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The authors 
demonstrate how 

reconfigurability can be 
used by reviewing and 

examining five 
computer-vision- 

related algorithms. 
Each one emphasizes 

different aspect of 
reconfigurability. 

a 

he “need for speed” has been the single most influential factor in super- 
computer design. In the past, technology fueled the development of faster 
computers through better semiconductor devices and very large scale 

integration (VLSI). Technology, as a source of speed for a single processor, is 
bounded by the speed of light and physical limitations on miniaturization. Conse- 
quently, it has become necessary to replicate hardware to allow concurrent 
execution to achieve the performance requirements of many of today’s scientific 
and industrial applications. This concurrent execution, or parallel processing, has 
forced the reformulation of the most well-accepted sequential programs and even 
the mathematical rethinking of some problems. The parallel programmer needs to 
“think parallel.” 

Many parallel-processing systems of different sizes and configurations have 
been developed (see the “Models of parallelism” sidebar). The feasibility of 
systems with thousands of processors has become evident with the introduction of 
several types of massively parallel systems. As the size, hardware complexity, and 
programming diversity of parallel systems continue to evolve, the range of alter- 
natives for implementing a parallel task on these systems grows. Choosing the 
proper parallel algorithm and implementation becomes an important decision and 
has a significant impact on the performance of the application (see the “SIMD 
versus MIMD” sidebar). This article is a tutorial overview of how selected 
computer-vision-related algorithms can be mapped onto reconfigurable parallel- 
processing systems. 

The reconfigurable parallel-processing system assumed for the discussions here 
is a multiprocessor system capable of mixed-mode parallelism; that is, it can 
operate in either the SIMD (single instruction, multiple data) or MIMD (multiple 
instruction, multiple data) mode of parallelism (see the sidebars) and can dynam- 
ically switch between modes at instruction-level granularity with generally negli- 
gible overhead. In addition, it can be partitioned into independent or communicat- 
ing submachines, each having the same characteristics as the original machine. 
Furthermore, this reconfigurable system model uses a flexible multistage cube 
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interconnection network,’ which allows 
the connection patterns among the pro- 
cessors to be varied. 

Thus, the system is reconfigurable 
along three dimensions: 

mode of parallelism (SIMD/MIMD), 
partitionability, and 
interprocessor connectivity. 

Designed at Purdue University, the 
PASM (partitionable SIMDIMIMD) 
parallel-processing system is one such 
machine, and its 30-processor small-scale 
prototype (16 processors in its compu- 
tational engine) is supporting active 
experimentation.2 Other machines ca- 
pable of some form of mixed-mode op- 
eration include TRAC (Texas Recon- 
figurable Array C o m p ~ t e r ) ~  and O p ~ i l a . ~  

The main goal here is to demonstrate 
how reconfigurability can be used by 
reviewing and examining five comput- 
er-vision-related algorithms. Each al- 
gorithm has been chosen to make a 
different point: 

The image-smoothing algorithm, 
used for noise reduction, shows how 

Models of parallelism 

SIMD machines 

partitioning a system for subtask paral- 
lelism can improve performance. 

The recursive-doubling algorithm, 
used in computer-vision tasks to com- 
pute global minimums, maximums, etc., 
demonstrates that employing more pro- 
cessors for a task can increase execu- 
tion time; this is another reason for par- 
titioning a system. 

The global-his togramming a lgo-  
rithm, used to compute global histo- 
grams of the pixel values in an image 
and study the gray-level intensity distri- 
bution, typifies the challenges of auto- 
matic parallelization of “dusty deck” 
serial algorithms. 

The 2 0  discrete Fourier transform 
algorithm, used to study the spatial spec- 
tral characteristics of an image, empha- 
sizes the importance of a flexible inter- 
connection network. This 2D DFT 
algorithm is presented to show network 
requirements that are distinct from the 
previous algorithms. 

The bitonic sorting algorithm, used 
to sort sequences (for example, collec- 
tions of objects in an image), was imple- 
mented on the PASM prototype in dif- 

ferent ways. Experiments to compare 
modes of parallelism are demonstrated. 

The mapping of each algorithm onto 
an SIMD versus MIMD versus mixed- 
mode parallel system is discussed. Al- 
though the PASM design, which can 
support 1,024 processors, is the target 
architecture for each algorithm imple- 
mentation, the parallelization strategies 
presented also can be adapted for other 
systems. 

Algorithm case studies 

Image smoothing. These computa- 
tions are representative of those per- 
formed in a wide range of window-based 
image processing algorithms. An image 
is stored in memory as a two-dimen- 
sional array (matrix) where each ele- 
ment, called a picture element, or pixel,  
is an integer whose value represents the 
gray-level intensity of the correspond- 
ing point in the discretized image. To 
generate an M x M smoothed image A’ 
from an M x M image A ,  the average of 
the value of pixel ( i ,  j )  of the original 

... 
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Interconnection Network I 1 

MIMD machine 

I I I I 
Interconnection Network I 
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Single instruction-stream, multiple data-stream 
PE - processorlmemory pair 
Control unit broadcasts instructions to processors 
All active PES execute same instruction 
synchronously in lockstep on own data 
Single control thread, single program 
Examples: AMT DAP, CLIP-4, CM-2, MasPar 
MP-1, MPP 

