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Abstract

Regression models allow one to isolate the relationship between the outcome and an explanatory
variable while the other variables are held constant. Here, we introduce an R package, visreg,
for the convenient visualization of this relationship via short, simple function calls. In addition to
estimates of this relationship, the package also provides pointwise confidence bands and partial
residuals to allow assessment of variability as well as outliers and other deviations from model-
ing assumptions. The package provides several options for visualizing models with interactions,
including lattice plots, contour plots, and both static and interactive perspective plots. The
implementation of the package is designed to take full advantage of R’s generic functions, allow-
ing a consistent interface for visualizing not only linear models, but generalized linear models,
proportional hazards models, generalized additive models, robust regression models, and more.

In simple linear regression, it is both straightforward and extremely useful to plot the regression line. The plot
tells you everything you need to know about the model and what it predicts. It is common to superimpose
this line over a scatter plot of the two variables. A further refinement is the addition of a confidence band.
Thus, in one plot, the analyst can immediately assess the empirical relationship between x and y in addition
to the relationship estimated by the model and the uncertainty in that estimate, and also assess how well
the two agree and whether assumptions may be violated.

Multiple regression models address a more complicated question: what is the relationship between an
explanatory variable and the outcome as the other explanatory variables are held constant? This relationship
is just as important to visualize as the relationship in simple linear regression, but doing so is not nearly as
common in statistical practice.

As models get more complicated, it becomes more difficult to construct these sorts of plots. With multiple
variables, we cannot simply plot the observed data, as this does not hold the other variables constant.
Interactions among variables, transformations, and non-linear relationships all add extra barriers, making
it time-consuming for the analyst to construct these plots. This is unfortunate, however – as models grow
more complex, there is an even greater need to represent them with simple illustrations.

In this paper, we aim to eliminate the hurdle of implementation through the development of a simple
interface for visualizing regression models arising from a wide class of models: linear models, generalized linear
models, robust regression models, additive models, proportional hazards models, and more. We implement
this interface in R (R Development Core Team, 2011) and provide it as the package visreg, publicly
available from the Comprehensive R Archive Network (http://CRAN.R-project.org/package=visreg).
The purpose of the package is to automate the tedious work involved in plotting regression functions, so
that after fitting one of the above types of models, the analyst can construct attractive and illustrative
plots with simple, one-line function calls. In particular, visreg offers several tools for the visualization of
models containing interactions, which are among the easiest to misinterpret and the hardest to explain to
non-statisticians.
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It is worth noting that there are two distinct goals involved in plotting regression models: illustrating
the fitted model visually and diagnosing violations of model assumptions. Our emphasis here is primarily on
the former: providing visual aids to assist with understanding the fitted model. The partial residual plots
provided by the package are helpful for diagnostic purposes, although their limitations have been pointed out
by several authors (Mallows, 1986; Cook, 1993). Various extensions and modifications of partial residuals
have been proposed, and there is an extensive literature on regression diagnostics (Belsley et al., 1980; Cook
and Weisberg, 1982). It would be difficult to provide a generic implementation for diagnostic plots that would
apply to all types of regression models, and visreg makes no attempt to do so. Indeed, many diagnostics
are specific to the type of model (e.g., Pregibon, 1981; Grambsch and Therneau, 1994).

All regression models, however, describe how the response varies as a function of the explanatory variables,
and in R, this is implemented for an extensive catalog of models using the generic predict function. It is
this abstraction upon which visreg is based: the use of generic functions to provide a single tool with a
consistent interface for the convenient visualization of a wide array of models.

The visualization ideas here are not new. Indeed, this project was inspired by the work of Trevor Hastie,
Robert Tibshirani, and Simon Wood, who have convincingly demonstrated the utility of these types of plots
in the context of generalized additive models (Hastie and Tibshirani, 1990; Wood, 2006). Furthermore, an
existing R package, effects (Fox, 2003), provides many of the same tools as visreg (albeit without the
partial residuals) for linear and generalized linear models. What visreg provides is a single, easy to use tool
that may be applied to any model with a predict method. This enables the user to quickly create effective
and aesthetically pleasing plots without having to learn new syntax for each type of model.

