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Abstract— Traditional traceroute determines the path through a 
network by sending probe packets with progressively increasing 
TTL/hop count values so that routers that are progressively 
further from the inquirer send ICMP Time Exceeded messages 
and so reveal their identity.  This process can be slow (because 
traceroute must wait for a timeout or response to one probe 
before sending the next) and inefficient (through repeated 
probing of routers near the inquirer that lie on the intersection of 
paths leading to multiple targets). This paper shows how this 
process can be streamlined by the inquirer sending a scout packet 
to the (reachable) target before sending route tracing probes.  
The inquirer uses the TTL of the response to this scout packet to 
estimate the length of the path to the target (with tolerance for 
path asymmetry), and can then either expedite the route tracing 
process (by sending probes to each of the estimated number of 
routers on the path in quick succession) or reduce the number of 
probes needed (by inverting the direction of traditional 
traceroute, tracing the path from the target towards the inquirer, 
and terminating the process when it reaches a router on a known 
path from the inquirer). 

traceroute, raceroute, aceroute, network diagnostics, TTL 

I. INTRODUCTION 

Two indicators of the outstanding success of the Internet 
over the past decade are the increasing penetration of its use in 
the broad community, not just by technologists, and that these 
users are becoming increasingly reliant on the Internet as a 
communication medium. However, these users face a dilemma: 
They have an intense demand for resources offered on the 
Internet, but are often frustrated by their inability to access 
these resources. For example, recent measurements [1] suggest 
that prominent web servers are available to end-users 93% of 
the time; a far cry from the ‘five nines’ (99.999%) availability 
expected of telephone network nodes [2].  In this context, it can 
be useful for end-users to have access to software that can 
monitor the characteristics of paths (e.g. route and link delays) 
leading to targets of interest, including localising where the 
path breaks during network outages, and in collecting baseline 
measurements of path characteristics during normal operation.  
When such measurements are made routinely as part of normal 
operation, and hence run frequently by many users, it is 
essential that they be efficient. 

One of the most popular tools for tracing the path from an 
inquirer towards a target is traceroute.  Traditional traceroute 
[3] determines the path through a network by sending probe 
packets with progressively increasing values of the TTL field 
(for IPv4) or hop count field (for IPv6) so that routers that are 
progressively further from the inquirer send ICMP Time 

Exceeded messages and so reveal their identity.  traceroute 
progressively increases the TTL because it does not know the 
distance to the target before it starts probing, and since paths 
average 15 hops in length [4] which is much shorter than the 
maximum of 255 hops permitted by the Internet Protocols it 
would be inefficient to immediately send probes to all possible 
hops. Variants of the traditional traceroute include an AS level 
traceroute [5] and tulip [6] which exploits the fact that many 
routers use a counter to set the IP Identification field, allowing 
end systems to determine which routers on the path cause mis-
sequencing and loss. 

Members of the North American Network Operators’ 
Group (NANOG) have created a variant (known as 
“tracesroute”) [ftp://ftp.login.com/pub/software/traceroute] that 
allows abortion of the route tracing after a specified number of 
hops have failed to respond, and “parallel probing” in a “spray 
mode” in which a set of probes is sent before waiting for 
feedback.  While this paper also proposes allowing multiple 
probes to be waiting for responses, it improves on tracesroute 
by providing an algorithm to estimate how many probes should 
be included in the set. 

Traditional traceroute can be slow because it incrementally 
learns the path length: It sends a probe a certain distance into 
the network and then waits for a timeout or response to this 
probe before deciding whether to send the next probe one hop 
further into the network.  This slowness is particularly 
pronounced when traceroute times out waiting for a response, 
e.g. because a router did not send a Time Exceeded message or 
because this message was lost as it propagated towards the 
inquirer.  This slowness wastes the time of human users of 
traceroute, and can also lead to confused traceroute output 
when the path changes during the trace (and the likelihood of 
this increases with the trace time): some responses will reflect 
one path to the target and other responses will reflect another 
path to the target. 

