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In this dissertation we describe the TRACE framework, which is a five-step procedure

for the environment-aware approach towards wireless mobile computer networks. As

mobile computer networks become ubiquitous and deeply integrated with the daily

lives, it is crucial to understand the network and design its protocols and services with

the environment-aware approach: We first collect extensive network Traces that reflect

truthfully the detailed behaviors of its users, and Represent the rich data sets in concise

representations. Then we Analyze these constructed representations to Characterize

the users. While many observed characteristics are interesting in themselves and reveal

important differences between the realistic environment and commonly made assumptions

in the literature, we further add values to these findings by Employing them in various

important tasks, including modeling the network users and designing routing protocols.

The dissertation is centered around three major case studies, ranging from the

microscopic, individual user behavior in the wireless networks to the macroscopic, global

user encounter patterns. Specifically, in the case studies, we (1) observe the individual user

mobility from the collected traces, identify skewed preferences and periodical re-appearance

at the same location as prominent mobility characteristics, and propose the time-variant

community (TVC) mobility model to capture such behaviors. The TVC model is flexible to

match with many empirical traces while being mathematically tractable. (2) We construct

an efficient way for mobile users to summarize their mobility preferences based on singular
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value decomposition (SVD) and calculate the distance metric between users. Based on

this distance metric, we identify user groups in the population based on their mutual

similarities, and design a profile-cast service to deliver messages to these behavioral groups

without knowing their identities. (3) We further analyze the global encounter patterns

between nodes, observe a fast-emerging Small World encounter pattern, and leverage such

a network property to design an efficient message dissemination protocol named CSI, in

which Communication relies on the Stable yet Implicit structures in mobile networks.
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CHAPTER 1
INTRODUCTION

1.1 Emergence of Mobile Networks

In the past decades, wireless access technologies at the last-hop of communication

networks (e.g., cellular phone systems, wireless local area networks (WLANs)) took off

and its wide-spread deployments brought great convenience to the end users. Encouraged

by such an untethered environment, in recent years, we have witnessed the emergence of

an array of portable computing and communication devices (e.g., laptops, PDAs, smart

phones). Advances in wireless communication technologies and standards have made

ubiquitous communication an emerging reality. With the ever expanding adoption of these

wireless-capable devices, there is an increasing interest in new communication paradigms

and applications that do not necessarily rely on the infrastructure.

Such a keen interest in infrastructure-independent communication has led to the

establishment of the research area generally known as the Mobile ad hoc networks

(MANETs) [3]. By definition, MANETs are self-organized, infrastructure-less networks,

and considered as stand-alone networks in which the participants exchange information

among themselves. Typically, MANETs consist of autonomous devices, and each device

plays both roles of an end-host and a router at the same time. While the communication

range of individual nodes is limited to its close vicinity due to the nature of the wireless

medium, the end-to-end connectivity in the network is provided by the cooperation of its

participants, through multi-hop forwarding, sometimes involving temporary storage of the

messages in the non-volatile memory of intermediate nodes (in a sub-case of MANETs

generally known as the Delay Tolerant Networks, or DTNs[4]). MANETs provide an

attractive alternative way of communication where the setup of an infrastructure is

infeasible or too costly, or when the disseminated information is meant for only local

participants so there is no need to reach the Internet. Potential applications of MANETs

include vehicular networks (VANET)[7, 30], disaster relief[5], wild-life tracking[32, 33],
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and providing network connectivity to the rural area[6], to name a few. The emergence

of personalized portable wireless communication/computing devices (e.g., PDAs, smart

phones) also opens the door for creating a mobile virtual social network between people.

We envision such a MANET would facilitate socializing applications (e.g., matching people

with similar interests, information sharing among small groups, etc.) in the future.

1.2 Behavior-aware Network Approach

Traditionally, network research is done without specific assumptions or detailed

understanding of the environments in which the proposed protocols or services are used.

This approach leads to generic, behavior-oblivious protocols. The goal is to construct

generic, robust protocols that work regardless of the actual environment. While this

approach favors protocols that rely on a minimal set of basic primitives supported by the

underlying environments and contributes greatly to the wide-range acceptance of the basic

Internet protocols (e.g., IP, TCP, HTTP, etc.), the resulting protocols may not be the

most efficient in a particular environment. Furthermore, without specific considerations at

the design phase, it is usually not easy to fine-tune the resulting protocols and adapt them

to various environments efficiently.

Contrary to the fore-mentioned design philosophy, we argue that one major

requirement for future network protocols and services is its adaptability to specific

environments or user behaviors. With the proliferation of the hand-held devices and

the enhancement in their capabilities, we envision that future usage of mobile devices

will be highly personalized. The network-capable terminals will have tight one-to-one

correspondence to its owners. Users will incorporate these new technologies into their

daily lives, and the way they use new devices and services will reflect their personality and

lifestyle. This opportunity opens up the door for novel paradigms such as behavior-aware

protocols and services. Such services look into user behavior and leverage the underlying

patterns in user activity to adapt their operations and have the potential to work more

efficiently and suit potentially very different needs among the users. One classical example
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is the data mining efforts from various online stores (e.g., Amazon.com) that provide

personalized shopping offers based on browsing history. However, little attention has been

directed towards leveraging user behavioral patterns for services or protocol design in the

mobile computing/communication paradigm.

Therefore we propose in this dissertation the behavior-aware approach to computer

network research. This approach starts from detailed analysis of the underlying environments

in which one expects the network will be deployed, and then explicitly incorporates the

findings into the design phase of the network protocols and services. We propose this

approach based on the following reasons:

1. By analyzing multiple data sets collected in realistic environment, the understandings
we gain shed lights on fundamental user behaviors, such as preferences and
periodicity. The commonalities and differences found from different environments
also help us to distinguish common user behaviors from the specifics of a given
environment.

2. The findings from the analysis provide a set of more suitable assumptions to be used
later in the evaluation of the proposed network protocols and services. In particular,
it helps to avoid making unrealistic assumptions in the evaluation stage, so that the
results can be more meaningful.

3. The insight gained from the analysis of the environment usually provides a
good basis to build behavior-aware protocols and services. For example, a good
understanding of network usage pattern may lead to a good trend prediction and
abnormality detection service.

4. With a thorough analysis of user behavior from multiple environments, one can
identify the important commonalities and build the protocols with these facts as
major considerations.

In the following section we introduce the generic framework, abbreviated as TRACE,

for the behavior-aware approach towards computer networks in this dissertation. The

dissertation features several case studies of the TRACE framework, with different focuses

on various sub-problems of computer network design. They will be introduced in the

subsequent section.
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1.3 The TRACE Framework

There are five major steps in our behavior-aware approach to computer network

research. The shortened name of the framework is the TRACE framework, as illustrated in

Fig. 1-1. The individual steps are introduced below.
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Figure 1-1. Illustration of the TRACE framework.

1. Trace: The research starts with extensive collection of data sets about the
underlying environment. The methodology for trace collection should be set up
to maximize the relevant information captured in the traces. In this dissertation,
we use both the data sets we collected ourselves and the publicly available data sets
through archives in the research community (e.g., [1, 2]). Part of the trace collection
effort is still ongoing at the University of Florida. We will explain the details about
the traces in chapter 3.

2. Represent: After the trace collection phase, post-processing should be applied to the
large-scale traces so that the raw data is transformed into a proper representation
to facilitate the later analysis step. Usually, the raw trace is presented as a sequence
of events occurred in the given environment. The representation of the trace,
in our context, is a quantitative measure of these events, presented as a scaler
quantity, a vector, a matrix, or a graph. Various representations we choose are based
on the specific points we wish to understand about the environment. When the
TRACE framework is applied to compare multiple traces, this step also involves
the normalization of data sets collected with different techniques, so they become
comparable.