The outline of the paper is as follows. In Section 1, we explicitly define what we are plotting in visreg

and provide the relevant mathematical details. The remainder of the article is devoted to illustrating the
interface and results produced by the software in three extensions of simple linear regression: Section 2 deals
with multiple (additive) linear regression models; Section 3 deals with models that possess interactions, and
Section 4 deals with other sorts of models, such as generalized linear models, proportional hazards models,
etc.

1 Conditional and contrast plots

We consider models in which the relationship between the outcome and the explanatory variables is expressed
in terms of a linear predictor η:

η = Xβ =
∑
j

xjβj , (1.1)

where xj is the jth column of the design matrix X. For the sake of clarity, we focus in this section on linear
regression, in which the expected value of the outcome E(Yi) equals ηi; extensions to other, nonlinear models
are discussed in Section 4. In the absence of interactions (see Section 3), the relationship between Xj and
Y is neatly summarized by βj , which expresses the amount by which the expected value of Y changes given
a one-unit change in Xj .

Partial residuals are a natural multiple regression analog to plotting the observed x and y in simple linear
regression. Partial residuals were developed by Ezekiel (1924), rediscovered by Larsen and McCleary (1972),
and have been discussed in numerous papers and textbooks ever since (Wood, 1973; Atkinson, 1982; Kutner
et al., 2004). Letting r denote the vector of residuals for a given model fit, the partial residuals belonging to
variable j are defined as

rj = y −X−jβ̂−j (1.2)

= r + xjβ̂j , (1.3)

where the −j subscript refers to the portion of X or β that remains after the jth column/element is removed.
The reason partial residuals are a natural extension to the multiple regression setting is that the slope of

the simple linear regression of rj on xj is equal to the value β̂j that we obtain from the multiple regression
model (Larsen and McCleary, 1972).
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Thus, it would seem straightforward to visualize the relationship between Xj and Y by plotting a line
with slope βj through the partial residuals. Clearly, however, we may add any constant to the line and to
rj and the above result would still hold. Nor is it obvious how the confidence bands should be calculated.

We consider asking two subtly different questions about the relationship between Xj and Y :

(1) What is the relationship between E(Y ) and Xj given x−j = x∗
−j?

(2) How do changes in Xj relative to a reference value x∗j affect E(Y )?

The biggest difference between the two questions is that the first requires specification of some x∗
−j ,

whereas the second does not. The reward for specifying x∗
−j is that specific values for the predicted E(Y )

may be plotted on the scale of the original variable Y ; the latter type of plot can address only relative
changes. Here, we refer to the first type of plot as a conditional plot, and the second type as a contrast plot.
As we will see, the two questions produce regression lines with identical slopes, but with different intercepts
and confidence bands. It is worth noting that these are not the only possible questions; other possibilities,
such as “What is the marginal relationship between Xj and Y , integrating over X−j?” exist, although we
do not explore them here.

For a contrast plot, we consider the effect of changing Xj away from an arbitrary point x∗j ; the choice
of x∗j thereby determines the intercept, as the line by definition passes through (x∗j , 0). The equation of this

line is y = (x − x∗j )β̂j . For a continuous Xj , we set x∗j equal to x̄j . The confidence interval at the point
xj = x is based on

V (x) = V
{
η̂(x) − η̂(x∗j )

}
= (x− x∗j )

2V(β̂j).

When Xj is categorical, we plot differences between each level of the factor and the reference category (see
Figure 3 for an example); in this case, we are literally plotting contrasts in the classical ANOVA sense of
the term (hence the name). Our usage of the term “contrast” for continuous variables is somewhat looser,
but still logical in the sense that it estimates the contrast between a value of Xj and the reference value.

For a conditional plot, on the other hand, all explanatory variables are fully specified by x and x∗
−j .

Let λ(x)T denote the row of the design matrix that would be constructed from xj = x and x∗
−j . Then the

equation of the line is y = λ(x)T β̂ and and the confidence interval at x is based on

V (x) = V
{
λ(x)T β̂

}
= λ(x)TV(β̂)λ(x).

