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The University of Florida Sparse Matrix Collection is a large, widely available, and actively grow-
ing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of do-
mains, include those arising from problems with underlying 2D or 3D geometry (such as structural
engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor de-
vices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and
other discretizations) and those that typically do not have such geometry (such as optimization,
circuit simulation, economic and financial modeling, theoretical and quantum chemistry, chemical
process simulation, mathematics and statistics, power networks, and other networks and graphs).
The collection is widely used by the sparse matrix algorithms community for the development and
performance evaluation of sparse matrix algorithms. The collection includes software for accessing
and managing the collection, from MATLAB, Fortran, and C, as well as online search capabil-
ity. Graph visualization of the matrices is provided, and a new multilevel coarsening scheme is
proposed to facilitate this task.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis|: Numerical Linear Algebra—
linear systems (direct methods), sparse and very large systems; G.4 [Mathematics of Com-
puting]: Mathematical Software—algorithm analysis, efficiency; G.2 [Discrete Mathematics]:
Graph Theory

General Terms: Algorithms, Experimentation, Performance
Additional Key Words and Phrases: sparse matrices, performance evaluation, graph drawing,
multilevel algorithms

1. INTRODUCTION

Although James Wilkinson’s foundational work in numerical analysis touched only
lightly upon sparse matrix computations, his definition of a sparse matrix is widely
used ([Gilbert et al. 1992], for example). Wilkinson defined a matrix as “sparse” if
it has enough zeros that it pays to take advantage of them. He actually stated his
definition in the negation:
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The matriz may be sparse, either with the non-zero elements concen-
trated on a narrow band centered on the diagonal or alternatively they
may be distributed in a less systematic manner. We shall refer to a
matriz as dense if the percentage of zero elements or its distribution
s such as to make it uneconomic to take advantage of their presence.
[Wilkinson 1971]

In other words, if you can save time or memory (usually both) by exploiting
the zeros, then the matrix is sparse. An interesting aspect of this definition is
that it is dependent not only on the matrix, but on the algorithm used on the
matrix. For example, a matrix may be “sparse” for an iterative method for solving
linear systems or for a graph theoretic algorithm, but not for a sparse factorization
method.

This article describes the University of Florida Sparse Matrix Collection (here-
after referred to as the UF Collection), which contains sparse matrices arising in
a wide range of applications. Section 2 gives the motivation for collecting sparse
matrices from real applications and making them widely available. Section 3 de-
scribes the current state of the collection and the breadth of problems the matrices
represent. Section 4 describes the algorithm used, and new techniques developed,
for visualizing the matrices. Section 5 describes the three data formats used for
storing the matrices, and the kinds of auxiliary information available for each ma-
trix. Section 6 describes the four methods for searching and downloading matrices
of interest: a MATLAB interface (UFget), a Java interface (UFgui), the matrix
web pages (via a standard browser and a web-based search tool), and Amazon Web
Services™. Examples of how the UF Collection can be used for performance eval-
uation are given in Section 7. The future of the UF Collection depends critically
upon the submission of new matrices, as discussed in Section 8. Finally, Section 9
summarizes the contributions of the UF Collection and its associated software.

In this paper, a graph or mesh is said to have 2D or 3D geometry if its vertices
have a position on an xy or xyz plane that naturally arises from the problem being
solved. A sparse matrix is said to have 2D or 3D geometry if its nonzero pattern
is the adjacency matrix of such a graph. The notation |A| refers to the number of
nonzeros in a matrix.

2. MOTIVATION

The role of sparse matrices from real applications in the development, testing,
and performance evaluation of sparse matrix algorithms has long been recognized.
The first established collection was started by Duff and Reid (1970 to 1979, [Duff
and Reid 1979]), and then compiled into the Harwell-Boeing collection by Duff,
Grimes, and Lewis [Duff et al. 1989]. This collection provided the starting point of
University of Florida Sparse Matrix Collection. Since the start of our collection in
1992, additional matrices have been added over the years, and other collections have
been made, many of which have also been incorporated into the UF Collection (such
as [Bai et al. 1996; 2008; Batagelj and Mrvar 2008; Boisvert et al. 2008; Boisvert
et al. 1997; Dumas 2008; Gay 2008; Gould et al. 2008; Koster 2008; Mészaros 2008;
Mittelmann 2008; Resende et al. 1995; Rudnyi 2008; Rudnyi et al. 2006; Saad 2008;
Schenk 2008]).
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The Matrix Market [Boisvert et al. 1997] is the most similar collection to the UF
Collection. Both collections include a search tool, and both categorize the matrices
by application domain and problem source. Both provide matrices in similar file
formats. Both provide a web page for each matrix, with basic statistics and figures.
They differ in size, with the UF Collection containing much larger matrices and
4.5 times as many matrices. The latest matrix added to the Matrix Market was in
2000, whereas UF collection is constantly being updated with new matrices. The
largest matrix in the Matrix Market has dimension 90,449 with 2.5 million nonzeros,
whereas the largest matrix in the UF Collection has a dimension of 28 million with
760 million nonzeros. Nearly every matrix in the Matrix Market is also included
in the UF Collection. However, the Matrix Market does include matrix generators;
the UF Collection has no matrix generators.

Nearly all research articles that include a section on the performance analysis
of a sparse matrix algorithm include results on matrices from real applications
or parametrized matrices that mimic those that could arise in practice. Since
maintaining a large collection of matrices from real applications is not trivial, an
alternative is first considered, namely, parametrized and random matrix generators.

2.1 Parameterized and random matrices

Randomized or repeatable parametrized sequences of matrices can be easily con-
structed via simple matrix generators. Examples are listed below, as a comparison
and contrast with the UF Collection, which does not include any matrix generators.

(1) Simple discretizations of the Laplace operator on square 2D and 3D meshes.
(2) The L-shaped meshes of [George and Liu 1981].

(3) Least-squares problems from square 2D finite-element meshes [George et al.
1983].