3. Analyze: The analysis step involves the application of various mathematical tools
or algorithms to obtain distilled information from the representations of the data
sets. Examples of such are the distributions for scaler quantities, the singular vectors
of the matrices, or the major component of a graph. We try various techniques
in the dissertation, including basic statistics and probability analysis (leading to
distributions of scaler quantities), singular value decomposition (SVD) that reveals
the major trends in the matrices distilled from the data sets, unsupervised learning
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(hierarchical clustering), and the application of Small World theory, to enrich the
repository of our analysis tools.

4. Characterize: We refer to the findings after the analysis and the interpretation of
the results as the characteristics of the traces. These are the important lessons we
learn from looking at the data sets. Consistent characteristics from multiple data
sets reveal the major underlying trends in the environments, and these are the points
we should pay attention to for network analysis and design.

5. Employ: The characteristics we discover could be employed in various tasks, such as
(1) building models for the underlying environment, (2) profiling and classifying
individual users, (3) suggesting heuristics of designing protocols for message
forwarding. In mobility modeling, the findings of spatial and temporal correlation
in mobility patterns lead to the proposal of a new mobility model, the time-variant
community model, that captures varying mobility characteristics depending on space
and time. In the profiling effort, we discover that the location visiting preferences
can be utilized to divide the population into distinct groups. We design salient
metrics for the distances between users in terms of the similarity in location visiting
preferences, and leverage unsupervised learning techniques to identify the important
groups. Finally, we leverage the similarity metrics to design a behavior-aware
message dissemination protocol. The protocol helps to reduce the transmission
overhead under similar success rate when compared with behavior-oblivious protocols
(e.g., flooding or random walk), when the goal is to transmit copies of messages to
a group defined by its behavior. We will further explain these applications in later
chapters of the dissertation.

It is perhaps interesting to note that the TRACE framework can be either Trace

driven or Employment driven. In the Trace driven scenario, one starts with rich data

sets and seek to understand the data set. This approach sometimes leads to interesting,

unexpected, or puzzling findings, which warrant further investigation and at times lead

to important usage. In the Employment driven scenario, one starts with a particular

system design goal in mind, and then constructs trace-collection facilities in relevant

environments, and consult the collected data sets for guidelines to achieve the goal. We

take mainly the first approach in this dissertation.

1.4 Study Components

In this dissertation we use three case studies to display the usefulness of the TRACE

framework. These study components are illustrated in Fig. 1-2. As shown in the figure,

each case study has two separate parts, the observation and the application. The flow
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of research in the case studies fall into the trace driven scenario mentioned above: we

start from the extensive data sets, look at a specific aspect of the trace using a proper

representation, and highlight the important characteristics through detailed analyses.

Following the observations, for each study case we also devise an application to support

the importance and usefulness of the observations. The three study cases focus on different

aspects of the information obtained from the traces, from microscopic individual user

behavior, to macroscopic structure of the whole user population. The study we present

here is structured by the three case studies, as we introduce in details below.
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Figure 1-2. Components of the study.

We first discuss the related work in chapter 2 to position our work in the literature.

In chapter 3, we introduce the data sets we use through the dissertation, address the

strengths and the shortcomings of the currently available data sets in the community, and

discuss about the ongoing data collection effort at University of Florida. We then move on

to show our three case studies in chapter 4, 5, and 6/7, respectively. Finally, we conclude

the dissertation in chapter 8.

Chapter 4 focuses on the observed individual user mobility (i.e., the microscopic

user behavior) from the traces. We start by displaying several interesting common

observations from the traces, including the on-off user behavior, the skewed location
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visiting preferences, and the periodic re-appearance of users at the same locations. We

further show, although these user behaviors are prevalent in realistic scenarios, none

of the existing mobility models capture all of them successfully. Inspired by this, we

propose a time-variant community mobility model as a generic and realistic mobility model

to capture these behaviors. In addition, the time-variant community mobility model is

amenable to mathematical analysis. This mobility model is a powerful tool to enable

realistic performance analysis for various protocols and services in MANETs.

We move up one level in terms of the scope of focus in chapter 5. The central

question we address in this chapter is whether it is possible to identify groups of users

following similar trends from the collected traces, without any assumptions of the

existence of groups in the environment. We apply unsupervised learning techniques (e.g.,

clustering) in this chapter to the data sets, and display that within the large population

(in the order of thousands), with careful selection of the features and the distance metric

between users we can classify users based on the preferences in their mobility patterns.

Such a group identification technique has a wide-range of applications, from network

management to intelligent advertising to behavior-aware protocol design. We choose

behavior-aware protocol design as the application for this case study and propose a profile-

cast service which targets a group of users defined implicitly by their behavior patterns as

the destination nodes. The salient feature of the profile-cast service is that the sender does

not have to know the receiver’s network identities when sending the messages.

We further move up one level to understand the macroscopic structure of user

interaction in chapter 6. In this chapter, we seek to understand the encounter patterns

(i.e., the pattern of mobile nodes moving into the communication range of each other)

realistically by representing the information obtained from the traces as graphs. We

observed the emergence of a special graphic structure, known as the SmallWorld [8], from

multiple traces. This suggests a potential correspondence between the existing social

network structure and the communication opportunities between the mobile users in the
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future MANETs. Inspired by this finding, we devise message dissemination protocols

that relies on the SmallWorld encounter patterns. This part is a generalization of the

profile-cast service shown in chapter 5, and we name this protocol as CSI, since its a new

Communication protocol based on the Stable yet Implicit structure in human mobile

networks. We present its detailed design in chapter 7.

1.5 Contributions

In this study we have made the following contributions:

1. Over the course of several years, we have collected user traces from WLANs in the
University of Southern California and the University of Florida. With the help
from the corresponding network administrators in the schools, we are able to obtain
extensive, campus-wide measurements of the activities of the campus network users.
We have gained the understanding of what information to collect to maximize the
usage of the data. In the future, the collected traces will be shared with the research
community through our project website [1].

2. We have built a rich set of different representations and analysis tools to investigate
various aspects of the traces. As mentioned earlier, these tools reveal various
behaviors of users in the trace, ranging from microscopic individual mobility to
macroscopic network-wide encounter patterns.

3. We build the time-variant community mobility model based on the insight gained by
studying the traces. This model provides a flexible and scalable platform on which
researchers can set up a wide range of scenarios for MANET protocol and service
evaluations. The code for the mobility trace generator is available at [9].

4. We propose a matrix representation based on long-run user mobility preference
and a summarization technique to extract important features from the matrix.
Then we construct a distance or similarity measure between users based on these
features. The distance metric can be used to classify users into distinct groups,
and the identification of such groups provides useful information for the network
administrators.

5. We propose the profile-casting service for message delivery in mobile networks, a new
communication paradigm in which the properties of individual users, instead of the
network identities, are used to identify the desired destination nodes. We believe the
profile-cast approach is more suitable than the traditional identity-centric approach,
especially when the network is highly dynamic. The profile-cast service incorporates
the understanding gained from detailed studies of the environment, such as the
similarity metric mentioned above and the SmallWorld encounter patterns, into the
protocol design phase.
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CHAPTER 2
RELATED WORK

In this chapter we discuss related work in the literature. Since the analysis in the

dissertation uses the collected traces, we first discuss about recent efforts of the research

community to gain access to user behavioral measurements from large-scale in-provision

networks or small-scale testbeds in section 2.1. We further discuss existing analyses done

on the collected data sets in section 2.2 to put our research in context. We also introduce

the work related to our two major applications, mobility modeling and message forwarding

protocol design in the delay tolerant network (DTN) framework, in sections 2.3 and 2.4

respectively.