In both conditional and contrast plots, the confidence interval at x is then formed around the estimate in
the usual manner by adding and subtracting tn−p,1−α/2

√
V (x), where tn−p,1−α/2 is 1 − α/2 quantile of the

t distribution with n − p degrees of freedom. Examples of contrast plots and conditional plots are given in
Figures 2 and 3. Both plots depict the same relationship between wind and ozone level as estimated by the
same model (details given in Section 2). Note the difference, however, in the vertical scale and confidence
bands. In particular, the confidence interval for the contrast plot has zero width at x∗j ; all other things
remaining the same, if we do not change Xj , we can say with certainty that E(Y ) will not change either.
There is still uncertainty, however, regarding the actual value of E(Y ), which is illustrated in the fact that
the confidence interval of the conditional plot has positive width everywhere.

2 Additive linear models

We are now ready to describe the basic framework and usage of visreg. In this section, we will fit various
models to a data set involving the relationship between air quality (in terms of ozone concentration) and
various aspects of weather in the standard R data set airquality.
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2.1 Basic framework

The basic interface to the package is the function visreg, which requires only one argument: the fitted
model object. So, for example, the following code produces Figure 1:

> fit <- lm(Ozone ~ Solar.R + Wind + Temp, data = airquality)

> visreg(fit)
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Figure 1: Basic output of visreg for an additive linear model: conditional plots for each explanatory variable.

By default, visreg provides conditional plots for each of the explanatory variables in the model. For
the conditioning, the other variables in x∗

−j are set to their median for numeric variables and to the most
common category for factors. All of these options can be modified by passing additional arguments to visreg.
For example, contrast plots can be obtained with the type argument; the following code produces Figure 2.

> visreg(fit, "Wind", type = "contrast")

> visreg(fit, "Wind", type = "conditional")

The second argument specifies the explanatory variable to be visualized; note that the right plot in
Figure 2 is the same as the middle plot in Figure 1.
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Figure 2: The estimated relationship between wind and ozone concentration in the same model, as illustrated
by two different types of plots. Left: Contrast plot. Right: Conditional plot.

In addition to continuous explanatory variables, visreg also allows the easy visualization of differences
between the levels of categorical variables (factors). The following block of code creates a factor called Heat

by discretizing Temp, and then visualizes its relationship with Ozone, producing the plot in Figure 3.
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> airquality$Heat <- cut(airquality$Temp, 3, labels=c("Cool", "Mild", "Hot"))

> fit.heat <- lm(Ozone ~ Solar.R + Wind + Heat, data = airquality)

> visreg(fit.heat, "Heat", type = "contrast")

> visreg(fit.heat, "Heat", type = "conditional")
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Figure 3: Visualization of a regression function involving a categorical explanatory variable. Left: Contrast
plot. Right: Conditional plot.

Again, note that the confidence interval for the contrast plot has zero width for the reference category.
There is no uncertainty about how the expected value of ozone will change if we remain at the same level of
Heat; it is zero by definition. On the other hand, the width of the confidence interval for Mild heat is wider
for the contrast plot than it is for the conditional plot. There is less uncertainty about the expected value
of ozone on a mild day than there is about the difference in expected values between mild and cool days.

2.2 Transformations

Often in modeling, we introduce transformations of explanatory variables, transformations of the response
variable, or both. The visreg package automatically handles these transformations when visualizing the
regression model.

Linear models assume a linear relationship between the explanatory variables and the outcome. A
common way of extending the linear model is to introduce transformations of the original explanatory
variables. For example, to allow the effect of wind on ozone to be nonlinear, we may introduce a quadratic
term for wind into the model:

> fit1 <- lm(Ozone ~ Solar.R + Wind + I(Wind^2) + Temp, data = airquality)

Transformations of the response are also common. For example, ozone levels must be positive. However,
as Figure 1 illustrates, a standard linear model allows the estimated relationship and its confidence band to
fall below 0. One way of remedying this is to model the log of ozone concentrations instead of the ozone
concentrations directly:

> fit2 <- lm(log(Ozone) ~ Solar.R + Wind + Temp, data = airquality)

And of course, these elements may be combined:

> fit3 <- lm(log(Ozone) ~ Solar.R + Wind + I(Wind^2) + Temp, data = airquality)

Visualization is particularly important in these models, as it is difficult to determine the exact nature of
the relationship between explanatory variable and response simply by looking at the regression coefficients
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when that relationship is nonlinear. The visreg package provides a convenient way to view such relation-
ships. Transformations involving explanatory variables are handled automatically, while transformations
involving the response require the user to provide the inverse transformation. The following code produces
Figure 4.

