
Streamlining traceroute by estimating path lengths

Tim Moors
School of Electrical Engineering and Telecommunications

University of New South Wales
Sydney, Australia

t.moors@unsw.edu.au

Abstract— Traditional traceroute determines the path through a
network by sending probe packets with progressively increasing
TTL/hop count values so that routers that are progressively
further from the inquirer send ICMP Time Exceeded messages
and so reveal their identity. This process can be slow (because
traceroute must wait for a timeout or response to one probe
before sending the next) and inefficient (through repeated
probing of routers near the inquirer that lie on the intersection of
paths leading to multiple targets). This paper shows how this
process can be streamlined by the inquirer sending a scout packet
to the (reachable) target before sending route tracing probes.
The inquirer uses the TTL of the response to this scout packet to
estimate the length of the path to the target (with tolerance for
path asymmetry), and can then either expedite the route tracing
process (by sending probes to each of the estimated number of
routers on the path in quick succession) or reduce the number of
probes needed (by inverting the direction of traditional
traceroute, tracing the path from the target towards the inquirer,
and terminating the process when it reaches a router on a known
path from the inquirer).

traceroute, raceroute, aceroute, network diagnostics, TTL

I. INTRODUCTION

Two indicators of the outstanding success of the Internet
over the past decade are the increasing penetration of its use in
the broad community, not just by technologists, and that these
users are becoming increasingly reliant on the Internet as a
communication medium. However, these users face a dilemma:
They have an intense demand for resources offered on the
Internet, but are often frustrated by their inability to access
these resources. For example, recent measurements [1] suggest
that prominent web servers are available to end-users 93% of
the time; a far cry from the ‘five nines’ (99.999%) availability
expected of telephone network nodes [2]. In this context, it can
be useful for end-users to have access to software that can
monitor the characteristics of paths (e.g. route and link delays)
leading to targets of interest, including localising where the
path breaks during network outages, and in collecting baseline
measurements of path characteristics during normal operation.
When such measurements are made routinely as part of normal
operation, and hence run frequently by many users, it is
essential that they be efficient.

One of the most popular tools for tracing the path from an
inquirer towards a target is traceroute. Traditional traceroute
[3] determines the path through a network by sending probe
packets with progressively increasing values of the TTL field
(for IPv4) or hop count field (for IPv6) so that routers that are
progressively further from the inquirer send ICMP Time

Exceeded messages and so reveal their identity. traceroute
progressively increases the TTL because it does not know the
distance to the target before it starts probing, and since paths
average 15 hops in length [4] which is much shorter than the
maximum of 255 hops permitted by the Internet Protocols it
would be inefficient to immediately send probes to all possible
hops. Variants of the traditional traceroute include an AS level
traceroute [5] and tulip [6] which exploits the fact that many
routers use a counter to set the IP Identification field, allowing
end systems to determine which routers on the path cause mis-
sequencing and loss.

Members of the North American Network Operators’
Group (NANOG) have created a variant (known as
“tracesroute”) [ftp://ftp.login.com/pub/software/traceroute] that
allows abortion of the route tracing after a specified number of
hops have failed to respond, and “parallel probing” in a “spray
mode” in which a set of probes is sent before waiting for
feedback. While this paper also proposes allowing multiple
probes to be waiting for responses, it improves on tracesroute
by providing an algorithm to estimate how many probes should
be included in the set.

Traditional traceroute can be slow because it incrementally
learns the path length: It sends a probe a certain distance into
the network and then waits for a timeout or response to this
probe before deciding whether to send the next probe one hop
further into the network. This slowness is particularly
pronounced when traceroute times out waiting for a response,
e.g. because a router did not send a Time Exceeded message or
because this message was lost as it propagated towards the
inquirer. This slowness wastes the time of human users of
traceroute, and can also lead to confused traceroute output
when the path changes during the trace (and the likelihood of
this increases with the trace time): some responses will reflect
one path to the target and other responses will reflect another
path to the target.