2.1 Trace Collections

Collecting traces has long been considered an empirical way to understand the

dynamics in large systems realistically. Large-scale data analysis has proven helpful to

unearth hidden trends and understand deeply the dominant dynamics in the system.

Several classical examples of findings from trace analysis that further lead to high impact

research are the discovery of the self-similar traffic from packet trace analysis [18] and

the identification of power-law distributions in the node degree from network topology

traces [19]. In both cases, the work was made possible by extensive collection of relevant

data sets.

For the research in MANETs, nodal mobility is one of the major components to

understand as the mobility changes the network connectivity and hence impacts the

system-wide performance on many fronts. Therefore, there has been extensive efforts to

collect user mobility traces through various methods. One straight-forward way to obtain

mobility information is through close observations [22] of the moving users or surveys [21].

These approaches, although beneficial, have severe limitations in terms of its scalability –

if human effort is involved, it is difficult to repeat the trace collection process to include a

large population.
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To enable large-scale data collections, researchers leverage the existing last-hop

wireless network infrastructures to collect location information of the users. One

prominent example of such networks is the wireless LANs (WLANs). User trace collection

in WLANs started by the seminal work of Tang and Baker, who collected the WLAN

traces from both an academic environment (i.e., a research building on a university

campus) [23] and typical daily life (i.e., city-wide access points) [24]. Their effort has

been followed by many researchers, including Balazinska and Castro [10], McNett and

Voelker [11], Kotz and Henderson et al. [12, 13], and Papadopouli et al. [14], each

collecting WLAN traces from infrastructures with different sizes and user populations.

Among these efforts, Balazinska and Castro focus on WLAN users in three corporate

buildings [10], McNett and Voelker collect usage traces specifically for hand-held devices

(i.e., PDAs) [11], and the other trace collections [12–14] are obtained from generic users

on university campuses. We have also collected WLAN traces from University of Southern

California [15] and University of Florida campuses. Most of these traces are collected

passively, i.e., there is no need for the WLAN users to actively participate in reporting

any data. The access points (APs) and sometimes other logging servers in the network

passively monitor the association and usage of individual users. The only exception is [11]

where the researchers install reporting software on the PDAs to keep track of all APs in its

communication range. The passive trace collection approach is usually more scalable as it

does not require software installation or proactive participation from the users. With this

method, traces with more than thousands of users are not uncommon. These efforts lead

to rich data sets to understand user mobility in WLANs, especially on university campuses

from where most of the traces are obtained. In addition to the location information

revealed by the association with APs, the WLAN usage of each user (i.e., the amount of

traffic sent/received) is usually also logged, widening the potential usage of the traces.

In addition to WLANs, other possibilities are also leveraged to collect traces. In

the Reality Mining project [16], Eagle and Pentland program the cellphones of the
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participating users to log the cellphone base stations they associate with, the mutual

encounters between the cellphones via bluetooth probing, and activities on the cellphones

(e.g., call history). While cellphones are probably the most popular wireless devices,

large-scale traces are not yet released from the cellular phone operators due to privacy

concerns. The traces from cellphones in the research community are mostly actively

collected through additional programs on the participating devices (as in [16]), hence

its scale is usually not comparable to the passively collected WLAN traces. However,

it is note-worthy that large-scale user location traces collected from the cellular phone

networks do exist, and as of the dissertation writing, studies of cellular user behavior also

emerge in the literature (e.g., [25]). The data sets, at this moment, are only available to

the cellular system operators. Along a different line, there are also efforts in collecting

vehicle movement traces, in most cases through GPS positioning system. One example is

the Cab Spotting project [17] which logs the location information of participating taxis in

the greater San Francisco area. Projects of this nature also require active reporting from

the monitored vehicles, hence the participants are usually in the order of hundreds.

More recently there are several testbeds deployed to collect encounter events (i.e.,

when devices move into the communication range of each other) between moving objects.

The objective of these projects is to understand the emergence of communication

opportunities between the devices carried by moving human beings. The Haggle

project [26] focuses on the scenarios named as the pocket-switch networks, i.e., the

users carry miniature devices equipped with short-range radio in their pockets, and these

devices log their mutual encounters as potential communication opportunities. They have

carried out experiments in conference settings at INFOCOM 2005 and 2006 [27] and in

research labs. Experiments with a similar objective are also performed by Su et al. [29]

in a university campus setting and by Leguay et al. in a college town [28] setting. These

data sets can be leveraged, for example, to evaluate routing protocol performances in

DTNs in empirical environments. While human mobility has received relatively more
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attention, other experiments also focus on the encounter patterns between vehicles (e.g.,

the DieselNet project [30]) and wild animals (e.g., TurtleNet [31], ZebraNet [32], and

whale tracking [33]).

Due to the fast emergence of traces, the research community tries to organize websites

for archiving or maintaining pointers to the relevant traces. These websites help to

provide better accessibility for researchers to locate the resources in the community. Two

prominent examples of such websites are [1] and [2]. Most of the traces we use in this

dissertation can be found on either website.

In addition to utilizing existing data sets in this dissertation, we have also conducted

efforts in collecting data sets ourselves. We have been collecting WLAN traces from the

University of Southern California since summer 2005, and part of the traces has been

made available through the MobiLib website [1] established by Dr. Helmy. This data

set consists the location information of wireless users on USC campus, and the netflow

information (their usage of the network)1 . We have also started a similar effort at the

University of Florida with more detailed information2 . The current trace collection

includes not only the association with the access points (i.e., the location information) of

WLAN users, but also the log-in and log-out timestamps from the authentication servers

(this is a required step for UF wireless network users to access the Internet) and the

amount of traffic sent/received in 30-minute intervals. This additional information of user

login potentially allows us to distinguish between the scenarios when users actively uses

the network versus when users turn on their computers but do not intend to access the

network (e.g., when the users merely process the documents on the local host, they do not

have to login to use the WLAN). We plan to make the trace available once we clean it

1 Special thanks to Mr. Brian Yamaguchi and Carl Hayter at USC Information Technology Services for
helping us collect the WLAN traces on the USC campus in the past three years.

2 Special thanks to Mr. Marcus Morgan at UF Information Technology & Services for helping us col-
lect the WLAN traces on the UF campus in the past year.
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up and add sufficient anonymization to protect user privacy (this is an on-going effort by

fellow researchers in the NOMADS research group [102]). Furthermore, through the course

of the research work, we have obtained a good collection of pointers to existing data sets.

We put these pointers online for the ease of references for us and the research community

in the future. Please refer to the MobiLib website [1] for more details.

We have also tried out other techniques for the collection of mobility related

information. One example is giving out surveys [21, 77] and asking people about their

movement patterns. This approach is helpful in building the insights about mobility, but

does not scale very well. Some of my early research work built on top of the surveys is

summarized in the Appendix.

2.2 Trace Analysis

In this section we discuss the analysis based on the traces in the literature. We split

the section into several subsections, depending on the methods used in the analysis. The

focuses of the subsections are (1) General statistics, (2) Data mining techniques, and (3)

Graph analysis.

2.2.1 General Statistics

In the incipient stage of WLAN trace based analysis, the researchers focus on

understanding how users use the WLAN. In many early works in this area, a lot of basic

statistics of users, such as average number of online users, average session duration,

bytes sent and received, and protocols used, are included [10–13, 23, 24]. In addition

to understanding individual users, the researchers also consider the WLAN from which

the trace is collected as a system, observe how users utilize the system as a whole, and

display the relevant statistics, such as average number of users per access point (AP), the

distribution of AP popularity, and user handoff frequency between access points. Such

an approach is natural as most of the current trace collection efforts obtain the traces

from a single administrative entity (in most cases, from university campus networks, e.g.,

[11–13, 23]). These statistics help the researchers to gain understanding of user behaviors.
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However, most of these works do not try to compare the findings between different traces.