To quantify the time that it takes to trace a path, consider a 
target that is a distance D hops away from the inquirer, and 
assume that each hop contributes equally to the round-trip time 
to the target, and that each router responds as soon as it 
receives the probe.  With traditional traceroute, D probes must 
be sent, and each covers an average distance of D/2, making 
the time to trace the route of the order of O(D2).  This can be 
improved by using a binary search for the path length [7], 
reducing the time to trace the route to O(Dlog2D).  However, if 
the route tracing could estimate the number of hops before it 
starts probing, then it could send all probes immediately and 
the trace would complete as soon as the inquirer receives a 



response from the most deeply penetrating probe, taking a time 
of the order of O(D).  With path lengths averaging around 15 
hops for typical paths [4], reducing the trace time from O(D2) 
to O(D) would constitute a considerable improvement. 

This paper shows how route tracing can be streamlined by 
the inquirer sending a scout packet to the (reachable) target 
before sending tracing probes.  The technique is only 
applicable when the target responds to scout packets (the tool 
reverts to the traditional incremental learning approach when 
there is a timeout waiting for such a response) and so is most 
applicable for baseline measurements of paths to targets that 
are reachable, rather than for localising faults when the target is 
disconnected.  The inquirer uses the TTL of the response to this 
scout packet to estimate the length of the path to the target, and 
can then use this to expedite the route tracing process by 
sending probes to each of the estimated number of routers on 
the path in quick succession.  To reflect the speed and 
traceroute heritage of this technique, we name the tool that 
implements this technique “raceroute”.  Software that 
implements the raceroute tool is available online at 
http://www.ee.unsw.edu.au/~timm/raceroute . 

This paper also shows how prior knowledge of an estimate 
of the path length can be used to reduce the number of probes 
needed to trace a route when the trace process has memory of 
previous trace results.  This is done by inverting the direction 
of traditional traceroute, tracing the path from the target 
towards the inquirer, and terminating the process when it 
reaches a router on a known path from the inquirer.  To reflect 
the fact that this technique probes most routers only once, 
despite tracing multiple paths that may share routers, we name 
the tool that implements this technique is called “aceroute”.  
Figure 1 graphically depicts the different approaches to route 
tracing. 

 

Traditional 
traceroute 

NANOG 
traceroute 

spray mode 

raceroute 

aceroute 

Inquirer R1 R2 Target 

 

Figure 1.  Various route tracing approaches take different durations (vertical 
dimension) when sending probes (arrows) from an inquirer, through multiple 

routers, to a target. 

Because raceroute and aceroute require feedback from the 
target in order to work, they are not intended for the most 
blatant form of troubleshooting: determination of where 
connectivity is broken when the target is unreachable.  
However, they are intended for efficient measurement when 
the target is reachable: determination of where delays are 
occurring, and baseline collection of information about paths 

traversed, so that when the target is unreachable, the inquirer 
knows which network elements are likely to be unavailable and 
so can report the fault and know what to monitor to determine 
when service returns. 

This paper first examines (§ II) what form scout packets 
should take in order to elicit a response from the target with 
high probability and assesses the accuracy of path length 
estimates made based on the TTL of such a response.  It then 
examines (§ III) techniques for matching responses to probes 
when the inquirer sends large numbers of probes towards a 
target in rapid succession.  This section shows the benefits of 
using source port numbers for such matching, and calls for a 
route tracing port in the well-known port range to prevent route 
tracing probes from being absorbed by processes on end 
systems.  Section IV addresses some of the complications in 
tracing routes when using TTL fields of responses to estimate 
path lengths (e.g. arising from path asymmetry and TTL 
resetting) and the costs of basing probing on such estimates.  
Finally, § V describes the idea of inverting the traceroute 
process, tracing the path from routers that are furthest from the 
inquirer to those that are closest, in order to reduce the number 
of probes needed. 

II. SCOUT PACKETS 

The purpose of scout packets is to elicit from the target a 
response from which the length of the path between inquirer 
and target can be estimated.  The response can take three 
forms: It may be an ICMP error message, or a higher layer 
response to either a packet that the inquirer is naturally sending 
to the target (e.g. an ACK to a TCP SYN sent to a port that 
provides a service that the inquirer needs to use) or an artificial 
packet that exists only for the purpose of eliciting such a 
response. 