(4) The LAPACK test matrix generators [Anderson et al. 1999], which can generate
banded matrices and sparse matrices with random nonzero pattern. These also
appear in the Matrix Market.

(5) The Non-Hermitian Eigenvalue Problem (NEP) matrix generators [Bai et al.
1996; 2008]. These include regular 2D meshes and random patterns; additional
matrices are made available only as operators (y = Ax, where A is not explicitly
represented).

(6) Zlatev’s matrix generators, which create a sparse Toeplitz structure (where
selected diagonals are all nonzero) [Zlatev 1991].

(7) Higham’s Matrix Computational Toolbox [Higham 2002], part of which appears
as the gallery function in MATLAB. The gallery contains three functions
that generate parametrized sparse matrices from regular 2D meshes (neumann,
poisson, and wathen) and two that generate banded matrices (toeppen and
tridiag). No randomization is used, except in the values (but not pattern)
of the wathen matrices. Many of these matrix generators also appear in the
Matrix Market.

(8) Matrices with purely random nonzero patterns [Erdés and Rényi 1959; Gilbert
1959]. They can be generated by sprand, sprand, and sprandsym in MATLAB
[Gilbert et al. 1992].
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(9) The YM11 subroutine in HSL can generate random sparse matrices, with op-
tions for ensuring structural nonsingularity and bandedness (a matrix is struc-
turally nonsingular if there exists a permutation so that the matrix has a zero-
free diagonal) [Duff 2001].

(10) In between the purely-random and purely-parametrized classes of matrices
are partially randomized matrices with specific structure, as exemplified by the
CONTEST toolbox [Taylor and Higham 2009]. They provide a set of graph
generators, some of which use an underlying 2D or 3D geometry and some
that do not. For example, they include an implementation of the small-world
graphs of [Kleinberg 2000], which are 2D meshes with additional randomized
edges to distant vertices in the plane. Network generators in CONTEST that
do not have geometry include the scale-free graph models of [Barabdsi and
Albert 1999].

The prime advantage of random and parametrized matrices is that they are very
easy to generate in any size desired. Matrices from real applications are very difficult
to generate and it is hard to vary them in size.

Another key advantage of random and parametrized matrices is that asymptotic
results can sometimes be derived. For example, the nested dissection ordering
applied to a 2D s-by-s mesh leads to an asymptotically optimal ordering for sparse
Cholesky factorization, with 31(nlogy n)/8 4+ O(n) nonzeros in the Cholesky factor
L, and requiring 829(n3/?)/84 4+ O(nlogn) floating point operations to compute,
where n = s? is the dimension of the matrix [George and Liu 1981].

Purely random matrices may be useful for testing some sparse matrix applica-
tions. For example, they can be useful for testing the convergence of iterative
methods, assuming the generator has some control over the eigenvalue spectra (as
is the case for sprandsym, for example). However, under Wilkinson’s definition they
are not truly sparse when factorized by direct methods. With modest assumptions,
purely random n-by-n matrices with O(n) nonzero entries require O(n?) time and
O(n?) memory to factorize, because of catastrophic fill-in [Duff 1974]. Catastrophic
fill-in very rarely occurs in matrices arising in real applications, and even when it
does it is an indication that direct factorization methods are not applicable to that
problem. Thus, performance obtained on purely random matrices will not indicate
how well a sparse matrix factorization method will work on matrices from real ap-
plications. Purely random networks also do not accurately model the characteristics
of real networks [Watts and Strogatz 1998].

In between the two extremes of highly structured matrices (banded, or square
2D and 3D meshes, for example) and purely randomized matrices is another class
of matrix generators that can create matrices with some regular structure and a
carefully selected random structure. The small-world graphs from the CONTEST
toolbox are one such example. These are constructed to capture essential properties
of large networks, such as the small-world property, scale-free degree distribution,
motifs, and graphlet frequency [Taylor and Higham 2009]. These models are very
useful for network algorithms, but they have not yet been shown to mimic the per-
formance of sparse matrix factorization methods on matrices from real applications.
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Fig. 1. Sparse matrix pattern of a RAH-66 Comanche helicopter

2.2 Sparse matrices from real applications

While useful, random and parametrized matrices have their limitations. This mo-
tivates the development of the UF Collection, which focuses on matrices from real
applications!.

One of the matrices in the UF Collection is a complete representation of a Boe-
ing/Sikorsky RAH-66 Comanche helicopter, with 3D geometry (obtained from Alex
Pothen). Figure 1 shows the sparsity pattern of the matrix. Nested dissection is
still useful for this problem, but asymptotic results cannot be derived for a complex
structure such as this one. A simple square 3D mesh would not be a good approxi-
mation to this graph, since it would not capture the properties of the long helicopter
rotors, or the topology of the hole where the rear rotor is located. This matrix is
one of the few in the collection where the 3D coordinates of the vertices are given; a
picture of the graph drawing when these coordinates are used is shown in Figure 2,
on the left. For comparison, a force-directed graph drawing [Hu 2005], which recre-
ates these coordinates based only on the connectivity of the graph, is shown on the
right. The method for creating this figure is discussed in Section 4. The structure
is warped, with the tail rotor twisted out of its housing (to the right) and its five
main rotors shrunken (on the top), but it is still clear that the graph represents
some kind of 3D problem. Edge colors in the force-directed graphs represent the
distance between two vertices.

Figure 3 is the nonzero pattern of matrix arising from circuit simulation (left) and
its force-directed graph drawing (right). The graphs of the Comanche helicopter and
this electronic circuit indicate that one is a 3D problem and the other is a network
with no 2D or 3D geometry. This difference is not clear by merely comparing the
nonzero patterns of their matrices.

Parameterized matrices can capture many key properties of matrices from real
applications, such as the regularity of a 3D mesh, or the small-world properties of a
network, but they cannot capture the rich and complex structure of matrices such

1The UF Collection does include a handful of random matrices, which remain in the collection
for historical reasons.
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Fig. 2. Graph of a RAH-66 Comanche helicopter, using given 3D coordinates (left) and its force-
directed graph drawing (right)

Fig. 3. Sparse matrix pattern of an electronic circuit from Steve Hamm, Motorola (left) and its
force-directed graph (right)

as those presented above.