Furthermore, as the trace collection methods and the statistics presented in each study are

not standardized, sometimes comparing the results is difficult. It is hence unclear whether

a finding based on a particular trace is a general phenomenon among wireless network

deployments. To improve upon this shortcoming, in this dissertation we consider multiple

traces and analyze multiple traces with the same methods (see chapter 3 for details) in

order to generalize the findings beyond a specific environment, enabling us to discuss

about generic user behaviors. In order to achieve that, we have to apply appropriate

normalizations to make the traces collected with different techniques comparable, and

identify relevant metrics of user behaviors from different contexts.

With these traces available, later research works focus on characterizing user

behaviors in wireless LANs. One particular important aspect, as mentioned earlier, is

the mobility of users. Balazinska and Castro provide an analysis with special focus on user

mobility, defining the notion of home location and two quantitative measures, persistence

and prevalence, to gauge user mobility [10]. This provides a broad classification of users

based on the degree of their mobility, but does not completely describe their detailed

behavior (e.g., how the users split their online time to various locations). Along the line

of modeling user association to access points (APs), in [34] the authors propose to cluster

APs based on the time of peak user arrivals. In [35] the focus is on the arrival patterns

of users at APs and the authors propose to use time-varying Poisson processes to model

the arrival patterns, and further identify clusters of APs based on the parameters in its

arrival process. These modeling efforts focus more specifically on capturing the changes

of numbers of users associated with the APs by modeling the arrival and departure

processes, hence the resulting models capture the dynamics of the users of an access

point in aggregation (i.e., the variation of the total number of users associated with a

particular AP) rather than the dynamics of the individual user. In contrast, we take a

holistic view at modeling associations of individual users, and observe several aspects
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of user association. In chapter 4, we propose a general framework which is applied to

capture fundamental aspects of user association behaviors in the WLAN traces (e.g.,

User activeness, preferences in association, handoff, and repetitive periodic patterns in

association) that can be used to build models for WLAN users. The major findings we

observe from multiple WLAN traces at hands include the on-off behavior, the skewed

location visiting preferences, the hand-off, and the periodical re-appearance of nodes. We

use these metrics to provide a complete description for users’ mobility-related behaviors

in wireless networks. By studying multiple traces from different environments collected at

different times, we are able to establish that most traces display similar trends, but the

details differ due to differences in user population, environment, time, and methodologies

of trace collection.

We believe that the design and evaluation of the next generation wireless networks

should go hand-in-hand with deep, insightful understanding of the realistic environments

in which they will be deployed and used. However, the WLAN traces studied in this

dissertation do not provide directly nodal mobility models, as they represent the combined

effects of coarse-grained (i.e., per-AP granularity) nodal mobility, plus the on-off usage

patterns of the device owners and the influences of wireless signal propagation in the

environments. In that sense, one may envision that all-encompassing models may be

built by studying the traces. Understanding of such realistic scenarios sheds lights on

sometimes falsely taken assumptions in over-simplified random mobility models (such as

nodes holding the same probability to visit all locations or behaving similarly through

the whole simulation period), and quantifies the detailed behaviors of users so that future

models can incorporate them. We will further discuss this point regarding mobility models

in section 2.3 below.

As a side note, there also exists analysis of other aspects than the user mobility based

on the collected traces. For example, in [37] the authors propose models to describe traffic

flows generated by WLAN users. This points out the wide applicability of the traces for
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empirical studies. In this dissertation, we choose to focus on the user associations (in

particular, on user mobility modeling and differentiating users based on mobility) obtained

from the traces and its applications, and leave other aspects (such as traffic) out for future

work.

2.2.2 Data Mining Techniques

Although user association pattern has been one major focus in studies about WLANs,

for most works mentioned previously, the focus is either on aggregated statistics or on

association models for individual user. There are hardly any studies on understanding

the relationships between users in the literature. In chapter 5 we attempt a data mining

approach to understand the relationship between users in the large-scale data sets.

More specifically, we define similarity metrics between individual users based on their

preferences of association, and leverage unsupervised learning techniques (i.e., clustering)

to identify groups of coherent behavior from the diverse user population.

Along this line of research, there are only a few previous works that use data mining

techniques to classify users. The earliest example is by Tang and Baker[24], where they

classify Metricom users into groups with a two step procedure. The first step classifies the

users based on mobility-related statistics, such as number of locations visited and distance

moved. Each group identified in the first step is further classified in the second step based

the activeness of the user (i.e., quantified by the events generated by the user) during the

day. Another example we are aware of is [38], where Kim et al. classify users based on the

periodicity and the movement range. Specifically, in their paper, users are classified based

on the dominant periods in their movement (i.e., classified into groups that display strong

daily or weekly movement patterns) and their longest movement ranges. They classify

users based on different representations, hence the results have different interpretations to

ours. In particular, their classification of users is based on high-level behavioral statistics,

while our classification of users is based the fine-grained location preferences hence more
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detailed behavioral groups can be identified. This provides a different and important

perspective to understand user association patterns.

There are several other papers in the literature of trace analysis that also use

clustering techniques for different objectives. For examples, in [39] the authors apply

clustering techniques (K-means and Gaussian mixture model) to the trace of location

coordinates of the same user at many different time instants to discover significant places

for the user, but they have not focused on classifying users. In [78], the authors use the

mutual encounter frequencies between nodes to identify the underlying communities,

where the notion of a community refers to a group of nodes who remain in contact for long

periods of time. The clustering is done based on communication opportunities available

between the devices, not the similarity between user behaviors (However, we also note that

high similarity in nodal mobility does lead to better communication opportunity between

the similar nodes, hence there is a correlation between the two approaches).

In this work we represent the association history of each user in a matrix form, and

utilize singular value decomposition[41] to obtain the association features from users.

Singular value decomposition (SVD) is widely-applied to discover linear trends in large

data sets. It is closely related to principal component analysis [40]. In [42], the authors

utilize PCA to decompose the traffic flow matrices for ISP networks and understand the

major trends in the network traffic flow matrices. Our application of SVD to individual

user association matrices is similar in spirit to their work. Note that it is typical for

people to follow dominant routines in lives, hence we expect the SVD approach to be

applicable to various human behavioral data sets. In [16], the authors also use PCA to

discover trends in a cellphone user group, which is similar to our analysis on individual

users. In this dissertation, in addition to analyzing much larger data sets than the data

set used in [16], we further quantify user similarity by defining distance metrics to classify

wireless network users into groups with robust validation. Note that in order to make the

eigen-behavior vectors obtained from all users comparable, we need to keep the origin
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fixed among all association matrices. Hence we adopt a variant, called uncentered PCA

[40] where the mean of each dimension is not subtracted. It has been used to study the

diversity of species at various sites[43] in biology literature.

2.2.3 Graph Analysis

In chapter 6 we look into the encounter patterns (i.e., the patterns of wireless

devices moving into communication range of each other) of the users in the traces. We

seek to understand the global structure of the relationships between users in the traces.