> visreg(fit1, "Wind")

> visreg(fit2, "Wind", trans = exp, ylab = "Ozone")

> visreg(fit3, "Wind", trans = exp, ylab = "Ozone")
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Figure 4: Plots of the modeled relationship between wind and ozone concentration, as estimated by different
models. Left: The model contains a transformation of wind. Middle: The model contains a transformation
of ozone concentration. Right: The model contains transformations of both wind and ozone.

2.3 Conditioning

As noted in Section 2.1, the default behavior of visreg when constructing a conditional plot is to fill in
x∗
−j with the median for continuous variables and the most common category for categorical variables. This

behavior can be modified using the cond argument. Note that this has no bearing on contrast plots in
additive models, which do not require a full specification of x∗

−j .
The cond argument must be provided as a named list. Each element of that list specifies the value for

an element of x∗
−j ; any elements left unspecified are filled in with the median/most common category. We

revisit our initial model from Section 2.1 with this code, which produces Figure 5.

> visreg(fit, "Wind", cond = list(Temp = 50))

> visreg(fit, "Wind")

> visreg(fit, "Wind", cond = list(Temp = 100))

We make several observations concerning Figure 5: i) The values on the vertical axis differ; as we
condition on higher temperatures, the expected ozone concentration goes up since the regression coefficient
for temperature is positive. ii) The slope of the line, the distance from the line to each residual, and the
range of the residuals is the same in all three plots; conditioning on different values of temperature merely
adds a constant to the regression line and the partial residuals. iii) The width of the confidence band does
change, however: the data set has few observations at very high and very low temperatures, so the standard
errors are much larger for the plots on the right and left than for the plot in the middle. iv) The shape of the
confidence band also changes. In the middle plot, the confidence band is narrowest in the middle and wider
at the ends. In the left plot (conditioning on low temperature), however, the confidence band is narrowest
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Figure 5: Estimated relationship between wind and ozone concentration, conditioning on different values
of temperature. Left: Temperature=50 ◦F. Middle: The median temperature, 79 ◦F (default). Right:
Temperature=100 ◦F.

for high wind levels. This arises because there is a negative correlation between wind and temperature
(ρ̂ = −0.46), and thus, more cold windy days in the data set than cold calm days. The opposite phenomenon
happens in the right plot, where the relative absence of hot windy days causes the confidence band to be
wider for high winds than for low winds.

Recall that this model had three explanatory variables; in the above example, visreg calculated the
conditional response by filling in solar radiation with its median value, as it was not specified otherwise in
the cond argument.

3 Linear models with interactions

Visualization is also very important for models with interactions – as with polynomial terms, in these
models the relationship between an explanatory variable and the response depends on multiple regression
coefficients, and a model’s fit is more readily understood with a visual representation than by looking at a
table of regression coefficients.

For models with interactions, we must simultaneously visualize the effect of two explanatory variables.
The visreg package offers two methods for doing this: cross-sectional plots, which plot one-dimensional
relationships between the response and one predictor for several values of another predictor, and surface
plots, which attempt to provide a picture of the regression surface over both dimensions simultaneously.

3.1 Cross-sectional plots

To begin, let’s fit a model that involves an interaction between a continuous term and a categorical term,
using our derived variable Heat from Section 2.1:

> fit <- lm(Ozone ~ Solar.R + Wind * Heat, data = airquality)

The visreg package creates cross-sectional plots using the lattice package (Sarkar, 2008). To request
a cross-sectional plot, the user specifies a by variable, as in the following code which produces Figure 6.

> visreg(fit, "Wind", by = "Heat")

The cross-sectional plot in Figure 6 allows us to see that the relationship between wind and ozone
concentration appears to become more pronounced depending on how hot the day is. On cool days, wind
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Figure 6: Cross-sectional plots depicting the fit of a model with an interaction between a continuous term
(Wind) and a categorical term (Heat), with the continuous term on the horizontal axis.

has no effect on ozone concentration. Wind has a moderate effect on ozone concentrations on mild days, and
an even larger effect on hot days.

