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Abstract

Displacement-length (D/L)scaling relations for normal and thrust faults from Mars, and thrust faults from Mercury, for which sufficiently
accurate measurements are available, are consistently smaller than terrestrial D/L ratios by a factor of about 5, regardless of fault type (i.e. nor-
mal or thrust). We demonstrate that D/L ratios for faults scale, to first order, with planetary gravity. In particular, confining pressure modulates:
(1) the magnitude of shear driving stress on the fault; (2) the shear yield strength of near-tip rock; and (3) the Young’s (or shear) modulus of
crustal rock. In general, all three factors decrease with gravity for the same rock type and pore-pressure state (e.g. wet conditions). Faults on
planets with lower surface gravities, such as Mars and Mercury, demonstrate systematically smaller D/L ratios than faults on larger planets, such
as Earth. Smaller D/L ratios of faults on Venus and the Moon are predicted by this approach, and we infer still smaller values of D/L ratio for
faults on icy satellites in the outer solar system. Collection of additional displacement-length and down-dip height data from terrestrial normal,
strike-slip, and thrust faults, located within fold-and-thrust belts, plate margins, and continental interiors, is required to evaluate the influence of
fault shape and progressive deformation on the scaling relations for faults from Earth and elsewhere.
! 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and background

Populations of faults on planetary surfaces (beyond the
Earth) provide an informative and additional suite of datasets
for use by structural geologists (see review and discussion by
Schultz, 1999). The lack of significant atmosphere on
Mercury, the Moon, and most icy satellites, combined with
exceedingly slow erosion rates (associated with an absence
of fluvial, pluvial, eolian, and hydrologic processes), permits
preservation of unusually clear fault morphologies. Given
a lack of crustal recycling and Earth-like plate tectonics on
most planetary bodies, such as Mars, a visible record of single

or superposed faulting episodes may be preserved, revealing
details of the development of the fault populations over several
orders of magnitude of length. As a result, planetary surfaces
provide unique natural laboratories for studying the process of
faulting under a wider range of environmental conditions
(gravity, pore-water pressure, temperature, tectonic regime)
than is possible by using terrestrial fault sets alone.

Faults have been documented on nearly every geologic
surface in the solar system and a vast literature exists on the
subject of planetary structural geology. Normal fault and gra-
ben systems are probably the most common, accommodating
both localized and distributed extension on Mercury, Venus,
the Moon, Mars, Europa, Ganymede, and several smaller icy
satellites of the outer planets including Tethys, Dione, and
Miranda. Thrust faults have been identified on Mercury,
Venus, the Moon, and Mars. Strike-slip faults have been iden-
tified on Mars (e.g. Schultz, 1989, 1999; Okubo and Schultz,
2006) and on some icy satellites although large lateral dis-
placements such as those found systematically at terrestrial
transform plate boundaries are currently recognized only on
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Europa. At present the resolution of orbital spacecraft imaging
systems is insufficient to resolve individual dilatant cracks
(joints), although subsurface igneous dikes have recently
been inferred on Mars from surface topographic data (Schultz
et al., 2004).

Precision measurements of the maximum displacement,
Dmax and map lengths (L) of surface-breaking faults on
Mars (Schultz, 1997; Wilkins et al., 2002; Watters, 2003;
Hauber and Kronberg, 2005) and Mercury (Watters et al.,
1998, 2000, 2002) demonstrate that less displacement per
unit length is accumulated along faults on these planets than
along terrestrial (Earth-based) ones. For example, normal
faults from Tempe Terra (Mars) and thrust faults from Arabia
(Mars) show ratios of maximum displacement to length D/
L¼g¼6.7"10#3 (Wilkins et al., 2002) and 6"10#3 (Watters
et al., 1998), respectively. Thrust faults from Mercury also
show D/L ratios of 6.5"10#3 (Watters et al., 2000, 2002). Typ-
ical values for terrestrial faults (normal, strike-slip, or thrust)
are w1e5"10#2 (e.g. see compilations and discussions by
Cowie and Scholz (1992a), Clark and Cox (1996), Schlische
et al. (1996), Schultz and Fossen (2002) and Davis et al.
(2005)). Currently, topographic data of sufficient accuracy
and resolution to assess displacement-length (D-L) scaling of
non-terrestrial faults are available only for Mars and Mercury.

In this paper we demonstrate the key role played by
a planet’s surface gravitational acceleration (‘gravity’ in this
paper) in D-L scaling of faults. We incorporate gravity explic-
itly into updated D-L scaling relations for faults (following
Cowie and Scholz (1992b) and Schultz and Fossen (2002)).
We show that the systematic shift toward smaller maximum
displacements for normal and thrust faults on Mars and Mer-
cury is related to the reduced gravity on these planets relative
to the Earth.