2.3 Collecting the matrices

The ideal matrix collection would be informally representative of matrices that arise
in practice. It should cast a broad net so as to capture matrices from every applica-
tion domain that relies on sparse matrix methods. For example, matrices arising in
circuit simulation (and other network-related domains) differ greatly from matrices
arising from the discretization of 2D and 3D physical domains; this can be clearly
seen in the preceding figures. Computational fluid dynamics matrices differ from
structural engineering matrices, and both are vastly different from matrices arising
in linear programming or financial portfolio optimization. The collection should be
kept up to date, since matrices of interest grow in size each year as computer mem-
ories get larger. New application domains also appear, such as eigenvalue problems
arising in web connectivity matrices [Kamvar 2008; Kamvar et al. 2004; Page et al.
1998], which have existed only since the mid 1990’s.
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Sparse matrix algorithm developers use the matrices in the UF Collection to
develop their methods, since theoretical asymptotic time/memory complexity anal-
ysis only goes so far. If there are no matrices available to developers from a given
application domain, it is quite possible that when their methods are used in that
domain, the performance results will be disappointing. This provides a strong mo-
tivation for computational scientists to submit their matrices to a widely available
collection such as this one, so that gaps can be avoided. Thus, new application
areas are always being added to the collection.

Our strategy for adding matrices to the collection is simple, although admittedly
ad hoc. The first author maintains a collection of codes for the direct solution
of sparse linear systems. FEnd-users of this software are uniformly requested to
submit matrices to the collection. Additional matrices are requested when they are
found cited in articles and conference presentations, which includes a wider range
of matrices (such as graphs arising in network analysis). Any matrices received are
included, unless they are clear duplications of matrices already in the collection.
Small matrices are not included, unless they are subsets of a larger collection (such
as the Pajek data set).

This strategy does introduce an unavoidable source of bias, but we have at-
tempted to avoid this bias by relying on matrices collected by others. The UF
Collection includes many sets of matrices collected in this way, such as those col-
lected by Saad, who develops iterative methods for sparse linear systems [Saad
2003]. Not all matrices in the collection arise from a sparse linear system. For
example, many linear programming problems have been included in the UF Collec-
tion [Gay 2008; Mészéaros 2008; Mittelmann 2008; Resende et al. 1995]. Network
and combinatorial problems are also included, such as a matrix of prime numbers
from Problem 7 of Trefethen’s 100-digit challenge [Trefethen 2002].

Once a matrix is collected, its maintenance is the responsibility of the first author.
This guards against arbitrary modifications in the matrices, which can occur when
the matrix submitters modify their matrix problems. Repeatability of experiments
based on the UF Collection is thus ensured.

3. DESCRIPTION OF THE COLLECTION

As of March 2010 the UF Sparse Matrix Collection consists of 2272 problems, each
of which contains at least one sparse matrix (typically just one). It often represents
a sparse linear system of the form Ax = b, where b is sometimes provided as well
as the sparse matrix A. Many other problems are eigenvalue problems, and many
matrices come from unstructured graphs and networks with no associated linear
system. In some cases, a problem consists of a sequence of closely related matrices,
such as Jacobian matrices arising in the solution of a nonlinear system. Some
problems include two sparse matrices, such as a stiffness matrix and a mass matrix
from a structural engineering eigenvalue problem. In this case, A is the stiffness
matrix, and the mass matrix appears as an auxiliary matrix in the problem.

3.1 Application areas

The collection is divided into 157 different matrix groups, with more groups added
as new matrices are submitted to the collection. A complete list of these groups is
too long to include here; details are given on the collection’s web site. Each group
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Table I. Partial list of sources of matrices

Non-Hermitian Eigenvalue Problems [Bai et al. 1996]

Pajek Networks [Batagelj and Mrvar 2008]
Multistage stochastic financial modeling [Berger et al. 1995]

The Matrix Market (collection) [Boisvert et al. 1997]
Univ. of Utrecht circuit simulation [Bomhof and van der Vorst 2000]
MRI reconstruction M. Bydder, UCSD
Harwell-Boeing Collection [Duff et al. 1989]
Combinatorial problems [Dumas 2008]

Frequency domain, nonlinear analog circuits [Feldmann et al. 1996]
NETLIB Linear Programming Test Problems  [Gay 2008]

Symmetric sparse matrix benchmarks [Gould et al. 2008]

Linear programming problems [Gupta 1996]
Stanford/Berkeley Web Matrices [Kamvar et al. 2004]

Xyce circuit simulation matrices [Keiter et al. 2003]
Computer vision problems [Kemelmacher 2005]
PARASOL Matrix Collection [Koster 2008]

Linear programming test set [Mészaros 2008]

2D and 3D semiconductor physics [Miller and Wang 1991]
Linear programming test set [Mittelmann 2008]
QAPLIB, quadratic assignment [Resende et al. 1995]
Oberwolfach Model Reduction Benchmarks [Rudnyi et al. 2006]
SPARSKIT matrix collection [Saad 2008]

Univ. of Basel Collection [Schenk 2008]

DNA electrophoresis matrices [van Heukelum et al. 2002]
Chemical engineering problems [Zitney 1992; Zitney et al. 1996]

typically consists of a set of matrices from a single source. A few of the matrix
groups in the UF Collection consist of entire sets of matrices from another sparse
matrix collection. In this case, the group may consist of matrices from very different
application areas. For example, the Harwell-Boeing collection forms a single group
[Duff and Reid 1979; Duff et al. 1989]. Sources (papers and web sites) for some of
the matrix groups are listed in Table I, which gives a flavor of the range of problems
the collection contains.