Note that visreg handles the partial residuals properly – the partial residuals for observations collected
on cool days appear only in the left panel, and so on. As with the earlier plots, this ensures that the least
squares line drawn through the residuals on the plot will yield the same slope as that estimated by the full
model fit. Furthermore, this allows us to see potentially influential observations like the one in the middle
panel, which has very low wind and very high ozone concentration. Finally, the proper handling of partial
residuals also allows us to observe the lack of hot windy days and cool days with no wind that we commented
on in Section 2.3. Note that the confidence intervals in these regions are comparatively wide.

Alternatively, we may wish to overlay these cross-sections. This allows for a more direct comparison
between the different regression lines, although it often becomes difficult to include partial residuals and
confidence bands without crowding the figure. The visreg package allows an overlay option for creating
these plots:

visreg(fit, "Wind", by="Heat", overlay=TRUE, partial=FALSE)

The above code produces Figure 7, where the plotting of partial residuals has been turned off for the
sake of clarity (similarly, band=FALSE can be specified to turn off the confidence bands). If partial=TRUE,
the partial residuals are colored according to the existing scheme.

The above examples featured a continuous variable along the horizontal axis and a categorical variable
as the by variable. However, visreg allows each of these variables to be either continuous or categorical.
For example, let us try plotting the same model, but reversing the roles of Heat and Wind (Figure 8).

> visreg(fit, "Heat", by = "Wind")

The model is the same, but the emphasis of the plot is now on heat instead of wind. Figure 8 illustrates
that heat has a pronounced effect on ozone concentration when the day is not windy, but a relatively
insignificant effect on ozone for windy days.

In contrast to Figure 6, where it was natural to construct a panel for each level of the categorical variable,
Figure 7 requires arbitrary decisions concerning how many cross-sections to take, and where to place them.
The default behavior of visreg is to take cross-sections at the 10th, 50th, and 90th percentiles of the by
variable, although both the number of points and their location can be modified using the breaks option.
Again, each residual appears only once, in the panel it is closest to. However, the least squares estimates are
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Figure 8: Cross-sectional plots depicting the fit of a model with an interaction between a continuous term
(Wind) and a categorical term (Heat), with the categorical term on the horizontal axis.

no longer equivalent to drawing a line through the partial residuals due to the continuous manner in which
information is pooled across the panels.

We have been focusing here on conditional plots, but contrast plots can be made in the same way. For
example, the code below produces the appropriate contrast plot analogue to Figure 6.

> visreg(fit, "Wind", by = "Heat", type = "contrast")

It is worth noting that for a model containing an interaction, a basic call to visreg (i.e., without a by
argument) amounts to plotting a main effect in the presence of an interaction. Because this has the potential
to be misleading, visreg by default prints a message warning the user of this and reminding him or her of
the levels of the other variables at which the plot is constructed. For example, since ‘Mild’ is the most
common level of Heat, visreg(fit, ‘‘Wind’’) will produce the middle panel of Figure 6. The left and
right panels, respectively, would be produced with

9



> visreg(fit, "Wind", cond = list(Heat = "Cool"))

> visreg(fit, "Wind", cond = list(Heat = "Hot"))

3.2 Surface plots

Another approach to visualizing models with interactions is plotting the regression surface using contour or
perspective plots. Suppose we fit a complicated model involving a number of interactions between linear and
quadratic terms involving wind and temperature:

> fit <- lm(Ozone ~ Solar.R + Wind + Temp + I(Wind^2) + I(Temp^2)

+ + I(Wind * Temp) + I(Wind*Temp^2) + I(Temp*Wind^2)

+ + I(Temp^2 * Wind^2), data = airquality)

Whether or not this is a good model for analyzing these data is a good question, but we will not address
it here. Our purpose is to show that it is difficult to grasp the fit of the model by looking at the regression
coefficients directly, but easy to do so using visreg. In addition to the tools for creating cross-sectional
plots described in the Section 3.1, the visreg package provides the function visreg2d, which can be used
to produce two-dimensional contour and perspective plots. The following code produces Figure 9:

> visreg2d(fit, "Wind", "Temp", plot.type = "image")

> visreg2d(fit, "Wind", "Temp", plot.type = "persp")
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Figure 9: Representations of the regression surface as a function of wind and temperature. Left: Filled
contour plot. Right: Perspective plot.

