
Mapping Computer-
Vision-Related Tasks onto
Reconfigurable Parallel-
Processing Systems

Howard Jay Siegel, James B. Armstrong, and Daniel W. Watson
Purdue University

The authors
demonstrate how

reconfigurability can be
used by reviewing and

examining five
computer-vision-

related algorithms.
Each one emphasizes

different aspect of
reconfigurability.

a

he “need for speed” has been the single most influential factor in super-
computer design. In the past, technology fueled the development of faster
computers through better semiconductor devices and very large scale

integration (VLSI). Technology, as a source of speed for a single processor, is
bounded by the speed of light and physical limitations on miniaturization. Conse-
quently, it has become necessary to replicate hardware to allow concurrent
execution to achieve the performance requirements of many of today’s scientific
and industrial applications. This concurrent execution, or parallel processing, has
forced the reformulation of the most well-accepted sequential programs and even
the mathematical rethinking of some problems. The parallel programmer needs to
“think parallel.”

Many parallel-processing systems of different sizes and configurations have
been developed (see the “Models of parallelism” sidebar). The feasibility of
systems with thousands of processors has become evident with the introduction of
several types of massively parallel systems. As the size, hardware complexity, and
programming diversity of parallel systems continue to evolve, the range of alter-
natives for implementing a parallel task on these systems grows. Choosing the
proper parallel algorithm and implementation becomes an important decision and
has a significant impact on the performance of the application (see the “SIMD
versus MIMD” sidebar). This article is a tutorial overview of how selected
computer-vision-related algorithms can be mapped onto reconfigurable parallel-
processing systems.

The reconfigurable parallel-processing system assumed for the discussions here
is a multiprocessor system capable of mixed-mode parallelism; that is, it can
operate in either the SIMD (single instruction, multiple data) or MIMD (multiple
instruction, multiple data) mode of parallelism (see the sidebars) and can dynam-
ically switch between modes at instruction-level granularity with generally negli-
gible overhead. In addition, it can be partitioned into independent or communicat-
ing submachines, each having the same characteristics as the original machine.
Furthermore, this reconfigurable system model uses a flexible multistage cube

54 0018-9162/92/0200-0054$03.00 Q 1992 IEEE COMPUTER

interconnection network,’ which allows
the connection patterns among the pro-
cessors to be varied.

Thus, the system is reconfigurable
along three dimensions:

mode of parallelism (SIMD/MIMD),
partitionability, and
interprocessor connectivity.

Designed at Purdue University, the
PASM (partitionable SIMDIMIMD)
parallel-processing system is one such
machine, and its 30-processor small-scale
prototype (16 processors in its compu-
tational engine) is supporting active
experimentation.2 Other machines ca-
pable of some form of mixed-mode op-
eration include TRAC (Texas Recon-
figurable Array C o m p ~ t e r) ~ and O p ~ i l a . ~

The main goal here is to demonstrate
how reconfigurability can be used by
reviewing and examining five comput-
er-vision-related algorithms. Each al-
gorithm has been chosen to make a
different point:

The image-smoothing algorithm,
used for noise reduction, shows how

Models of parallelism

SIMD machines

partitioning a system for subtask paral-
lelism can improve performance.

The recursive-doubling algorithm,
used in computer-vision tasks to com-
pute global minimums, maximums, etc.,
demonstrates that employing more pro-
cessors for a task can increase execu-
tion time; this is another reason for par-
titioning a system.

The global-his togramming a lgo-
rithm, used to compute global histo-
grams of the pixel values in an image
and study the gray-level intensity distri-
bution, typifies the challenges of auto-
matic parallelization of “dusty deck”
serial algorithms.

The 2 0 discrete Fourier transform
algorithm, used to study the spatial spec-
tral characteristics of an image, empha-
sizes the importance of a flexible inter-
connection network. This 2D DFT
algorithm is presented to show network
requirements that are distinct from the
previous algorithms.

The bitonic sorting algorithm, used
to sort sequences (for example, collec-
tions of objects in an image), was imple-
mented on the PASM prototype in dif-

ferent ways. Experiments to compare
modes of parallelism are demonstrated.

The mapping of each algorithm onto
an SIMD versus MIMD versus mixed-
mode parallel system is discussed. Al-
though the PASM design, which can
support 1,024 processors, is the target
architecture for each algorithm imple-
mentation, the parallelization strategies
presented also can be adapted for other
systems.

Algorithm case studies

Image smoothing. These computa-
tions are representative of those per-
formed in a wide range of window-based
image processing algorithms. An image
is stored in memory as a two-dimen-
sional array (matrix) where each ele-
ment, called a picture element, or pixel,
is an integer whose value represents the
gray-level intensity of the correspond-
ing point in the discretized image. To
generate an M x M smoothed image A’
from an M x M image A , the average of
the value of pixel (i , j) of the original

...
I I I I

Interconnection Network I 1

MIMD machine

I I I I
Interconnection Network I

I I I

Single instruction-stream, multiple data-stream
PE - processorlmemory pair
Control unit broadcasts instructions to processors
All active PES execute same instruction
synchronously in lockstep on own data
Single control thread, single program
Examples: AMT DAP, CLIP-4, CM-2, MasPar
MP-1, MPP

Multiple instruction-stream, multiple data-stream
PE - processor/memory pair
Each PE has its own instructions
PES execute local programs asynchronously on local
data
Multiple threads of control, different programs
Examples: BBN Butterfly, Cedar, CM-5, IBM RP3,
Intel Cube, Ncube, NYU Ultracomputer

For further reading

Almasi, G.S., and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings, Redwood City, Calif., 1989.