ICMP responses have the advantage of explicitly including 
the TTL of the scout packet when it arrived at the target, and 
hence accurately indicate the length of the path from inquirer to 
target.  However, it can often be difficult to elicit an ICMP 
response from the target: ICMP messages may be blocked by 
firewalls, and to generate an ICMP port unreachable message 
requires a scout that is destined to an unused port, meaning that 
the scout introduces the overhead of an artificial packet and 
this artificial packet is less likely to be permitted to traverse 
firewalls on the path to the target. To maximise the chance of 
scouts penetrating firewalls, raceroute sends them to 
destination ports that identify services that external clients may 
have a legitimate need to access, e.g. ports 25 (SMTP), 53 
(DNS), 80 (HTTP, although that can be cached as described 
below) and 443 (HTTP over TLS). 

When the inquirer is already receiving responses from the 
target (e.g. for the intended application of monitoring 
performance of paths leading to information services used by 
an end-user) then those responses may be able to provide the 
required information without the need to send a separate scout 
packet.  However, the most popular information service today 
is web access, and while transparent web caches can improve 
the performance of this service, they can also intercept packets 
as they propagate from origin servers to clients so that they can 
be cached, often by inserting themselves in the path from 



server to client, and so resetting the TTL when they forward 
the packet to the client, and so hiding the effect on the TTL of 
routers on the server side of the cache. 

Since we are primarily interested in tracing the path to web 
servers, and because many domains have separate servers for 
SMTP and DNS traffic, we are limited to ports 80 and 443, 
with port 443 being preferred in order to work around caches.  
Scout packets should be sent with the TTL used for normal 
communication with the target (e.g. 64 or 255 as described 
below) so that they will likely reach the target if normal 
communication could also reach the target.  A scout message 
that fully resembles the first packet of a natural exchange (e.g. 
a TCP SYN) will often establish state information in 
intermediate and end systems.  This is a mixed blessing: It has 
the advantage that artificial scouts (e.g. an unsolicited TCP 
ACK) may be discarded by stateful firewalls or address 
translators, even when more natural traffic would have passed 
to the target.  However, there is the disadvantage of having to 
“tidy up” and release the state information that is created in 
response to an apparently natural scout.  In our measurements 
of 100 popular web sites [8], we found that after sending a 
SYN probe to port 443, 76% of servers responded: 43% with 
an ACK, 30% with a RST and 3% with an ICMP 
administratively prohibited message.  In contrast, only 59% 
responded to an unsolicited ACK (all but one with a RST), and 
only 38% responded to traditional traceroute UDP probes.  
While these figures are biased by 43% of servers which support 
HTTPS, and for which SYN segments are clearly legitimate 
whereas unsolicited ACKs and UDP probes are questionable, 
they also demonstrate that the more natural a probe, the higher 
the chance that it will elicit a response. 

raceroute takes the approach of using TCP SYN segments 
as scouts (so that they are just as likely as real traffic to reach 
the target), and sending a TCP FIN segment after the probing 
to clean up.  If the scout elicits an ICMP unreachable response 
from the target, then the TTL of the reflected datagram is used 
to estimate the length of the path to the destination, otherwise it 
uses the TTL of the response itself to estimate the path length, 
as described below. 

While the inquirer can read the TTL of the response 
(though implementing this requires access to raw sockets since 
the sockets API only allows setting the TTL of outgoing 
packets, not reading the received TTL), it cannot be certain of 
the initial setting of the TTL field of the response when it was 
transmitted by the target.  RFC 1700 states that “The current 
recommended default time to live (TTL) for the Internet 
Protocol (IP) is … 64” although many systems use a TTL of 
255 for sending normal traffic (Microsoft Windows systems) or 
for sending ICMP error messages.  Other values also get used, 
e.g. BSD Unix systems sent new packets with a TTL of 30 (4.3 
BSD) or 15 (4.2 BSD) and systems before the 4.3BSD Tahoe 
release set the TTL of an outgoing ICMP error message to 
equal the TTL of the incoming packet that caused that error, 
i.e. providing “TTL reflecting”.   