Specifically, we provide new perspectives to study the WLAN traces by looking into

encounter distributions and utilizing the Small World theory to describe the encounter

relationship between users as a graph. The Small World graph model is proposed in [8]

and widely utilized to describe various networks in many areas, such as social networks,

Internet topology, and electrical power networks [44]. In [45] the author applied the

concept of Small World to devise a contact-based resource discovery scheme in wireless

networks. Two prominent features of Small World graphs are high clustering coefficients

comparable to the regular graphs and low average path lengths comparable to the random

graphs. The emergence of the Small World properties indicates there is a correspondence

between the encounters of devices in this traces and the fundamental social relationship

between their owners, as the Small World network property is an important characteristic

of the social networks of human beings.

In [46] Bai and Helmy find that, under mobility models with homogeneous behaviors

(i.e., Each node follows exactly the same model with some randomness), eventually each

node encounters with all other nodes in the network (i.e. achieving 100% encounter

ratio). However, the empirical observations from large WLAN traces show very different

behaviors, with most nodes encountering only a very small portion of the whole

population, during a time frame as long as a month. This observation indicates that

the user populations in larger environments, such as university campuses, are actually
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not homogeneous. This also leads to the need of a flexible mobility model to capture the

non-i.i.d. mobility of the population, which we discuss further in section 2.3 below.

Similar graph analysis of potential communication opportunities has also been done

based on student class schedules in a university in [47]. The authors create a graph in

which each student is represented as a node, and assume that students registered in the

same class form links between the nodes corresponding to these students. They show that

this graph also displays Small World properties. We must note, however, that the class

registration information is an indirect indicator of the physical locations of the students,

and hence does not directly translate into a graph of communication opportunities. In

addition, the class schedule does not capture the mobility patterns outside of the classes.

Using the traces for actual location information of the devices, by our discretion, seems to

be a better information source to construct the communication opportunities graph (albeit

it is coarse-grained location information).

2.3 Mobility Modeling

Mobility has been long recognized as one of the fundamental components that impact

the operations of MANETs. On one hand, mobility presents itself as a challenge for

network designers to overcome, as nodal mobility changes the topology of networks,

breaks established wireless links, and overall makes reliable communication difficult.

On the other hand, mobility also provides new opportunities. It is shown that mobility

improves the scaling law of system-wide capacity to O(1) as network density increases[48].

More recently, mobility has been utilized as the enabling factor for message delivery

in delay tolerant networks (DTNs[4]), where a complete path from the source node

to the destination node does not exist at any time instant, broadening the scenarios

in which communication networks can be established. It is also an important system

variable to consider for protocol performance analysis, as it is shown that different

underlying mobility models change the performance ordering of various MANET routing
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protocols[20]. Therefore designing good mobility models has become a topic that attracts

significant attention from computer network researchers.

A wide variety of mobility models are available in the research community. See

[49, 50] for a good survey. Among all mobility models, the popularity of random mo-

bility models (e.g., random walk, random direction, and random waypoint) roots in its

simplicity. They are not only easy to generate, tune and scale, but also amenable to

mathematical analysis that reveals important fundamental properties in mobility, such

as the stationary nodal distribution[51], the hitting time, the meeting time[52], and the

meeting duration[53]. These quantities in turn enable routing protocol analysis to produce

performance bounds[55–57]. However, random mobility models are based on over-simplified

movement rules, and as we will show in chapter 4, the resulting mobility characteristics are

very different from real-life scenarios observed from the real traces. Hence it is debatable

whether the findings under these models will directly translate into performances in

real-world implementations of MANETs. More recently, an array of synthetic mobility

models are proposed to improve the realism of the simple random mobility models. More

complex rules are introduced to make the nodes follow a popularity distribution when

selecting the next destination[21], stay on designated paths for movements[59], or move as

a group[58]. More variants of mobility rules can be found in various models[49, 50]. These

rules enrich the scenarios covered by the synthetic mobility models, but at the same time

make theoretical treatment of these models difficult. In addition, most synthetic mobility

models are still limited to i.i.d. models (in which every node behaves statistically the

same), and the mobility decisions are also independent of the current location of nodes

and time of simulation.

A different approach to mobility modeling is by empirical mobility trace collection.

Along this line, researchers have exploited existing wireless network infrastructure, such

as wireless LANs (e.g., [10, 13]) or cellular phone networks (e.g., [16]), to track user

mobility by monitoring their locations. Such traces can be replayed as input mobility
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patterns for simulations of network protocols, as in [60, 61]. More recently, DTN-specific

testbeds[27, 29, 30, 32, 33] aim at collecting encounter events between mobile nodes

instead of the actual mobility patterns. However, most of these works (except [27]) do

not include detailed mathematical analysis for the mobility characteristics. Also, due to

the experimental nature of these studies, the size of the traces and the environments in

which the experiments are performed can not be adjusted at will by the researchers. To

improve the flexibility of the traces, the approach of trace-based mobility models have also

been proposed[62–65]. Based on the collected traces, these models discover the underlying

movement rules that lead to the observed properties (such as nodal distribution, duration

of stay at locations, arrival patterns, etc.) in the traces. Statistical analysis is then used to

determine proper parameters of the model to match it with the trace.

Ideally, a good mobility model should achieve a number of goals: (i) it should

first capture realistic mobility patterns of scenarios in which one wants to eventually

operate the network; (ii) at the same time it is desirable that the model is mathematically

tractable; this is very important to allow researchers to derive performance bounds

and understand the limitations of various protocols under the given scenario, as in

[27, 48, 56, 57]; (iii) finally, it should be flexible enough to provide qualitatively and

quantitatively different mobility characteristics by changing some parameters of the model,

yet in a repeatable and scalable manner; designing a new mobility model for each existing

or new scenario is undesirable.

Most existing mobility models excel in one or, less often, two aspects of the above

requirements, but none satisfies all of them at the same time. The most widely used

mobility models are random mobility models such as random walk, brownian motion,

random direction, and random waypoint [49, 50]. Their strength is the theoretical

tractability but their weakness is the lack of realism. More complicated synthetic mo-

bility models (e.g., [21, 58, 59]) improve the realism, but most of the time at the expense

of theoretical tractability. More recently, a large number of empirical mobility traces from
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real mobile users have been collected [10, 11, 13, 16, 27]. Although one can use such traces

directly in an evaluation with excellent realism, these traces are usually rather inflexible

and provide only a single snapshot of the underlying mobility process. To address these

two issues, trace-based mobility models [62–65] have been proposed (i.e. larger, more

flexible synthetic traces created from the smaller empirically collected ones). Yet, most of

these models do not possess the necessary flexibility to match mobility characteristics of

traces other than the ones on which they are based.

As an application of the observations we make on the individual user mobility charac-

teristics in chapter 4, we combine the strengths of various approaches to mobility modeling

mentioned above and propose a realistic, flexible, and mathematically tractable synthetic

mobility model. Large-scale deployments of WLANs in university[11, 13] and corporate[10]

campuses provide excellent platforms in which huge amount of user data can be collected

and analyzed. We leverage these traces to understand empirical user mobility, and propose

a time-variant community mobility model based on the prominent mobility characteristics

observed. We differentiate our work and other trace-based models ([62–65]) in several

aspects. First, while the previous works emphasize the capability to truthfully recreate

the mobility characteristics observed from the traces, we go beyond that and emphasize,

in addition to the realism, the mathematical tractability of the model. This additional

feature facilitates the application of our model to performance prediction of various

communication protocols. Second, we abstract the observed mobility characteristics from

WLAN traces, and propose a mobility model that has wider applicability – in addition to

WLANs, it can be tuned to match with other types of traces, such as a vehicle mobility

trace[17], and even with other characteristics in other traces of human mobility (e.g., the

encounter duration and the inter-encounter time in [27]).