2. D-L scaling of faults

Data from the literature for normal faults from Earth and
Mars are shown in Fig. 1. The data for Martian normal faults
are systematically shifted to smaller values of displacement by
a factor of about 5 from the terrestrial data. A similar
downward shift is evident for thrust faults on both Mars and
Mercury (see discussion below). Measurements of Martian
fault displacements (i.e. topographic offset corrected by fault
dip angle) have uncertainties of a few meters or less, whereas
those for Mercury have uncertainties in the topography of
perhaps tens of meters (e.g. Watters et al., 2000). Detailed
examination of Martian and Mercurian faults indicates that
the smaller D/L ratios result from smaller displacements
(e.g. Watters et al., 1998, 2000, 2002; Wilkins et al., 2002);
an overestimation of fault lengths by the same factor of 5 is
not likely based on clearly resolved fault traces (e.g. Schultz
and Fori, 1996; Wilkins and Schultz, 2003).

2.1. Why should fault displacements scale with gravity?

In this section we derive an expression that reveals the de-
pendence of the D-L scaling relations for faults on planetary

gravity. The analysis in this section applies to all three types
of faults (normal, thrust, and strike-slip). For the case of nor-
mal faulting, for example, the stress difference (s1#s3 or
sv#sh) is proportional to the shear driving stress sd (Schultz,
2003; see Table 1 for explanation of variables used in this pa-
per). Substituting the Hooke’s law relations for three-dimen-
sional strain (e.g. Jaeger and Cook, 1979) for the stress
difference shows that

sd ¼
E

ð1þ nÞ
ðev # ehÞ; ð1Þ

Where E and v are the Young’s modulus and Poisson’s ratio
respectively, of the faulted

The crustal strain difference (ev#eh) can be rewritten using
the far-field stress state, rather than the shear driving stress on
an individual dipping fault, by noting that sv¼qsh, with q re-
lated to the maximum (static) friction coefficient on the faults
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
þ m2Þ2 (Jaeger and Cook, 1979, p. 97; McGarr and

Gay, 1978; Brace and Kohlstedt, 1980; Zoback et al., 2003) as

ðev # ehÞ ¼
ð1þ nÞ

E

"
q# 1

q

#
rgz ð2Þ

where r is average (wet or dry) rock density, g is gravity,
and z is depth.

Using the relationship between crustal strains and the geo-
metric moments of a fault population and assuming ‘small
faults’ for simplicity (i.e. faults with down-dip heights less
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Fig. 1. D-L data for normal faults from Earth (gray circles, sandstone and non-
welded tuff; black circles, basalt) and Mars (gray diamonds, Tempe Terra; gray
square, Thaumasia graben, linked faults, ‘TG’); data from Schlische et al.
(1996), Wilkins et al. (2002), and Hauber and Kronberg (2005). Calculated
scaling relations (Eq. (9); see text for parameters): EBw, Earth basaltic rock
mass with wet conditions; ESw, Earth sandstone rock mass with wet condi-
tions; MBw, Mars basaltic rock mass with wet conditions; MBd, Mars basaltic
rock mass with dry conditions; MSw, Mars sandstone rock mass with wet con-
ditions; MSd, Mars sandstone rock mass with dry conditions.
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than the thickness of an enclosing brittle layer; e.g. Scholz,
1997; Schultz, 2003)

ev ¼#sinðdÞcosðdÞ
V

XN

i¼1

ðDLHÞi

eh ¼
kgsinðdÞcosðdÞ

V

XN

i¼1

$
L2H

%
i

ð3Þ

where k is the ratio of average displacement on the fault to
its maximum displacement, with typical values of 0.6e0.7,
V is the volume of the faulted layer, H is the down-dip fault
height and d is the fault dip angle. For the representative
case of a single fault (to illustrate the results most clearly),
we find that

ðev # ehÞ ¼ #L2H

"
gsinðdÞcosðdÞ

V

#
ð1þ kÞ ð4Þ

Substituting (LDH )/g for L2H in Eq. (4) and solving for
fault displacement yields

D¼ ð1þ nÞ
E

"
q# 1

q

#"
rgz

LHð1þ kÞ

#"
V

sinðdÞcosðdÞ

#
ð5Þ

Eq. (5) reveals that the magnitude of maximum displace-
ment D on a normal, strike-slip, or thrust fault scales with
planetary gravity g, for constant values of fault shape (k, L,
H, d), crustal rock properties (E, n, r), and size of the deform-
ing domain (z, V). This relation demonstrates the physical
basis for the scaling relations implied by the data shown in
Fig. 1 and motivates the more detailed analysis presented in
the next section.

2.2. Mechanical models of faults

In order to investigate the effect of different planetary grav-
ities on fault displacements, and thereby to D/L ratios, we con-
sider one member of a class of mechanical models for faults
that is consistent with linear D-L scaling (Scholz, 2002, p.
116), finite rock (yield) strength at the tipline (Cowie and
Scholz, 1992b; Scholz, 1997), and gentle near-tip displace-
ment gradients (e.g. Cowie and Scholz, 1992b; Bürgmann
et al., 1994; Moore and Schultz, 1999; Cooke, 1997; Cowie
and Shipton, 1998). Called variously ‘post-yield’ or elastic-
plastic fracture mechanics models depending on their particu-
lar approaches, these models specify a yield strength on the
same order (e.g. MPa) as the driving stress, considerably
smaller than that implicitly assumed in linear elastic fracture
mechanics (LEFM) models of faults (e.g. Pollard and Segall,
1987).