To quantify the time that it takes to trace a path, consider a
target that is a distance D hops away from the inquirer, and
assume that each hop contributes equally to the round-trip time
to the target, and that each router responds as soon as it
receives the probe. With traditional traceroute, D probes must
be sent, and each covers an average distance of D/2, making
the time to trace the route of the order of O(D2). This can be
improved by using a binary search for the path length [7],
reducing the time to trace the route to O(Dlog2D). However, if
the route tracing could estimate the number of hops before it
starts probing, then it could send all probes immediately and
the trace would complete as soon as the inquirer receives a

response from the most deeply penetrating probe, taking a time
of the order of O(D). With path lengths averaging around 15
hops for typical paths [4], reducing the trace time from O(D2)
to O(D) would constitute a considerable improvement.

This paper shows how route tracing can be streamlined by
the inquirer sending a scout packet to the (reachable) target
before sending tracing probes. The technique is only
applicable when the target responds to scout packets (the tool
reverts to the traditional incremental learning approach when
there is a timeout waiting for such a response) and so is most
applicable for baseline measurements of paths to targets that
are reachable, rather than for localising faults when the target is
disconnected. The inquirer uses the TTL of the response to this
scout packet to estimate the length of the path to the target, and
can then use this to expedite the route tracing process by
sending probes to each of the estimated number of routers on
the path in quick succession. To reflect the speed and
traceroute heritage of this technique, we name the tool that
implements this technique “raceroute”. Software that
implements the raceroute tool is available online at
http://www.ee.unsw.edu.au/~timm/raceroute .

This paper also shows how prior knowledge of an estimate
of the path length can be used to reduce the number of probes
needed to trace a route when the trace process has memory of
previous trace results. This is done by inverting the direction
of traditional traceroute, tracing the path from the target
towards the inquirer, and terminating the process when it
reaches a router on a known path from the inquirer. To reflect
the fact that this technique probes most routers only once,
despite tracing multiple paths that may share routers, we name
the tool that implements this technique is called “aceroute”.
Figure 1 graphically depicts the different approaches to route
tracing.

Traditional
traceroute

NANOG
traceroute

spray mode

raceroute

aceroute

Inquirer R1 R2 Target

Figure 1. Various route tracing approaches take different durations (vertical
dimension) when sending probes (arrows) from an inquirer, through multiple

routers, to a target.

Because raceroute and aceroute require feedback from the
target in order to work, they are not intended for the most
blatant form of troubleshooting: determination of where
connectivity is broken when the target is unreachable.
However, they are intended for efficient measurement when
the target is reachable: determination of where delays are
occurring, and baseline collection of information about paths

traversed, so that when the target is unreachable, the inquirer
knows which network elements are likely to be unavailable and
so can report the fault and know what to monitor to determine
when service returns.

This paper first examines (§ II) what form scout packets
should take in order to elicit a response from the target with
high probability and assesses the accuracy of path length
estimates made based on the TTL of such a response. It then
examines (§ III) techniques for matching responses to probes
when the inquirer sends large numbers of probes towards a
target in rapid succession. This section shows the benefits of
using source port numbers for such matching, and calls for a
route tracing port in the well-known port range to prevent route
tracing probes from being absorbed by processes on end
systems. Section IV addresses some of the complications in
tracing routes when using TTL fields of responses to estimate
path lengths (e.g. arising from path asymmetry and TTL
resetting) and the costs of basing probing on such estimates.
Finally, § V describes the idea of inverting the traceroute
process, tracing the path from routers that are furthest from the
inquirer to those that are closest, in order to reduce the number
of probes needed.

II. SCOUT PACKETS

The purpose of scout packets is to elicit from the target a
response from which the length of the path between inquirer
and target can be estimated. The response can take three
forms: It may be an ICMP error message, or a higher layer
response to either a packet that the inquirer is naturally sending
to the target (e.g. an ACK to a TCP SYN sent to a port that
provides a service that the inquirer needs to use) or an artificial
packet that exists only for the purpose of eliciting such a
response.

ICMP responses have the advantage of explicitly including
the TTL of the scout packet when it arrived at the target, and
hence accurately indicate the length of the path from inquirer to
target. However, it can often be difficult to elicit an ICMP
response from the target: ICMP messages may be blocked by
firewalls, and to generate an ICMP port unreachable message
requires a scout that is destined to an unused port, meaning that
the scout introduces the overhead of an artificial packet and
this artificial packet is less likely to be permitted to traverse
firewalls on the path to the target. To maximise the chance of
scouts penetrating firewalls, raceroute sends them to
destination ports that identify services that external clients may
have a legitimate need to access, e.g. ports 25 (SMTP), 53
(DNS), 80 (HTTP, although that can be cached as described
below) and 443 (HTTP over TLS).