Multiple instruction-stream, multiple data-stream 
PE - processor/memory pair 
Each PE has its own instructions 
PES execute local programs asynchronously on local 
data 
Multiple threads of control, different programs 
Examples: BBN Butterfly, Cedar, CM-5, IBM RP3, 
Intel Cube, Ncube, NYU Ultracomputer 

For further reading 

Almasi, G.S., and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings, Redwood City, Calif., 1989. 
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image and that of its eight nearest neigh- 
bors is computed and forms pixel ( i , j )  of 
the smoothed image A’: 

A’(i, j )  = [A(i - 1, j - 1) + 

A(i - 1, j )  + A(i,  j )  + 
A(i + 1, j )  + A(z- 1, j + 1) + 
A(i, j + l ) + A ( i + l , j + 1 ) ] / 9  

A(i, j - 1) + A(i + 1, j - 1) + 

SIMD versus MIMD 

SIMD advantages 

In the case of an edge pixel, no calcu- 
lation is performed, and the pixel itself 
is taken to be the smoothed value. 
Because there are 4M - 4 edge pixels in 
an M x M image, the time to smooth an 
M x M image A on a serial machine is 
the time to execute Mz - (4M - 4) = 
O ( M 2 )  smoothing operations. For M = 
512, this is 260,100 smoothing opera- 

Ease of programming and debugging 
SIMD: Single program, PES operate synchronously.. 
MIMD: Multiple interacting programs, PES operate 
asynchronously 

Overlap loop control with operations 
SIMD: Control unit does increment and compare, 
while PES “compute” 
MIMD: Same PE does both 

Overlap operations on common data 
SIMD: Control unit overlaps operations that all PES 
need (for example, common local array addresses) 
MIMD: Same PE does all 

Reduced inter-PE transfer overhead 
SIMD: “Send” and “receive” automatically 

MIMD: Need explicit synchronization and 
synchronized 

identification protocol 

Minimal synchronization overhead 
SIMD: Implicit in program 
MIMD: Need explicit statements (for example, 
semaphores) 

Less program memory space required 
SIMD: Store one copy of program 
MIMD: Each PE stores own copy 

Minimal instruction decoder cost 
SIMD: Decoder in control unit 
MIMD: Decoder in each PE 

For further reading 

Berg, T.B., and H.J. Siegel, “Instruction Execution Trade-offs for SIMD 
versus MIMD versus Mixed-Mode Parallelism,” Proc. Fifth Int’lParallel 
Processing Symp., IEEE CS Press, Los Alamitos, Calif., Order No. 2167, 
1991, pp. 301-308. 

Jamieson, L.H., “Characterizing Parallel Algorithms,” in Characteris- 
tics of Parallel Algorithms, L.H. Jamieson, D.B. Gannon, and R.J. 
Douglass, eds., MIT Press, Cambridge, Mass., 1987, pp. 65-100. 

MIMD advantages 

tions, approximately equal to M 2  = 
262,144. 

Because smoothing involves perform- 
ing the same operations for every pixel, 
very efficient SIMD implementations 
are pos~ible .~ Assume that there are N 
PES (processing elements -processor/ 
memory pairs) available, logically ar- 
ranged as a d N  x d N  grid, and each PE 

More flexible 
No constraints on operations that can be performed 
concurrently 

Conditional statements more efficient 
MIMD: Each PE executes as if uniprocessor 
SIMD: “Then” and “else” execution serialized 

No SIMD control unit cost 

Variable-time instructions more efficient 
Assume there is a block of instructions where the 
execution time of each instruction is data dependent 
SIMD: Waits for slowest PE to execute each 
instruction (“sum of max’s”) 
TSIMD =;, rngx (instr. time) 
MIMD: Waits for slowest PE to execute block of 
instructions (“max of sums”) 
TMIMD = mgx;, (instr. time) 

mode and MIMD mode 
Example: Execution of three instructions in SIMD 

1 SIMD 
I 

. . .  PE0 PE1 PE2 

MIMD 

I 
max 2 max 

instr. PE PE instr. 
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stores an MIdN x MIdN subimage (see 
Figure 1). Each PE performs at most 
M2/N smoothing operations. 

To smooth the pixels at the edge of a 
subimage, pixels from logically adja- 
cent subimages must be transferred (Fig- 
ure 1). Therefore, each PE requires at 
most MIdN pixels from each of the four 
adjacent PES and one pixel from each of 
the four PES diagonally adjacent to the 
PE. Thus, a worst-case total of 4(MldN) 
+ 4 inter-PE data transfers are required 
to perform the smoothing, where N pix- 
els are moved by each transfer. The 
inter-PE transfers needed for this algo- 
rithm can be done efficiently on 2D 
mesh networks, hypercube (single-stage 
cube) networks with embedded mesh- 
es: and multistage cube networks.’ 