Two important members of this class of models are the
‘end-zone’ model (e.g. Cowie and Scholz, 1992b; Bürgmann
et al., 1994; Cooke, 1997; Martel, 1997; Willemse and Pollard,
1998; Schultz and Fossen, 2002; Wilkins and Schultz, 2005)
and the ‘symmetric linear stress distribution’ model (Bürg-
mann et al., 1994). We use the ‘end-zone’ model in this paper
for an individual fault having a central well-slipped por-
tion bounded by frictionally stronger end zones. The other

Table 1
Main variables and parameters used in displacement-length scaling
calculations

Section Symbol Explanation and units

Scaling from crustal strains
ev Vertical elastic normal strain
eh Minimum horizontal elastic normal strain
V Volume of faulted crustal section, m3

k Ratio of average to maximum displacement on fault
Fault slip

t Shear stress resolved on fault plane, MPa
sn Normal stress resolved on fault plane, MPa
s1 Maximum compressive remote principal stress, MPa
s3 Minimum compressive remote principal stress, MPa
sv Vertical compressive remote principal stress, MPa
sh Minimum horizontal compressive remote principal

stress, MPa
sH Maximum horizontal compressive remote principal

stress, MPa
r Crustal rock density, kg m#3

g Gravitational acceleration at planetary surface, m s#2

z Depth below planetary surface, m
d Fault dip angle, degrees
f Fault dip parameter, degrees
m Coefficient of friction used with local (fault-centered)

stress state
ms Maximum (‘static’) friction coefficient for fault slip

increment
md Minimum (‘dynamic’) friction coefficient for fault

slip increment
Dm Friction difference for driving stress calculation
q Friction parameter used with remote stress state

Displacement-length scaling
Dmax Maximum displacement (structural offset) along

fault plane, m
L Horizontal fault length, m
H Vertical fault height measured in fault plane, m
g Ratio of Dmax/L
n Exponent of displacement-length scaling law
D Abbreviated (colloquial) form of Dmax, m
E Young’s modulus of rock surrounding the fault, GPa
n Poisson’s ratio of rock surrounding the fault
sd Shear driving stress on fault (¼Dmsn), MPa
sy Shear yield strength of rock mass at the

fault tip, MPa
C Variable or function that removes near-tip singularity
L/H Fault aspect ratio
a Half-length of fault, m
b Half-height of fault, m
N Scaling parameter, ratio of cumulative to incremental

displacement
Yield strength

RMR Rock mass rating
sc Unconfined compressive strength of intact rock

material, MPa
mi HoekeBrown parameter characterizing intact

rock material
m HoekeBrown parameter characterizing rock

mass texture
s HoekeBrown parameter characterizing rock

mass fracturing
Modulus

S Stiffness of rock mass, GPa#1

E* Deformation modulus, GPa
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end-member that assumes a linear increase in fault frictional
strength, from the center to the tip (Bürgmann et al., 1994),
produces a nearly linear displacement distribution as demon-
strated by measurements for many faults (e.g. Dawers et al.,
1993; Cowie and Shipton, 1998; Manighetti et al., 2001;
Soliva and Benedicto, 2004). The governing factors as evalu-
ated in this paper are the same in either case. We are not aware
of any observations that would suggest a planet-dependent
model of fault displacement, so we use a single model for con-
sistency across all planetary bodies considered. The particular
choice of post-yield fault model is thus not critical to the
scaling conclusions drawn in this paper. The variables and
parameters used in this analysis are given in Table 1.

The general form of this class of models is

Dmax

L
¼ 2ð1# n2Þ

E

$
sd #Csy

%
ð6Þ

in which Dmax is the (maximum) shearing displacement lo-
cated at the fault midpoint (referred to as D in this paper), L
is horizontal fault length, sd is the shear driving stress (Cowie
and Scholz, 1992b; Gupta and Scholz, 2000a; Schultz, 2003;
see Table 1), sy is the yield strength of rock at the fault tip,
and C is a variable (or function) that specifies how the theoret-
ical stress singularity at the fault tip is removed; specifically,

C¼ 1# cos

"
p

2

sd

sy

#
ð7aÞ

(End-zone model; Schultz and Fossen, 2002)

C¼ 1=p ð7bÞ

(Linear displacement model; Bürgmann et al., 1994)
The cosine term in Eq. (7a) defines the length of the end

zone (s/a in Eq. (7b) of Schultz and Fossen, 2002) adjoining
the fully slipped central part of a fault. C in Eq. (7b) is ob-
tained by setting x/a¼0 and L¼2a in Eq. (14) of Bürgmann
et al. (1994), with their quantities Sr and Sg being interpreted
as sd and sy, respectively (S. Martel, personal communication,
2004). The LEFM solution, with its inherent singularity in
near-tip stress and the associated elliptical displacement pro-
file, is recovered by setting C¼0 in Eq. (6). Eq. (6) is compa-
rable with that obtained by Scholz (1997) in his discussion of
end-zone models and D-L scaling relations.