The advantage of these kinds of plots compared with those in Section 3.1 are that they allow us to
visualize the effect of simultaneously varying two factors. The disadvantage is that there is no convenient
way of superimposing either residuals or confidence intervals. These plots are most useful when both variables
are continuous, as one is not forced to take cross-sections over a continuous variable. The visreg2d function
still functions correctly when one or both of its arguments is a categorical variable, although in our opinion,
the cross-section plots of Section 3.1 are more useful in these settings.
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In addition to the static perspective plot presented above, visreg2d can also create interactive perspective
plots using the rgl package (Adler and Murdoch, 2011), which allow the user to rotate, tilt, and spin the
regression surface. This makes it considerably easier to comprehend its three-dimensional shape. Such plots
can be constructed with the code:

> visreg2d(fit, x = "Wind", y = "Temp", plot.type = "rgl")

Visualization of higher-order interactions, such as three-way or four-way interactions, becomes increas-
ingly difficult. To some extent, visreg facilitates visualization of such models through the use of the cond
argument. For example, code such as the following could be used to visualize a three-way interaction:

> fit <- lm(Ozone ~ Solar.R * Wind * Temp, data = airquality)

> visreg2d(fit, "Wind", "Temp", cond = list(Solar.R = 100))

> visreg2d(fit, "Wind", "Temp", cond = list(Solar.R = 300))

4 Nonlinear models

As mentioned at the outset, the goal in creating the visreg package was to implement it in as generic a
manner as possible, so that it works with a wide variety of model fits from different functions and packages.
All that it requires is functioning model.frame and predict methods for the fitted model object (plotting
of partial residuals requires a residuals method as well). Thus, the visreg package and all its options
work not only with linear models as produced by lm, but with generalized linear models produced by glm,
proportional hazards models produced by coxph (Therneau, 2012), robust linear models produced by rlm

(Venables and Ripley, 2002), negative binomial models produces by glm.nb (Venables and Ripley, 2002),
generalized additive models produced by gam (Wood, 2012), local regression models produced by loess and
locfit (Loader, 2010), and many more. Indeed, the type of object does not even need to be part of an R
package; user-defined model classes can also be visualized with visreg, provided that they are compatible
with model.frame and predict. Two notable exceptions are the nls function, which does not work with
model.frame, and lmer (Bates et al., 2012), which does not have a predict method. In this section, we
briefly illustrate the use of visreg with some of the above types of models, and then comment on some
aspects of these plots that change when applied to nonlinear models.

We begin with a logistic regression model applied to a study investigating risk factors associated with
low birth weight (Hosmer and Lemeshow, 2000). The following code produces Figure 10.

> data("birthwt", package = "MASS")

> fit <- glm(low ~ age + race + smoke + lwt, data = birthwt, family = "binomial")

> visreg(fit, "lwt", xlab = "Mother’s weight",

+ ylab = "Log odds (low birthweight)")

> visreg(fit, "lwt", scale = "response", rug = 2,

+ xlab = "Mother’s weight", ylab = "P(low birthweight)")

On the left side of Figure 10, the model is plotted on the scale of the linear predictor (the default scale
in visreg), where the model is indeed linear. The confidence intervals in the figure are Wald confidence
intervals based on standard errors returned by predict.glm. The partial residuals are calculated based on
Equation 1.2, with r the deviance residuals (the default residuals returned by residuals.glm). The plot
on the right is simply a transformed version of the plot on the left, where an inverse logistic transformation
has been applied to the regression line and confidence bands (this is handled automatically by the scale =

"response" option).
Note that for the plot on the right, we have opted to plot a rug as opposed to the partial residuals.

The visreg package provides two types of rug annotations. With rug=TRUE or rug=1, a standard rug along
the bottom of the plot is provided. With rug=2, separate rugs are drawn on the top for observations with
positive residuals and on the bottom for observations with negative residuals (for logistic regression, this
corresponds to Y = 1 and Y = 0, respectively).
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Figure 10: Visualization of a logistic regression model. Left: Log odds scale. Right: Probability scale.