The execution time of the above algo- 
rithm when operating on an M x M 
image A with N PES is the sum of M2/N 
smoothing operations and 4(MIdN) + 4 
inter-PE data transfers. Thus, for M = 
512andN= 1,024, thereare256smooth- 
ing operations and 68 inter-PE data 
transfers required. If the time to per- 
form one inter-PE transfer is equal to 
the time to perform one smoothing op- 
eration, the speedup S of the SIMD 
version over that of the uniprocessor 
algorithm is 

serial time 
parallel time 

- (M-2)2 

M2/N + 4 M l f i  + 4 

S =  

This speedup calculation is based on 
smoothing and inter-PE transfer opera- 
tions (ignoring, for example, loop index 
variable manipulations) and 
the assumption that the uni- 
processor and each SIMD 
PE are of equivalent com- 
puting power. Theoretical- 
ly, the maximum possible 
speedup is N. For M = 512 
and N = 1,024, the speedup 
is 5102/324 E 803. However, 
if the time to perform a net- 
work transfer becomes much 
less than the time to per- 
form a smoothing operation 
-which is normally the case 
in SIMD mode - the speed- 
up is closer to N. The speed- 
up is not Neven if communi- 
cation time is ignored, 
because the PES containing 
image-edge pixels will be dis- 

M 
pixels 

M pixels - 
PEOPE1 e**  P E G - 1  

PE fi . . . 
pixels 

i--J 
MI& 
pixels 

f i P E s  

M l f i  

pixels 

pixels 

Figure 1. Data allocation (a) and pixel transfers (b) for image smoothing. 

operations and are therefore underuti- 
lized for some steps of the algorithm. 
This example demonstrates two condi- 
tions, inter-PE data transfers and dis- 
abling of PES for some operations, which 
cause SIMD algorithms to execute with 
less than perfect speedup (that is, S < 

The smoothing algorithm can also be 
implemented in MIMD mode. Howev- 
er, the discussion of SIMDIMIMD trade- 
offs (see the “SIMD versus MIMD” 
sidebar) explains why there is little rea- 
son to prefer this mode. One MIMD 
implementation advantage would be 
manifest if the “divide-by-9” operation 
is data dependent, invoking the “sum of 
max’s” trade-off. However, because of 

NI. 

the potential SIMD benefits of CU (con- 
trol unit)/PE overlap and implicitly syn- 
chronized transfers, SIMD mode would 
probably be best. 

Recursive doubling. The recursive- 
doubling procedure,’ sometimes called 
tree summing, is a combining algorithm 
that can be used to apply any associa- 
tive operation (for example, min, max, 
sum, product) to a set of operands. Con- 
sider the task of finding the sum of N = 
1,024 numbers, for example, CA(i) ,  0 2 
i < 1,024. The following algorithm can 
perform this task on a serial machine: 

sum = A(0) 
for i = 1 to 1023 do 

sum = sum + A(i )  

p_E Data Time- 

10 fl t t3 t4 t5 

2 A2 _ _ _  
3 A3 

4 A4 _ _ _  A4+A5 _ - _ A4+A5iA6+A7 

5 A5 

6 A6 _ _ _  A&A7 

7 A7 

7 
abled for some smoothing 

February 1992 

Figure 2. Recursive doubling for N = 8, where sum =.CA(i). 
1 = 0  

One addition is performed 
per iteration for a total of 
1,023 E N additions. 

Although this task appears 
to be sequential in nature, 
summing N numbers with N 
PES by this procedure re- 
quires only log,N transfer- 
add steps, where a transfer- 
add is composed of the 
transfer of a partial sum to a 
PE and the addition of that 
partial sum to the PE’s local 
sum. This is demonstrated 
for N = 8 in Figure 2. Let Tadd 
be the time required to exe- 
cute an addition, and T,ranrfer.add 
be the time to execute a trans- 
fer-add. Then, the speedup 
of this algorithm is 
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Tadd S =  
1% 2N Transfer-add 

number of operations performed, as well 
as on the machine implementation of 
the operation. For example, the addi- 
tion of M numbers, where M = pN and 
p is an integer greater than zero, re- 

equations above yields the theoretical 
result TSIMD = TMIMD. Thus, the preferred 
mode of execution of one addition or 
max operation depends on the machine 
implementationdetails (for example, in- 

quires one load and p - 1 additions to 
compute the local sums. These addi- 
tions could be normalized floating-point 
additions and therefore may take vari- 
able time to execute. Let TtP represent 
the time to perform addition i on PE P 
and let N equal the number of PEs used. 
Then, the time to perform - 1 addi- 
tions in MIMD mode is 

struction fetch time). 
Consider the process of combining 

the local sums. There are log,N transfer- 
ops, where each transfer step is separat- 
ed by a single operation. As mentioned 
above,thissingle-operationperformance 
for SIMD and MIMD modes is virtually 
equal. Therefore, the combining pro- 
cess can best be performed in SIMD 

The recursive-doubling technique can 
be extended to operate on a set of oper- 
ands whose size is greater than the num- 
ber of PES. Let M be the number of 
operands and let N = 2“ be the number 
of PES, numbered from 0 to N- 1, where 
PE P’s number in binary is p,- ... ~ 9 ~ .  
Let each PE store LMINJ of the oper- 
ands, and let M mod N PES receive one 
additional operand of the remaining M 
mod N operands. Each PE first oper- 
ates sequentially on its local data, re- 
quiring at most rMIN1 operations. Once 
the local results have been obtained, 
log,N transfer-ops are made. In trans- 
fer-op j, where jproceeds in time from 0 

(that is, p, ... p g ,  are fixed at 10 ... 0), 
to(log,N)-l ,PEP=p,-1 ...p,+, 10 ... 0 

mode because there is less transfer over- 
head and potential for CU/PE overlap. 
Furthermore, the transfers involved in 
the recursive-doubling algorithm must 
be executed in a constrained order, which 
forces the PES to synchronize between 
transfers. Hence, there is no advantage 
to executing any part of the combining 
process in MIMD mode. 

