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Instituto de Ciências Matemáticas e de Computação
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1 Introduction

The relations between topological properties of the domain and the number of
solutions of elliptic problems have been extensively studied by many authors.
In 1991, Benci and Cerami in the pioneer paper [7] studied the existence and
multiplicity of solutions for the problem

{

−∆u+ κu = |u|p−2u in Ω,
u = 0 on ∂Ω,

(1.1)

where κ ∈ R+ ∪ {0}, Ω ⊂ RN is a bounded smooth domain, p ∈ (2, 2∗) and
2∗ = 2N/(N − 2) with N ≥ 3. It was proved that (1.1) has at least cat(Ω)
positive solutions provided that κ is sufficiently large or p is sufficiently close
to 2∗, where cat(Ω) denotes the Ljusternik-Schnirelman category of Ω in
itself.

Subsequently, in 1994, Benci and Cerami in [8] showed that the number
of positive solutions for a semilinear elliptic equations like

{

−ε∆u+ u = f(u) in Ω,
u = 0 on ∂Ω,

(1.2)

where ε ∈ R
+ \ {0}, Ω ⊂ R

N is a bounded smooth domain and f is
a continuous function with subcritical growth, depends on the Poincaré
polynomial of the domain, that is, a lower estimate of the number of solutions
can be performed entirely in terms of the Morse relations. More precisely,
the authors proved among other things that there exists ε∗ > 0 such that,
for any ε ∈ (0, ε∗) problem (1.2) has at least 2P1(Ω)− 1 nontrivial solutions,
where Pt(Ω) denotes the Poincaré polynomial of Ω.

Multiplicity of solutions by the use of Ljusternik-Schnirelman category or
Morse theory has been considered for different classes of problems by several
authors since the works [7, 8], see for example, Benci [6], Benci, Bonanno
and Micheletti [9], Cerami and Wei [11], Cingolani [14], Cingolani and Clapp
[15], Clapp [20], Furtado [22], Ghimenti and Micheletti [23], He [24], Shang
and Zhang [28] and their references.

The present paper was mainly motivated by [8]. By carefully examining
the method used by Benci and Cerami to study some properties of the
functional associated with (1.2) to apply the Morse relations, we have
observed there is an abstract result behind this method providing these
relations and which can be proved by adapting the argument employed in
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that paper. To illustrate, we apply this result to estimate the number of
nontrivial solutions for a nonlinear Schrödinger equations with an external
magnetic field. We believe that this abstract result can be useful for finding
solutions for a wide variety of elliptic problems.

In order to establish the abstract result, we need to fix some notations.
Let (E, 〈 , 〉) denote a real Hilbert space endowed with the induced norm
‖ · ‖2 = 〈 , 〉. Let I : E → R be a C2 functional and let M be the Nehari
manifold associated with I given by

M = {u ∈ E\{0}; I ′(u)u = 0}.

Here I is assumed to be bounded from below on M and set

b = inf
M
I. (1.3)

For a ∈ R, consider the sets

Ia = {u ∈ E; I(u) ≤ a} and Ma = M∩ Ia.

We can now state the above-mentioned abstract result.

Theorem 1.1. For b given by (1.3), let δ ∈ (0, b). Suppose that

(i) I(u) = 1
2
‖u‖2 − Ψ(u), where Ψ : E → R is such that Ψ(0) = 0 and

t 7→ Ψ′(tu)u/t is strictly increasing in (0,+∞) and unbounded above,
for every u ∈ E\{0},

(ii) I satisfies the Palais-Smale condition and, for every u ∈ E, there
exists a self-adjoint operator L(u) : E → E such that HI(u)(v, v) =
〈L(u)v, v〉E, for every v ∈ E, where HI is the Hessian form of I at u,

(iii) The Nehari manifold M is homeomorphic to the unit sphere in E,

(iv) There exist a regular value b∗ > b of I, a nonempty set Θ ⊂ RN

with smooth boundary and continuous applications Φ : Θ− → Mb∗,
β : Mb∗ → Θ+ such that β ◦ Φ = IdΘ−, where

Θ+ = {x ∈ R
N ; dist(x,Θ) ≤ r} and Θ− = {x ∈ Θ; dist(x, ∂Θ) ≥ r},

for some r > 0 such that Θ+ and Θ− are homotopically equivalent to
Θ.

3



Suppose also that the set K of critical points of I is discrete. Then
∑

u∈C1

it(u) = tPt(Θ) + tQ(t) + (1 + t)Q1(t) (1.4)

and
∑

u∈C2

it(u) = t2[Pt(Θ) +Q(t)− 1] + (1 + t)Q2(t), (1.5)

where it(u) is the polynomial Morse index of u,

C1 := {u ∈ K; δ < I(u) ≤ b∗}, C2 := {u ∈ K; b∗ < I(u)},

Pt(Θ) is the Poincaré polynomial of Θ and Q,Q1,Q2 are polynomials with
non-negative coefficients.