When the inquirer is already receiving responses from the
target (e.g. for the intended application of monitoring
performance of paths leading to information services used by
an end-user) then those responses may be able to provide the
required information without the need to send a separate scout
packet. However, the most popular information service today
is web access, and while transparent web caches can improve
the performance of this service, they can also intercept packets
as they propagate from origin servers to clients so that they can
be cached, often by inserting themselves in the path from

server to client, and so resetting the TTL when they forward
the packet to the client, and so hiding the effect on the TTL of
routers on the server side of the cache.

Since we are primarily interested in tracing the path to web
servers, and because many domains have separate servers for
SMTP and DNS traffic, we are limited to ports 80 and 443,
with port 443 being preferred in order to work around caches.
Scout packets should be sent with the TTL used for normal
communication with the target (e.g. 64 or 255 as described
below) so that they will likely reach the target if normal
communication could also reach the target. A scout message
that fully resembles the first packet of a natural exchange (e.g.
a TCP SYN) will often establish state information in
intermediate and end systems. This is a mixed blessing: It has
the advantage that artificial scouts (e.g. an unsolicited TCP
ACK) may be discarded by stateful firewalls or address
translators, even when more natural traffic would have passed
to the target. However, there is the disadvantage of having to
“tidy up” and release the state information that is created in
response to an apparently natural scout. In our measurements
of 100 popular web sites [8], we found that after sending a
SYN probe to port 443, 76% of servers responded: 43% with
an ACK, 30% with a RST and 3% with an ICMP
administratively prohibited message. In contrast, only 59%
responded to an unsolicited ACK (all but one with a RST), and
only 38% responded to traditional traceroute UDP probes.
While these figures are biased by 43% of servers which support
HTTPS, and for which SYN segments are clearly legitimate
whereas unsolicited ACKs and UDP probes are questionable,
they also demonstrate that the more natural a probe, the higher
the chance that it will elicit a response.

raceroute takes the approach of using TCP SYN segments
as scouts (so that they are just as likely as real traffic to reach
the target), and sending a TCP FIN segment after the probing
to clean up. If the scout elicits an ICMP unreachable response
from the target, then the TTL of the reflected datagram is used
to estimate the length of the path to the destination, otherwise it
uses the TTL of the response itself to estimate the path length,
as described below.

While the inquirer can read the TTL of the response
(though implementing this requires access to raw sockets since
the sockets API only allows setting the TTL of outgoing
packets, not reading the received TTL), it cannot be certain of
the initial setting of the TTL field of the response when it was
transmitted by the target. RFC 1700 states that “The current
recommended default time to live (TTL) for the Internet
Protocol (IP) is … 64” although many systems use a TTL of
255 for sending normal traffic (Microsoft Windows systems) or
for sending ICMP error messages. Other values also get used,
e.g. BSD Unix systems sent new packets with a TTL of 30 (4.3
BSD) or 15 (4.2 BSD) and systems before the 4.3BSD Tahoe
release set the TTL of an outgoing ICMP error message to
equal the TTL of the incoming packet that caused that error,
i.e. providing “TTL reflecting”.

By adding the forward path length (determined using
traceroute) to the TTL of scout responses, we can estimate the
TTL being used by remote servers. When testing popular web
services [8], we found this sum was around 64 for about half of

the servers, and around 255 for one quarter of the servers, and
around 128 for the remaining quarter of the servers. The sums
were distributed “around” these common values presumably
because of path asymmetries (§ IV). Figure 1 shows this
distribution for the 33 popular servers that responded to both
traceroute and TCP SYN probes sent to port 443. Thus, we can
estimate the path length by measuring the difference between
the TTL of a scout response and the next higher “magic
number” (64, 128 or 255).

0

2

4

6

8

10

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

Forward hops (from traceroute) +
TTL of response

N
um

be
r

o
f

o
cc

ur
re

n
ce

s

Figure 2. The sum of the forward path length (measured using traceroute)
and the TTL of a response from the target is clustered around commonly used
host TTL settings: 22 around 64 (9 of 65), 5 around 128, 6 around 255. Thus,

the forward path length can be accurately estimated from the TTL of a
response from the target.