Our time-variant community mobility model (in short, the TVC model) is built upon

our previous work[66] presented in section 4.1, in which we identify several prominent

properties that are common in multiple WLAN traces. The TVC model extends the
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concept of community model proposed in [52] by introducing time-dependent mobility

and hence inducing periodical behavior of the nodes. Although capturing time-dependent

behavior is suggested in [65], it has not been incorporated in their model. Among all

efforts of providing realistic mobility models, to our best knowledge, this is the first work

to explicitly capture time-variant mobility characteristics. The TVC model presented in

this dissertation is a generalization of the previous conference version[67].

The concept of community is also mentioned in [68] in a different context. The

authors assume the attraction of a community (i.e., a geographical area) to a mobile node

is derived from the number of friends of this node currently residing in the community. In

our paper we assume that the nodes follow location-based preference to make movement

decisions, and each node moves independently of the others. Mobility models with

inter-node dependency require a solid understanding of the social network structure, which

is an important area under development. We choose to leave this as future work.

2.4 Message Forwarding Protocol Design in DTNs

In recent years, packet forwarding in sparse, frequently disconnected MANETs has

received increasing attention from the research community. In such network scenarios,

a complete end-to-end path from the source node to the destination node is usually

unavailable in the space domain at any given moment. Therefore, mobile nodes have

to store copies of packets in the memory and carry them across the network with nodal

mobility, and later deliver the packet when the mobile nodes encounter with other nodes

in the network. Such network scenarios are generally known as delay-tolerant networks

(DTNs [4]). In DTNs, packet routing relies on not only the spatial connectivity, but

also temporal change of nodal positions (i.e., mobility) to be successful[69]. Most of

the previous work in this area focus on designing packet forwarding heuristics [54, 56,

57, 61, 71, 74, 93, 94]. In general, different degrees of knowledge of mobility pattern

is assumed[54], or an i.i.d. random mobility model is used[56, 57]. Some protocols

(e.g., [61, 74]) seek to discover promising leads to the destination node based on nodal
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mobility or encounter patterns. This approach is suitable where the nodal mobility follows

a non-i.i.d. pattern, which is generally the case in real life. There are also protocols

leveraging simple strategy such as relying on the age of the last encounter events between

nodes to discover promising leads to the destination node [93, 94]. An analysis on these

protocols shows that each node has to encounter with a high percentage (i.e., more

than 30%) of other nodes before the selected paths become stable [46]. As we discover

empirically from the WLAN traces in chapter 6, this is usually not achieved in a diverse,

large-scale environment such as university campuses, where on average a given node

encounters only around 6% of the whole population. Hence it becomes an issue worth

investigating that (1) would message delivery be successful in such a sparse (in terms of

the available encounter events) network? and (2) how to design good message forwarding

strategies in such environments?

In this dissertation we take a behavior-aware approach to message forwarding in

the DTNs. In general, our goal is to make the forwarding protocol to be aware of the

behavioral patterns of the individual users when making the forwarding decisions, and

leverage the encounter patterns to facilitate the message forwarding. We split the task into

several components in the dissertation – (a) we incorporate user behavioral patterns in a

DTN message forwarding protocol, designed for a special case of sending messages to users

who are similar to the sender in chapter 5, (b) we discuss about understanding of global

user encounter patterns in chapter 6, and (c) we show how to leverage the encounter

patterns in protocol design with more generic scenarios in chapter 7.

In chapter 5, we propose a new service paradigm named profile-cast. In profile-

cast, the destination node(s) are not identified by their network identities (e.g., network

addresses), but by their affiliations and behavioral patterns (i.e., the profile of the node).

Profile-cast is related to multi-cast as both of them target groups of receivers. However, in

profile-cast the intended receivers are defined by their intrinsic properties, and there would

be no explicit join to subscribe to a group as in multicast. Managing group membership
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in highly dynamic networks such as DTNs has attracted some attention recently [70]

but it is still a hard problem to solve. The goal of our profile-cast service is to leverage

underlying behavioral patterns (i.e., the profiles) to guide message delivery, which ties

naturally to many context-centric services in mobile networks, such as searching and

targeted announcement/advertisement.

We leverage mobility-based profile-cast as an example in the case study presented in

chapter 5. The goal of our application is to deliver a message to the node(s) who have

similar mobility profiles as the sender itself, without knowing their network identities

beforehand. The forwarding protocol uses the characteristics of nodal mobility, which we

referred to as the mobility profiles of users, to guide the propagation of messages among

the nodes. Note that this application is different from geo-cast[72], which targets at the

nodes currently within a geographical region as the receivers. Our target receivers are

nodes with a certain mobility profile, regardless of their actual locations at the time

the message is sent. With the case study of mobility-based profile-cast we show that

understanding user behavioral pattern can be helpful in designing routing protocols or

services. This success is directly based on the fact that mobility profile can be used as a

distinguishing feature of the mobile users, as discussed in the first half of chapter 5 (based

on the data mining approach to trace analysis). However, this case study applies only to

sending to a group with similar mobility profile to the sender, a very specialized case.

We wish to further enlarge the scope of the profile-cast paradigm to include other

types of user profiles as descriptors for potential destinations. In some cases, the target

profiles could be even independent of the nodal mobility patterns. The fore-mentioned

goal leads us naturally to the idea of leveraging the encounter patterns to disseminate

copies of messages in the network efficiently. We seek a way to efficiently spread the

message to the whole network so that the potential recipient nodes can easily retrieve a

copy of the message.
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In chapter 6, we first start from an empirical point of view, and investigate the issue

of whether the store-and-forward model is potentially feasible with a simple forwarding

strategy under the current encounter patterns of wireless devices derived from the WLAN

traces. Our initial findings are encouraging: We first use the epidemic routing [71] to test

the reachability of the network (i.e., if the current encounter patterns lead to a network

in which most nodes are reachable). It turns out, not only most nodes are reachable, but

the encounter patterns lead to a robust network – even if some nodes are uncooperative, or

encounters with short durations are considered not useable, messages still propagate well

in the network. This suggests the possibility of designing a learning protocol to identify

nodes with different roles in the underlying Small World encounter pattern, and make the

message dissemination more efficient (i.e., reducing the high overhead associated with the

epidemic routing).

In chapter 7 we then discuss the design of this more generic message dissemination

protocol. The difference between the CSI protocols in chapter 7 and the case study in

chapter 5 is the following. In section 5.8 we focus on only sending messages to users with

similar behavioral profile to the sender. In CSI we introduce the notion of the target

profile to decouple the behavioral profile of the sender from the destination profile in

the message. This significantly enhances the capability of the message dissemination

schemes, by allowing the sender to specify target behavioral profile (in CSI:T mode), or

even some target profiles that are orthogonal to the behavior based on which we measure

the similarity between users (in CSI:D mode).

In the design process of the CSI protocols, we conduct the first detailed systematic

study on the spatio-temporal stability of user behaviors in mobile societies, a new

dimension that has not been considered before. Our effort on the extraction of behavioral

profiles and behavior-based user classification is related to the reality mining project [16]

and the work of Ghosh et al. [111]. We leverage the representation of mobility preference

matrix defined in chapter 5, which reveals more detailed user behavior than the five
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categories representation used in the reality mining [16] and the presence/absence

encoding vector used by Ghosh et al. [111].

The major application considered in chapter 7 is to design a message dissemination

scheme in decentralized environments. While several previous works exist in the delay

tolerant network field, most of them (e.g. [61, 71, 74, 76, 107]) consider one-to-one

communication pattern based on network identities. The profile-cast communication

paradigm targeted at a behavioral group is a new paradigm in decentralized environments.