The best implementation of the whole 

P-1 

TMIMD = [ f ) 
i=l 

and in SIMD mode is 

P-1 

GMD = zmpax(~‘) 
i=l 

(see the “SIMD versus MIMD” side- 
passesits results to PE P’=p,_l  ...pi+l 00 
... 0 (that is,p, . . .p ,po are fixed at 0 ... 0). 
PE P’ uses the received result and the 
previously stored partial result to com- 
pute a new partial result. After log,N 
transfer-ops, PE 0 will contain the glo- 
bal result. This is the sequence of trans- 
fer-adds used in Figure 2 for M = N = 8. 
The inter-PE transfers needed for this 
algorithm can be done efficiently in hy- 
percube and multistage cube networks.’ 
Mesh-based systems require additional 
hardware (as in the Massively Parallel 
Processor, or MPP, machine8) to do this 
efficiently. 

As an example, let M = 16K, N = 128, 
and let each PE get MIN = 128 numbers. 
First, each PE sums its 128 numbers (1 
load and 127 adds), requiring approxi- 
mately the same amount of time as 128 
additions. Then, log,N = 7 transfer-add 
steps are needed to combine the 128 
local sums into one global sum in PE 0. 
The total time is (128 x Tadd) + (7 x 

bar). Because TMIMD I TSIMD, the time to 
compute thelocal sumsinMIMDwould 
be less than or equal to the time to 
compute them in SIMD mode. Howev- 
er, the addition instruction would most 
likely be contained within a loop. The 
loop control instructions can be execut- 
ed in the CU in SIMD mode but must be 
executed on the PES in MIMD mode. 
Whether the advantage of CUIPE over- 
lap in SIMD mode outweighs the MIMD 
advantage in executing variable-time 
instructions is dependent on the ma- 
chine implementation of a floating-point 
addition as well as the actual data used. 

The above discussion also applies to 
the minhax  operations. The computa- 
tions involve a data-conditional state- 
ment of the form 

recursive-doubling algorithm must con- 
sider both the local calculations and the 
inter-PE combining phases. The pre- 
ferred approach for the whole algorithm 
would be either all SIMD or mixed- 
mode, depending on whether SIMD or 
MIMD, respectively, is optimal for the 
local phase. 

Global histogramming. Let an M x M 
input image be mapped onto N PEs such 
that each PE holds WIN pixels, as in the 
image-smoothing discussion (see Fig- 
ure 1). Global histogramming involves 
computing B bins, where each bin has 
two attributes associated with it: the 
range of values that each bin represents 
and the number of pixels in the entire 
image that have values within that range. 
For this algorithm? it is assumed that N 
is an integer multiple of B ,  and there is 
one bin for each possible pixel value. 

Each PE first computes a local B-bin 
histogramfortheWINpixelsinitsmem- 

if (number > max) then 
max = number 

This conditional statement can be re- 
Ttransfer.add), compared to the serial time 
of 16K x Tad& If Ttransfer.add = z x Tad& the 
speedup of this algorithm is 

garded as a variable-time instruction. 
In this case, the time to perform p - 1 
comparisons in SIMD mode and MIMD 
mode would be given by the respective 
equations above: T,P now denotes the 
time to perform comparison i on PE P. 

16K M The above trade-offs between the two 
modes would apply, but there is a great- 
er variability in the execution time of 
the data conditional, which would, in 

16K x &dd 

(128 XTadd) + (7 x z x K d d )  
s= 

- 128 + (7 z) = M/N + log2 N 

There are advantages to implement- 

ory. Let A(x, y )  be thegray-level value 
of the pixel in row x and row y ,  and let 
bin(i) be initialized to 0,O 5 i < B.  If each 
PE contains an (MIdN)  x (MIdN) sub- 
image, then an algorithm to compute 
the local B-bin histograms could be 

for x = 0 to (MIdN) - 1 
for y = 0 to ( M I ~ N )  - 1 

bin(A(x, y ) )  = bin(A(x, y ) )  + 1 
ing the recursive-doubling algorithm in 
SIMD mode, MlMD mode, and mixed- 
mode. The mode in which the local sums 
are computed depends on the type and 

general, strongly favor an MIMD im- 
plementation. When p = 2, only one 
operation is performed to compute the 
local result. Substituting p = 2 into the 

(for the serial algorithm, set N = 1). The 
PES then combine their local histograms 
with the local histograms of all other 
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PES. The straightforward 
approach to combining the 
local histograms is to com- 
bine one bin at a time using 
recursive doubling, requir- 
ing Blog,N transfer-add 
steps. 