February 1992 55

image and that of its eight nearest neigh-
bors is computed and forms pixel (i , j) of
the smoothed image A’:

A’(i, j) = [A(i - 1, j - 1) +

A(i - 1, j) + A(i, j) +
A(i + 1, j) + A(z- 1, j + 1) +
A(i, j + l) + A (i + l , j + 1)] / 9

A(i, j - 1) + A(i + 1, j - 1) +

SIMD versus MIMD

SIMD advantages

In the case of an edge pixel, no calcu-
lation is performed, and the pixel itself
is taken to be the smoothed value.
Because there are 4M - 4 edge pixels in
an M x M image, the time to smooth an
M x M image A on a serial machine is
the time to execute Mz - (4M - 4) =
O (M 2) smoothing operations. For M =
512, this is 260,100 smoothing opera-

Ease of programming and debugging
SIMD: Single program, PES operate synchronously..
MIMD: Multiple interacting programs, PES operate
asynchronously

Overlap loop control with operations
SIMD: Control unit does increment and compare,
while PES “compute”
MIMD: Same PE does both

Overlap operations on common data
SIMD: Control unit overlaps operations that all PES
need (for example, common local array addresses)
MIMD: Same PE does all

Reduced inter-PE transfer overhead
SIMD: “Send” and “receive” automatically

MIMD: Need explicit synchronization and
synchronized

identification protocol

Minimal synchronization overhead
SIMD: Implicit in program
MIMD: Need explicit statements (for example,
semaphores)

Less program memory space required
SIMD: Store one copy of program
MIMD: Each PE stores own copy

Minimal instruction decoder cost
SIMD: Decoder in control unit
MIMD: Decoder in each PE

For further reading

Berg, T.B., and H.J. Siegel, “Instruction Execution Trade-offs for SIMD
versus MIMD versus Mixed-Mode Parallelism,” Proc. Fifth Int’lParallel
Processing Symp., IEEE CS Press, Los Alamitos, Calif., Order No. 2167,
1991, pp. 301-308.

Jamieson, L.H., “Characterizing Parallel Algorithms,” in Characteris-
tics of Parallel Algorithms, L.H. Jamieson, D.B. Gannon, and R.J.
Douglass, eds., MIT Press, Cambridge, Mass., 1987, pp. 65-100.

MIMD advantages

tions, approximately equal to M 2 =
262,144.

Because smoothing involves perform-
ing the same operations for every pixel,
very efficient SIMD implementations
are pos~ible .~ Assume that there are N
PES (processing elements -processor/
memory pairs) available, logically ar-
ranged as a d N x d N grid, and each PE

More flexible
No constraints on operations that can be performed
concurrently

Conditional statements more efficient
MIMD: Each PE executes as if uniprocessor
SIMD: “Then” and “else” execution serialized

No SIMD control unit cost

Variable-time instructions more efficient
Assume there is a block of instructions where the
execution time of each instruction is data dependent
SIMD: Waits for slowest PE to execute each
instruction (“sum of max’s”)
TSIMD =;, rngx (instr. time)
MIMD: Waits for slowest PE to execute block of
instructions (“max of sums”)
TMIMD = mgx;, (instr. time)

mode and MIMD mode
Example: Execution of three instructions in SIMD

1 SIMD
I

. . . PE0 PE1 PE2

MIMD

I
max 2 max

instr. PE PE instr.

56 COMPUTER

stores an MIdN x MIdN subimage (see
Figure 1). Each PE performs at most
M2/N smoothing operations.

To smooth the pixels at the edge of a
subimage, pixels from logically adja-
cent subimages must be transferred (Fig-
ure 1). Therefore, each PE requires at
most MIdN pixels from each of the four
adjacent PES and one pixel from each of
the four PES diagonally adjacent to the
PE. Thus, a worst-case total of 4(MldN)
+ 4 inter-PE data transfers are required
to perform the smoothing, where N pix-
els are moved by each transfer. The
inter-PE transfers needed for this algo-
rithm can be done efficiently on 2D
mesh networks, hypercube (single-stage
cube) networks with embedded mesh-
es: and multistage cube networks.’

The execution time of the above algo-
rithm when operating on an M x M
image A with N PES is the sum of M2/N
smoothing operations and 4(MIdN) + 4
inter-PE data transfers. Thus, for M =
512andN= 1,024, thereare256smooth-
ing operations and 68 inter-PE data
transfers required. If the time to per-
form one inter-PE transfer is equal to
the time to perform one smoothing op-
eration, the speedup S of the SIMD
version over that of the uniprocessor
algorithm is

serial time
parallel time

- (M-2)2

M2/N + 4 M l f i + 4

S =

This speedup calculation is based on
smoothing and inter-PE transfer opera-
tions (ignoring, for example, loop index
variable manipulations) and
the assumption that the uni-
processor and each SIMD
PE are of equivalent com-
puting power. Theoretical-
ly, the maximum possible
speedup is N. For M = 512
and N = 1,024, the speedup
is 5102/324 E 803. However,
if the time to perform a net-
work transfer becomes much
less than the time to per-
form a smoothing operation
-which is normally the case
in SIMD mode - the speed-
up is closer to N. The speed-
up is not Neven if communi-
cation time is ignored,
because the PES containing
image-edge pixels will be dis-

M
pixels

M pixels -
PEOPE1 e** P E G - 1

PE fi . . .
pixels

i--J
MI&
pixels

f i P E s

M l f i

pixels

pixels

Figure 1. Data allocation (a) and pixel transfers (b) for image smoothing.

operations and are therefore underuti-
lized for some steps of the algorithm.
This example demonstrates two condi-
tions, inter-PE data transfers and dis-
abling of PES for some operations, which
cause SIMD algorithms to execute with
less than perfect speedup (that is, S <

The smoothing algorithm can also be
implemented in MIMD mode. Howev-
er, the discussion of SIMDIMIMD trade-
offs (see the “SIMD versus MIMD”
sidebar) explains why there is little rea-
son to prefer this mode. One MIMD
implementation advantage would be
manifest if the “divide-by-9” operation
is data dependent, invoking the “sum of
max’s” trade-off. However, because of

NI.

the potential SIMD benefits of CU (con-
trol unit)/PE overlap and implicitly syn-
chronized transfers, SIMD mode would
probably be best.