As an example of the use of this result, we consider a class of nonlinear
Schrödinger equations with an external magnetic field, namely

{
(

1
i
∇− A

)2
u+ κu = |u|p−2u in Ω,

u = 0 on ∂Ω,
(1.6)

where κ is a positive parameter, Ω ⊂ RN is a smooth bounded domain,
N ≥ 3, i is the imaginary unit and p ∈ (2, 2∗), 2∗ = 2N/(N − 2). The
function A : Ω → RN is the magnetic potential and the Schrödinger operator
is defined by

(

1

i
∇− A

)2

u = −∆u −
2

i
A · ∇u+ |A|2u−

1

i
udivA.

We assume that A ∈ L∞(Ω,RN).
Existence results for the magnetic case, that is A 6= 0, has also received

a special attention in the last year. Associated with this subject, the reader
can find interesting results in the papers [1], [2], [3], [5], [10], [12], [13], [15]
[16], [17], [19] [21], [25], [26], [27], [29], [30], [31], [32].

Motivated by [7, 8], we obtain the following result.

Theorem 1.2. Suppose that the set K of solutions of the problem (1.6) is
discrete. Then there is a function p : [0,+∞) → (2, 2∗) such that for every
p ∈ [p(κ), 2∗) ,

∑

u∈K

it(u) = tPt(Ω) + t2[Pt(Ω)− 1] +Q(t),
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where Q is a polynomial with non-negative integer coefficients, Pt(Ω) is the
Poincaré polynomial of Ω and it(u) is the Morse index of u.

In the non-degenerate case, we have:

Corollary 1.3. Suppose that the solutions of problem (1.6) are non-
degenerate. Then there is a function p : [0,+∞) → (2, 2∗) such that for every
p ∈ [p(κ), 2∗) , problem (1.6) has at least 2P1(Ω)− 1 nontrivial solutions.

Another application of the abstract result can be given by the following
problem

{

(−i∇− Aλ)
2 u+ u = |u|p−2u, in Ωλ,

u = 0, on ∂Ωλ,
(1.7)

where λ > 0 is a positive parameter, Aλ := A (x/λ), Ωλ := λΩ, Ω ⊂ RN

(N ≥ 3) is a bounded smooth domain and p ∈ (2, 2∗) . We observe that,
unlike the case with no magnetic vector field A, problem (1.7) cannot be
written in the form (1.6), and hence these problems are different. In [3],
Alves et al have proved that for large values of λ > 0, problem (1.7) has at
least cat(Ωλ) nontrivial weak solutions. Combing the abstract result with
arguments present in [3], we are able to estimate the number of nontrivial
solution in terms of the Pt(Ωλ). More precisely, we can prove that (1.7) has
at least 2P1(Ωλ)− 1 nontrivial solutions provided that λ is sufficiently large.

2 The abstract theorem

In this section we give the proof of Theorem 1.1. We begin by showing how
the set Θ relates to the set Mb∗ .

Lemma 2.1. Under the assumptions of Theorem 1.1, we have

Pt(M
b∗) = Pt(Θ) +Q(t),

where Q is a polynomial with non-negative coefficients.

Proof. We observe that Φ induces a homomorphism (Φ)k : Hk(Θ
−) →

Hk(Mb∗) between the k-th homology groups. Since Φ is a injective function,
so also is (Φ)k. Hence, dimHk(Θ

−) ≥ dimHk(Mb∗), and the result follows
from the definition of the Poincaré polynomials and the fact that Θ− and Θ
are homotopically equivalent.
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Lemma 2.2. Let δ ∈ (0, b) and let a ∈ (δ,∞ ] be a noncritical level of I.
Then

Pt(I
a, Iδ) = tPt(M

a).

Proof. The proof proceeds along the same lines as the proof of [8, Lemma
5.2].

Lemma 2.3. Let δ be as in Lemma 2.2. Then

Pt(I
b∗ , Iδ) = tPt(Θ) + tQ(t) (2.1)

and
Pt(E, I

δ) = tPt(M) = t, (2.2)

where Q is a polynomial with non-negative coefficients.

Proof. By assumption, b∗ is a regular value. Applying Lemma 2.2, for
a = b∗, and Lemma 2.1, we get (2.1). Using the fact thatM is homeomorphic
to the unit sphere in E, which we know to be contractible, we have that M is
contractible. Hence, dimHk(M) = 1 if k = 0 and dimHk(M) = 0 if k 6= 0.
The identity (2.2) follows from Lemma 2.2 with a = +∞ and the fact that
M is contractible.

Lemma 2.4. Let δ be as in Lemma 2.2. Then

Pt(E, I
b∗) = t2[Pt(Θ) +Q(t)− 1], (2.3)

where Q is a polynomial with non-negative coefficients.

Proof. We follow Benci and Cerami [8] in considering the exact sequence:

. . . −→ Hk(E, I
δ)

jk→ Hk(E, I
b∗)

∂k→ Hk−1(I
b∗ , Iδ)

ik−1
→ Hk−1(E, I

δ) −→ . . .