The group of a problem forms part of the full name of the problem. For exam-
ple, the full name of the west0479 problem in the Harwell-Boeing collection (the HB
group in the UF sparse matrix collection) is HB/west0479. In addition, all problems
are tagged with a string, kind, which indicates the application domain of the prob-
lem. The group and kind of a problem are not the same. Some groups have many
different kinds of problems, and problems of the same kind can appear in different
groups. For example, the HB/west0479 problem is in the HB group, and its kind
is tagged as a “chemical process simulation problem.” Five other groups include
chemical process simulation problems, namely, the Bai, Grund, Mallya, VanVelzen,
and Zitney groups, all of which are named after the person from whom the matrices
were obtained.

A complete list of the kind strings for all problems is given in Table II. The table
is split into two categories: problems with no underlying geometry and problems
with 2D or 3D geometry.

The collection contains 68 matrices with random nonzero pattern. They appear
in the collection only because they already occur as widely-used test problems in
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Table II.  Summary of Problem.kind for all 2272 problems
1516 problems with no 2D /3D geometry
70  chemical process simulation problem

251  circuit simulation problem
299  combinatorial problem
11  counter-example problem
68  economic problem
4 frequency-domain circuit simulation problem
23 least squares problem
342  linear programming problem
135  optimization problem
56  power network problem
10  statistical/mathematical problem
61  theoretical/quantum chemistry problem
88  directed graph
8  bipartite graph
23 undirected graph
68 random graph
756 problems with 2D /3D geometry
13  acoustics problem

166  computational fluid dynamics problem
12 computer graphics/vision problem
44  electromagnetics problem
28  materials problem
42 model reduction problem
3 robotics problem
35  semiconductor device problem
288  structural problem
31  thermal problem
94 2D/3D problem (other than those listed above)

another collection that was subsequently added to the UF sparse matrix collection.
In retrospect, their inclusion in the UF Collection was a mistake, but matrices
are never removed once added, since this would cause confusion when replicating
results that use the collection. We guarantee statements such as “all matrices with
property X in the collection as of date Y7 always give a single consistent answer.

3.2 Matrix statistics

The 2272 matrices in the collection come from 359 different authors and 50 different
editors. A matrix editor is the one who collected the matrix for inclusion into any
established collection (not just the UF Collection?, but also for others such as the
Harwell/Boeing collection®, the Matrix Market?, or the GRID/TSLE collection®).
A matrix author is the one who created the matrix. Each matrix has an editor and
an author (sometimes the same person). Editors contributing at least 10 matrices
are listed in Table III (sorted by the number of matrices collected).

Figures 4 and 5 plot the matrix size (dimension and number of nonzeros) versus

2UF Sparse Matrix Collection: http://www.cise.ufl.edu/research/sparse/matrices
3Harwell /Boeing collection: http://www.cse.scitech.ac.uk/nag/hb/hb.shtml
4Matrix Market: http://math.nist.gov/MatrixMarket

SGRID/TLSE collection: http://gridtlse.enseeiht.fr:8080/websolve/
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Table III. Primary editors of the UF Collection
# matrices  editor
720 T. Davis
293  J.-G. Dumas
255 L. Duff, R. Grimes, J. Lewis
166  C. Meszaros
103 O. Schenk
78 7. Bai, D. Day, J. Demmel, J. Dongarra
72 V. Batagelj
67 Y. Ye
61 A. Baggag, Y. Saad
48 D. Gay
43  R. Fourer
39 N. Gould, Y. Hu, J. Scott
38 E. Rudnyi
35 G. Kumfert, A. Pothen
34  A. Curtis, I. Duff, J. Reid
28 J. Chinneck
27  N. Gould
25  H. Mittelmann
23  R. Boisvert, R. Pozo, K. Remington, B. Miller,
R. Lipman, R. Barrett, J. Dongarra
23 F. Grund
22 J. Koster
13 1. Lustig
12 H. Simon
11 M. Resende
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the year in which the matrices were created. The solid line in the figures is the
cumulative sum of the data plotted. Both figures show an exponential growth in
problem sizes, similar to how computer memory sizes have grown since 1970.

Note that small problems are still being added to the collection. This is because
a matrix group often includes a range of related problems, from small test cases to
the largest problems of interest.

The outlier matrix in 1971 is from the Edinburgh Associative Thesaurus, located
at www.eat.rl.ac.uk and obtained from the Pajek data set [Batagelj and Mrvar
2008]. It is a graph with 23,219 vertices and 325,592 edges that was first constructed
in 1971 [Kiss et al. 1973].

Figure 6 plots two histograms of the overall distribution of matrices in the col-
lection.

4. VISUALIZING THE COLLECTION

Many basic facts, including symmetry, structural rank, ordering statistics, as well
as a plot of the sparsity pattern, are given for each matrix in the collection. However
these facts alone do not always give sufficient information about the matrix. For
example, does this matrix come from an application involving 2D or 3D mesh? Or
from a small-world network? Are there other structures in the applications that
are not discernible from a plot of the sparsity pattern?

To help answer these questions, a visualization of each matrix in the form of
graph drawing is provided. If the matrix is structurally symmetric, it is taken as the
adjacency matrix of an undirected graph, where two vertices i and j are connected if
the (7, j)-th entry of the matrix is nonzero. Rectangular or structurally unsymmetric
matrices are treated as bipartite graphs. More specifically, the augmented matrix

(0)

is used as the adjacency matrix of an undirected bipartite graph whose vertices are
composed of the rows and columns of the matrix. We provide two graphs for square
matrices with unsymmetric structure: the graph of A + A7 and the augmented
matrix above. The graph drawings depend only on the nonzero pattern, not the
values.

The basic algorithm used for drawing the graphs is a multilevel force-directed
algorithm [Hu 2005]. However this algorithm fails to produce informative drawings
for some matrices. We propose here a new coarsening scheme to deal with these
cases. In the following we briefly describe the basic algorithm, followed by the new
coarsening scheme.

4.1 The graph drawing algorithm

The basic algorithm [Hu 2005] employs a force-directed model [Fruchterman and
Reingold 1991]. Vertices are treated as particles with electrical charges that push
each other away. This repulsive force F.(i,j) between any two vertices i and j is
proportional to the inverse of their distance,
2
i — ]|
ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.
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Here K is a parameter, and z; is the location of vertex 7. At the same time, vertices
that share an edge are attracted to each other by a spring force,

2
s — ;|

K

that is proportional to the square of their distance. The minimal energy configura-
tion of this physical system is taken as the optimal drawing of the graph.