By adding the forward path length (determined using 
traceroute) to the TTL of scout responses, we can estimate the 
TTL being used by remote servers.  When testing popular web 
services [8], we found this sum was around 64 for about half of 

the servers, and around 255 for one quarter of the servers, and 
around 128 for the remaining quarter of the servers.  The sums 
were distributed “around” these common values presumably 
because of path asymmetries (§ IV).  Figure 1 shows this 
distribution for the 33 popular servers that responded to both 
traceroute and TCP SYN probes sent to port 443.  Thus, we can 
estimate the path length by measuring the difference between 
the TTL of a scout response and the next higher “magic 
number” (64, 128 or 255). 
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Figure 2.  The sum of the forward path length (measured using traceroute) 
and the TTL of a response from the target is clustered around commonly used 
host TTL settings: 22 around 64 (9 of 65), 5 around 128, 6 around 255.  Thus, 

the forward path length can be accurately estimated from the TTL of a 
response from the target. 

III. MATCHING RESPONSES TO PROBES 

Once the inquirer has an estimate of the path length, it can 
proceed to send probes to each of the multiple hops along that 
path. When an inquiring host receives a response to a tracing 
probe, it must first match the response to the route tracing 
process that generated the probe, since multiple route tracing 
processes may be running on an inquiring host.  Then, that 
route tracing process must match the response to the probe that 
generated the response, so that it can infer how far the probe 
travelled, and to calculate the round-trip delay.  When the 
response is an ICMP Time Exceeded (or Destination 
Unreachable) message, the only information available for this 
matching is the IP header of the probe and the bytes of IP data 
that the ICMP error message returns.  RFC 1122 [9] states that 
error messages must return “at least the first 8 data octets of the 
datagram that triggered the error; more than 8 octets MAY be 
sent” and RFC 1812 [10] states that they “SHOULD contain as 
much of the original datagram as possible without the length of 
the ICMP datagram exceeding 576 bytes.”.  In practice, we 
found that the vast majority of routers that we tested (92% = 
658/719) only returned 8 bytes of IP data in Time Exceeded 
messages. This forces the matching process to use information 
conveyed in the IP header or the first 8 bytes of higher layer 
protocol headers.  We will concentrate on the 8 bytes of higher 
layer protocol headers: IP options could be used but may force 
probes along different paths than normal traffic would 



encounter.  The Fragment Identifier field of the IPv4 header, or 
Flow Identifier field of the IPv6 header, could also be used, 
although that introduces complexity in dealing with different 
network layers.  Finally, the IP length field could be used, but 
doing so could waste bandwidth, and sometimes it is useful to 
be able to vary probe lengths in order to measure link 
bandwidth (as is done by pathchar-like tools [11]). 

ICMP echo requests contain two 16b fields that are well 
suited to such matching: an Identifier field (used to match to 
the appropriate route tracing process) and a Sequence field 
(used to match a response to a probe).  However, many systems 
do not respond to echo requests, either for security reasons or 
because of an excessively literal interpretation of the original 
RFC 792 ICMP specification [12] that “no ICMP messages are 
sent about ICMP messages” (which was referring to the 
sending of ICMP error messages, not ICMP echo responses).  
This is the reason why the original LBL traceroute used UDP 
probes [13] and why the probes for most other variants of 
traceroute use transport protocol headers.  While information in 
the second 32b word of the transport protocol header (i.e. the 
TCP sequence number, the SCTP verification number, or the 
UDP length and checksum) could be used for matching, doing 
so creates complexity in processing different fields for different 
transport protocols.  Thus most traceroute programs use port 
numbers in the first 32b word for the matching process.  In 
particular, the traditional traceroute uses the source port to 
match a response to the appropriate traceroute process, and the 
destination port to match a response to the appropriate probe. 