From (2.2), we obtain dimHk(E, I
δ) = 0, for every k 6= 1. Combining this

with the fact that the sequence is exact, we obtain that ∂k is an isomorphism
for every k ≥ 3. Hence,

dimHk(E, I
b∗) = dimHk−1(I

b∗ , Iδ), ∀k ≥ 3. (2.4)

For k = 2, we have

. . . −→ H2(E, I
δ)

j2→ H2(E, I
b∗)

∂2→ H1(I
b∗ , Iδ)

i1→ H1(E, I
δ) −→ . . .
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Since the homomorphism induced by the canonic projection j2 is surjective
and dimH2(E, I

δ) = 0, by (2.2), we have

H2(E, I
b∗) = j2(H2(E, I

δ)) = {0}. (2.5)

For k = 1,

. . . −→ H1(I
b∗ , Iδ)

i1→ H1(E, I
δ)

j1→ H1(E, I
b∗)

∂1→ H0(I
b∗ , Iδ) −→ . . .

Using that E is a connected set, we have

H0(E, I
b∗) = 0. (2.6)

We now claim that i1 is an isomorphism. Indeed, as Θ 6= ∅ and dimH0(Θ) is
the number of connected components of the set Θ, we have H0(Θ) 6= {0}. By
(2.1), H1(I

b∗ , Iδ) 6= {0}. From (2.2), we obtain dimH1(E, I
δ) = 1. Since i1

is injective, it follows that dimH1(I
b∗ , Iδ) = 1, and so i1 is an isomorphism.

Hence, as j1 is surjective, we get

dimH1(E, I
b∗) = 0. (2.7)

Combining Lemma 2.3 with (2.4)-(2.7), we have

Pt(E, I
b∗) =

∑

k≥3

tk dimHk(E, I
b∗)

=
∑

k≥3

tk dimHk−1(I
b∗ , Iδ) = t

∑

k≥3

tk−1 dimHk−1(I
b∗ , Iδ)

= t
[

Pt(I
b∗ , Iδ)− t dimH1(I

b∗ , Iδ)− dimH0(I
b∗ , Iδ)

]

= t2 [Pt(Θ) +Q(t)− 1] ,

which completes the proof of Lemma 2.4.

2.1 Proof of Theorem 1.1

Now, we are able to conclude proof of Theorem 1.1. By (ii), I satisfies the
Palais-Smale condition and, for a nondegenerate critical point u of I, the
linear operator L(u) associated to HI(u) is a Fredholm operator with index
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0. By [6, Example I.5.1], we can use [6, Theorem I.5.9] and Lemmas 2.3 and
2.4 to get

∑

u∈C1

it(u) = Pt(I
b∗ , Iδ) + (1 + t)Q1(t)

= t
[

Pt(Θ) +Q(t)
]

+ (1 + t)Q1(t)

and

∑

u∈C2

it(u) = Pt(E, I
b∗) + (1 + t)Q2(t)

= t2
[

Pt(Θ) +Q(t)− 1
]

+ (1 + t)Q2(t).

3 Application of the abstract theorem

This section is devoted to prove Theorem 1.2. Let E be a real Hilbert space
defined as the closure of C∞

c (Ω,C) with respect to the norm induced by the
inner product

〈u, v〉κ := Re

{
∫

Ω

[

∇Au∇Av + κuv
]

dx

}

,

where, for a, b ∈ C
M , M ∈ N, ab =

∑M

j=1 a
j .bj , where “ . ” is the usual

complex multiplication, Re(a) is the real part of a ∈ CM and a the complex
conjugate of a. Moreover,

∇Au := (Dj
Au)

N
j=1, Dj

Au = −i∂ju− Aju, j ∈ 1, ..., N.

The norm induced by this inner product is

‖u‖2κ :=

∫

Ω

[

|∇Au|
2 + κ|u|2

]

dx.

As proved in Esteban and Lions [21], for every u ∈ E there holds

|∇Au| ≥ |∇|u||.
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The above expression is the so called diamagnetic inequality. The functional
associated with (1.6), Iκ,p,Ω : E → R, is given by

Iκ,p,Ω(u) =
1

2

∫

Ω

(|∇Au|
2 + κ|u|2)dx−

1

p

∫

Ω

|u|pdx, ∀u ∈ E.

By Sobolev embeddings and diamagnetic inequality, Iκ,p,Ω is well defined.
Furthermore, Iκ,p,Ω ∈ C2(E,R) with

I ′κ,p,Ω(u)v = Re

(
∫

Ω

(∇Au∇Av + κuv − |u|p−2uv)dx

)

, ∀u, v ∈ E.

Thus, every critical point of Iκ,p,Ω is a weak solution of (1.6).

A standard verification shows that:

Proposition 3.1. The functional Iκ,p,Ω satisfies Palais-Smale condition,
that is, every sequence (un) ⊂ E for which supn |Iκ,p,Ω(un)| < +∞ and
I ′κ,p,Ω(un) → p, as n→ ∞, has a convergent subsequence.

It is straightforward to show that Iκ,p,Ω satisfies the geometric hypotheses
of the mountain pass theorem. From this and Proposition 3.1, for all
p ∈ (2, 2∗) and κ > 0, problem (1.6) has a nontrivial solution u ∈ E such
that Iκ,p,Ω(u) = bκ,p,Ω and I ′κ,p,Ω(u) = 0, where bκ,p,Ω denotes the mountain
pass level Iκ,p,Ω. Moreover, as in [33, Theorem 4.2],

bκ,p,Ω := inf
u∈Mκ,p,Ω

Iκ,p,Ω(u),

where Mκ,p,Ω =
{

u ∈ E\{0}; I ′κ,p,Ω(u)u = 0
}

is the Nehari manifold associ-
ated to Iκ,p,Ω.