Eq. (6) has several important and useful properties. First,
the effective stress drop on the fault (sdeCsy) is independent
of fault length. Second, the D/L ratio depends explicitly (and
linearly) on the driving stress, rock properties, and yield
strength. As a result, this class of models provides a physical
basis for D-L scaling relations of the form D¼gL (e.g. Cowie
and Scholz, 1992a; Clark and Cox, 1996; Schultz and Fossen,
2002; Scholz, 2002, p. 116).

Using the end-zone model, the D-L relationship for a fault
of variable map length L¼2a and down-dip height H¼2b is
given by (Schultz and Fossen, 2002)

Dmax

L
¼ 2ð1# n2Þ

E
N

&
sd # sy

'
1# cos

"
psd

2sy

#()

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:464

*
a
b

+1:65
r ð8Þ

in which N is a scaling parameter related to the ratio of cumu-
lative to incremental displacements (Schultz, 2003). Plausible
values of sy/sd appear to be approximately 2e3 (e.g. Cowie
and Scholz, 1992b; Schultz and Fossen, 2002; Wilkins and
Schultz, 2005). Three-dimensional faults having more nearly
triangular displacement distributions (e.g. Dawers et al.,
1993; Cowie and Shipton, 1998; Manighetti et al., 2001;
Soliva and Benedicto, 2004) can be considered, in part, by
rewriting Eq. (8) with Eq. (7b) instead of Eq. (7a) in the
numerator (Schultz and Soliva, 2005).

Terrestrial dip-slip faults appear to have roughly elliptically
shaped fault planes, with aspect ratios (L/H ) of 2e3 (Nicol
et al., 1996). For faults having a constant aspect ratio of
L/H¼3, Eq. (8) simplifies to become

Dmax

L
¼ 2ð1# n2Þ

E

N

3:16

&
sd # sy

'
1# cos

"
psd

2sy

#()
ð9Þ

For faults with an aspect ratio of 2 (half-length equals depth
for surface-breaking faults), the geometry term in the denom-
inator of Eq. (9) would equal 2.37 instead of 3.16.

Although aspect ratios may change for faults over their
length scales (e.g. Willemse et al., 1996; Willemse, 1997;
Schultz and Fossen, 2002; Soliva et al., 2005) or between pop-
ulations, we choose to hold this parameter constant (L/H¼3) in
this analysis to minimize the number of variables (but see dis-
cussion of thrust fault data below). We know of no basis to
speculate that aspect ratios should differ systematically for iso-
lated, unlinked faults on different planetary bodies, although
some evidence suggests vertical restriction of some normal
faults on one part of Mars to near-surface layers (Schultz,
2000a, 2003; Polit et al., 2005a,b). As shown by Nicol et al.
(1996), Gupta and Scholz (2000b), Wilkins and Gross
(2002), and Soliva et al. (2005, 2006), for example, restricted
faults can be identified once fault lengths, displacements, layer
thickness and/or spacing are known.

3. D-L scaling of faults

Eq. (6) shows that the D/L ratio for faults depends on three
primary factors: modulus, shear driving stress, and yield
strength. As shown above by Eq. (5), all three factors are influ-
enced to various degrees by planetary gravity g. In this section
we evaluate each of these factors and calculate the scaling
relations for faults on Mars, Mercury, and the Moon.

3.1. Driving stress

This is the shear stress leading to Coulomb frictional slid-
ing and attendant displacement along the fault. The relations
for Coulomb frictional sliding (jtj¼snDm) can be rewritten
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using the remote principal stresses (e.g. Jaeger and Cook,
1979, pp. 95e96), noting that the right-hand side of the Cou-
lomb relation (snDm), {[(s1þs3)/2]#[(s1#s3)/2] sin2f}Dm,
represents the shear driving stress sd (Schultz, 2003), Dm is
the difference between static and dynamic friction coefficients
for single-slip events (Cowie and Scholz, 1992b; Cooke, 1997;
Scholz, 1998; Schultz, 2003; see discussion below), f is either
the fault dip d (for thrust faults), or (90'#d) (for normal
faults), t is shear stress resolved on the fault plane, and sn
is the magnitude of effective (compressive) normal stress
resolved from remote tectonic stresses onto the fault plane.
Normal faulting implies a vertical maximum principal stress
sv¼rgz, with depth z set equal to 100 m for this analysis,
and a least horizontal principal stress sh¼sv/q. For faults,
the relevant quantity is the cumulative shear driving stress
(Cowie and Scholz, 1992b; Gupta and Scholz, 2000a; Schultz,
2003) associated with the total (cumulative) geologic offset
along the fault (invoked through multiplication of in-situ stress
by N ). We choose values for the static and dynamic coeffi-
cients of friction of ms¼0.6 and md¼0.59 (e.g. Marone,
1998; Scholz, 1998; Schultz, 2003) to calculate the shear driv-
ing stress. These parameters imply similar values of slip rates
and seismic recurrence intervals on the faults.