Recursive doubling. The recursive-
doubling procedure,’ sometimes called
tree summing, is a combining algorithm
that can be used to apply any associa-
tive operation (for example, min, max,
sum, product) to a set of operands. Con-
sider the task of finding the sum of N =
1,024 numbers, for example, CA(i) , 0 2
i < 1,024. The following algorithm can
perform this task on a serial machine:

sum = A(0)
for i = 1 to 1023 do

sum = sum + A(i)

p_E Data Time-

10 fl t t3 t4 t5

2 A2 _ _ _
3 A3

4 A4 _ _ _ A4+A5 _ - _ A4+A5iA6+A7

5 A5

6 A6 _ _ _ A&A7

7 A7

7
abled for some smoothing

February 1992

Figure 2. Recursive doubling for N = 8, where sum =.CA(i).
1 = 0

One addition is performed
per iteration for a total of
1,023 E N additions.

Although this task appears
to be sequential in nature,
summing N numbers with N
PES by this procedure re-
quires only log,N transfer-
add steps, where a transfer-
add is composed of the
transfer of a partial sum to a
PE and the addition of that
partial sum to the PE’s local
sum. This is demonstrated
for N = 8 in Figure 2. Let Tadd
be the time required to exe-
cute an addition, and T,ranrfer.add
be the time to execute a trans-
fer-add. Then, the speedup
of this algorithm is

57

Tadd S =
1% 2N Transfer-add

number of operations performed, as well
as on the machine implementation of
the operation. For example, the addi-
tion of M numbers, where M = pN and
p is an integer greater than zero, re-

equations above yields the theoretical
result TSIMD = TMIMD. Thus, the preferred
mode of execution of one addition or
max operation depends on the machine
implementationdetails (for example, in-

quires one load and p - 1 additions to
compute the local sums. These addi-
tions could be normalized floating-point
additions and therefore may take vari-
able time to execute. Let TtP represent
the time to perform addition i on PE P
and let N equal the number of PEs used.
Then, the time to perform - 1 addi-
tions in MIMD mode is

struction fetch time).
Consider the process of combining

the local sums. There are log,N transfer-
ops, where each transfer step is separat-
ed by a single operation. As mentioned
above,thissingle-operationperformance
for SIMD and MIMD modes is virtually
equal. Therefore, the combining pro-
cess can best be performed in SIMD

The recursive-doubling technique can
be extended to operate on a set of oper-
ands whose size is greater than the num-
ber of PES. Let M be the number of
operands and let N = 2“ be the number
of PES, numbered from 0 to N- 1, where
PE P’s number in binary is p,- ... ~ 9 ~ .
Let each PE store LMINJ of the oper-
ands, and let M mod N PES receive one
additional operand of the remaining M
mod N operands. Each PE first oper-
ates sequentially on its local data, re-
quiring at most rMIN1 operations. Once
the local results have been obtained,
log,N transfer-ops are made. In trans-
fer-op j, where jproceeds in time from 0

(that is, p, ... p g , are fixed at 10 ... 0),
to(log,N)-l ,PEP=p,-1 ...p,+, 10 ... 0

mode because there is less transfer over-
head and potential for CU/PE overlap.
Furthermore, the transfers involved in
the recursive-doubling algorithm must
be executed in a constrained order, which
forces the PES to synchronize between
transfers. Hence, there is no advantage
to executing any part of the combining
process in MIMD mode.

The best implementation of the whole

P-1

TMIMD = [f)
i=l

and in SIMD mode is

P-1

GMD = zmpax(~‘)
i=l

(see the “SIMD versus MIMD” side-
passesits results to PE P’=p,_l ...pi+l 00
... 0 (that is,p, . . .p ,po are fixed at 0 ... 0).
PE P’ uses the received result and the
previously stored partial result to com-
pute a new partial result. After log,N
transfer-ops, PE 0 will contain the glo-
bal result. This is the sequence of trans-
fer-adds used in Figure 2 for M = N = 8.
The inter-PE transfers needed for this
algorithm can be done efficiently in hy-
percube and multistage cube networks.’
Mesh-based systems require additional
hardware (as in the Massively Parallel
Processor, or MPP, machine8) to do this
efficiently.

As an example, let M = 16K, N = 128,
and let each PE get MIN = 128 numbers.
First, each PE sums its 128 numbers (1
load and 127 adds), requiring approxi-
mately the same amount of time as 128
additions. Then, log,N = 7 transfer-add
steps are needed to combine the 128
local sums into one global sum in PE 0.
The total time is (128 x Tadd) + (7 x

bar). Because TMIMD I TSIMD, the time to
compute thelocal sumsinMIMDwould
be less than or equal to the time to
compute them in SIMD mode. Howev-
er, the addition instruction would most
likely be contained within a loop. The
loop control instructions can be execut-
ed in the CU in SIMD mode but must be
executed on the PES in MIMD mode.
Whether the advantage of CUIPE over-
lap in SIMD mode outweighs the MIMD
advantage in executing variable-time
instructions is dependent on the ma-
chine implementation of a floating-point
addition as well as the actual data used.

The above discussion also applies to
the minhax operations. The computa-
tions involve a data-conditional state-
ment of the form

recursive-doubling algorithm must con-
sider both the local calculations and the
inter-PE combining phases. The pre-
ferred approach for the whole algorithm
would be either all SIMD or mixed-
mode, depending on whether SIMD or
MIMD, respectively, is optimal for the
local phase.