Proposition 3.2. The Nehari manifold Mκ,p,Ω is diffeomorphic to the unit
sphere of E. Moreover, there is δ = δ(p) > 0, independent of κ > 0, such
that for every u ∈ Mκ,p,Ω,

∫

Ω

(|∇Au|
2 + κ|u|2)dx ≥ δ and Iκ,p,Ω(u) ≥ δ.

Proof. For any u ∈ Mκ,p,Ω, the diamagnetic inequality combined with
Sobolev imbedding imply

‖u‖2 =

∫

Ω

|u|pdx ≤ Cp

∫

Ω

|∇|u||2 ≤ Cp‖u‖
p,

9



where Cp is the constant of the embedding H1
0 (Ω) →֒ Lp(Ω,R). Thus

‖u‖ ≥ Cp

1
2−p =: δ1,

from where it follows

Iκ,p,Ω(u) =

(

1

2
−

1

p

)

‖u‖2 ≥

(

1

2
−

1

θ

)

δ21 =: δ.

To conclude the proof, let S be the unit sphere in E. For every u ∈ S, let
ξ(u) > 0 be the unique positive number such that

d

dt
Iκ,p,Ω(tu)

∣

∣

t=ξ(u)
= 0.

This define a C1 function ξ : S → (0,+∞) by the Implicit Function Theorem.
Thus, D : S → Mκ,p,Ω given by

D(u) = ξ(u)u ∈ Mκ,p,Ω

is a C1 diffeomorphism.

Proposition 3.3. Iκ,p,Ω
∣

∣

Mκ,p,Ω
satisfies the Palais-Smale condition.

Proof. Let (un) ⊂ Mκ,p,Ω be a sequence satisfying

sup
n∈N

|Iκ,p,Ω(un)| <∞ and
(

Iκ,p,Ω
∣

∣

Mκ,p,Ω

)′

(un) → 0.

Taking a subsequence if necessary, we can assume that Iκ,p,Ω(un) → d as
n → ∞. A standard verification shows that (un) ⊂ E is bounded. Thus
there is u ∈ E such that un ⇀ u in E. Consequently, un → u in Lp(Ω,C).
By [33, Proposition 5.12], for each n ∈ N, there is µn ∈ R such that

I ′κ,p,Ω(un)− µnG
′(un) =

(

Iκ,p,Ω
∣

∣

Mκ,p,Ω

)′

(un) = on(1), (3.1)

where Gκ,p,Ω(u) = I ′κ,p,Ω(u)u. Since un ∈ Mκ,p,Ω, by Proposition 3.2, we
obtain

lim
n
G′

κ,p,Ω(un)un = lim
n
(2− p)

∫

Ω

|un|
pdx ≤ (2− p)δ < 0.

This and (3.1) imply that µn → 0 as n → 0. The result follows from
Proposition 3.1. �
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Corollary 3.4. If u is a critical point of Iκ,p,Ω constrained to Mκ,p,Ω, then
u is a critical point of Iκ,p,Ω.

Proof. The proof proceeds along the same lines as the proof of Proposition
3.3. �

3.1 Behaviour of the minimax levels

For any p ∈ (2, 2∗) and κ > 0 we denote

mA(κ, p,Ω) := inf
u∈E\{0}

∫

Ω

(|∇Au|
2 + κ|u|2) dx

(
∫

Ω

|u|p dx

)
2
p

,

SA,κ := mA(κ, 2
∗,Ω), and SA := mA(0, 2

∗,Ω).

Employing the same arguments in [33], we can prove the following result:

Lemma 3.5. Let bκ,p,Ω be the mountains pass level of Iκ,p,Ω. Then

bκ,p,Ω =

(

1

2
−

1

p

)

mA(κ, p,Ω)
p

p−2 .

Hence,

bκ,2∗,Ω =
1

N
SA,κ

N
2 .

From now on, we also consider

m(κ, p,Ω) := inf
u∈H1

0 (Ω)\{0}

∫

Ω

(|∇u|2 + κu2) dx

(
∫

Ω

|u|p dx

)
2
p

and
Sκ := m(κ, 2∗,Ω).

Then, S := m(0, 2∗,Ω), where S is the best constant of the imbedding
H1

0 (Ω,R) →֒ L2∗(Ω,R), which is independent of Ω. Moreover, from [4,
Theorem 1.1], we have

11



Lemma 3.6. For every κ ≥ 0, we have SA,κ = Sκ = S.

The following lemma is the key to establish a relation between bκ,p,D and
b2∗ .

Lemma 3.7. For any given κ ≥ 0 and for any bounded domain D ⊂ R
N ,

the following limit holds:
lim
p→2∗

bκ,p,D = b2∗ ,

where b2∗ denotes the mountain pass level associated with the functional
J∞ : H1

0 (Ω) → R given by

J∞(u) =
1

2

∫

Ω

|∇u|2dx−
1

2∗

∫

Ω

|u|2
∗

dx.