An iterative algorithm is used to attempt to find the optimal configuration. Start-
ing from a random layout, for each vertex, the combined repulsive and attractive
forces are calculated, and the vertex is moved along the direction of the force,
with the distance moved controlled by a step length. This process is repeated,
with the step length gradually reduced, until the positions stabilize. This simple
force-directed process works well for small graphs. However, for large graphs, the
process is likely to give suboptimal layout, due to the fact that this physical system
of springs and electrical charges has many local minimum configurations. Therefore
we employ a multilevel scheme to provide a “global view” and to help find a global
optimum.

The multilevel approach has three distinctive phases: coarsening, coarsest graph
layout, and finally, prolongation and refinement. In the coarsening phase, a series
of coarser and coarser graphs, G°,G',...,G!, are generated, the aim is for each
coarser graph G**! to encapsulate the information needed to layout its “parent”
G*, while containing roughly a fraction ¢, or less, of vertices (we set t = 0.75). The
coarsening continues until a graph with only a small number of vertices is reached.
The optimal layout for the coarsest graph can be found cheaply. The layout on
the coarser graphs are recursively interpolated to the finer graphs, with further
refinement at each level.

Another important ingredient to allow very large graphs to be drawn is the
Barnes-Hut force approximation scheme [Barnes and Hut 1986]. In this scheme,
a nested space partitioning data structure is used to approximate the all-to-all
repulsive force so as to reduce the quadratic complexity to log-linear, under certain
assumptions.

F.(i,j) = , i and j share an edge,

4.2 A new coarsening scheme

The aforementioned multilevel algorithm was found to work well for many test
graphs from the graph drawing literature [Hu 2005]. However, when applied to the
UF Collection, we found that for some matrices, the multilevel process broke down,
and the resulting drawing was poor. An example is shown in Figure 7. On the
left of the figure is the sparsity pattern of the guptal matrix. From this plot we
can conclude that this matrix describes a graph of three groups of vertices: those
represented by the top 1/3 of the rows in the plot, the middle 1/3 of the rows, and
the rest. Vertices in each group are all connected to a selected few in that group,
these links are seen as dense horizontal and vertical bars in the matrix plot. At
the same time, vertices in the top group are connected to those in middle group,
which in turn are connected to those in the bottom group, as represented by the off-
diagonal lines parallel to the diagonal. However, the graph drawing in the middle
of Figure 7 shows none of these structures.

Analyzing the multilevel process (Table IV), we found that while up to level 2,
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[ |
guplal. 31802 nodes, 2132408 edges.

Fig. 7. Matrix plot of guptal matrix (left) and the initial graph drawing (middle). After applying
the new coarsening scheme, the graph drawing reflects the structure of the matrix much better
(right)

level V| |E|

0 31802 | 2132408
1 20861 | 2076634
2 12034 | 1983352
3 11088 | stopped

Table IV. The process of coarsening on guptal matrix

a significant reduction in the number of vertices were achieved as the graphs were
coarsened (a reduction from 31802 vertices to 12034 vertices), between level 2 and
level 3, the number of vertices hardly changed (11088/12034 = 0.92 > t). Conse-
quently we had to stop the coarsening process and use the iterative force-directed
algorithm on the large coarsest level graph with 11088 vertices. As expected, the
result (middle of Figure 7) was very poor.

This matrix exemplifies many of the problematic matrices: they contain star-
graph like substructures, with many vertices all connected to a few vertices. Such
structures pose a challenge to the popular graph coarsening schemes, in that these
schemes are not able to coarsen them adequately. One of these schemes is based
on maximal independent edge set (MIES). An MIES is the largest set of edges that
does not share a vertex. An MIES-based coarsening scheme works by finding an
MIES, then merging the end vertex pairs of the edges in the set. This gives us
a graph with less vertices and edges. Unfortunately for star-graph like structure,
this scheme does not coarsen sufficiently. For example, Figure 8 (left) shows such
a graph, with k£ = 10 vertices on the out-skirts all connected to two vertices at the
center. Because of this structure, any MIES can only contain two edges (the two
thick red edges in Figure 8). When the end vertices of the MIES are merged at the
center of each edge, the resulting graph has only two less vertices. Therefore if % is
large enough, the coarsening can be arbitrarily slow (k/(k 4+ 2) — 1 as k — o0).

Having found the root cause of the problem, we propose a new coarsening scheme
in the following. The scheme works by finding of vertices that share the same neigh-
bors (these vertices are known as supervariables in the numerical analysis literature
[Duff and Reid 1996], or as modules in the graph theory literature [McConnell and
Spinrad 1999]), then matching pairs of these vertices. A usual MIES scheme then
matches the remaining unmatched vertices. Finally the matched vertices are merged
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Fig. 8. A maximal independent edge set based coarsening scheme fails to coarsen sufficiently
a star-graph like structure: a maximal independent edge set (thick and red edges) (left); when
merging the end vertices of the edge set at the middle of these edges, the resulting coarsened
graph only has 2 less vertices (right)

to get the coarsened graph. The scheme is able to overcome the slow coarsening
problem associated with graphs having star-graph like substructures. Applying this
scheme to the graph in Figure 9 (left) resulted in a graph with 1/2 the number of
vertices (Figure 9 right). With this new coarsening scheme, we are able to layout
many more graphs aesthetically. For example, when applied to the guptal matrix,
the drawing at Figure 7 (right) reveals the correct visual structures as we expected,
with three groups of vertices, each connected to a few within the group, and a linear
connectivity relation among the groups.