III. MATCHING RESPONSES TO PROBES

Once the inquirer has an estimate of the path length, it can
proceed to send probes to each of the multiple hops along that
path. When an inquiring host receives a response to a tracing
probe, it must first match the response to the route tracing
process that generated the probe, since multiple route tracing
processes may be running on an inquiring host. Then, that
route tracing process must match the response to the probe that
generated the response, so that it can infer how far the probe
travelled, and to calculate the round-trip delay. When the
response is an ICMP Time Exceeded (or Destination
Unreachable) message, the only information available for this
matching is the IP header of the probe and the bytes of IP data
that the ICMP error message returns. RFC 1122 [9] states that
error messages must return “at least the first 8 data octets of the
datagram that triggered the error; more than 8 octets MAY be
sent” and RFC 1812 [10] states that they “SHOULD contain as
much of the original datagram as possible without the length of
the ICMP datagram exceeding 576 bytes.”. In practice, we
found that the vast majority of routers that we tested (92% =
658/719) only returned 8 bytes of IP data in Time Exceeded
messages. This forces the matching process to use information
conveyed in the IP header or the first 8 bytes of higher layer
protocol headers. We will concentrate on the 8 bytes of higher
layer protocol headers: IP options could be used but may force
probes along different paths than normal traffic would

encounter. The Fragment Identifier field of the IPv4 header, or
Flow Identifier field of the IPv6 header, could also be used,
although that introduces complexity in dealing with different
network layers. Finally, the IP length field could be used, but
doing so could waste bandwidth, and sometimes it is useful to
be able to vary probe lengths in order to measure link
bandwidth (as is done by pathchar-like tools [11]).

ICMP echo requests contain two 16b fields that are well
suited to such matching: an Identifier field (used to match to
the appropriate route tracing process) and a Sequence field
(used to match a response to a probe). However, many systems
do not respond to echo requests, either for security reasons or
because of an excessively literal interpretation of the original
RFC 792 ICMP specification [12] that “no ICMP messages are
sent about ICMP messages” (which was referring to the
sending of ICMP error messages, not ICMP echo responses).
This is the reason why the original LBL traceroute used UDP
probes [13] and why the probes for most other variants of
traceroute use transport protocol headers. While information in
the second 32b word of the transport protocol header (i.e. the
TCP sequence number, the SCTP verification number, or the
UDP length and checksum) could be used for matching, doing
so creates complexity in processing different fields for different
transport protocols. Thus most traceroute programs use port
numbers in the first 32b word for the matching process. In
particular, the traditional traceroute uses the source port to
match a response to the appropriate traceroute process, and the
destination port to match a response to the appropriate probe.

Traditional traceroute’s use of the port space can lead to
two types of conflicts. Considering destination ports first,
traceroute expects that no process on the target is bound to the
destination port of a probe, so that the target will generate an
error message (e.g. ICMP port unreachable) when it receives
the probe. However this is only probably true: traceroute uses
destination port numbers (32768+666 and above) that user
processes can also bind to, since they are not “well-known”
ports as defined by the Internet Assigned Numbers Authority.
Thus it is possible, albeit unlikely, that a user process is bound
to the port to which traceroute sends a probe, and that process
will absorb the probe without generating a response. traceroute
can send multiple probes for a specified hop length, each to a
different destination port number, and so reduces (but does not
eliminate) the possibility of all probes that reach the target not
eliciting a response. The second form of conflict results from
traceroute’s use of source port numbers: To allow multiple
traceroute processes to run concurrently on one host, traceroute
includes the process ID in probes, and each traceroute process
only handles responses that arose from probes that match its
process ID. Such use of the process ID is appropriate for
setting the Identifier field of the ICMP header of echo request
probes, but UDP probes carry this identifier in the source port
number. This can lead to a conflict if another process should
happen to be bound to the port that matches the ID of a
traceroute process. This second conflict could be readily
avoided if traceroute used an ephemeral source port number for
UDP probes. The use of the process ID is probably merely an
artefact of traceroute initially being designed to use ICMP echo
request probes and later being modified to use UDP probes
[13]. However unlikely these conflicts may be in practice, they

do point to the potential to improve traceroute’s use of the port
space.