Global histogramming. Let an M x M
input image be mapped onto N PEs such
that each PE holds WIN pixels, as in the
image-smoothing discussion (see Fig-
ure 1). Global histogramming involves
computing B bins, where each bin has
two attributes associated with it: the
range of values that each bin represents
and the number of pixels in the entire
image that have values within that range.
For this algorithm? it is assumed that N
is an integer multiple of B , and there is
one bin for each possible pixel value.

Each PE first computes a local B-bin
histogramfortheWINpixelsinitsmem-

if (number > max) then
max = number

This conditional statement can be re-
Ttransfer.add), compared to the serial time
of 16K x Tad& If Ttransfer.add = z x Tad& the
speedup of this algorithm is

garded as a variable-time instruction.
In this case, the time to perform p - 1
comparisons in SIMD mode and MIMD
mode would be given by the respective
equations above: T,P now denotes the
time to perform comparison i on PE P.

16K M The above trade-offs between the two
modes would apply, but there is a great-
er variability in the execution time of
the data conditional, which would, in

16K x &dd

(128 XTadd) + (7 x z x K d d)
s=

- 128 + (7 z) = M/N + log2 N

There are advantages to implement-

ory. Let A(x, y) be thegray-level value
of the pixel in row x and row y , and let
bin(i) be initialized to 0,O 5 i < B. If each
PE contains an (MIdN) x (MIdN) sub-
image, then an algorithm to compute
the local B-bin histograms could be

for x = 0 to (MIdN) - 1
for y = 0 to (M I ~ N) - 1

bin(A(x, y)) = bin(A(x, y)) + 1
ing the recursive-doubling algorithm in
SIMD mode, MlMD mode, and mixed-
mode. The mode in which the local sums
are computed depends on the type and

general, strongly favor an MIMD im-
plementation. When p = 2, only one
operation is performed to compute the
local result. Substituting p = 2 into the

(for the serial algorithm, set N = 1). The
PES then combine their local histograms
with the local histograms of all other

58 COMPUTER

PES. The straightforward
approach to combining the
local histograms is to com-
bine one bin at a time using
recursive doubling, requir-
ing Blog,N transfer-add
steps.

Consider an overlapped
recursive-doubling proce-
dure for combining local
histograms, where all of the
bins are summed concur-
rently (see Figure3). In the
figure, (w, ..., z) denotes
that bins w, ..., z are accu-
mulated in that PE. The N
PES are logically divided
into NIB blocks of B PES.
In the first b = log,B stages,
the NIB blocks simulta-
neously combine their his-
tograms. Each PE in a block
holds a different bin com-
puted by summing the val-
ues of the corresponding
local bins of the PES in the
block. This is done by di-

E
0
1
2
3

4
5
6
7

Stage 0 Stage 1 Stage 2 Stage 3
B - 1 transfer-adds log,(NIB) transfer-adds

Figure 3. Illustration of the global-histogramming algorithm
for N = 16 and B = 4.

viding each block of PES in half such
that the PES with lower addresses form
one group and the PES with the higher
addresses form another group. Each
group accumulates the sums for half the
bins and sends the bins it is not accumu-
lating to the other group.

Figure 3 shows this process for N = 16
and B = 4. For example, in stage 0, PE 0
accumulates bins 0 and 1 from PE 0 and
PE 2. Simultaneously, PE 1 accumu-
lates bins 0 and 1 from PE 1 and PE 3.
The next stage involves dividing each
group of B/2 PES into two different
groups of Bl4 PES formed once again by
PES with lower addresses and higher
addresses. These two new groups ex-
change bins the same way as before, but
only for those bins for which they had
accumulated sums in the last stage. For
example, in stage 1, PE 0 accumulates
bin 0 from PE 0 and PE 1. The subdivid-
ing process continues until there is one
PE in each group and the sums for each
bin have been completely accumulated
for the portion of the image contained
in that block - each bin in a different
PE.

The next n - b stages, where n =
log,N, combine the partial histograms
of all the blocks by performing B simul-
taneous recursive-doubling operations
(Figure 3). Each of these B recursive-
doubling operations involves those NIB
PES that store the sums for the same bin

index. As a result, the histogram for the
entire image is distributed over B PES
where bin i is located in PE i for 0 < i <
B.

At each stage j , for 0 5 j < b, B12if1
transfer-adds take place. The total num-
ber of transfer-adds for the first b stages
is

b-l

x(B/2 ’+’)= B-1
1=0

For each stage j where b < j < n, one
transfer-add occurs. The finaln- b stag-
es require log(N1B) = n - b transfer-
adds. The total number of transfer-adds
needed to merge the local histograms
using the overlapped recursive-doubling
scheme is then B - 1 + log,(N/B).

In the case of B = 256, N = 1,024, and
M = 512, the serial histogramming algo-
rithm would require approximately M Z
= 256K additions. The SIMD algorithm
requires WIN = 256 additions to com-
pute the local histograms. If the straight-
forward recursive-doubling algorithm
is used to combine the local histograms,
Blog,N = 2,560 transfer-adds are neces-
sary. By comparison, the non-obvious
overlapped recursive-doubling algo-
rithm requires B - 1 + log,(NlB) = 257
transfer-adds. The merging of the local
histograms using the non-obvious meth-
od yields nearly a factor of 10 (approx-
imately log,N) speedup over its obvious
counterpart.

The inter-PE transfers
needed for the global-his-
togramming algorithm can
be done efficiently in hy-
percube networks and mul-
tistage cube networks.
While some mesh-based
systems have the extra
hardware to perform re-
cursive doubling, the simul-
taneous recursive dou-
blings used here are not
efficiently implementable.

Global histogramming
involves integer additions,
so the time to compute lo-
cal histograms is not data
dependent and could be
performed fastest in SIMD
mode because of the po-
tential for CUIPE overlap.
This assumes that all PES
can simultaneously access
local bin(A(x, y)) locations
and that the actual PE
memory locations ad-
dressed may differ among

PE processors. For the combining pro-
cess, the large number of inter-PE trans-
fers and the potential for CUIPE over-
lap makes SIMD mode the obvious
choice for this phase. No data-depen-
dent conditionals are involved because
indexed addressing can be used by each
PE to determine which bin is trans-
ferred at each stage. Therefore, SIMD
mode is most appropriate for global
histogramming.