Proof. Fix κ ≥ 0 and D ⊂ RN a bounded domain. Now let 2 ≤ p < q ≤ 2∗

and u ∈ E(D), where the Hilbert space E(D) is defined of the same way of

E taking D instead of Ω. Notice that |u|p,Ω ≤ |D|
q−p

qp |u|q,D, so

∫

D

(|∇Au|
2 + κ|u|2)dx

|u|2p,D
≥ |D|

−2(q−p)
qp

∫

D

(|∇Au|
2 + κ|u|2)dx

|u|2q,D
. (3.2)

Taking q = 2∗ and the infimum over all u ∈ E(D)\{0}, we find

mA(κ, p,D) ≥ |D|
−2(2∗−p)

2∗p SA. (3.3)

On the other hand, taking p = 2, q = p and using similar arguments, we
obtain

mA(κ, p,D) ≤ |D|
p−2
p mA(κ, 2,D). (3.4)

Then, by (3.3) and (3.4), (mA(κ, p,D))p is a bounded sequence, therefore
there exist

M := lim sup
p→2∗

mA(κ, p,D) and m := lim inf
p→2∗

mA(κ, p,D).

We claim that M = SA = m. Indeed, by (3.3),

m ≥ lim inf
p→2∗

|D|
−2(2∗−p)

2∗p SA = SA.

12



Suppose by contradiction thatm > SA. Let ǫ ∈ (0, m−SA). By the definition
of SA, there is u ∈ E(D) such that

∫

D

(|∇Au|
2 + κ|u|2)dx

(
∫

D

|u|2
∗

dx

)
2
2∗

< SA +
ǫ

2
.

On the other hand, as the function p 7→ |u|p,D is continuous, there exists
p ∈ (2, 2∗) such that for every p ∈ [p, 2∗) , we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

D

(|∇Au|
2 + κ|u|2)dx

(
∫

D

|u|pdx

)
2
p

−

∫

D

(|∇Au|
2 + κ|u|2)dx

(
∫

D

|u|2
∗

dx

)
2
2∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
ǫ

2
.

Thus, for every p ∈ [p, 2∗],

mA(κ, p,D) ≤

∫

D

(|∇Au|
2 + κ|u|2)dx

(
∫

D

|u|pdx

)
2
p

<

∫

D

(|∇Au|
2 + κ|u|2)dx

(
∫

D

|u|2
∗

dx

)
2
2∗

+
ǫ

2

< SA + ǫ < m,

that is, m = lim inf
p→2∗

mA(κ, p,D) < SA + ǫ < m, which is a contradiction.

Hence SA = m. Similar arguments show that SA =M . �

In the following, for all κ ≥ 0 and p ∈ (2, 2∗), we consider the functional

Jκ,p,Ω(u) =
1

2

∫

Ω

(|∇u|2 + κu2)dx−
1

p

∫

Ω

|u|pdx, ∀u ∈ H1
0(Ω),

and the corresponding Nehari manifold

Nκ,p,Ω := {u ∈ H1
0 (Ω)\{0}; J

′
κ,p,Ω(u)u = 0}.

Define
cκ,p,Ω = inf

u∈Nκ,p,Ω

Jκ,p,Ω(u).

13



As in the proof of Lemma 3.5 and Proposition 3.7, for all κ ≥ 0 and D ⊂ RN

a bounded domain, we have

cκ,p,D =

(

1

2
−

1

p

)

m(κ, p,D)
p

p−2 and lim
p→2∗

cκ,p,D = cκ,2∗,D.

In particular,

cκ,2∗,D =
1

N
S

N
2 =: b2∗ .

Thus, by Lemma 3.6,

lim
p→2∗

cκ,p,D = lim
p→2∗

bκ,p,D = b2∗ . (3.5)

Without loss of generality we can assume that 0 ∈ Ω. Let r > 0 be such
that Br(0) ⊂ Ω and the sets

Ω+ := {x ∈ R
N ; dist(x,Ω) ≤ r} and Ω− := {x ∈ Ω; dist(x, ∂Ω) ≥ r}

are homotopically equivalent to Ω.

Define (Iκ,p,r;Mκ,p,r; bκ,p,r) and (Jκ,p,r;Nκ,p,r; cκ,p,r) in an exactly similar
way to those of (Iκ,p,Ω;Mκ,p,Ω; bκ,p,Ω) and (Jκ,p,Ω;Nκ,p,Ω; cκ,p,Ω), by taking
Br(0) ⊂ Ω instead of Ω.

Using that Jκ,p,r|Nκ,p,r
satisfies the Palais-Smale condition, there exists

a positive function uκ,p,r ∈ Nκ,p,r such that Jκ,p,r(uκ,p,r) = cκ,p,r and
J ′
κ,p,r(uκ,p,r) = 0. By Schwarz simmetrization we can assume that uκ,p,r is

radially symmetric. Let tκ,p,y > 0 be the unique positive number such that
tκ,p,ye

iτyuκ,p,r(|.− y|) ∈ Mκ,p,Ω. Define the function Φκ,p : Ω
−
r → Mκ,p,Ω as

[Φκ,p(y)](x) =

{

tκ,p,ye
iτy(x)uκ,p,r(|x− y|), x ∈ Br(y),

0, x ∈ Ω\Br(y),

where τy(x) :=
∑N

j=1A
j(y)xj, x = (x1, . . . , xN) ∈ Ω.