If the only purpose for varying the destination port number
of UDP probes was to reduce the chance that multiple probes
are absorbed by processes running on the target host, then the
distinct destination port numbers would only be needed for
each probe sent with the same TTL; probes sent with differing
TTLs could reuse destination port numbers. However, there is
also a need to match a response with the probe that generated
that response so traditional traceroute changes the destination
port number for each probe that it sends, not just each probe
that it sends with a certain TTL. Unfortunately this behaviour
produces a large load on the destination port space: traceroute
will by default send probes to as many as 90 different
destination port numbers as it sends three probes for each of 30
hops. Furthermore, this load is incurred by potential targets of
traceroute (who receive no benefit from the traceroute) rather
than by the inquirer. Instead, it would be useful to shift the
load to the inquirer’s source port space, and allow all probes to
be sent to a common destination port. raceroute does this by
requesting ephemeral source port numbers from the operating
system for each probe that it sends and using a hash table to
map the source port numbers in responses to information about
the corresponding probe. The hash table is necessary because
the operating system may allocate port numbers from across
the port space, compared to traditional traceroute that sends
probe number P to destination port 32768+666+P.

We propose assigning a well-known port number that no
process will bind to (by virtue of it being outside the range of
ports available for processes in user space) for route tracing.
Probes could be sent to such a destination address with
certainty that they will not be absorbed by running processes,
so they would be sure to elicit responses provided such
responses are permitted by the security policy of the host.
While this will not prevent existing traceroute implementations
from sending probes to varied destination ports, the pressures
of increasing path lengths and increasing port utilisation by
NAT and the like will encourage use of route tracers that can
use source ports and so are not restricted to 90 destination port
numbers starting at 32768+666. Furthermore, assigning a
specific port for route tracing activities would allow firewalls
to explicitly indicate whether or not they permit route tracing
activities. A considerate inquirer that discovers that route
tracing to this port is blocked could then refrain from route
tracing to other ports.

By using source ports to match responses to probes, an
inquirer can trace the route to ports that are used for common
services, e.g. HTTP or SMTP. The benefit of such tracing is
that it traces the path used for normal traffic (rather than a
traceroute-specific path) so probes and responses will be
handled by address translators, load balancers and other
network elements in the same way as normal traffic, and so
report the behaviour observed by normal traffic. The risk of
such tracing is that it may be used in an underhand manner to
try to circumvent such network elements. TCP SYN segments
have also been used for route tracing by the tcptraceroute tool
[14].

In summary, raceroute uses source port numbers to match
responses to probes, and uses a set of ephemeral source port
numbers provided by the operating system, allowing multiple
instances of raceroute to run concurrently on one machine.

IV. COMPLICATIONS AND COSTS OF PATH LENGTH

ESTIMATION

Two factors complicate path length estimation:
asymmetrical paths and TTL resetting.

The response to the scout packet suggests the length of the
path from target to inquirer, but what the route tracing process
really needs is the length of the path from inquirer to target.
Because of asymmetrical paths [15] these two path lengths may
not be identical. (Note that we are only concerned with the
path lengths. The two paths may happen to have the same
length but be asymmetrical because they pass through different
sets of routers, however that is of no concern to us.) If the path
from target to inquirer is longer than the forward path in the
opposite direction, then the inquirer will overestimate the
forward path length and send multiple probes that will reach
the target, leading to waste of bandwidth. If this path is shorter
than the forward path, then the inquirer will need to send
additional probes after those that probe the estimated path
length.

raceroute addresses path asymmetry by “bumping up” the
path length estimate by one hop if the probe sent to the
estimated path length does not result in a response from the
target. raceroute will then operate in incremental fashion, like
traditional traceroute, sending another deeper probe whenever
it does not receive a response from the target for a probe. It
continues in this fashion until either it reaches a maximum hop
length (as in traceroute, with the same default of 30 hops) or
until it fails to receive responses to probes sent to more than a
certain range of path lengths. A default range of 3 seems
effective in avoiding trailing strings of non-responsive probes
while only rarely terminating the probing when a deeper probe
would have elicited a response.