Traditional traceroute’s use of the port space can lead to 
two types of conflicts.  Considering destination ports first, 
traceroute expects that no process on the target is bound to the 
destination port of a probe, so that the target will generate an 
error message (e.g. ICMP port unreachable) when it receives 
the probe.  However this is only probably true: traceroute uses 
destination port numbers (32768+666 and above) that user 
processes can also bind to, since they are not “well-known” 
ports as defined by the Internet Assigned Numbers Authority.  
Thus it is possible, albeit unlikely, that a user process is bound 
to the port to which traceroute sends a probe, and that process 
will absorb the probe without generating a response. traceroute 
can send multiple probes for a specified hop length, each to a 
different destination port number, and so reduces (but does not 
eliminate) the possibility of all probes that reach the target not 
eliciting a response.  The second form of conflict results from 
traceroute’s use of source port numbers: To allow multiple 
traceroute processes to run concurrently on one host, traceroute 
includes the process ID in probes, and each traceroute process 
only handles responses that arose from probes that match its 
process ID.  Such use of the process ID is appropriate for 
setting the Identifier field of the ICMP header of echo request 
probes, but UDP probes carry this identifier in the source port 
number.  This can lead to a conflict if another process should 
happen to be bound to the port that matches the ID of a 
traceroute process.  This second conflict could be readily 
avoided if traceroute used an ephemeral source port number for 
UDP probes.  The use of the process ID is probably merely an 
artefact of traceroute initially being designed to use ICMP echo 
request probes and later being modified to use UDP probes 
[13].  However unlikely these conflicts may be in practice, they 

do point to the potential to improve traceroute’s use of the port 
space. 

If the only purpose for varying the destination port number 
of UDP probes was to reduce the chance that multiple probes 
are absorbed by processes running on the target host, then the 
distinct destination port numbers would only be needed for 
each probe sent with the same TTL; probes sent with differing 
TTLs could reuse destination port numbers. However, there is 
also a need to match a response with the probe that generated 
that response so traditional traceroute changes the destination 
port number for each probe that it sends, not just each probe 
that it sends with a certain TTL.  Unfortunately this behaviour 
produces a large load on the destination port space: traceroute 
will by default send probes to as many as 90 different 
destination port numbers as it sends three probes for each of 30 
hops.  Furthermore, this load is incurred by potential targets of 
traceroute (who receive no benefit from the traceroute) rather 
than by the inquirer.  Instead, it would be useful to shift the 
load to the inquirer’s source port space, and allow all probes to 
be sent to a common destination port.  raceroute does this by 
requesting ephemeral source port numbers from the operating 
system for each probe that it sends and using a hash table to 
map the source port numbers in responses to information about 
the corresponding probe.  The hash table is necessary because 
the operating system may allocate port numbers from across 
the port space, compared to traditional traceroute that sends 
probe number P to destination port 32768+666+P. 

We propose assigning a well-known port number that no 
process will bind to (by virtue of it being outside the range of 
ports available for processes in user space) for route tracing.  
Probes could be sent to such a destination address with 
certainty that they will not be absorbed by running processes, 
so they would be sure to elicit responses provided such 
responses are permitted by the security policy of the host. 
While this will not prevent existing traceroute implementations 
from sending probes to varied destination ports, the pressures 
of increasing path lengths and increasing port utilisation by 
NAT and the like will encourage use of route tracers that can 
use source ports and so are not restricted to 90 destination port 
numbers starting at 32768+666.  Furthermore, assigning a 
specific port for route tracing activities would allow firewalls 
to explicitly indicate whether or not they permit route tracing 
activities.  A considerate inquirer that discovers that route 
tracing to this port is blocked could then refrain from route 
tracing to other ports. 

By using source ports to match responses to probes, an 
inquirer can trace the route to ports that are used for common 
services, e.g. HTTP or SMTP.  The benefit of such tracing is 
that it traces the path used for normal traffic (rather than a 
traceroute-specific path) so probes and responses will be 
handled by address translators, load balancers and other 
network elements in the same way as normal traffic, and so 
report the behaviour observed by normal traffic.  The risk of 
such tracing is that it may be used in an underhand manner to 
try to circumvent such network elements.  TCP SYN segments 
have also been used for route tracing by the tcptraceroute tool 
[14]. 