The shear driving stress is reduced on lower gravity planets
because the resolved effective normal stress sn, and the hori-
zontal and vertical far-field stresses (which promote fault
slip), are all dependent on sv and therefore on g. Previous
modeling of fault-related topography on Mars (Schultz and
Lin, 2001; Schultz and Watters, 2001; Wilkins and Schultz,
2003; Schultz et al., 2004) and Mercury (Watters et al.,
2000, 2002), and some measurements (using older low-preci-
sion data for Martian faults: Davis and Golombek, 1990),
show that fault dip angles, and hence values of friction (see
also Neuffer and Schultz, in press), are similar to first order
for all three planets.

3.2. Yield strength

The shear yield strength of unfaulted rock at the fault’s
tipline sy modulates the D/L ratio (e.g. Bürgmann et al.,
1994; Cooke, 1997; Martel, 1999; Wibberley et al., 1999,
2000). Stronger rock requires greater near-tip stresses to break,
leading to larger values of displacement along the fault (Cowie
and Scholz, 1992b; Wibberley et al., 1999, 2000; Schultz and
Fossen, 2002; Wilkins and Gross, 2002).

Rock strength is calculated from the HoekeBrown (Mohr)
envelope for rock masses (Hoek and Brown, 1980), which is
a nonlinear Mohr envelope that includes the contributions to
shear strength of joints and other fractures, lithology, scale,
and pore-water conditions (see Schultz (1996) and Okubo
and Schultz (2004) for detailed discussions and applications
to structural geology). We assume a rock mass rating (RMR)
of 50, appropriate for wet conditions (i.e. hydrostatic pore-
pressure) and typical near-surface fracture densities (e.g.
Bieniawski, 1989); dry conditions are considered by increas-
ing RMR to 65, following standard practice (e.g. Bieniawski,
1989). For the basalt, r¼2900 kg m#3, mi¼22, and the

unconfined compressive strength of the intact rock material
sc¼250 MPa; for a weaker rock mass (such as tuff or poorly
indurated sedimentary material), the parameters for sandstone
are used (r¼2200 kg m#3, mi¼19, sc¼100 MPa).

The yield strength is taken to be the peak shear strength (or
maximum differential stress, equal to s1#s3, or sv#sh in
a normal faulting environment and sH#sv for thrust faulting)
of the rock mass (where sh is the minimum horizontal com-
pressive stress and sH is the maximum horizontal compressive
stress). Mohr envelopes for strong (basalt) and weak (tuff or
sandstone) rock masses on Earth and Mars are calculated
and shown for equal depths of 1 km in Fig. 2. Because the
sv increases with g, so does the diameter (s1#s3) of the
Mohr circle and, in turn, the peak strength of the rock mass
at any given depth. Rock strength increases with planetary
gravity for the same depth range below the surface and is anal-
ogous to the well-known dependence of peak strength and
confining pressure observed in experiments.

3.3. Modulus

The Young’s modulus of crustal rock is included in the
stiffness term S in Eq. (6), given by Sf(1#n2)/E. The various
moduli (Young’s, shear, and deformation; Bieniawski, 1989;
Schultz, 1996) are interchangeable in this equations. As the
modulus increases, displacement (and Dmax) along a fault
decreases (e.g. Wibberley et al., 1999, 2000).

Young’s modulus is given by a value at the surface corre-
sponding to the deformation modulus (Bieniawski, 1989;
Schultz, 1996), which then increases with depth (e.g. Rubin,
1990). Deformation modulus is the field-scale equivalent of
Young’s modulus that includes the softening effects of joints
and ground water. It is obtained from RMR by using Eq.
(11) below (Bieniawski, 1989, p. 64; Schultz, 1996). The in-
crease in modulus with depth results from the combined effect
of mechanical compaction and the associated reduction in pore
space with an increasing overburden, and diagenesis and ce-
mentation that occur in response to increasing temperatures.
Because density and the pore-pressure state of the crust (that
both modulate E ) depend on confining pressure, Young’s mod-
ulus decreases with gravity for equivalent conditions and depth
ranges below the surface. For the Earth, assuming hydrostatic
(wet) pore-water conditions and a basaltic rock mass (Rubin,
1990), the values of Young’s (or shear) modulus are closely
fit by

E¼ E( þ z0:4 ð10Þ

where E* is the deformation modulus given by

E( ¼ 10
ðRMR#10

40 Þ
ð11Þ

We calculate Young’s modulus vs. depth on other terrestrial
(i.e. rocky) planets by specifying the pore-water state (wet or
dry), rock type, and planetary gravity. Shear modulus in the
crust is proportional to the P-wave velocity (Vp) squared times
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rock density (Bolt, 1988, p. 31; Rubin, 1990), with Young’s
modulus related to the shear modulus by standard relationships
(Jaeger and Cook, 1979). Differences in these two conditions
on other terrestrial planets are considered by scaling the den-
sity of crustal rocks (wet or dry) to the terrestrial reference
case (Eq. (10)) that assumes wet basalt using

E¼ E( þ
"

g

gEarth

#"
r

rEarth

#
z0:4 ð12Þ

The normalized gravity term in Eq. (12) adjusts Vp,
whereas the normalized density term accounts for the pore-
water state and rock type of the terrestrial planet’s crust. Frac-
tures and microcracks in the crusts of smaller planets will
remain open to greater depths than for Earth, assuming con-
stant rock type and pore-water conditions, leading to smaller
values of modulus at any given depth.