While raceroute does not know how many hops the scout
traversed to reach the target, it does have information about
how many hops probes traversed to reach the nodes (router or
target) that generated responses, since it set the TTL field of
these probes. Thus, raceroute can detect path length
asymmetries by virtue of the TTL of a response suggesting that
the response traversed a different number of hops than were
traversed to reach the respondent. raceroute uses this to
calibrate the path length estimate, increasing the estimate by
this difference when a response appears to have traversed
fewer hops than the probe, suggesting that the response to the
scout may have traversed fewer hops than will be needed to
reach the target over the forward path.

Another source of interference to the path length estimation
is created by devices that reset the TTL of passing packets.
Such devices are sometimes deployed at the outskirts of the
Internet (deploying them at transit points could result in routing
loops that the TTL field is intended to break) to limit route
tracing into corporate networks. Such resetting can cause
raceroute to underestimate the path length, forcing it to
incrementally bump up the estimate when it finds that probes to

the estimated path length do not generate responses from the
target.

Another complication can arise from ICMP rate limiting,
which can be used to protect a network from overload from
ICMP traffic (e.g. by the W32/Welchia worm) by smoothing
out bursts of such traffic or discarding excess ICMP traffic.
Such rate limiting can cause the responses to probes that are
sent in bursts (as raceroute does) to appear to have experienced
longer delays than would be observed if the probes had been
sent out more gradually (as in the traditional traceroute) or for
no response to be received at all. At present, raceroute does not
address ICMP rate limiting, other than providing an option for
controlling the minimum interval between probes.

There are several costs to basing route tracing on estimated
path lengths, and it is important that these not raise the overall
cost of such tracing beyond that of existing tracing
mechanisms. First, there is the overhead of sending the scout
packet, in terms of the delay incurred in waiting for a response
(or timeout), the bandwidth used by this packet, and the
potential for the packet to initialise state information in the
target which a polite inquirer should release (e.g. by sending a
TCP RST if it receives an ACK to a SYN probe). Another
overhead is the potential for excess probes to be sent when the
inquirer overestimates the forward path length.

V. ACEROUTE: INVERTED ROUTE TRACING

Another way in which a route tracer can exploit knowledge
of an estimated path length is by inverting the direction of
traditional traceroute: Rather than progressively increasing
TTL values to reveal the identities of routers that are
progressively further from the inquirer, the probes can be sent
in order of decreasing TTL values, since an estimate of the
maximum TTL needed is already known. The advantage of
inverting the path trace is that the process can be terminated
when it reaches a router that the inquirer already knows, since
presumably the path from the inquirer to this target through this
known router will be the same as the path from the inquirer to a
previous target through this known router. For example, Table
1 shows measured paths from an inquirer to three web sites. If
the path to www.irtf.org is traced before the path to rfc-
editor.org, then the latter trace could terminate once it reaches
the lowest highlighted router (137.164.25.2). We call this
technique “inverted route tracing” to distinguish it from remote
[16] or reverse [www.reversetraceroute.org] traceroute, in
which traceroute is invoked on a remote host to trace the route
from that host to the inquirer.

It is possible that different packets take different paths from
an inquirer to reach the same router. For example, Table 1
shows that router 198.32.170.43 is on the paths from the
inquirer to both www.irtf.org and rfc-editor.org, but the paths
differ in which routers are traversed immediately before this
router (192.231.212.49 followed by 192.231.212.42 and
192.231.212.162 for the path to www.irtf.org, but followed by
only 192.231.212.34 for the path to rfc-editor.org). This can
occur because of load balancing.

Traditional traceroute offers a –f option to allow control of
the first TTL used. While this can avoid probing of routers

near the source, traditional traceroute has no way of knowing
how many such routers need not be probed. It is only by
inverting the route tracing process that this can be determined.

Paths to multiple targets intersect at routers near the
inquirer (boldface shows commonality with path to
www.irtf.org). Inverting the trace process allows it to
terminate when the first such router is identified, reducing
probing of routers near the inquirer.