It is clear from this example that while
several parallel algorithms may have
increased performance over the serial
algorithm, an optimal mapping of a task
onto a parallel machine is often a subtle
method that is derived from a compar-
ison of many alternatives. The non-in-
tuitive structure of this algorithm also
demonstrates the challenges in design-
ing compilers that automatically con-
vert “dusty deck” serial code into fast
parallel algorithms. While reconfigu-
rable systems may provide the possibil-
ity of increased performance, the great-
er flexibility in configuring these systems
adds to the difficulty of producing com-
piler-generated parallel code that makes
optimal use of the architecture.

2D discrete Fourier transform. A 2D
DFT of an M x M image can be con-
structed by first taking the 1D DFT of
each row and then taking the 1D DFT of
each column of the resulting M x M

February 1992 59

array (see Figure 4). Consid-
er an SIMD parallel imple-
mentation of this approach9
with N = M PES, numbered 0
to M - 1. Assume that PE i
contains a variable PE# = i;
that is, each PE “knows” its
own number. Original image
elementsZ(h,O) ..., Z(h,M-1)
(that is, row h) are initially
stored in PE h, where 0 I h <
M. Each PE then performs a
1D M-point DFT on the row
stored in its memory. The 1D
FFT (fast Fourier transform)
algorithm is used to compute
the 1D DFT in each PE. The
result is the M x M array G.
PE h has created row h of G,
where [G(h, 0) ..., G(h, M -
l)]=DFT([Z(h,O) ..., Z(h, M-
I)]).

The DFTs of the columns
of G must now be computed.
However, each element of
column w, 0 5 w < M, [G(O, w)
..., G(M - 1, w)] is located in
a different PE; that is, G(h,
w) is stored in PE h. One way
to perform a DFT on the col-
umns of G is to move each
element of the same column
to the same PE, that is, so
that PE j holds column j of G.
The new arrangement of G is
equivalent to the transpose
of G.Then,eachPEcancom-
pute the DFT (via the FFT
algorithm) of the column of
G in its memory to obtain F,
the transpose of the DFT of Z.
PE h calculates column h of
F, where [F(O, h) ..., F(M - 1,
h)]=DFT([G(O,h) ..., G(M-
1, h)].

Taking the transpose of G
requires moving element
G(h, w) (element w in PE h)
to location GT (w, h) (ele-
ment h in PE w). This can be
done in M - 1 inter-PE trans-
fers. For transfer i, 1 < i < M ,
PE h fetches element G(h, h
+ i mod M) from its memory
and sends it to PE h + i mod
M , which stores it as Gr (h +
i mod M , h) . PE h fetches
G(h, h + i mod M) from its

I (O , O) * * * I(0, M- 1)

I(1,O) I(1, M- 1)

G(0,O) * * * G(0, M- 1)

ID G (1 , 0) * * * G(1, M- 1) * . FFTs : .
I (M-I ,O)***I (M- l , M-1) G (M - I , O) * * * G (M - l , M - l)

F(O,O)*** F(0, M- I)

F(1,O) F(1, M- 1)

.
F(M - 1,O) F(M - 1 , M - 1)

Ggure 4. Two-dimensional discrete Fourier transform.

for k = 1 step + 1 until log,N do
for i = k - 1 step - 1 until 0 do

for q = 1 step + 1 until MIN do
load X[q] into network
send to PE whose number differs in bit i
y[q] t network output

merge(X, r>
swap(X Y)

Figure 5. Bitonic sequence-sorting algorithm.

I I I I
5 24 128 256 512

Problem size

Figure 6. Bitonic sequence-sorting execution time versus
problem size for N = 16 PES.

The serial time needed to
calculate a 2D DFT of an M x
M image is dominated by the
Wlog,M complex multiplica-
tions ((M/2)log2M for each
of 2M 1D M-point FFTs).
For M = 1,024, a total of
10,485,760 complex multipli-
cations are required. In the
SIMD approach, M FFTs are
done simultaneously to trans-
form Z to G, with each PE
performing (M/2)log2M com-
plex multiplications. G is then
transposed by executing M -
1 inter-PE data transfers. Fi-
nally, (M/2)log2M complex
multiplications are needed by
each PE to transform GT to
F. (Depending on the appli-
cation, F may be used in
place of F.) Therefore, the
parallel time is dominated by
the Mlog2M complex multi-
plications and M - 1 trans-
fers. A multiplicative factor
of M is achieved for the speed-
up on complex multiplica-
tions, at the cost of an addi-
tive term of M - 1 inter-PE
data transfers. For the above
example with M = 1,024, the
SIMD algorithm would re-
quire 10,240 complex multi-
plications and 1,023 transfers.
The speedup, assuming that

puted as
Ttransfer = Tcomplex-multiply 3 is corn-

M 2 log, M S E
M log2 M + M -1

For the case of M = 1,024, the
speedup is approximately
931.

Using the multistage cube
network, all PES can perform
each “+ i mod N ’ network
transfer required for the
transpose, for a fixed i, 1 5 i <
N, in a single pass. Neither
the mesh nor the hypercube
topology can perform each
of these transfers in a single
pass (intermediate nodes
must be traversed).