In summary, raceroute uses source port numbers to match 
responses to probes, and uses a set of ephemeral source port 
numbers provided by the operating system, allowing multiple 
instances of raceroute to run concurrently on one machine. 

IV. COMPLICATIONS AND COSTS OF PATH LENGTH 

ESTIMATION 

Two factors complicate path length estimation: 
asymmetrical paths and TTL resetting. 

The response to the scout packet suggests the length of the 
path from target to inquirer, but what the route tracing process 
really needs is the length of the path from inquirer to target.  
Because of asymmetrical paths [15] these two path lengths may 
not be identical.  (Note that we are only concerned with the 
path lengths.  The two paths may happen to have the same 
length but be asymmetrical because they pass through different 
sets of routers, however that is of no concern to us.)  If the path 
from target to inquirer is longer than the forward path in the 
opposite direction, then the inquirer will overestimate the 
forward path length and send multiple probes that will reach 
the target, leading to waste of bandwidth.  If this path is shorter 
than the forward path, then the inquirer will need to send 
additional probes after those that probe the estimated path 
length.   

raceroute addresses path asymmetry by “bumping up” the 
path length estimate by one hop if the probe sent to the 
estimated path length does not result in a response from the 
target.  raceroute will then operate in incremental fashion, like 
traditional traceroute, sending another deeper probe whenever 
it does not receive a response from the target for a probe. It 
continues in this fashion until either it reaches a maximum hop 
length (as in traceroute, with the same default of 30 hops) or 
until it fails to receive responses to probes sent to more than a 
certain range of path lengths.  A default range of 3 seems 
effective in avoiding trailing strings of non-responsive probes 
while only rarely terminating the probing when a deeper probe 
would have elicited a response. 

While raceroute does not know how many hops the scout 
traversed to reach the target, it does have information about 
how many hops probes traversed to reach the nodes (router or 
target) that generated responses, since it set the TTL field of 
these probes.  Thus, raceroute can detect path length 
asymmetries by virtue of the TTL of a response suggesting that 
the response traversed a different number of hops than were 
traversed to reach the respondent.  raceroute uses this to 
calibrate the path length estimate, increasing the estimate by 
this difference when a response appears to have traversed 
fewer hops than the probe, suggesting that the response to the 
scout may have traversed fewer hops than will be needed to 
reach the target over the forward path. 

Another source of interference to the path length estimation 
is created by devices that reset the TTL of passing packets.  
Such devices are sometimes deployed at the outskirts of the 
Internet (deploying them at transit points could result in routing 
loops that the TTL field is intended to break) to limit route 
tracing into corporate networks.  Such resetting can cause 
raceroute to underestimate the path length, forcing it to 
incrementally bump up the estimate when it finds that probes to 

the estimated path length do not generate responses from the 
target. 

Another complication can arise from ICMP rate limiting, 
which can be used to protect a network from overload from 
ICMP traffic (e.g. by the W32/Welchia worm) by smoothing 
out bursts of such traffic or discarding excess ICMP traffic.  
Such rate limiting can cause the responses to probes that are 
sent in bursts (as raceroute does) to appear to have experienced 
longer delays than would be observed if the probes had been 
sent out more gradually (as in the traditional traceroute) or for 
no response to be received at all. At present, raceroute does not 
address ICMP rate limiting, other than providing an option for 
controlling the minimum interval between probes. 

There are several costs to basing route tracing on estimated 
path lengths, and it is important that these not raise the overall 
cost of such tracing beyond that of existing tracing 
mechanisms.  First, there is the overhead of sending the scout 
packet, in terms of the delay incurred in waiting for a response 
(or timeout), the bandwidth used by this packet, and the 
potential for the packet to initialise state information in the 
target which a polite inquirer should release (e.g. by sending a 
TCP RST if it receives an ACK to a SYN probe).  Another 
overhead is the potential for excess probes to be sent when the 
inquirer overestimates the forward path length. 