Representative curves of Young’s modulus vs. depth for
Earth and Mars are shown in Fig. 3. Young’s modulus for
water-saturated Martian basaltic crust has the same value
of deformation modulus as for the Earth (E*¼10 GPa, calcu-
lated from RMR¼50) but increases at a slower rate with
depth due to the reduced Martian gravity. A Martian rock
mass containing water ice within the fracture porosity
(Okubo and Schultz, 2004) has a strength that is closer to
the water-saturated one than to the dry one. On the other
hand, Young’s modulus for dry Martian basaltic crust
(E*¼23.7 GPa) is greater than that for the wet terrestrial
case, with a larger deformation modulus at the surface asso-
ciated with a dry rock mass (RMR¼65) and a gradient
w10% larger than the wet terrestrial one. The variation in
Young’s modulus with depth for the dry Martian case is
nearly the same as for dry Mercurian crust; the curves for
Venus and the Moon are readily calculated from Eq. (12)
by using dry rock densities and appropriate values of g.

4. Application to planetary bodies with different surface
gravities

Planetary gravity enters into each of the three factors
discussed above (Eq. (6)), but more subtly than simply as a -
ratio of planetary gravities (e.g. gMars/gEarth) because the total
reduction in D/L for a planetary fault population exceeds the
gravity ratio (Fig. 1). Although driving stress scales directly
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with gravity, other factors including crustal density, pore-water
content, and nonlinearity in the rock-mass yield strength enve-
lope also affect the ratio in detail (see Section 2).

Displacements along terrestrial faults of a particular popu-
lation have been demonstrated statistically (Cowie and
Scholz, 1992a; Clark and Cox, 1996) to scale linearly with
their length, so that Dmax¼gLn, with n¼1. We find that linear
scaling (with n¼1) giving a constant ratio of D/L as on
Fig. 1; Cowie and Scholz, 1992a; Clark and Cox, 1996) re-
quires that constant values of shear driving stress, rock (yield)
strength, aspect ratio (Schultz and Fossen, 2002; Soliva et al.,
2005), and modulus must be maintained across the length
scale of the fault population. For example, incorporating
larger values of modulus, driving stress, and yield strength
for larger (and thus, deeper) faults (all three averaged over
the appropriate depth of faulting) leads to a steeper slope
on the D/L plot of n¼1.8. This result is in accord with pre-
vious suggestions (e.g. Cowie and Scholz, 1992a) that longer
faults cut ‘stronger rock’ and hence should show larger dis-
placements. Our calculations suggest, however, that the
steeper slope results because the shear driving stress increases
with fault length faster than does the modulus, with increas-
ing yield strength being of lesser importance. In order for
larger (and deeper) faults to maintain n¼1, all three factors
(driving stress, near-tip yield strength, and modulus) must in-
crease in such a way as to precisely maintain the D/L ratio
(and n¼1).

In order for fault displacement to scale linearly with fault
length on planetary bodies with different gravities, the driv-
ing stress acting on faults of different lengths (and therefore
down-dip heights) must be approximately constant. In the
preceding analysis (Section 3) we assumed for consistency
a uniform depth of 100 m in the calculation of driving stress
for all faults. This was necessary because the expression for
driving stress typically used in fault-slip calculations like
these (e.g. Cowie and Scholz, 1992b; Scholz, 1997) assumes
a value for normal stress, which is depth-dependent. A de-
pendence of shear driving stress on the average normal stress
resolved on the fault requires that longer and thus deeper
faults have greater values of driving stress acting on them
than shorter, shallower faults. From Eq. (6), having the driv-
ing stress proportional to fault length would require (a) a cor-
responding decrease in near-tip yield strength with increasing
fault length, or (b) a decrease in modulus with fault length
and, equivalently, increasing depth, assuming a constant fric-
tional strength with depth in the crust. A decrease in modulus
with depth is inconsistent with observations of modulus in-
crease with depth (e.g. Rubin, 1990). In order for the D/L ra-
tio to remain constant over a range of fault lengths, the
numerator in Eq. (6) must increase with fault size in concert
with the increase in modulus with depth (Fig. 3), although
the magnitude of increase may be lessened somewhat by
a possible scale-dependent reduction in modulus (Gudmunds-
son, 2004). Thus, longer faults either must have smaller near-
tip yield strength with constant driving stress or the driving
stress must decrease with constant near-tip strength. Because
rock strength and modulus are known to decrease with

increasing scale (e.g. Bieniawski, 1989; Schultz, 1996), we
conclude that n¼1 scaling is consistent with approximately
constant driving stress, with near-tip yield strength decreas-
ing, and average crustal modulus increasing, as the fault
size increases.