Consider an overlapped 
recursive-doubling proce- 
dure for combining local 
histograms, where all of the 
bins are summed concur- 
rently (see Figure3). In the 
figure, (w, ..., z )  denotes 
that bins w, ..., z are accu- 
mulated in that PE. The N 
PES are logically divided 
into NIB blocks of B PES. 
In the first b = log,B stages, 
the NIB blocks simulta- 
neously combine their his- 
tograms. Each PE in a block 
holds a different bin com- 
puted by summing the val- 
ues of the corresponding 
local bins of the PES in the 
block. This is done by di- 

E 
0 
1 
2 
3 

4 
5 
6 
7 

Stage 0 Stage 1 Stage 2 Stage 3 
B - 1 transfer-adds log,( NIB) transfer-adds 

Figure 3. Illustration of the global-histogramming algorithm 
for N =  16 and B = 4. 

viding each block of PES in half such 
that the PES with lower addresses form 
one group and the PES with the higher 
addresses form another group. Each 
group accumulates the sums for half the 
bins and sends the bins it is not accumu- 
lating to the other group. 

Figure 3 shows this process for N = 16 
and B = 4. For example, in stage 0, PE 0 
accumulates bins 0 and 1 from PE 0 and 
PE 2. Simultaneously, PE 1 accumu- 
lates bins 0 and 1 from PE 1 and PE 3. 
The next stage involves dividing each 
group of B/2 PES into two different 
groups of Bl4 PES formed once again by 
PES with lower addresses and higher 
addresses. These two new groups ex- 
change bins the same way as before, but 
only for those bins for which they had 
accumulated sums in the last stage. For 
example, in stage 1, PE 0 accumulates 
bin 0 from PE 0 and PE 1. The subdivid- 
ing process continues until there is one 
PE in each group and the sums for each 
bin have been completely accumulated 
for the portion of the image contained 
in that block - each bin in a different 
PE. 

The next n - b stages, where n = 
log,N, combine the partial histograms 
of all the blocks by performing B simul- 
taneous recursive-doubling operations 
(Figure 3). Each of these B recursive- 
doubling operations involves those NIB 
PES that store the sums for the same bin 

index. As a result, the histogram for the 
entire image is distributed over B PES 
where bin i is located in PE i for 0 < i < 
B. 

At each stage j ,  for 0 5 j < b, B12if1 
transfer-adds take place. The total num- 
ber of transfer-adds for the first b stages 
is 

b-l 

x(B/2 ’+’ )=  B-1 
1=0 

For each stage j where b < j < n, one 
transfer-add occurs. The finaln- b stag- 
es require log(N1B) = n - b transfer- 
adds. The total number of transfer-adds 
needed to merge the local histograms 
using the overlapped recursive-doubling 
scheme is then B - 1 + log,(N/B). 

In the case of B = 256, N = 1,024, and 
M = 512, the serial histogramming algo- 
rithm would require approximately M Z  
= 256K additions. The SIMD algorithm 
requires WIN = 256 additions to com- 
pute the local histograms. If the straight- 
forward recursive-doubling algorithm 
is used to combine the local histograms, 
Blog,N = 2,560 transfer-adds are neces- 
sary. By comparison, the non-obvious 
overlapped recursive-doubling algo- 
rithm requires B - 1 + log,(NlB) = 257 
transfer-adds. The merging of the local 
histograms using the non-obvious meth- 
od yields nearly a factor of 10 (approx- 
imately log,N) speedup over its obvious 
counterpart. 

The inter-PE transfers 
needed for the global-his- 
togramming algorithm can 
be done efficiently in hy- 
percube networks and mul- 
tistage cube networks. 
While some mesh-based 
systems have the extra 
hardware to perform re- 
cursive doubling, the simul- 
taneous recursive dou- 
blings used here are not 
efficiently implementable. 

Global histogramming 
involves integer additions, 
so the time to compute lo- 
cal histograms is not data 
dependent and could be 
performed fastest in SIMD 
mode because of the po- 
tential for CUIPE overlap. 
This assumes that all PES 
can simultaneously access 
local bin(A(x, y ) )  locations 
and that the actual PE  
memory locations ad- 
dressed may differ among 

PE processors. For the combining pro- 
cess, the large number of inter-PE trans- 
fers and the potential for CUIPE over- 
lap makes SIMD mode the obvious 
choice for this phase. No data-depen- 
dent conditionals are involved because 
indexed addressing can be used by each 
PE to determine which bin is trans- 
ferred at each stage. Therefore, SIMD 
mode is most appropriate for global 
histogramming. 

It is clear from this example that while 
several parallel algorithms may have 
increased performance over the serial 
algorithm, an optimal mapping of a task 
onto a parallel machine is often a subtle 
method that is derived from a compar- 
ison of many alternatives. The non-in- 
tuitive structure of this algorithm also 
demonstrates the challenges in design- 
ing compilers that automatically con- 
vert “dusty deck” serial code into fast 
parallel algorithms. While reconfigu- 
rable systems may provide the possibil- 
ity of increased performance, the great- 
er flexibility in configuring these systems 
adds to the difficulty of producing com- 
piler-generated parallel code that makes 
optimal use of the architecture. 