In practice, we have found plots like those on the left useful for visualizing the model fit and observing
potential departures from model assumptions such as outliers and influential points, and plots like those on
the right very useful for communicating modeling results to non-statisticians.

We conclude with a brief demonstration applying visreg to some other types of models (note that
these are models for which the effects package is incompatible): a proportional hazards model, a robust
regression model, and a local regression model. The left side of Figure 11 presents a visualization of the
following proportional hazards model:

> require("survival")

> fit <- coxph(Surv(futime, fustat) ~ age + rx, data = ovarian)

> visreg(fit, "age", ylab = "log(Hazard ratio)")

Note that in proportional hazards models, baseline hazard functions are not explicitly estimated, and
therefore the meaning behind a conditional plot is questionable. For this reason, contrast plots are (arguably)
more appropriate. A similar phenomenon occurs with logistic regression applied to case-control studies, in
which an intercept is estimated, but is the estimate is heavily biased by the study design.
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Figure 11: Visualizations of robust regression and proportional hazard models. Left: Proportional hazards.
Right: Robust regression.

The middle of Figure 11 presents a visualization of the following robust regression model:
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> require("MASS")

> fit <- rlm(Ozone ~ Solar.R + Wind * Heat, data = airquality)

> visreg(fit, "Wind")

Note that the design matrix for the robust regression model is the same as that from Section 3.1, and
that the plot in the middle of Figure 11 is analogous to the middle panel from Figure 6. Note, however,
that the robust regression model produces a different fit, due in part to the reduced impact of the potential
outlier mentioned in Section 3.1. Specifically, the fit produced by the robust regression model is flatter and
does not predict negative ozone concentrations for high wind levels as the linear regression model does.

Finally, we apply visreg to a local regression model fit with loess, producing a visualization of the
model far superior to that provided by the default plot method for loess. This plot appears on the right
side of Figure 11.

fit <- loess(dist ~ speed, cars)

visreg(fit, ylab="Distance")

All of the features and options we mentioned earlier, in particular the cross-section and surface plots of
Section 3, work in the same way for nonlinear models as they do for linear models. We note that no internal
re-coding was necessary for visreg to work these models; the compatibility was automatically provided by
the use of generic functions.

The extension of visreg to nonlinear models is straightforward in its implementation, but it is worth
making some comments about partial residuals for nonlinear models. In particular, it is no longer the case
that the regression line through the partial residuals produces a line with the same slope as that produced
by the model. Viewing nonlinear models as reweighted least squares models, the observations have different
weights and these weights are not reflected in the partial residuals plotted by visreg. This phenomenon has
been commented on by many authors, with a variety of proposals for alternative types of reweighted partial
residuals that may be better at detecting outliers and influential observations (Pregibon, 1981; Landwehr
et al., 1984; O’Hara Hines and Carter, 1993).

Residuals and how useful they are in detecting influential observations and departures from model as-
sumptions may of course depend on the model. Other types of plots, such as added variable plots (Atkinson,
1985), are also helpful for visualizing regression models and their fit. We feel that the approach we have
provided here is reasonable and the best that can be expected from a generic tool with broad applicability
to a wide variety of models, although we certainly concede that improvements may be possible for certain
models and certain visualization goals.

To facilitate extensions and modifications of the plots provided by visreg, its functions also invisibly
return the data frames, estimates, confidence intervals, and residuals used in the construction of its plots.
We anticipate that the majority of users would be uninterested in these details, but any user wishing to
modify visreg’s output (e.g., changing the size of the partial residuals to reflect their weight) may do so by
assigning its output to an object, as in the following code:

> v <- visreg(fit, "Wind", cond = list(Heat = "Mild"))

5 Conclusion

The visreg package provides a very useful set of tools for simultaneously visualizing the estimated relation-
ship between an explanatory variables and the outcome, the variability of that estimate, and the observations
from which the estimates derive. These tools have a simple interface and are readily applied to wide variety
of models. We have found the development of this package to provide a convenient and versatile tool to
assist with regression modeling, both for model exploration and for communicating modeling results.
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