Scatter in D-L datasets, of perhaps a factor of 5, arises from
several sources including mechanical interaction and linkage
(e.g. Cowie and Scholz, 1992a; Cartwright et al., 1995;
Dawers and Anders, 1995; Clark and Cox, 1996; Schultz,
1999; Gupta and Scholz, 2000b; Schultz and Fossen, 2002),
which are both found on Earth and Mars (e.g. Schultz, 1997,
1999, 2000a; Schultz and Fori, 1996; Wilkins et al., 2002;
Wilkins and Schultz, 2003; Polit et al., 2005a,b; Polit,
2005). Calculated variations in rock type or pore-pressure state
appear small in relation to the typical scatter found in fault
data sets (e.g. Clark and Cox, 1996).

4.1. Mars

Values of the main parameters for Mars, normalized by the
values for the terrestrial wet basaltic rock mass, are shown in
Table 2 and Figs. 4 and 5. For the same conditions of rock type
(e.g. basaltic rock mass), fault type (normal), and fluid-satu-
rated crustal rocks (i.e. ‘wet’ conditions), g reduces Dmax

by gMars/gEarth¼0.38 (via the driving stress term, with
gMars¼3.72 m s#2; Esposito et al., 1992). Yield strength in
shear scales with gravity, with the strength of the Martian
basaltic rock mass being w0.5 of the corresponding terrestrial
one. Modulus decreases with decreasing g, to a normalized
value of w0.84 for the (wet) Martian case. The combined
effect of g on all three key factors discussed above
(0.38"0.5"0.84¼0.16) is a reduction in D/L of about a factor
of 5e6, consistent with the data from Martian normal faults
(Fig. 1) and Martian thrust faults (Fig. 6).

4.2. Mercury

Currently, only topographic measurements of thrust faults
(Fig. 6) are available for Mercury (Watters et al., 2000,
2002). The scaling relations for Mercurian thrust faults are
the same as those for Martian faults in dry crustal rock, given
comparable values of planetary gravity ( gMercury¼3.78 m s#2;
Turcotte and Schubert, 1982, p. 430). The magnitude of max-
imum displacement for a fault on Mercury should be about

Table 2
Comparison of parameters for normal faults on Earth and Mars

sd (MPa) sy (MPa) E (GPa) Dmax/L sy/sd

Earth 0.28 1.19 13.35 1.965"10#2 4.27
Mars 0.11 0.613 11.27 4.075"10#3 5.82
Norm 0.38 0.514 0.84 0.21 1.39

Quantities in headings are defined in Fig. 4. Values calculated using depth
z¼100 m for wet basalt (on both planets) using RMR¼50, mi¼22,
sc¼250 MPa, dry rock density r¼2900 kg m#3, and deformation modulus
(for wet basalt) of E*¼10 GPa. Normalized values (third row, ‘Norm’) are
Mars/Earth.
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16% of a comparable fault on Earth (Fig. 5, upper panel;
Fig. 7).

The normal fault data discussed for Mars above were fit
with L/H¼3 and N¼3000. However, the scaling relations using

these values of fault aspect ratio and N overpredict the dis-
placements on Martian and Mercurian thrust faults, regardless
of lithology and crustal water content (see Fig. 6), by about
a factor of 5, with a predicted value of D/Lw10#2. We inter-
pret this discrepancy as an indication that the aspect ratios of
the terrestrial and planetary thrust faults in our dataset are not
equal.

Datasets for terrestrial thrust faults (Fig. 6) include faults
within a fold-and-thrust belt from (a) a thin-skinned fold-
and-thrust belt within sedimentary rocks (data from the
Canadian Rocky Mountains; Elliott, 1976); (b) the Yakima
fold belt in basaltic rocks (Washington State; Mége and
Riedel, 2001); (c) the Puente Hills blind thrust fault system
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in the transform plate margin of southern California; and (d)
mechanically interacting fault segments propagating upward
through unconsolidated alluvium (data from the Ostler fault
zone, New Zealand; Davis et al., 2005). The data for thrust

faults that cut anticlines in the Yakima fold-and-thrust belt
suggest either larger aspect ratios consistent with restriction
of the faults to near-surface (basaltic) units or uncompen-
sated dissipation of fault displacement into folding of the
basalts (see Davis et al. (2005) for methods to compare
fold- and fault-related deformation). Displacements along
the composite Puente Hills fault array are consistent with
those from the Canadian Rockies. The cumulative displace-
ment value for the composite Ostler, New Zealand, fault
zone is consistent with those from the Yakima fold belt
(Fig. 6); the displacement values for individual segments
from the Ostler fault zone are influenced by (a) their strong
mechanical interaction (‘soft-linkage’) with adjacent seg-
ments and (b) smaller modulus of the faulted unconsolidated
alluvium, and substantially reduced by offset of younger
strata that do not span the full duration of faulting (Davis
et al., 2005), leading to smaller D/L values for the segments
than for the entire fault zone.