Inquirer’s end of path
149.171.92.2 149.171.92.2 149.171.92.2
129.94.255.181 129.94.255.181 129.94.255.181
138.44.1.37 138.44.1.37 138.44.1.37
202.158.202.1 192.231.212.49 192.231.212.49
202.158.194.74 192.231.212.42 192.231.212.34
129.250.10.225 192.231.212.162 198.32.170.43
129.250.3.84 198.32.170.43 198.32.8.10
129.250.5.49 198.32.8.10 198.32.8.94
129.250.2.240 198.32.8.94 137.164.25.2
129.250.9.182 137.164.25.2 137.164.22.12
152.63.57.50 137.164.22.20 137.164.23.252
152.63.1.61 137.164.22.18 128.9.0.7
152.63.10.61 137.164.22.127 128.9.160.27
152.63.144.30 137.164.22.110 (rfc-editor.org)
152.63.40.2 137.164.22.36
152.63.39.97 137.164.22.30
157.130.44.142 137.164.23.66
132.151.6.21 128.32.0.99
(www.ietf.org) 169.229.0.30

192.150.187.18
(www.irtf.org)

Target’s end of path

VI. CONCLUSION

This paper has shown how an inquirer, which seeks to trace
the route through a network to a target, can use the TTL of a
response from the target to estimate the length of the path
between inquirer and target. With this knowledge, the inquirer
can expedite the route tracing process, without the risk of
sending large numbers of unnecessary probes. For example,
tracing the 17 or 18 hop route from unsw.edu.au to
www.ietf.org takes 2.8s using traceroute but only 0.5s using
raceroute. This paper assessed the suitability of different types
of probes, in terms of their ability to reach a target through
middleboxes such as firewalls and address translators, and
found that TCP probes addressed to port 443 were the most
suitable. It also proposed the establishment of a route tracing
port in the well-known port range to prevent route tracing
probes from being absorbed by processes on end systems.
Finally, the paper outlined how the route tracing process can be
inverted, to probe routers from the target end of the path to the

inquirer’s end of the path, and terminating the route tracing
process when it reaches a router that is familiar to the inquirer,
thus reducing the number of probes needed.

ACKNOWLEDGEMENTS

Thanks to Matthew Luckie for suggesting the use of the
TTL in ICMP responses to scout packets.

REFERENCES

[1] M. Merzbacher and D. Patterson: 'Measuring end-user
availability on the Web: practical experience', Proc. Int'l Conf.
on Dependable Systems and Networks, pp. 473-7, Jun. 2002

[2] H. Malec: 'Communications reliability: a historical perspective',
IEEE Trans. Reliability 47(3):333-45, Sep. 1998

[3] V. Jacobson: '4BSD routing diagnostic tool available for ftp',
1988, email sent to the ietf@venera.isi.edu and end2end-
interest@venera.isi.edu mailing lists

[4] F. Begtaševic and P. V. Mieghem: 'Measurements of the
Hopcount in Internet', Proc. Passive and Active Measurements
Workshop, Apr. 2001

[5] Z. Mao, J. Rexford, J. Wang and R. Katz: 'Towards an accurate
AS-level traceroute tool', Proc. SIGCOMM, pp. 365-78, Aug.
2003

[6] R. Mahajan, N. Spring, D. Wetherall and T. Anderson: 'User-
level Internet path diagnosis', Proc. 19th ACM Symp. on
Operating Systems Principles, pp. 106-19, Oct. 2003

[7] O. Marce: 'Dichotomy-based method of tracing a route between
two nodes of a data network', US Patent application number
20020131367, Sep. 12 2002 2002

[8] 'Top 101 Most Incredibly Useful Sites', PC Magazine Oct. 14
2003, http://www.pcmag.com/article2/0,1759,1335911,00.asp

[9] R. Braden: 'Requirements for Internet hosts - communication
layers', IETF RFC 1122, 1989

[10] F. Baker: 'Requirements for IP Version 4 Routers', IETF RFC
1812, Jun. 1995

[11] A. B. Downey: 'Using pathchar to estimate Internet link
characteristics', Proc. SIGCOMM, pp. 241-50, 1999

[12] J. Postel: 'Internet Control Message Protocol', IETF RFC 792,
Sep. 1981

[13] V. Jacobson: 'Re: traceroute history: why UDP?' 1999, posting
to the comp.protocols.tcp-ip newsgroup

[14] M. Toren: 'tcptraceroute',
http://michael.toren.net/code/tcptraceroute/ 2004

[15] V. Paxson: 'End-to-end routing behavior in the Internet', Proc.
ACM SIGCOMM, pp. 25-38, 1996

[16] K. White: 'Definitions of Managed Objects for Remote Ping,
Traceroute, and Lookup Operations', IETF RFC 2925, Sep. 2000