Lemma 3.8. For a fixed κ ≥ 0,

lim
p→2∗

max
y∈Ω−

r

|Φκ,p(y)− b2∗ | = 0.
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Proof. Let (pn) ⊂ [2, 2∗) and (yn) ⊂ Ω−
r be sequences such that pn → 2∗

and
Iκ,pn,Ω(Φκ,pn(yn)) → b2∗ , as n→ ∞.

For simplicity, we will write

tκ,pn,yn =: tn, Iκ,pn,Ω =: In, Φκ,pn(yn) =: Φn(yn) and uκ,pn,r =: un.

Observe that

In(Φn(yn)) =
1

2

∫

Ω

(|∇AΦn(yn)|
2 + κ|Φn(yn)|

2) dx−
1

pn

∫

Ω

|Φn(yn)|
pndx

=
tn

2

2

∫

Br(0)

|A(z + yn)− A(yn)|
2|un|

2dx+

+
tn

2

2

∫

Br(0)

(|∇un|
2 + κ|un|

2)dx−
tn

pn

pn

∫

Br(0)

un
pndx

≤
tn

2

2

∫

Br(0)

|A(z + yn)− A(yn)|
2|un|

2dx+ Jκ,pn,r(un)

=
tn

2

2

∫

Br(0)

|A(z + yn)− A(yn)|
2|un|

2dx+ cκ,pn,r.

On the other hand, by diamagnetic inequality,

In(Φn(yn)) ≥ In(e
iτynun(.− yn))

≥
1

2

∫

Ω

(

|∇|eiτynun(.− yn)||
2 + |eiτynun(.− yn)|

2
)

dx−

−
1

p

∫

Ω

|eiτynun(.− yn)|
pdx

= Jκ,pn,r(un) = cκ,pn,r.

Thus, by (3.5), it is sufficient to show that

tn
2

2

∫

Br(0)

|A(z + yn)−A(yn)|
2|un|

2dx = on(1). (3.6)

We begin showing that un ⇀ 0 in H1
0 (Br(0),R) and (tn)n is a bounded

sequence. In fact, since un ∈ Nκ,pn,r achieves cκ,pn,r,

∫

Br(0)

(|∇un|
2 + κ|un|

2)dx =

(

1

2
−

1

pn

)−1

cκ,pn,r. (3.7)
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From (3.5)-(3.7), the sequence (un) ⊂ H1
0 (Br(0),R) is bounded. Thus, there

exists v ∈ H1
0 (Br(0)) such that











un ⇀ v in H1
0 (Br(0),R), as n→ ∞

un → v in Ls(Br(0),R), for each s ∈ [1, 2∗ ), as n→ ∞

un(x) → v(x) almost everywhere Br(0), as n→ ∞.

(3.8)

By the fact that un ∈ Nκ,pn,r achieves cκ,pn,r, un is a solution of

{

−∆u + κu = upn−1 in Br(0),

u = 0 on ∂Br(0).

Consequently, for any ψ ∈ C∞
c (Br(0)),

∫

Br(0)

(∇un∇ψ + κunψ)dx =

∫

Br(0)

un
p−1ψdx.

By (3.8), as n→ ∞,
∫

Br(0)

(∇un∇ψ + κunψ)dx→

∫

Br(0)

(∇v∇ψ + κvψ)dx. (3.9)

Since (upn−1
n ) is a bounded sequence in L

2∗

2∗−1 (Ω) and upn−1
n (x) → v2

∗−1(x)
almost everywhere in Ω, it follows that

upn−1
n ⇀ v2

∗−1 in L
2∗

2∗−1 (Ω).

Consequently,
∫

Br(0)

un
pn−1ψdx→

∫

Br(0)

v2
∗−1ψdx, ∀ψ ∈ H1

0 (Br(0),R).

Therefore, v ∈ H1
0 (Br(0),R)\{0} is a solution of

{

−∆u+ κu = u2
∗−1, in Br(0),

u = 0, on ∂Br(0).

By Pohozaev’s identity, v ≡ 0 in Br(0), and so,

un ⇀ 0 in H1
0 (Br(0),R). (3.10)
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By definition of tn, we have
∫

Br(0)

|A(yn)−A(z + yn)|
2|un|

2dx+

∫

Br(0)

|∇un|
2 + κ|un|

2dx =

=

∫

Ω

|A(x)− A(yn)|
2|un(x− yn)|

2dx+

+

∫

Ω

[|∇un(x− yn)|
2 + κ|un(x− yn)|

2]dx

=

∫

Ω

(|∇A(e
iτyun(x− yn))|

2 + κ|eiτyun(x− yn)|
2)dx

= tn
pn−2

∫

Ω

|eiτyun(x− yn)|
pndx

= tn
pn−2

∫

Br(0)

|un|
pndx.

Since un ∈ Nκ,pn,r, we get
∫

Br(0)

|A(yn)−A(z + yn)|
2|un|

2dx = (tn
pn−2 − 1)

∫

Br(0)

(|∇un|
2 + κ|un|

2)dx.