Some of the previous works assume existing infrastructure: PeopleNet [110] uses

specialized geographic zones for queries to meet. The queries are delivered to randomly

chosen nodes in the corresponding zone through the infrastructure. Others (e.g., [74, 107])

rely on persistent control message exchanges (e.g., the delivery probability) for each

node to learn the structure of the network, even when there is no on-going traffic. From

the design point of view, our approach differs from them by avoiding such persistent

control message exchanges to achieve better energy efficiency, an important requirement in

decentralized networks.

The spirit of our design is more similar to the work by Daly et al. [76], in which each

node learns the structure of the network locally and uses the information for message

forwarding decisions. However, the learning process proposed in [76] still involves message

exchanges about past encounters, even in the absence of actual traffic. Our goal, on the

other hand, is to design the protocol so the nodes rely on the intrinsic behavioral pattern

of individual users to “position” themselves in the behavioral space in a localized and

fully distributed manner, without any message exchange between nodes. The use of user

behavioral profiles to understand the structure of the space is similar to the mobility

space routing by Leguay et al. [61] and the utility-based routing by Aiklas et al. [105].

The major differences between our work and [61, 105] are two fold: First, we design the

CSI:D mode, in which the target profile need not be related to the behavioral profile

based on which the message dissemination decisions are made. Second, we also provide a
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non-revealing option in our protocol, thus no node has to explicitly reveal its behavioral

pattern or interests to others, as opposed to [61, 105].
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CHAPTER 3
DATA SETS

We introduce the data sets we include in the dissertation and the definitions of the

terms we use throughout the dissertation, and discuss the normalization techniques to

make data sets collected by different methods comparable. We also present the on-going

efforts of collecting traces from the University of Southern California and the University of

Florida campuses, and the available information from these two traces.

3.1 Data Sets Used

In this dissertation we mainly focus on wireless traces collected from university

campuses and corporation networks. We obtain wireless traces from various sources,

including totally over 15,000 distinct users and over 1,300 APs. To our best knowledge

this is the most extensive study of user behavior in wireless networks so far. Among the

traces, the USC and UF traces are collected specifically for the purpose of our studies,

while Dartmouth [13], UCSD [11], and MIT [10] traces were collected by other research

groups. We summarize the important characteristics of these traces in Table 3-1 and

explain the major issues below. For comparison purposes, we also include one trace

of encounters between portable wireless sensors deployed at INFOCOM 2005 by the

researchers in the Haggle project [27], and one vehicle mobility trace obtained from the

Cab-spotting project [17].

For longer traces such as the Dartmouth [13] trace, the USC trace, and the UF trace,

we take parts of the data sets for each case study in the dissertation. We make such

choices to facilitate the processing of data and focus our analysis on smaller, tractable

parts of the data sets. The chosen parts are representative of the data set as a whole, and

similar conclusions can be drawn if we had chosen other parts of the data set. We will

explain our choices further in each case study. As shown in Table 3-1, we use different tags

to refer to various parts of data sets from the same trace. In some cases, we apply multiple
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post-processing techniques to the same data set and compare the results to understand the

impact of the processing steps.

These traces are chosen to represent different environments. We study the differences

and similarities of user behavior in these traces, and try to attribute them to the

underlying differences in the corresponding environments as appropriate. In order to

make the results comparable between traces, in chapter 4 and 6, we analyze selected

one-month periods from the longer Dartmouth, USC, UF, and UCSD traces. For the

UCSD trace, we choose the first month, as the user activity decreased during their study

due to loss of interest in participation and some minor problems in trace collection[11].

We select two one-month periods from the Dartmouth trace: July 2003 (Dart-03, during

the summer vacation) and April 2004 (Dart-04, during the spring quarter). For the

USC trace, we pick the first available month for the detailed trace; for the UF trace, we

pick the first month of spring 2008 and randomly pick 10, 000 users from the relatively

large user population (see descriptions for USC and UF traces in section 3.4). The MIT,

Dartmouth, USC, and UF traces collect measurements of generic wireless network users,

including but not limited to laptops, PDAs, and VoIP devices. The UCSD trace is from a

specific project to study the behaviors of PDA users. To further compare the association

behaviors of smaller, handheld devices (e.g., PDA, VoIP devices) with generic wireless

devices in the same environment, we also separate the PDA (Dart-PDA) and VoIP device

(Dart-VoIP) users from the Dartmouth trace during April 2004, and study their behavior

specifically. However, according to the device type information provided in Dartmouth

trace archive[85], there are only 25 PDA users and 63 VoIP device users during this time

period. The results we get from these small sample sizes may need to be verified by

studies in larger scale.
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All the WLAN traces, except the MIT trace, are collected from the entire campus

wireless network. The MIT trace is collected from three engineering buildings in a

corporation network, hence its user population is not as diverse as the other traces, and

the geographic scope of trace collection is smaller. The USC trace is the only one that

has coarser, per switch port location granularity, while the others have per AP location

granularity. Each switch port in the USC trace has several APs connected to it. The

geographic coverage of a switch port approximately corresponds to a building (or several

small buildings in close vicinity) on the campus.

In chapter 5 and 7, we use longer traces to study the trends in user association

preferences and how we could utilize such information to classify users. We use two

semester-long traces from the longer Dartmouth and USC traces, since a semester (or a

quarter) is the typical longest time period for which the behavior of users on university

campuses remain consistent. For Dartmouth we pick the spring quarter of 2004, which

includes the activities of 6, 582 users during 61 days. For USC we pick the spring semester

of 2006, which includes the activities of 25, 481 users during 94 days. To make the task

manageable, we analyze only the most active 5, 000 users for the USC trace.

In order to compare the WLAN user behaviors with the behaviors of users in other

environments, we also include two additional traces in the study. The Cambridge-

INFOCOM trace is collected from participants of an experiment carried out at INFOCOM

2005 conference[27]. Each participant is given a wireless sensor (an Intel iMote) and

asked to carry this device throughout the conference. These devices keep track of other

Bluetooth devices (including all 41 iMOTEs deployed for the experiment and other

Bluetooth devices in the conference vanue as well) and record the devices that are

within its communication range at regular intervals. In other words, this trace collects

the encounter events between the wireless devices. The other trace, Cab-spotting, is

available from the Cab-spotting project [17]. This is a project for tracking the locations

of participating taxis in the greater San Francisco area using GPS devices installed on the
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cabs. Specifically, we use this trace to compare some mobility characteristics between two

very different groups – WLAN users on a university campus and taxis in a metropolitan

area. As we shall see in chapter 4, these two seemingly very different groups share some

similar mobility characteristics. In chapter 6, we compare the encounter patterns (see its

definition below in section 3.3) between the WLAN users with the users in the encounter

trace collected at INFOCOM 2005.

3.2 Trace Collection Methods

The methods of collecting WLAN traces can be categorized into two major categories:

(i) Polling-based methods which record the association of the mobile nodes (MNs) at

periodic time intervals, using SNMP (in the MIT trace[82]) or association tracking

software on the MNs (in the UCSD trace[83]), and (ii) Event-based methods which record

MN online/offline events using logging server (e.g. syslog) [80, 81]. For the Dartmouth

trace we use the derived association history trace from their syslog trace[81], and for USC

trace the logs are collected from the switch (i.e., the switch creates a log when a MN

associates/disassociates with one of the APs connected to one of the switch ports). For

the UF trace, the logs are collected at both the AP level (for user associations to APs)

and the authentication server level (for user sign-in and sign-out). It is generally accepted

that the event-based approach provides more accurate records of MN association with

the APs in the network. However, there is no in-depth study to quantify the differences

between these two approaches. In order to further understand the effects of different

methods of trace collection on the user behavior metrics obtained from the traces, we also

create an emulated polling trace as follows: For an event-based trace, we observe the trace

at regular time intervals and emulate what would be recorded if the trace were taken by

polling-based method. We then process the emulated polling trace as we do to a normal

polling-based trace, and compare the findings with the original event-based trace. We

use the April 2004 Dartmouth trace (Dart-04) to carry out this experiment, obtaining

49



Dart-cons and Dart-rel traces based on the conservative and relaxed assumptions detailed

below.