2D discrete Fourier transform. A 2D 
DFT of an M x M image can be con- 
structed by first taking the 1D DFT of 
each row and then taking the 1D DFT of 
each column of the resulting M x M 
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array (see Figure 4). Consid- 
er an SIMD parallel imple- 
mentation of this approach9 
with N = M PES, numbered 0 
to M - 1. Assume that PE i 
contains a variable PE# = i; 
that is, each PE “knows” its 
own number. Original image 
elementsZ(h,O) ..., Z(h,M-1)  
(that is, row h)  are initially 
stored in PE h, where 0 I h < 
M. Each PE then performs a 
1D M-point DFT on the row 
stored in its memory. The 1D 
FFT (fast Fourier transform) 
algorithm is used to compute 
the 1D DFT in each PE. The 
result is the M x M array G. 
PE  h has created row h of G, 
where [G(h, 0) ..., G(h,  M - 
l)]=DFT([Z(h,O) ..., Z(h, M- 
I)]). 

The DFTs of the columns 
of G must now be computed. 
However, each element of 
column w, 0 5 w < M, [G(O, w) 
..., G(M - 1, w)] is located in 
a different PE; that is, G(h, 
w) is stored in PE h. One way 
to perform a DFT on the col- 
umns of G is to move each 
element of the same column 
to the same PE, that is, so 
that PE j holds column j of G. 
The new arrangement of G is 
equivalent to the transpose 
of G.Then,eachPEcancom- 
pute the DFT (via the FFT 
algorithm) of the column of 
G in its memory to obtain F, 
the transpose of the DFT of Z. 
PE h calculates column h of 
F, where [F(O, h ) ..., F(M - 1, 
h)]=DFT([G(O,h) ..., G(M- 
1, h)]. 

Taking the transpose of G 
requires moving element 
G(h, w) (element w in PE h)  
to location GT (w, h)  (ele- 
ment h in PE w). This can be 
done in M - 1 inter-PE trans- 
fers. For transfer i, 1 < i < M ,  
PE h fetches element G(h,  h 
+ i mod M )  from its memory 
and sends it to PE h + i mod 
M ,  which stores it as Gr (h  + 
i mod M ,  h ) .  PE h fetches 
G(h, h + i mod M) from its 

I ( O , O ) * * *  I(0, M- 1)  

I(1,O) I(  1,  M- 1 )  

G(0,O) * * *  G(0, M- 1) 

ID G ( 1 , 0 ) * * *  G(1, M- 1)  * . FFTs : . 
I (M-I ,O)***I (M- l ,  M-1)  G ( M - I , O ) * * * G ( M - l , M - l )  

F(O,O)*** F(0, M-  I )  

F(1,O) F( 1, M- 1) 

. 
F(M - 1,O) F(M - 1 ,  M - 1 )  

Ggure 4. Two-dimensional discrete Fourier transform. 

for k = 1 step + 1 until log,N do 
for i = k - 1 step - 1 until 0 do 

for q = 1 step + 1 until MIN do 
load X[q] into network 
send to PE whose number differs in bit i 
y[q] t network output 

merge(X, r> 
swap(X Y) 

Figure 5. Bitonic sequence-sorting algorithm. 

I I  I I 
5 24 128 256 512 

Problem size 

Figure 6. Bitonic sequence-sorting execution time versus 
problem size for N = 16 PES. 

The serial time needed to 
calculate a 2D DFT of an M x 
M image is dominated by the 
Wlog,M complex multiplica- 
tions ((M/2)log2M for each 
of 2M 1D M-point FFTs). 
For M = 1,024, a total of 
10,485,760 complex multipli- 
cations are required. In the 
SIMD approach, M FFTs are 
done simultaneously to trans- 
form Z to G, with each PE 
performing (M/2)log2M com- 
plex multiplications. G is then 
transposed by executing M - 
1 inter-PE data transfers. Fi- 
nally, (M/2)log2M complex 
multiplications are needed by 
each PE to transform GT to 
F. (Depending on the appli- 
cation, F may be used in 
place of F.) Therefore, the 
parallel time is dominated by 
the Mlog2M complex multi- 
plications and M - 1 trans- 
fers. A multiplicative factor 
of M is achieved for the speed- 
up on complex multiplica- 
tions, at the cost of an addi- 
tive term of M - 1 inter-PE 
data transfers. For the above 
example with M = 1,024, the 
SIMD algorithm would re- 
quire 10,240 complex multi- 
plications and 1,023 transfers. 
The speedup, assuming that 

puted as 
Ttransfer = Tcomplex-multiply 3 is corn- 

M 2  log, M S E  
M log2 M + M -1 

For the case of M = 1,024, the 
speedup is approximately 
931. 

Using the multistage cube 
network, all PES can perform 
each “+ i mod N ’  network 
transfer required for the 
transpose, for a fixed i, 1 5 i < 
N, in a single pass. Neither 
the mesh nor the hypercube 
topology can perform each 
of these transfers in a single 
pass (intermediate nodes 
must be traversed). 