(3.11)
A direct computation shows that there is δ∗ > 0 such that

∫

Br(0)

(|∇un|
2 + κun

2)dx ≥ δ∗ ∀n ∈ N. (3.12)

Combining the boundedness of (un) with (3.11), (3.12), (3.5), (3.7) and
(3.10), we deduce that tn → 1. From (3.10), Sobolev embeddings and the
boundedness of (tn), (3.6) follows. Since this argument can be applied to any
subsequence, the result holds.

3.2 Estimates involving the barycenter function

Consider β : Mκ,p,Ω → RN , the barycenter function, defined as

β(u) =

∫

Ω

x.|u|2
∗

dx
∫

Ω

|u|2
∗

dx

.

Our first results involving the barycenter function is the following
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Proposition 3.9. For fixed κ ≥ 0, there are ǫ = ǫ(κ) > 0 and p∗ =
p∗(κ) ∈ (2, 2∗) such that, for p ∈ [p∗, 2∗ ), β(u) ∈ Ω+

r , if u ∈ Mκ,p,Ω and

Iκ,p,Ω(u) ≤
1
N
S

N
2 + ǫ.

Proof. Fix κ ≥ 0. By (3.5), for p close enough to 2∗, the set

{

u ∈ Mκ,p,Ω; Iκ,p,Ω(u) ≤
1

N
S

N
2 + ǫ

}

is non-empty. Suppose, by contradiction, that the result is false. Thus, there
are sequences (pn)n, (ǫn)n, with pn ∈ (2, 2∗), pn → 2∗ and ǫn > 0, ǫn → 0, and
un ∈ Mκ,pn,Ω, such that

Iκ,pn,Ω(un) ≤
1

N
S

N
2 + ǫn and β(un) /∈ Ω+

r . (3.13)

On the other hand, (3.5) gives

lim inf
n→∞

Iκ,pn,Ω(un) ≥ lim
n→∞

bκ,pn,Ω =
1

N
S

N
2 .

Hence, the last two inequalities lead to

lim
n→∞

Iκ,pn,Ω(un) =
1

N
S

N
2 . (3.14)

Since un ∈ Mκ,pn,Ω and
∫

Ω
(|∇Aun|2+ κ|un|2)dx =

∫

Ω
|un|pndx, we know that

Iκ,pn,Ω(un) =

(

1

2
−

1

pn

)
∫

Ω

(|∇Aun|
2 + κ|un|

2)dx

and by (3.14),

lim
n→∞

∫

Ω

(|∇Aun|
2 + κ|un|

2)dx = S
N
2 .

The above limit yields

lim
n→∞

∫

Ω

(|∇Aun|
2 + κ|un|

2)dx

(
∫

Ω

|un|
pndx

)
2
pn

= lim
n→∞

(
∫

Ω

(|∇Aun|
2 + κ|un|

2)dx

)1− 2
pn

= S.
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Using the diamagnetic inequality and the last limit, we get

lim sup
n→∞

∫

Ω

(|∇|un||
2 + κ|un|

2)dx

(
∫

Ω

|un|
pndx

)
2
pn

≤ lim
n→∞

∫

Ω

(|∇Aun|
2 + κ|un|

2)dx

(
∫

Ω

|un|
pndx

)
2
pn

= S

(3.15)
The limit (3.15) implies that, for δ1 > 0 to be chosen later, there is n1 ∈ N

such that for n ≥ n1,

∫

Ω

(|∇|un||
2 + κ|un|

2)dx

(
∫

Ω

|un|
pndx

)
2
pn

≤ S + δ1. (3.16)

Arguing as in (3.2), for δ2 > 0 to be also chosen later, there is n2 ∈ N such
that for n ≥ n2,

∫

Ω

(|∇|un||
2 + κ|un|

2)dx

(
∫

Ω

|un|
2∗dx

)
2
2∗

≤

∫

Ω

(|∇|un||
2 + κ|un|

2)dx

(
∫

Ω

|un|
pndx

)
2
pn

+ δ2. (3.17)

From (3.16) and (3.17), for n ≥ max
j=1,2

nj , we have

S ≤

∫

Ω

(|∇|un||
2 + κ|un|

2) dx

(
∫

Ω

|un|
2∗ dx

)
2
2∗

≤ S + δ1 + δ2. (3.18)

We claim that there is η > 0 such that if v ∈ H1
0(Ω) satisfies

∫

Ω

(|∇v|2 + κv2) dx

(
∫

Ω

|v|2
∗

dx

)
2
2∗

≤ S + η, (3.19)
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then β(v) ∈ Ω+
r . Effectively, suppose by contradiction that (3.19) does not

hold. Thus, there are (vn) ⊂ H1
0 (Ω,R) and ηn → 0 such that

∫

Ω

(|∇vn|
2 + κ|vn|

2)dx

(
∫

Ω

|vn|
2∗dx

)
2
2∗

≤ S + ηn, with β(vn) /∈ Ω+
r .