V. ACEROUTE: INVERTED ROUTE TRACING 

Another way in which a route tracer can exploit knowledge 
of an estimated path length is by inverting the direction of 
traditional traceroute: Rather than progressively increasing 
TTL values to reveal the identities of routers that are 
progressively further from the inquirer, the probes can be sent 
in order of decreasing TTL values, since an estimate of the 
maximum TTL needed is already known.  The advantage of 
inverting the path trace is that the process can be terminated 
when it reaches a router that the inquirer already knows, since 
presumably the path from the inquirer to this target through this 
known router will be the same as the path from the inquirer to a 
previous target through this known router. For example, Table 
1 shows measured paths from an inquirer to three web sites.  If 
the path to www.irtf.org is traced before the path to rfc-
editor.org, then the latter trace could terminate once it reaches 
the lowest highlighted router (137.164.25.2).  We call this 
technique “inverted route tracing” to distinguish it from remote 
[16] or reverse [www.reversetraceroute.org] traceroute, in 
which traceroute is invoked on a remote host to trace the route 
from that host to the inquirer. 

It is possible that different packets take different paths from 
an inquirer to reach the same router.  For example, Table 1 
shows that router 198.32.170.43 is on the paths from the 
inquirer to both www.irtf.org and rfc-editor.org, but the paths 
differ in which routers are traversed immediately before this 
router (192.231.212.49 followed by 192.231.212.42 and 
192.231.212.162 for the path to www.irtf.org, but followed by 
only 192.231.212.34 for the path to rfc-editor.org).  This can 
occur because of load balancing. 

Traditional traceroute offers a –f option to allow control of 
the first TTL used.  While this can avoid probing of routers 



near the source, traditional traceroute has no way of knowing 
how many such routers need not be probed.  It is only by 
inverting the route tracing process that this can be determined. 

Paths to multiple targets intersect at routers near the 
inquirer (boldface shows commonality with path to 
www.irtf.org).  Inverting the trace process allows it to 
terminate when the first such router is identified, reducing 
probing of routers near the inquirer. 

Inquirer’s end of path 
149.171.92.2 149.171.92.2 149.171.92.2 
129.94.255.181 129.94.255.181 129.94.255.181 
138.44.1.37 138.44.1.37 138.44.1.37 
202.158.202.1 192.231.212.49 192.231.212.49 
202.158.194.74 192.231.212.42 192.231.212.34 
129.250.10.225 192.231.212.162 198.32.170.43 
129.250.3.84 198.32.170.43 198.32.8.10 
129.250.5.49 198.32.8.10 198.32.8.94 
129.250.2.240 198.32.8.94 137.164.25.2 
129.250.9.182 137.164.25.2 137.164.22.12 
152.63.57.50 137.164.22.20 137.164.23.252 
152.63.1.61 137.164.22.18 128.9.0.7 
152.63.10.61 137.164.22.127 128.9.160.27 
152.63.144.30 137.164.22.110 (rfc-editor.org) 
152.63.40.2 137.164.22.36 
152.63.39.97 137.164.22.30 
157.130.44.142 137.164.23.66 
132.151.6.21 128.32.0.99 
(www.ietf.org) 169.229.0.30 

192.150.187.18  
(www.irtf.org) 

 

Target’s end of path 
 

VI. CONCLUSION 

This paper has shown how an inquirer, which seeks to trace 
the route through a network to a target, can use the TTL of a 
response from the target to estimate the length of the path 
between inquirer and target.  With this knowledge, the inquirer 
can expedite the route tracing process, without the risk of 
sending large numbers of unnecessary probes. For example, 
tracing the 17 or 18 hop route from unsw.edu.au to 
www.ietf.org takes 2.8s using traceroute but only 0.5s using 
raceroute.  This paper assessed the suitability of different types 
of probes, in terms of their ability to reach a target through 
middleboxes such as firewalls and address translators, and 
found that TCP probes addressed to port 443 were the most 
suitable.  It also proposed the establishment of a route tracing 
port in the well-known port range to prevent route tracing 
probes from being absorbed by processes on end systems.  
Finally, the paper outlined how the route tracing process can be 
inverted, to probe routers from the target end of the path to the 

inquirer’s end of the path, and terminating the route tracing 
process when it reaches a router that is familiar to the inquirer, 
thus reducing the number of probes needed. 
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