
ical expected properties of the above IL program. For each
property, SMV automatically checks that it holds along all
execution paths. If the property is not satisfied, SMV gives
a path as a counterexample.

C.1 Invariant : motor command consistency

We want to verify that the engine is never turned on in
both directions at the same time. In other words, there is
no state of the program execution where both variablesCW
andCCW equalTrue. This property is an invariant that can
be written G:(CW ^ CCW)

SMV answers that the property is not verified by our IL
program. The inspection of the counter-example run shows
why: the problem comes from the fact that the variables
CW andCCW do not strictly represent the values of the out-
put lines. We actually know that the output variables are
updated in a separate phase, which takes place after the ex-
ecution of the program. While the program is running, it
is possible thatCW andCCW are true at the same time, but
what the program designer really wanted to avoid isCW and
CCW both true at the end of the program execution (when
the ouputs are assigned).

Our property was too strictly formalized. Leteo
 be a
proposition representing the end of the execution cycle (in
our caseeo
 stands for(p
 = 90)). We can write the
property we wanted with the formulaG (eo
! :(CW ^ CCW))

SMV answers that this property is satisfied.

C.2 Safety: brake-motor consistency

We want to verify that the motor is always turned off
before the brake is on. This is a safety property (the brake
is off as long as the motor is on). That can be stated by the
following formula:G (:BrW (:CW ^ :CCW))

TheW (or weak until) operator is an additional LTL op-
erator. For a given path, the formula'W holds if and
only if ' continuously holds as long as does not hold.
SMV does not allow direct use ofW, but we can rewrite it
using the equivalence'W � ('U) _ G

Adding the “end of cycle” synchronization, we submit
the following property to SMV:G ((eo
! :Br)U (:CW^:CCW^eo
))_G (eo
! :Br)

SMV answers that the property is verified.

C.3 Liveness : non-blocking system

We now want to make sure that, if one of the variables
RH andRAH (indicating that the motor must be turned on)
is set when the program is launched, then the program is
properly executed until it sends the ending signal (theCRM
variable). We can verify this property by means of the fol-
lowing formula:G ((RH _ RAH)! F CRM)

In fact, this formula is proven false by SMV, because
the system is not sufficiently specified. For instance, the
system “thinks” that the motor can be infinitely turned on
without reaching its goal, which is physically impossible.
For the property to hold, we should at least suppose that
the variablePI is set at some time. On the opposite, if we
suppose thatPI is never set, there is no way for the pro-
gram to come to an end. In fact,PI is an input variable
whose evolution depends on physical events. In order to
prove the property, we have to make assumptions on the
behavior of the input variables, thus supposing the corre-
sponding devices work as expected. There mainly are two
kinds of assumptions that we can make:� “some eventx is always true from time to time (it is
never infinitely false)”. This is called a fairness property.
The corresponding LTL formula isGF x (from every state
of the execution,x will eventually hold);� “it is always true that, if some eventx holds, then some
other eventy will eventually hold”. The corresponding for-
mula isG (x! F y).
In order to prove our liveness property, we have to make
fairness assumptions onCCI, t1, CCB and:strobe. We
also make the assumptionG ((CW _ CCW)! F PI). This is
a physical behavioral property of the motor device: if the
motor is on, the device will eventually reach its goal posi-
tion. After making these assumptions, our liveness prop-
erty is proven by SMV.

V. CONCLUSION

We have developed a formal method to perform the
verification of PLC programs written in the IL language.
This method consists in applying symbolic model check-
ing techniques in the framework of PLC programs. The
characteristic elements of our approach are:� the choice of a significative fragment of the IL language,
allowing to write some simple programs;� a sharp transition system-based operational semantics of
this fragment;� a coding of these transition systems into the input lan-
guage of a model checker (like Cadence SMV);� the use of the LTL linear temporal logic to write behav-
ioral properties.

Although based on simple and well-known concepts, this
approach allows to prove or reject, in a completely auto-
mated way, the correctness of IL programs of a non-trivial
size.

A similar study on the validation of PLC programs has
already been presented for LD programs in [13]. Our goal
is to propose to PLC programs designers a set of simple and
efficient methods allowing them to validate their programs.
We aim to extend this method to a larger IL fragment, and
to programs written in other languages of the IEC 61131-3
standard, especially multilanguage programs.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The
MIT Press, 1999.

[2] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, vol. B, chapter 16,
pages 995–1072. Elsevier Science Publishers, 1990.

[3] H.-M. Hanisch, J. Thieme, A. Lüder, and O. Wienhold. Modeling
of PLC behavior by means of Timed Net Condition/Event Systems.
In Proc. 6th IEEE Conf. Emerging Technologies and Factory Au-
tomation (ETFA’97), Los Angeles, pages 110–122, 1997.

[4] M. Heiner and T. Menzel. Instruction List verification using a Petri
Net semantics. InIEEE Int. Conf. on Systems, Man and Cybernetics,
San Diego, CA, USA, Oct. 1998, pages 716–721, 1998.

[5] M. Heiner and T. Menzel. A Petri net semantics for the PLC lan-
guage Instruction List. InProc. 4th IEEE Workshop on Discrete
Event Systems (WODES’98), Cagliari, Italy, Aug. 1998, pages 161–
165, 1998.

[6] IEC (International Electrotechnical Commission).IEC Standard
61131-3 : Programmable controllers - Part 3, 1993.

[7] F. Jimenéz-Fraustro and É. Rutten. Modélisation synchrone de stan-
dards de programmation de systèmes de contrôle : le langage ST de
la norme CEI 1131-3. InJournée d’études « Nouvelles percées dans
les langages pour l’automatique », SEE – Club 18 (Automatique et
Automatisation Industrielle), Amiens (France), 1999.

[8] S. Kowalewski, S. Engell, and O. Stursberg. Verificationof logic
controllers for continuous plants. InAdvances in Control : High-
lights of ECC’99, pages 345–389. Springer-Verlag, 1999.

[9] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel, and J.-J. Lesage.
Formal validation of PLC programs: a survey. InEuropean Control
Conference 1999 (ECC’99), Karlsruhe, Germany, Aug.-Sep. 1999,
1999. proceedings on CD-ROM, communication 741.

[10] A. Mader and H. Wupper. Timed automaton models for simple pro-
grammable logic controllers. InProc. 11th Euromicro Conference
on Real-Time Systems (ECRTS’99), York, UK, June 1999, pages
114–122. IEEE Comp. Soc. Press, 1999.

[11] K. L. McMillan. The SMV Language. Cadence Berkeley Labs.
http://www-cad.eecs.berkeley.edu/˜kenmcmil/language.ps.

[12] K. L. McMillan. Symbolic model checking. Kluwer Academic Pub-
lishers, 1993.

[13] O. Rossi, O. de Smet, S. Lampérière-Couffin, J.-J. Lesage, H. Pa-
pini, and H. Guennec. Formal verification: a tool to improve the
safety of control systems. In4th Symposium on Fault Detection,
Supervision and Safety for Technical Processes (IFAC Safeprocess
2000), Budapest, Hungary, 2000. to appear.

[14] Ph. Schnoebelen, B. Bérard, M. Bidoit, F. Laroussinie,A. Petit,
et al. Vérification de logiciels : Techniques et outils du model-
checking. Vuibert, 1999.

[15] N. Völker and B.J. Krämer. Modular verification of function block
based industrial control systems. InProc. 24th IFAC/IFIP Workshop
on Real-Time Programming (WRTP’99), Dagstuhl, Germany, May-
June 1999. IFAC, 1999.