Seismic profiling of the Puente Hills thrust fault array sug-
gests that individual fault segments are ‘tall’ (Shaw et al.,
2002), with aspect ratios (L/H ) in the range of 2e3; the com-
posite, soft-linked fault array appears to have LwH. Although
the depth of faulting along the Ostler thrust fault array is un-
certain (Davis et al., 2005), the authors’ data imply that
L>H for this array. Aspect ratios of L/H<1 (‘tall faults’) are
used here (Fig. 6) in an attempt to better represent the likely
down-dip shapes of the terrestrial thrust faults from Elliott’s
(1976), Mége and Riedel’s (2001), and Shaw et al.’s (2002) da-
tasets from fold-and-thrust belts that may sole downward into
basal décollements (e.g. Davison, 1994). Using L/H¼0.5, the
terrestrial thrust fault data are fit with N¼1000 (Fig. 6); using
L/H¼3 with N¼1000 produces acceptable fits to the planetary
thrust fault data (Fig. 6) as well as to the Ostler thrust fault
array in New Zealand. We infer that many Martian and Mer-
curian thrust faults may have aspect ratios greater than one
(e.g. Nicol et al., 1996; shaded area on Fig. 6), whereas
many of the terrestrial thrust faults (especially those in the
Canadian Rockies) have aspect ratios less than one (heavy
dashed line on Fig. 6). However, additional measurements of
displacement, length, and height for thick-skinned terrestrial
thrust faults located outside of a plate margin, especially sur-
face-breaking examples, would permit more robust evaluation
of D-L scaling of surface-breaking thrust faults on other plan-
etary bodies.

4.3. Moon

Values of fault displacement on the Moon, sufficiently
accurate for D-L scaling relations to be well defined, are not
available given the coarse horizontal resolution of the avail-
able topography (30 km by 30 km grid; Zuber et al., 1994),
since structural topography along narrow faults ()30 km
wide) is diluted by nondeformed terrain that comprises most
of the remainder of the grid cell. We can predict the values
of the D/L ratio that would be expected for lunar faults using
the approach in this paper. Letting g¼1.6 m s#2 (Vaniman
et al., 1991) and assuming dry (anhydrous) average rock
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density (using anorthosite; e.g. Taylor et al., 1991) of
2750 kg m#3 (Turcotte and Schubert, 1982, p. 432), compara-
ble with that of granodiorite, we find that the D/L ratio of lunar
faults should be approximately 0.04 that of terrestrial faults
(Figs. 7 and 8). As a result, the throws on lunar normal faults,
and on the thrust faults beneath lunar wrinkle ridges, should be
quite small: only 4% of what a terrestrial fault of similar size
would produce.

5. Conclusions

The systematically smaller values of displacement for
faults on Mars and Mercury result from the reduced surface
gravitational acceleration of these planets relative to that of
the Earth. The D-L scaling of Martian faults depends on the
water content of the crust, with faults in wet crust generating
33% larger displacements than those in dry crust, primarily
through the smaller value of modulus for wet crustal rock (de-
spite somewhat weaker yield strength for wet conditions). D-L
scaling of thrust faults on Mercury and Mars is consistent with
aspect ratios (length/height) of 1e3, suggesting that these
faults are ‘long’ and not linked down-dip to décollements as
are examples of thrust faults from the transform plate margin
in southern California and the Canadian Rockies fold-and-
thrust belt, which apparently function as tall segmented faults

with smaller aspect ratios (L/H<1). Further, the differences in
strain with the type of faultefold coupling (i.e. faultebend,
faultepropagation, and faulted detachment folds) require fur-
ther investigation and quantification. Collection of displace-
ment-length and down-dip height data from terrestrial thrust
faults, located both within fold-and-thrust belts and in conti-
nental interiors (i.e. both thin- and thick-skinned settings and
accounting for progressive segment linkage and associated
displacement transfer), is critical for testing the possible roles
of fault shape and down-dip linkage on the scaling relations
for thrust faults from Earth and elsewhere.

Assessment of D-L scaling relations of faults on the Moon,
Venus, and icy satellites of the outer solar system is currently
hindered by large uncertainties in displacement (due to low-
resolution, or unavailable, topographic data) and, to a lesser
extent, length (due to low-resolution imaging data). We infer
from our analysis that faults on Venus should accumulate
somewhat smaller displacements than their terrestrial counter-
parts given a w10% reduction in gravity ( g¼8.8 m s#2) rela-
tive to the Earth. Faults on the icy satellites of Jupiter and
Saturn probably also scale with gravity, with particular values
of the D/L ratio depending on appropriate values of near-tip
ice strength and ice stiffness. Because brittle strains depend
on the D/L ratio (along with the fault density; Gupta and
Scholz, 2000b; Schultz, 2003), the average strain accommo-
dated by faulting at the surface of a planetary body, for the
same style of tectonic domain, should generally decrease as
a function of gravity.

By implication, other types of structures such as joints (e.g.
Vermilye and Scholz, 1995), dikes (Schultz et al., 2004), and
deformation bands (e.g. Fossen and Hesthammer, 1997;
Schultz and Fossen, 2002; Schultz and Siddharthan, 2005)
that form on other planets and satellites should also scale in
D/L with gravity. This is because the same physical factors
of driving stress, rock yield strength, and modulus that regu-
late fault scaling also influence the growth and displacement
of these structures.
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