Fig. 9. Matching and merging vertices with the same neighborhood structure (left, with dashed
line enclosing matching vertex pairs) resulted in a new graph (right) with 1/2 the number of
vertices

A complete run of the graph drawing algorithm on the entire collection of 2272
matrices in March 2010 takes in the order of 18 days of CPU time on one Intel
Xeon E7330 2.4 GHz processor (the machine itself has 60 processors and 132 GB
of memory). The median number of vertices is 5185, and median CPU time 4.8
seconds. Figure 10 gives the log-log plot of CPU time over n, versus the number
of vertices (n). If the run time scaled linearly with n, the plot would be flat. As
can be seen, the time scales slightly super-linearly to the number of vertices. The
best-fit line is a run time of O(n!?®). This complexity is higher than the expected
log-linear, albeit based on results from matrices of different structures, instead of a
true asymptotic study. We intend to investigate it further.
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Performance of force—directed graph drawing method
10° ‘ ‘ ‘ ‘ ‘ ‘

(time in seconds) / n

10 I I I I I I
10 10 10° 10* 10° 10° 10" 10°

number of nodes in graph (n)

Fig. 10. Performance of the graph drawing method, with each dot represent a matrix

5. MATRIX DATA FORMATS

The matrix problems appear in three formats: MATLAB MAT-file, Matrix Market
(MM) [Boisvert et al. 1997], and Rutherford-Boeing (RB) [Duff et al. 1997]. The
matrices and all auxiliary data are identical in all three formats, down to the very
last bit. The following data appears each matrix problem:

—name: the matrix name (HB/west0479, for example).
—title: a short descriptive title.

—A: the sparse matrix itself.

—1id: the matrix id.

—date: the date the matrix was created.

—author: the matrix author (left blank if unknown).
—ed: the matrix editor (Table III).

—kind: the matrix kind-string (Table II).

The following optional fields are present in some problems:

—Zeros: a binary matrix of numerically-zero entries provided by the matrix author.
In the MM and RB formats, these are held in the matrix itself. They cannot be
held in the MAT form, because MATLAB drops these entries.

—b: a right-hand side (sparse or dense).

—=x: the solution to Az = b (sparse or dense).

—mnotes: additional text describing the problem.

—aux: any additional data. The contents of this are problem-dependent. Examples
include the I, h, and ¢ vectors for a linear-programming problem (minimize ¢’z
subject to Az = b and | < & < h), an n-by-3 array of xyz coordinates of the
vertices, an array of n strings with the names of each vertices, a sparse mass
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matrix for a generalized eigenvalue problem, etc.

In the MAT-format, the entire problem is held as a MATLAB struct, and stored
in its own MAT-file.

The MM format [Boisvert et al. 1997] stores a sparse matrix as a collection of
triplets (i, 7, a;;), with the row index, column index, and numerical value. In the
MM format, triplets appear one per line in any order and duplicates are permit-
ted. However, our MM files are all sorted, with no duplicate entries. The MM
format permits comments in the matrix file, and most of the additional problem
characteristics (name, id, notes, etc.) appear as structured comments.

The RB format [Duff et al. 1997] stores a sparse matrix in compressed-column
form, as three vectors Ap, Ai, and Ax. The row indices and numerical values of
entries in the jth column are located in positions Ap(j) through Ap(j+1)-1 of Ai
and Ax, respectively. This format does not allow for structured comments, so this
information is held in a separate file.

For the MM and RB formats, the matrix file and any auxiliary matrices are all
kept in a single directory, then archived as a single ZIP file.

The SuiteSparse package (http://www.cise.ufl.edu/research/sparse) includes soft-
ware in MATLAB, C, and Fortran, for reading and writing the matrices and for
creating and maintaining the collection.

6. ACCESSING THE COLLECTION

There are four methods for accessing matrices in the collection on the web.

6.1 UFgui: Java interface

UFgui is a Java-based application for browsing, selecting, and downloading matri-
ces from the primary web site for the collection. A screenshot is shown in Figure 11.
It provides a selection mechanism for choosing matrices with specific features (size,
symmetry, number of nonzeros, whether it has 2D/3D geometry or not, matrix
group, and matrix kind). The selected matrices act as a set of id’s, where click-
ing select acts as a set union, and deselect acts as a set difference. For example,
to select all real square matrices except for those arising in circuit simulation, se-
lect real and square, and then click select. Then select chemical process simulation
and click deselect. Clicking download then downloads all selected matrices that
have not yet been downloaded. Right-clicking the table of matrices provides op-
tions for exporting the list of selected matrix id’s as a spreadsheet or a MATLAB
M-file. As matrices are selected in the table, an image of the nonzero pattern
of the most recently-selected matrix is displayed. The table also indicates which
matrices have already been downloaded, under the mat, MM, and RB column head-
ings. In Figure 11, the HB/will199 matrix has already been downloaded into
/Users/davis/sparse/UFget, in both MAT and MM formats, but not in RB for-
mat.

Clicking on a column heading sorts the table by that column. The sort is stable,
in the sense that ties are broken according to the previous sort. Thus, to view
matrices grouped by their 2D/3D characteristic, and then sorted by the number of
rows, the user can first click to sort on the number of rows, and then click the 2D/3D
column heading to sort by that characteristic.
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Fig. 11. UFgui: Java interface to the UF Collection

6.2 UFget: MATLAB interface

UFget is the MATLAB interface to the collection. Problem=UFget (’HB/west0479°)
loads the matrix of that name into the MATLAB workspace, downloading it if nec-
essary. Problem=UFget(267) does the same, using the problem id instead. The
index of the entire collection is loaded with index=UFget, which automatically up-
dates itself every 90 days so that new matrices can be included. This index contains
statistics about each matrix and can be searched via simple MATLAB expressions.
For example, the following MATLAB code downloads all square matrices with full
structural rank whose nonzero pattern is at least 50% symmetric, in increasing or-
der of number of nonzeros. It then computes a fill-reducing ordering with AMD
[Amestoy et al. 1996; 2004] on the pattern of A+ A7 (ignoring numerical cancella-
tion), and determines the number of nonzeros in the Cholesky factorization.

index = UFget ;
matrices = find (index.nrows == index.ncols &
index.sprank == index.nrows &
index.pattern_symmetry > 0.5) ;
[ignore i] = sort (index.nnz (matrices)) ;
matrices = matrices (i) ;
nmat = length (matrices) ;
for k = l:nmat
Problem = UFget (matrices (k)) ;
A = spones (Problem.A) + spones (Problem.A’) ;
p = amd (A) ;
anz = nnz (A) ;
lnz = sum (symbfact (A (p,p))) ;
end
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Fig. 12. A sample of matrices from the collection, for the purpose of illustrating the complexity
and diversity of matrices arising in real applications

6.3 Via a web browser

The collection’s primary web site is http://www.cise.ufl.edu/research /sparse/matrices,
with a link to an online form that allow the users to search by keywords, as well as
by matrix type, structure, dimensions or other statistics.