Each 1D FFT computed in
each PE can be executed in

, memory
location&G+((PE#+i)modM),where
&G is the address of G(PE#, 0). PE h +
i mod M stores the received element in
its memory location &Gr + ((PE# - i)

mod M), where > is the address of
GT(PE#, 0). The transfer used is “+ i
mod M.” Finally, the diagonal is moved
from &G + PE# to > + PE# within
each PE.

either SIMD mode or MIMD mode. In
SIMD mode, there is potential for a
great deal of CU/PE overlap, as there
are three nested loops in most FFT cod-
ings. However, because of the floating-

60 COMPUTER

point computations involved, the time
to execute many of the instructions
may be data dependent, invoking the
“max of the sums” versus “sum of the
max’s” advantage for MIMD. In addi-
tion, some highly efficient FFT imple-
mentations contain several condition-
al statements that are used to detect
special cases where a simplified ap-
proach can be employed, and condi-
tionals are performed more effectively
in MIMD mode. The final choice of
mode depends on details of the actual
FFT implementation and machine ar-
chitecture used. The transpose can be
done more efficiently in SIMD mode
because of the CUIPE overlap and the
reduced inter-PE transfer overhead ad-
vantages. Thus, either a mixed-mode
version, with the 1D FFTs done in
MIMD mode and the transpose done
in SIMD mode, or a pure SIMD-mode
version should be employed, depend-
ing on specifics of the algorithm and
machine.

Bitonic sequence sorting. Consider
the bitonic sorting of sequences on the
PASM prototype.2 Assume there are
M numbers and N = 2” PES, where M is
an integer multiple of N , and that MIN
numbers are stored in each PE - ini-
tially sorted. The goal is to have each
PE contain a sorted list of MIN ele-
ments, where the elements in PE i are
less than or equal to the elements in PE
k, for i < k . The regular bitonic sorting
algorithm,1° where M = N , is modified
in Figure 5 to accommodate the MIN
sequences in each PE.2 Instead of per-
forming a comparison at each step, an
ordered merge is done between the
local PE sequence X and the trans-
ferred sequence Y using local data-
conditional statements (“merge(X,
Y)”). The lesser half of the merged
sequence is assigned the pointer Xand
the greater half is assigned the pointer
Y . The pointers to the two lists are then
swapped, based on a precomputed data-
independent mask (“swap(X, Y)”) .

When choosing the mode of paral-
lelism, the programmer must consider
two salient characteristics of the algo-
rithm. First, the ordered merge involves
many comparisons that can be more
efficiently computed in MIMD mode.
Second, the algorithm requires many
network transfers, which are better
performed in SIMD mode. To evalu-
ate different approaches to this algo-
rithm, a pure SIMD, a pure MIMD,

and two mixed-mode implementations
have been executed on the prototype.

In the SlMIMD (SIMDIMIMD)
mixed-mode implementation, the or-
dered merge and swap routines were
executed in MIMD mode, while the rest
of the operations, including network
transfers, were performed in SIMD
mode. This algorithm has an advantage
over pure SIMD and pure MIMD im-
plementations because all comparisons
are done in MIMD mode and all net-
work transfers are done in SIMD mode.
Additionally, there is potential for sig-
nificant CUIPE overlap in the SIMD
instructions.

The BMIMD (barrier MIMD) mixed-
mode implementation uses MIMD mode
but uses barrier synchronization” to
synchronize all inter-PE transfers. This
is typically performed in three steps.
First, each PE arrives at a synchroniza-
tion point in an algorithm called the
barrier. Next, each PE will wait at the
barrier until all the PES have “an-
nounced” that they are at the barrier.
On PASM, this is accomplished byfetch-
ing a word from the SIMD address space,
thus using the SIMD instruction fetch
synchronization hardware to implement
the barrier. Finally, all PES continue
execution simultaneously. During the
bitonic sorting algorithm, the PES bar-
rier synchronize before each inter-PE
transfer. Consequently, the PES can
perform the transfer without the over-
head normally involved with MIMD
network transfers. Thus, the BMIMD
implementation has the advantage of
performing data-dependent condition-
als in MIMD mode but performs barrier
synchronization to reduce inter-PE data
transfer overhead. Therefore, its per-
formance would be expected to be bet-
ter than pure SIMD or pure MIMD.

Figure 6 shows the resultsof the SIMD,
MIMD, SIMIMD, and BMIMD algo-
rithms for the bitonic sorting problem
with N = 16 PES. There is a significant
improvement in execution time for both
mixed-mode algorithms. SIMIMD per-
formed better than BMIMD, with the
difference increasing with M , mainly
because of the CU/PE overlap. The
mixed-mode results are the product of
properties inherent to the modes of par-
allelism and not artifacts of the proto-
type construction, as discussed by
Fineberg et aL2 The PASM prototype is
a constantly evolving tool for under-
standing the programming and design
of parallel-processing systems.

Mapping algorithms
onto partitionable
systems

Two potential advantages of a parti-
tionable parallel-processing system are
demonstrated - the first involving sub-
task parallelism and the second consid-
ering the number of PES assigned to a
task.

Impact of subtask parallelism. The
effect of partitioning a parallel task into
smaller, concurrent subtasks can have
an impact on performance.I2 Consider
the goal of smoothing four images such
that the total time to smooth all four is
minimized.’ Two possible ways of per-
forming this computation are to smooth
the four images sequentially on all N
PES or to partition the task such that all
four images are smoothed concurrent-
ly, each using NI4 PES.

The time to smooth the four images
in sequence is four times that to smooth
a single image. Let one time step be the
time required to perform a smoothing
operation. Assuming that each inter-
PE data transfer requires one step, the
total time is 4 x (M 2 / N + 4 (M / . / N) + 4)
steps. For M = 512 and N = 1,024, this is
1,296 steps.

The total time for N PES to smooth
the four images concurrently, each on
NI4 PES, is W l (N l 4) + 4(M I I/N/4)+ 4 .
For M = 512 and N = 1,024, this is 1,156
steps. Thus, partitioning the system and
exploiting subtask parallelism decreas-
es execution time.

The reason for the reduced execution
time by partitioning is that fewer inter-
PE transfers are needed, 4 x
(M I JN/4) + 4 versus 4 x (4 (M l d N) +
4) . For the example with M = 512 and N
= 1,024, this is 132 versus 272 inter-PE
transfers.