Each 1D FFT computed in 
each PE can be executed in 

, memory 
location&G+((PE#+i)modM),where 
&G is the address of G(PE#, 0). PE h + 
i mod M stores the received element in 
its memory location &Gr + ((PE# - i) 

mod M), where &GT is the address of 
GT(PE#, 0). The transfer used is “+ i 
mod M.” Finally, the diagonal is moved 
from &G + PE# to &GT + PE# within 
each PE. 

either SIMD mode or MIMD mode. In 
SIMD mode, there is potential for a 
great deal of CU/PE overlap, as there 
are three nested loops in most FFT cod- 
ings. However, because of the floating- 
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point computations involved, the time 
to execute many of the instructions 
may be data dependent, invoking the 
“max of the sums” versus “sum of the 
max’s” advantage for MIMD. In addi- 
tion, some highly efficient FFT imple- 
mentations contain several condition- 
al statements that are used to detect 
special cases where a simplified ap- 
proach can be employed, and condi- 
tionals are performed more effectively 
in MIMD mode. The final choice of 
mode depends on details of the actual 
FFT implementation and machine ar- 
chitecture used. The transpose can be 
done more efficiently in SIMD mode 
because of the CUIPE overlap and the 
reduced inter-PE transfer overhead ad- 
vantages. Thus, either a mixed-mode 
version, with the 1D FFTs done in 
MIMD mode and the transpose done 
in SIMD mode, or a pure SIMD-mode 
version should be employed, depend- 
ing on specifics of the algorithm and 
machine. 

Bitonic sequence sorting. Consider 
the bitonic sorting of sequences on the 
PASM prototype.2 Assume there are 
M numbers and N = 2” PES, where M is 
an integer multiple of N ,  and that MIN 
numbers are stored in each PE - ini- 
tially sorted. The goal is to have each 
PE contain a sorted list of MIN ele- 
ments, where the elements in PE i are 
less than or equal to the elements in PE 
k,  for i < k .  The regular bitonic sorting 
algorithm,1° where M = N ,  is modified 
in Figure 5 to accommodate the MIN 
sequences in each PE.2 Instead of per- 
forming a comparison at each step, an 
ordered merge is done between the 
local PE sequence X and the trans- 
ferred sequence Y using local data- 
conditional statements (“merge(X, 
Y)”). The lesser half of the merged 
sequence is assigned the pointer Xand 
the greater half is assigned the pointer 
Y .  The pointers to the two lists are then 
swapped, based on a precomputed data- 
independent mask (“swap(X, Y)”) .  

When choosing the mode of paral- 
lelism, the programmer must consider 
two salient characteristics of the algo- 
rithm. First, the ordered merge involves 
many comparisons that can be more 
efficiently computed in MIMD mode. 
Second, the algorithm requires many 
network transfers, which are better 
performed in SIMD mode. To evalu- 
ate different approaches to this algo- 
rithm, a pure SIMD, a pure MIMD, 

and two mixed-mode implementations 
have been executed on the prototype. 

In the SlMIMD (SIMDIMIMD) 
mixed-mode implementation, the or- 
dered merge and swap routines were 
executed in MIMD mode, while the rest 
of the operations, including network 
transfers, were performed in SIMD 
mode. This algorithm has an advantage 
over pure SIMD and pure MIMD im- 
plementations because all comparisons 
are done in MIMD mode and all net- 
work transfers are done in SIMD mode. 
Additionally, there is potential for sig- 
nificant CUIPE overlap in the SIMD 
instructions. 

The BMIMD (barrier MIMD) mixed- 
mode implementation uses MIMD mode 
but uses barrier synchronization” to 
synchronize all inter-PE transfers. This 
is typically performed in three steps. 
First, each PE arrives at a synchroniza- 
tion point in an algorithm called the 
barrier. Next, each PE will wait at the 
barrier until all the PES have “an- 
nounced” that they are at the barrier. 
On PASM, this is accomplished byfetch- 
ing a word from the SIMD address space, 
thus using the SIMD instruction fetch 
synchronization hardware to implement 
the barrier. Finally, all PES continue 
execution simultaneously. During the 
bitonic sorting algorithm, the PES bar- 
rier synchronize before each inter-PE 
transfer. Consequently, the PES can 
perform the transfer without the over- 
head normally involved with MIMD 
network transfers. Thus, the BMIMD 
implementation has the advantage of 
performing data-dependent condition- 
als in MIMD mode but performs barrier 
synchronization to reduce inter-PE data 
transfer overhead. Therefore, its per- 
formance would be expected to be bet- 
ter than pure SIMD or pure MIMD. 

Figure 6 shows the resultsof the SIMD, 
MIMD, SIMIMD, and BMIMD algo- 
rithms for the bitonic sorting problem 
with N = 16 PES. There is a significant 
improvement in execution time for both 
mixed-mode algorithms. SIMIMD per- 
formed better than BMIMD, with the 
difference increasing with M ,  mainly 
because of the CU/PE overlap. The 
mixed-mode results are the product of 
properties inherent to the modes of par- 
allelism and not artifacts of the proto- 
type construction, as discussed by 
Fineberg et aL2 The PASM prototype is 
a constantly evolving tool for under- 
standing the programming and design 
of parallel-processing systems. 

Mapping algorithms 
onto partitionable 
systems 

Two potential advantages of a parti- 
tionable parallel-processing system are 
demonstrated - the first involving sub- 
task parallelism and the second consid- 
ering the number of PES assigned to a 
task. 

Impact of subtask parallelism. The 
effect of partitioning a parallel task into 
smaller, concurrent subtasks can have 
an impact on performance.I2 Consider 
the goal of smoothing four images such 
that the total time to smooth all four is 
minimized.’ Two possible ways of per- 
forming this computation are to smooth 
the four images sequentially on all N 
PES or to partition the task such that all 
four images are smoothed concurrent- 
ly, each using NI4 PES. 