Let wn := vn/|vn|2∗,Ω. Thus, (wn) ⊂ H1
0 (Ω) is a bounded sequence. Hence,

there are u ∈ H1
0 (Ω) and finite positive measures µ, ν ∈ M(RN) verifying,

for some subsequence,



















|wn| ⇀ u in D1,2(RN), as n→ ∞,

|∇wn −∇u|2 ⇀ µ in M(RN), as n→ ∞,

|wn − u|2
∗

⇀ ν in M(RN), as n→ ∞,

wn(x) → u(x) almost everywhere Ω, as n→ ∞,

where we made the extension by zero outside of Ω. By Concentration-
compactness lemma,

S = |∇u|22 + ‖µ‖M(RN ), 1 = |u|2
∗

2∗ + ‖ν‖M(RN ), ‖ν‖
2
2∗

M(RN )
≤ S−1‖µ‖M(RN ).

Employing the arguments in [33], ν and µ are concentrated at y ∈ Ω and

satisfy ‖ν‖
2
2∗

M(RN )
= S−1‖µ‖M(RN ). Let Γ : RN → R

N and Υ : RN → R be
continuous functions with compact support such that in a neighborhood of
Ω, Γ = IdRN and Υ = 1. Using these functions, we derive

β(vn) = β(wn) =

∫

Ω

x.|wn|
2∗dx

∫

Ω

|wn|
2∗dx

=

∫

RN

Γ(x)|wn|
2∗dx

∫

RN

Υ(x)|wn|
2∗dx

Hence,

β(vn) →

∫

{y}

Γ(x)dν

∫

{y}

Υ(x)dν
=
ν(y)Γ(y)

ν(y)Υ(y)
= y ∈ Ω,
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contradicting the fact that β(vn) /∈ Ω. Hence, the (3.19) holds. For η given

by (3.19), take in (3.18), δ1 = δ2 =
η

2
. Observing that β(|un|) = β(un), we

have,
β(un) ∈ Ω+

r ,

which contradicts (3.13) and the proof is complete.

For any κ ≥ 0 fixed, consider ǫ = ǫ(κ) > 0 given by Proposition 3.9.
Define

ǫ∗ = ǫ∗(κ) =
1

N
S

N
2 + ǫ (3.20)

and the set
Mǫ∗

κ,p,Ω := {u ∈ Mκ,p,Ω; Iκ,p,Ω(u) ≤ ǫ∗}.

Corollary 3.10. For fixed κ ≥ 0, there is p(κ) ∈ (2, 2∗) such that, for each
p ∈ [p(κ), 2∗ ),

Φκ,p(Ω
−
r ) ⊂ Mǫ∗

κ,p,Ω, β(Mǫ∗

κ,p,Ω) ⊂ Ω+
r .

Proof. The proof follows immediately from Lemma 3.8 and Proposition 3.9.

3.3 Proofs of Theorem 1.2 and Corollary 1.3

We are now ready to conclude the proof of Theorem 1.2. The key ingredient is
the verification of Theorem 1.1. To this end, fix κ ≥ 0, and take p ∈ [p, 2∗) ,
for p = p(κ) given by Lemma 3.10. Let K be the set of critical points of
Iκ,p,Ω. Suppose that K is discrete. We begin observing that condition (i) is
a consequence of the definition of Iκ,p,Ω, for Ψ given by Ψ(u) = 1

p

∫

Ω
|u|p dx.

Using that the Hessian form of Iκ,p,Ω at u is given by

HIκ,p,Ω(u)(v, w) = 〈v, w〉E − (p− 1)

∫

Ω

|u|p−2Re(wv) dx, ∀v, w ∈ E,

we have thatHIκ,p,Ω(u) is a bounded symmetric bilinear form, for every u ∈ E.
The Riesz representation produces a self-adjoint operator L(u) : E → E
such that HIκ,p,Ω(u)(v, v) = 〈L(u)v, v〉E. This and Proposition 3.1 imply
that condition (ii) holds. By Proposition 3.2, the Nehari manifold Mκ,p,Ω

is homeomorphic to the unit sphere of E, which implies (iii). Consider
ǫ∗ given by (3.20). We can clearly assume that ǫ∗ is a regular level of
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Iκ,p,Ω. By Corolary 3.10, for p ∈ [p, 2∗) the maps Φκ,p : Ω−
r → Mǫ∗

κ,p,Ω

and β : Mǫ∗

κ,p,Ω → Ω+
r are continuous and satisfy β ◦ Φκ,p = IdΩ−

r
, where, by

construction, Ω+
r ,Ω

+
r are homotopically equivalent to Ω. We conclude that

(iv) holds. Consequently, by Theorem 1.1, we have
∑

u∈C1

it(u) = tPt(Ω) + tQ(t) + (1 + t)Q1(t)

and
∑

u∈C2

it(u) = t2[Pt(Ω) +Q(t)− 1] + (1 + t)Q2(t),

where, for δ ∈ (0, δ), δ > 0 given by Proposition 3.2,

C1 := {u ∈ K; δ < Iκ,p,Ω(u) ≤ ǫ∗}, C2 := {u ∈ K; ǫ∗ < Iκ,p,Ω(u)}.

Thus
∑

u∈K

it(u) = tPt(Ω) + t2[Pt(Ω)− 1] +Q3(t),

where Q3 is a polynomial with non-negative coefficients. The proof of
Theorem 1.2 is complete. In order to prove Corollary 1.3, suppose that
every critical point of Iκ,p,Ω is non-degenerate. By general Morse theory,

i(u) = tm(u), for all u ∈ K,

and the result follows from Theorem 1.2. �
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