Each matrix has its own web page, with matrix statistics, any notes about the
matrix, download links, an image of the nonzero pattern of the matrix, and a
drawing of the graph using the force-directed graph drawing method discussed in
Section 4. The main index page includes a sample of 49 thumbnail-sized snapshots
of these graphs, shown in Figure 12, which gives a visual indication of the diversity
and complexity of matrices in the collection. Each matrix group has a web page,
with an index showing thumbnail matrix images and graphs, and basic statistics.
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6.4 Amazon Web Services

The entire UF Collection is hosted by Amazon Web ServicesT™as a Public Data
Set at http://aws.amazon.com.

7. EXAMPLE USES OF THE COLLECTION

A collection such as the one described here can answer many questions about the
design, analysis, and performance of sparse matrix algorithms that cannot be an-
swered by theoretical analyses or artificially-generated matrices. Matrices obtained
from (or available in) this collection have been used in a wide range of published
experimental results. For a small sample, see [Amestoy et al. 2001; Amestoy et al.
2007; Amestoy and Puglisi 2002; Benzi and Tuma 1998; Brainman and Toledo
2002; Demmel et al. 1999; Duff and Koster 1999; Duff and Pralet 2005; Gupta
2002; Schulze 2001]. As of March 2010, Google Scholar lists 395 papers that cite
the UF Collection as it appeared in [Davis 1997] or as a technical report version of
this paper. Articles that do not use standard benchmarks such as the UF Collec-
tion typically use matrices that could arise in practice, such as the 5-point discrete
Laplacian on a regular mesh ([Ruesken 2002], for example).

Three examples of the kinds of questions a set of real matrices can answer are
given here: the average-case time complexity of the minimum degree ordering algo-
rithm, the typical fill-in in a Cholesky factorization using the AMD or METIS or-
derings, and the trade-off between supernodal and non-supernodal sparse Cholesky
factorization methods [Chen et al. 2008].

7.1 First example: average-case run time of minimum degree

The minimum degree ordering algorithm is a heuristic for finding a permutation
P such that the Cholesky factorization of PAPT is sparser than that of A. The
running time of the minimum degree ordering algorithm is notoriously difficult to
analyze. Under modest assumptions, a loose worst-case upper bound on the run
time of the approximate-minimum-degree (AMD) variant of this method is given
by

n
0 (Z L |<PAPT>k*> : M
k=1

where P is the permutation found by AMD, L is the Cholesky factor of PAPT,
and |z| denotes the number of nonzeros in a vector or matrix [Amestoy et al. 1996;
2004]. The bound does not consider the speedup obtained by exploiting supernodes,
which has not been analyzed because the graph changes unpredictably during the
elimination.

A single dense row or column of A leads to a run time of at least Q(n?), but
AMD includes a preprocessing step that removes any row or column with degree
10y/n or larger (the effect of this step is not accounted for in (1)). Still, a host of
nearly-dense rows/columns could lead to unacceptable ordering time. Is the bound
(1) reached in practice? What is the average-case time complexity of AMD?

Determining the theoretical average-case time complexity is beyond the scope of
any analysis that has been done for this algorithm, so the best that can be done is
to test the method on a set of “average” sparse matrices that arise in practice. The
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Fig. 13. AMD run time in seconds / |L|, as a function of |L|

results of ordering A+ AT (ignoring numerical cancellation in the matrix addition)
on all square matrices in the collection (as of November 2006) whose nonzero pattern
is symmetric (or mostly so) are shown in Figures 13 and 14. The selection is the
same as shown in Section 6.2. Each matrix is a single dot in Figures 13 and 14.
The z-axis is the number of entries in A + AT,

The results are split into two sets: matrices from problems with 2D /3D geometry,
and problems without any underlying geometry. A best-fit line is shown (admittedly
not a very good fit).

Figure 13 shows that O(|L|) is a very loose upper bound on the average case
run time (excluding a few worst-case examples), even though O(|L]) is already a
much lower bound than (1). The best-fit line is O(|L|*5®) for the 2D /3D case, and
O(|L|%%1) for problems with no 2D/3D geometry.

Figure 14 indicates that the average-case run time may be slightly super-linear
in |A| (at least for 2D/3D problems), with the best-fit line being O(JA[*!) for
problems with 2D /3D geometry, and O(|A|**) otherwise.

7.2 Second example: typical fill-in

To illustrate the importance of the non-random structure in a matrix, consider
Figure 15, which plots the quality of the ordering from AMD or METIS [Karypis
and Kumar 1998] (whichever gives the best result). For this figure, the y-axis is the
number of nonzeros in L divided by the number of nonzeros in the lower triangular
part of A, denoted nnz(tril(A)) (the latter is also the z-axis). A metric of 1.0 means
that no fill-in occurred. This plot includes all matrices with perfectly symmetric
pattern in the collection as of March 2010.
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Fig. 15. AMD/METIS fill-in factor, as a function of the number of nonzeros in the lower triangular
part of A, nnz(tril(A))
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Superimposed on each of the two plots in Figure 15 is a dashed line for matrices
with random nonzero pattern from the MATLAB sprandsym function, with an
average of 5 nonzeros per row or column including a zero-free diagonal. This is the
same number of entries as a matrix arising from the discretization of a 2D mesh.
The left figure includes a solid line which is the METIS result on a square 2D
mesh (recall that for these matrices, |A] = 5n and |L| = 31(nlogyn)/8 + O(n)).
The METIS result on square 2D meshes indicates that most matrices from real
applications with 2D /3D geometry have a fill-in factor that is not much different
than these simple square meshes.