The efficiency E of a parallel imple-
mentation, which measures the amount
of incurred overhead, is

speedup - serial time E=-
PES (# PES) x parallel time

- 4 x (M - 2) 2
N x parallel time

For hi= 1,024 and M = 512, the efficien-
cy of smoothing four M x M images in
sequence is 78 percent, while the effi-
ciency of smoothing all four images si-
multaneously on a system partitioned
into four submachines of size NI4 PES

February 1992 61

each is 88 percent. The effi-
ciency improved because the
larger subimage size (32 by
32 versus 16 by 16) reduces
the percentage of the total
execution time spent doing
inter-PE data transfers (132I
(322 + 132) = 11 percent ver-
sus 68/(16* + 68) = 21 per-
cent).

This example illustrates

N

Timeunits

27 28 29 2’0 211 212 213 214

198 144 122 116 118 124 132 141

1

Figure 7. Execution time versus number of PES (N) for
M = 214, z = io.

how partitioning for subtask parallel-
ism can be used to improve performance.
In this case, both execution time and
efficiency are improved.

Impact of increasing the number of
processors. Consider the impact of in-
creasing N on the performance of both
the image-smoothing algorithm and the
recursive-doubling algorithm.’* Recall
that smoothing an M x M image re-
quires each PE to perform WINsmooth-
ing operations and 4(MIdN) + 4 inter-
PE data transfers. The execution time
decreases as N increases. The denomi-
nator of the expression for the efficien-
cy of the parallel smoothing algorithm,
N x (WIN + 4(MIdN) + 4) = W + 4MdN
+ 4N, increases with N , so as N increas-
es, the efficiency decreases. Thus, in-
creasing Nimproves the total execution
time but causes the efficiency to de-
crease. This inverse relationship is a
marked contrast from serial-algorithm
performance.

The impact of increasing N has a dif-
ferent effect on the recursive-doubling
algorithm than on the image-smoothing
algorithm. Assuming MIN numbers are
stored in each PE, where N = 2”, the
execution time, T,,,,,, is

In this case, as N increases, the execu-
tion time first decreases and then in-
creases. Assume a transfer-add takes z
times as long as an addition; that is,

denominator of the efficiency for this
algorithm is M + zMog,N, so the effi-
ciency always decreases as N increases.

The partial derivative with respect to
N of the execution time yields

Ttransier-add = ‘add, and = Tadd‘ The

This derivative is negative for N < (MIz)
In2 and is positive for N > (MIz) ln2.
Thus, as N increases from 1 to (M l z) ln2,

the execution time decreases, and as N
increases beyond (M l z) ln2, the execu-
tion time continually increases. The
crossover point is the value of N = 2”
such that I N - (MIz) ln2 I is minimal. For
example, if z = 10 and M = 214, then the
execution time is (2I4/N + 10 log,N) x
Tadd time units (see Figure 7). The cross-
over point is calculated as N = 2” such
that I N - (214/10) ln2 I is minimal. Thus,
N = 21°. Given a system with 214 PES and
the assumptions made, the recursive-
doubling-algorithm execution time can
be minimized by performing it on a
partition of size 21° PES, and the other
214 - 21° PES can be used for other jobs.

Thus, increasing N may or may not
improve an algorithm’s overall execu-
tion time. Furthermore, for parallel al-
gorithms improved efficiency may not
imply improved execution speed, and
vice versa.

his article introduced some of
the issues pertinent to the map-
ping of computer-vision-related

algorithms onto a class of large-scale
reconfigurable parallel-processing sys-
tems. Currently available commercial
massively parallel systems have their
roots in academic research from the
past two decades. Aspects of reconfig-
urable systems that are now being ex-
plored in both academia and industry
will become part of the next generation
of massively parallel machines.

Three of the dimensions of parallel-
ism were examined here through a set
of case studies. These aspects of paral-
lelism should be considered in the de-
sign and selection of future large-scale
parallel-processing systems for comput-
er-vision applications.

Acknowledgments
This work was supported by the Naval

Ocean Systems Center under the High Per-
formance Computing Block, ONT; by the

Office of Naval Research under
grant number N00014-90-J-1937;
and by the National Science Foun-
dation under grant number CDA-
9015696. Preliminary versions
were presented at the Parallel
Computing Workshop sponsored
by Ohio State University and at
Compsac 91. We acknowledge
man; useful discussions about
mixed-mode parallelism with
Tom Berg, Tom Casavant, Hank
Dietz, Sam Fineberg, Shin-Dug

Kim, and Jim Kuehn. We thank Mark Alle-
mang, Wayne Nation, and the referees for
helpful comments. H.J. Siegel acknowledges
the efforts of his coauthors on reference 5:
Leah J. Siegel, Frederick C . Kemmerer, Phil-
ip T. Mueller Jr., Harold E. Smalley Jr., and
S. Diane Smith.

References
1.

2.

3.

4.

5 .

6.

7.

8.

9.

H.J. Siegel, Interconnection Networks for
Large-scale Parallel Processing: Theory
and Case Studies, Second Edition,
McGraw-Hill, New York, 1990.

S.A. Fineberg, T.L. Casavant, and H.J.
Siegel, “Experimental Analysis of a
Mixed-Mode Parallel Architecture Us-
ing Bitonic Sequence Sorting,” J. Paral-
lel and Distributed Computing, Vol. 11,
No. 3, Mar. 1991, pp. 239-251.

G.J. Lipovski and M. Malek, Parallel
Computing: Theory and Comparisons,
John Wiley & Sons, New York, 1987.

P. Duclos et al., “Image Processing on a
SIMD/SPMD Architecture: Opsila,”
Proc. Ninth Int’l Con$ Pattern Recogni-
tion, IEEE CS Press, Los Alamitos, Ca-
lif., Order No. 878,1988, pp. 430-433.