The time to smooth the four images 
in sequence is four times that to smooth 
a single image. Let one time step be the 
time required to perform a smoothing 
operation. Assuming that each inter- 
PE data transfer requires one step, the 
total time is 4 x ( M 2 / N  + 4 ( M / . / N )  + 4 )  
steps. For M = 512 and N = 1,024, this is 
1,296 steps. 

The total time for N PES to smooth 
the four images concurrently, each on 
NI4 PES, is W l ( N l 4 )  + 4(M I I/N/4)+ 4 .  
For M = 512 and N = 1,024, this is 1,156 
steps. Thus, partitioning the system and 
exploiting subtask parallelism decreas- 
es execution time. 

The reason for the reduced execution 
time by partitioning is that fewer inter- 
PE transfers are needed, 4 x 
( M I  JN/4) + 4 versus 4 x ( 4 ( M l d N )  + 
4 ) .  For the example with M = 512 and N 
= 1,024, this is 132 versus 272 inter-PE 
transfers. 

The efficiency E of a parallel imple- 
mentation, which measures the amount 
of incurred overhead, is 

speedup - serial time E=- 
# PES (# PES) x parallel time 

- 4 x ( M  - 2 ) 2  
N x parallel time 

For hi= 1,024 and M = 512, the efficien- 
cy of smoothing four M x M images in 
sequence is 78 percent, while the effi- 
ciency of smoothing all four images si- 
multaneously on a system partitioned 
into four submachines of size NI4 PES 
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each is 88 percent. The effi- 
ciency improved because the 
larger subimage size (32 by 
32 versus 16 by 16) reduces 
the percentage of the total 
execution time spent doing 
inter-PE data transfers (132I 
(322 + 132) = 11 percent ver- 
sus 68/(16* + 68) = 21 per- 
cent). 

This example illustrates 

N 

Timeunits 

27 28 29 2’0 211 212 213 214 

198 144 122 116 118 124 132 141 

1 

Figure 7. Execution time versus number of PES ( N )  for 
M =  214, z = io. 

how partitioning for subtask parallel- 
ism can be used to improve performance. 
In this case, both execution time and 
efficiency are improved. 

Impact of increasing the number of 
processors. Consider the impact of in- 
creasing N on the performance of both 
the image-smoothing algorithm and the 
recursive-doubling algorithm.’* Recall 
that smoothing an M x M image re- 
quires each PE to perform WINsmooth- 
ing operations and 4(MIdN) + 4 inter- 
PE data transfers. The execution time 
decreases as N increases. The denomi- 
nator of the expression for the efficien- 
cy of the parallel smoothing algorithm, 
N x (WIN + 4(MIdN) + 4) = W + 4MdN 
+ 4N, increases with N ,  so as N increas- 
es, the efficiency decreases. Thus, in- 
creasing Nimproves the total execution 
time but causes the efficiency to de- 
crease. This inverse relationship is a 
marked contrast from serial-algorithm 
performance. 

The impact of increasing N has a dif- 
ferent effect on the recursive-doubling 
algorithm than on the image-smoothing 
algorithm. Assuming MIN numbers are 
stored in each PE, where N = 2”, the 
execution time, T,,,,,, is 

In this case, as N increases, the execu- 
tion time first decreases and then in- 
creases. Assume a transfer-add takes z 
times as long as an addition; that is, 

denominator of the efficiency for this 
algorithm is M + zMog,N, so the effi- 
ciency always decreases as N increases. 

The partial derivative with respect to 
N of the execution time yields 

Ttransier-add = ‘add, and = Tadd‘ The 

This derivative is negative for N < (MIz)  
In2 and is positive for N > (MIz) ln2. 
Thus, as N increases from 1 to ( M l z )  ln2, 

the execution time decreases, and as N 
increases beyond ( M l z )  ln2, the execu- 
tion time continually increases. The 
crossover point is the value of N = 2” 
such that I N -  (MIz)  ln2 I is minimal. For 
example, if z = 10 and M = 214, then the 
execution time is (2I4/N + 10 log,N) x 
Tadd time units (see Figure 7). The cross- 
over point is calculated as N = 2” such 
that I N - (214/10) ln2 I is minimal. Thus, 
N = 21°. Given a system with 214 PES and 
the assumptions made, the recursive- 
doubling-algorithm execution time can 
be minimized by performing it on a 
partition of size 21° PES, and the other 
214 - 21° PES can be used for other jobs. 

Thus, increasing N may or may not 
improve an algorithm’s overall execu- 
tion time. Furthermore, for parallel al- 
gorithms improved efficiency may not 
imply improved execution speed, and 
vice versa. 

his article introduced some of 
the issues pertinent to the map- 
ping of computer-vision-related 

algorithms onto a class of large-scale 
reconfigurable parallel-processing sys- 
tems. Currently available commercial 
massively parallel systems have their 
roots in academic research from the 
past two decades. Aspects of reconfig- 
urable systems that are now being ex- 
plored in both academia and industry 
will become part of the next generation 
of massively parallel machines. 

Three of the dimensions of parallel- 
ism were examined here through a set 
of case studies. These aspects of paral- 
lelism should be considered in the de- 
sign and selection of future large-scale 
parallel-processing systems for comput- 
er-vision applications. 
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