On the right plot, two sets of matrices are highlighted that have particularly
high fill-in. The +’s are from a DNA electrophoresis problem [van Heukelum et al.
2002], and the o’s are from J.-G. Dumas’ collection of combinatorial mathematical
problems [Dumas 2008]. Both sets of matrices have very irregular patterns, and
seem to approach the level of fill-in from matrices with random pattern. The DNA
and JGD matrices do not have 2D/3D geometry, so they do not appear in the
left plot. Other that these two sets of matrices, the fill-in from matrices from real
applications seems to be asymptotically lower than fill-in in random matrices.

The outlier in the left plot in Figure 15 with the highest fill-in factor is the
GHS_indef/sparsine matrix, a structural optimization matrix [Gould et al. 2008].
It is labeled as a problem with 2D /3D geometry in the collection when added (by
this author) to the collection, but this label might be incorrect. Optimization
problems often have irregular structure and no underlying geometry, although a
mechanical structural optimization problem would presumably have a 2D or 3D
geometry. The graph drawing of this matrix can be seen in Figure 12, in the top row,
second column. It is very irregular and is visually similar to the linear programming
problem in the top right corner of the same figure (the Andrianov/1pll matrix).
The sparsine graph is very different from the regular structure of a finite-element
matrix (Alemdar/Alemdar in the top left corner, for example), which may explain
why it is an outlier in the left plot in Figure 15.

7.3 Third example: BLAS trade-off in sparse Cholesky factorization

CHOLMOD is a sparse Cholesky factorization and update/downdate package that
appears in x=A\b and chol(A) in MATLAB, when A is sparse and symmetric pos-
itive definite [Chen et al. 2008; Davis and Hager 2009]. It includes two sparse
Cholesky factorization methods: a BLAS-based supernodal method [Ng and Peyton
1993] and an up-looking non-BLAS-based method [Davis 2005]. The two methods
are included because a BLAS-based method is slower for very sparse matrices (tridi-
agonal ones, for example). The dense matrix operations in the BLAS gain their
performance advantage when the ratio of floating-point work to memory traffic is
high. Thus, we predicted that the ratio of the number of floating-point operations
over the number of nonzeros in L would be a good way to automatically select the
appropriate method. Both of these terms are available from the symbolic analysis,
prior to numerical factorization. A similar metric was used to compare the BLAS-
based SuperLU method [Demmel et al. 1999] with its non-BLAS based precursor,
GPLU [Gilbert and Peierls 1988]. The primary difference is that for sparse LU fac-
torization, the metric can only be estimated prior to numeric factorization, which
limits its use as a simple method for selecting the appropriate method.
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Fig. 16. CHOLMOD relative supernodal and non-supernodal performance

Two questions remain: how useful is this metric, and what should the cutoff
value be? We tested both methods with 320 matrices from the September 2006
version of the collection: all symmetric positive definite matrices and all symmetric
binary matrices with zero-free diagonals to which values were added to ensure
positive-definiteness. The 68 random matrices listed in Table II were excluded.
The relative performance of the two methods is plotted versus the flops/|L| ratio,
as shown in Figure 16. These results show that the flops/|L| ratio is a remarkably
accurate predictor of the relative performance of these two methods (much better
than we expected). The outliers in the plot actually strengthen the result, since
it shows that most matrices fall along a smooth curve even when it is possible for
any given matrix to lie far from the curve. The figure shows that a value of 40 on
a Pentium 4 is a good threshold. Even when the wrong method is selected using
this approach, at most a 20% performance penalty occurs for matrices in this test
set. The threshold of 40 is fairly insensitive to the architecture (it would be 30 on
an AMD Opteron, and 35 on a Sun Sparc). It would be impossible to determine
this cutoff using random matrices or a theoretical analysis.

8. THE FUTURE

Matrices are continually submitted and are added to the collection every few
months. Without the continual influx of new and larger matrices, the collection
would become less and less useful over time. As of the writing of this paper in
March 2010, we have a back-log of about 60 matrices to be added. No one can pre-
dict the future, but we plan on continuing to augment and maintain the collection
for as many years as we can.

Computational scientists are encouraged to submit their sparse matrices for inclu-
sion in the collection. Matrices used in published performance evaluations of sparse
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matrix algorithms are of particular interest, to enable repeatable experiments by
other researchers. Matrices can be submitted to http://www.cise.ufl.edu/~web-gfs,
for user-name davis. Use a standard format for the matrix, such as a MATLAB
MAT-file, a Rutherford-Boeing file, a Matrix Market file, or a list of triplets (where
each line of the file contains the row index, column index, and numerical value of
one entry in the matrix). Include a description of the matrix, the problem area
it arises from, citations (if available), and source (in case the matrix author and
submitter are different). Refer to Table II for a list of categories, and select one of
them for your matrix or propose a new one.

9. SUMMARY

A large, easily accessible, and actively growing collection of sparse matrices from
real applications is crucial for the development and testing of sparse matrix algo-
rithms. The University of Florida Sparse Matrix Collection meets this need, as the
largest and most widely-used collection available. We have demonstrated this with
just a few examples, but many more can be found via a Google Scholar search for
citations to this collection.

We have discussed our strategy for including new matrices in the collection,
which is effective although admittedly ad hoc. Four methods of searching and
downloading the matrices have been presented: via MATLAB, via a stand-alone
Java GUI program, via a standard web browser and search tool, and via Amazon
Web Services™.

In addition, the collection has proven to be a valuable resource for development of
graph visualization algorithms, prompting us to propose a new coarsening algorithm
to handle some matrices with a special substructure. There are still matrices that
even the new coarsening scheme does not handle satisfactorily, thus the collection
continues to serve as a fertile ground for research on new algorithms.
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