H.J. Siegel et al. (see “Acknowledg-
ments”), “PASM: Apartitionable SIMD/
MIMD System for Image Processing and
Pattern Recognition,”IEEE Trans. Com-
puters, Vol. C-30, No. 12, Dec. 1981, pp.
934-947.

J.P. Hayes and T.N. Mudge, “Hypercube
Supercomputers,” Proc. IEEE, Vol. 77,
No. 12, Dec. 1989, pp. 1,829-1,841.

H.S. Stone, “Parallel Computers,” in
Intro. Computer Architecture, Second Edi-
tion,H.S. Stone,ed.,SRA, Chicago, 1980,
pp. 363-425.

K.E. Batcher, “Design of a Massively
Parallel Processor,” IEEE Trans. Com-
puters, Vol. C-29, No. 9, Sept. 1980, pp.
836-844.

L.H. Jamieson, P. Mueller, and H.J. Sie-
gel, “FFT Algorithms for SIMD Parallel

62 COMPUTER

Processing Systems,” J . Parallel and Dts-
rribuird C u r n p u r i r c t ; , Vol. 3 , No. I , Mar.
1986, pp. 48-71.

10. K.E. Batcher, “Sorting Networks and their
Applications,” Proc. A FIPS Spring Joint
Computer Conf, 1968, pp. 307-314.

11. H.F. Jordan, “A Special-Purpose Archi-
tecture for Finite-Element Analysis,”
Proc. Int’l Cont Parallel Processing, IEEE
CS Press, Los Alamitos, Calif., Order
No. 175 (microfiche only), 1978, pp. 263-
266.

12. R. Krishnamurti and E. Ma, “The Pro-
cessor Partitioning Problem in Special-
Purpose Partitionable Systems,” Proc.
Int’l Con$ Parallel Processing, Vol. I,
IEEE CS Press, Los Alamitos, Calif.,
Order No. 889 (microfiche only), 1988,
pp. 434-443.

Howard Jay Siegel is a professor and the
coordinator of the Parallel Processing Labo-
ratory in the School of Electrical Engineer-
ing at Purdue University, West Lafayette,
Indiana. His current research focuses on in-
terconnection networks and the use and de-
sign of the PASM reconfigurable parallel
computer system. H e is coeditor-in-chief of
The Journal of Parallel and Distributed Com-
puting and program chair of Frontiers 92, the
Fourth Symposium on the Frontiers of Mas-
sively Parallel Computation.

Siegel received two BS degrees from MIT
and the MA, MSE, and PhD degrees from
Princeton University. H e is a fellow of the
IEEE and a member of the IEEE Com-
puter Society, the ACM, Eta Kappa Nu, and
Sigma Xi.

James B. Armstrong is a PhD candidate in
the School of Electrical Engineering at Pur-
due University, West Lafayette, Indiana. His
research interests are in operating system
considerations for reconfigurable parallel
computing systems, and he uses the PASM
prototype as a testbed for his theoretical
work. He is the student manager of the E E
School’s Parallel Processing Laboratory and
a codeveloper of a graduate-level course on
programming parallel machines.

Armstrong received a BS degree in elec-
trical engineering and computer science and
a management systems certificate from Prin-
ceton University in 1988, and an MSEE de-
gree from Purdue in 1989. He is a member of
Eta Kappa Nu, the IEEE Computer Society,
Sigma Xi, and Tau Beta Pi.

Daniel W. Watson is a PhD candidate in the
School of Electrical Engineering at Purdue
University, West Lafayette, Indiana. His re-
search interests include automatic parallel-
mode selection techniques and distributed-
memory management. H e is a codeveloper
of a graduate-level course on programming
parallel machines.

Watson received a BSEE degree from
Tennessee Technological University in 1985
and an MSEE degree from Purdue in 1990.
From 1985 to 1987, he developed software
simulations for the Naval Surface Weapons
Center in Dahlgren, Virginia. He is a mem-
ber of the IEEE, the IEEE Computer Soci-
ety, Gamma Beta Phi, Tau Beta Pi, and Eta
Kappa Nu.

1951 -1991

4m
3RD ANNUAL

CONFERENCEON
INTEUIGEM ROBOTlC

SYSTEMS FOR
SPACE MPLORATlON

NASA Center for Intelligent
Robotic Systems for Space Explora-
tion Conference is the third
annual conference on engineer-
ing in space. The 14 papers in
this first bound edition discusses
intelligent robotic systems for
future space exploration missions.

Sectiom: Planning and Represen-
tation, Coordination and
Integration, Motion Control,
Vision and Sensing, Robotics for
Space Applications.

144 PAGES 1991 SOFTBOUND
lSBN 08186-2595-3
CATALOG NO. 2595

$40 00 MEMBERS $20 00

This book explores AI theory and
AI applications through its
investigation of AI tools and their
manipulation of old and new
forms of knowledge. This volume
contains 84 papers covering AI
algorithms and tools for software
engineering, knowledge-based
systems, reasoning and problem-
solving, and machine learning.

Sections Include: Machine Learn-
ing, Knowledge Acquisition and
Validation, Parallel Implementa-
tions, Software Development and
Maintenance, Genetic Algorithms,
Knowledge Representation
Schemes, Geometric Constraint
Satisfaction, Constraint Satisfac-
tion Algorithms, Efficient
Inference Techniques, Knowl-
edge-Based Applications,
Applications of AI Techniques.

568 PAGES. 1991. SOFTBOUND.
lSBN 0-8186-2300-4.
CATALOG NO. 2300

$100.00 MEMBERS $50.00

Call toll-free
1-800-CS-BOOKS

Readers can contact the authors at the Parallel Processing Laboratory, Purdue University,
School of Electrical Engineering, Electrical Engineering Building, West Lafayette, IN
47907- 1285.

February 1992