For traces collected using polling-based methods, we obtain only “sample points” of

MN association at regular time intervals in the trace, hence the duration of association

must be derived from these samples. Here, an important assumption must be made about

the association duration for each observed association sample. We test two different

assumptions in this respect: (a) A conservative (MIT-cons, Dart-cons) approach, in which

a MN is assumed to remain associated with the AP only until the next expected polling

epoch (i.e., the expected time instant when the AP is polled again to record the associated

MNs), unless indicated otherwise by new samples in the trace (i.e., if the MN is discovered

associated with the same AP again at the next polling epoch, its association with the

AP is “renewed” for the length of another polling interval). This approach reflects what

is observed from the trace faithfully, but may have the drawback that inaccuracy in

polling intervals or lost SNMP records (since SNMP uses UDP as the transport layer

protocol) will lead to the conclusion that the MN has disassociated from the AP and

later associates with the AP again, while in fact the MN has remained associated. (b) A

more relaxed approach (MIT-rel, Dart-rel), in which a MN is assumed associated with the

AP for four polling intervals after it is observed associated with the AP, unless indicated

otherwise by the trace (i.e., if the trace reports the MN associates with another AP, the

previous association with the old AP terminates before the assumed length of four polling

intervals). This approach is more robust to imperfections (e.g., packet losses, wireless

channel variation) in the trace collection process, however, it may erroneously increase the

duration of association with APs after a MN in fact disassociates from the AP. The polling

interval for the MIT trace is 5 minutes, and we use the same polling interval to obtain

the samples for the emulated polling traces from the Dartmouth trace (described in the

last paragraph). Hence the conservative and relaxed approaches assume a MN remains

associated with an AP for 5 and 20 minutes, if a sample indicates the MN is with the
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Figure 3-1. Illustration of the term definitions.

AP, respectively. For the UCSD trace the polling interval is 20 seconds. We use only the

relaxed approach to process the UCSD trace.

3.3 Definition of Terms

In this section we first introduce some terminologies (refer to Fig. 3-1) we will use

in the subsequent chapters. We use the notion online (or in short, on) to refer to the

state when a MN is associated with any AP in the network (or equivalently, its current

location is known, or it is “present” at the moment). On the contrary, the notion offline

(or in short, off) refers to the state of a MN being absent at the moment (i.e., it is not

associated with any AP currently). Related to the above definitions, an online event

is defined as a MN starting a new association to any AP from the off state. An offline

event is defined as a MN disassociating itself from the current AP and changing to off

state (i.e., it does not roam to other APs, but goes offline directly). A handoff event or a

roaming event is defined as a MN changing its association from one AP to another with

no offline time in between. An association session is defined as the duration between

an online event to the next offline event. There can be many handoff events within one

association session. The total online time is the sum of the lengths of association

sessions (i.e. the sum of the “shaded” intervals in Fig. 3-1), and the existence time

is the time difference between a MN’s first online event and its last offline event in the

studied trace. We use the existence time as a conservative measure of the time duration

for which the MN is a potential user of the network, since the MNs are not always online

and the user population can change with respect to time on university campuses (for
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example, there can be visitors who only use the WLAN on campus temporarily during the

visit). Before a MN first shows up and after it last disassociates, we assume that it is not

part of the network.

While the WLAN traces provide approximate location information for individual

users, we leverage the information from these traces to further understand the potential

opportunities of communication between the devices, when the infrastructure (i.e., the

access points) is not present. We derive the encounter events (we sometimes refer to

these events as encounters in short) between the MNs from the WLAN traces using the

following assumption: The MNs can communicate with each other if they are associated

with the same AP (or the same switch port in the USC trace). Following this assumption,

the duration of the encounter events can be derived from the overlapped time intervals

of association sessions of different MNs with the same AP. Nodal encounters in mobile

network are important events as they provide opportunities for involved nodes to build

up some relationship or to communicate directly. We acknowledge this assumption

may be not completely accurate, as there can be scenarios that (i) MNs are associated

with the same AP but still too far apart to communicate directly, (ii) MNs are able to

communicate while associated with different APs, or (iii) MNs may encounter each other

outside the coverage of any AP, hence some encounter events cannot be reconstructed

from the WLAN association traces. However, we believe that the encounter events

derived from WLAN traces capture a large portion of MNs within direct communication

range under current deployments of WLAN (usually, the network administrators seek

to provide ubiquitous coverage when possible). In addition, the WLAN traces capture

another important factor one needs to incorporate when considering the inter-device

communication opportunities: the usage pattern of the devices. According to our findings

from the traces (and the understanding of how people use these devices), many devices

are not always on. The empirical approach of deriving encounter events from the WLAN

traces has the benefit of including such on-off usage patterns in the analysis of encounters
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(and the resulting protocol performances on top of these communication opportunities).

While omnipresent wireless mobile personal communication devices are envisioned to

emerge in near future, it is still not clear how they are going to be used. Starting with

the usage pattern of today’s mobile devices is a reasonable starting point to investigate

this futuristic scenario. Also, since the WLAN traces are the largest traces available

today, such derived encounter traces provide a good opportunity to understand the

communication opportunities in current large-scale wireless networks used by the generic

public, compensating the small-scale encounter traces collected from special-purpose

experiments (as in [27, 29, 30, 32, 33]).

3.4 Detailed Descriptions of Our Traces

In this section we describe the details of our efforts for trace collection from the

University of Southern California (USC) and the University of Florida (UF) WLANs. We

list the information we collect from these two networks.

The effort of trace collection from the USC campus WLAN started from December

2003. In the first stage, only the online events of the users were collected. We have this

information from December 23, 2003 to December 13, 2004. However, this information is

not sufficient to provide complete knowledge of user locations (in particular, we cannot

identify when users leave the associated APs). Therefore, in the second stage started on

April 20, 2005 (it is still an on-going effort), we collect both the online and offline events.

On the USC campus the trace is collected from the network switches. The switch logs

the start and end events of user associations with the APs connected to the switch. The

locations of MNs are represented by the switch ports their associated APs connect to.

Hence, the location granularity is per switch port (which corresponds to approximately a

building or several buildings in geographic vicinity on the USC campus). In addition to

the association events, the switch also logs netflow information (i.e., the source/destination

IP/port and the protocols used in each traffic flow, with the size of traffic sent/received

in the flow) of each user. In the USC trace, we identify the users by the MAC addresses,
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assuming that each MAC address is a unique device, and each unique device corresponds

to a unique user.

On the UF campus the trace is collected from several different network components.

The WLAN users on the UF campus have to sign in to authentication servers before they

can use the network. We keep the log from the authentication servers, which includes the

DHCP IP assignments made by the server (these authentication servers are also DHCP

servers at the same time), the start and end events of user authentication sessions. When

a user finishes an authenticated session, the authentication server also reports the duration

and the amount of traffic sent/received in the whole authenticated session. In addition to

the authentication servers, we also obtain the association logs from the APs on campus

(i.e., the association, disassociation, and roaming events), to keep track of the locations

of the users. In the UF trace, a user can be identified in two different ways. Since both

the authentication servers and the APs keep the logs by the MAC addresses, we can

consider each unique MAC as a unique user. In addition to this typical assumption, since

the authentication server logs also keep the UF user name (which is an unique identifier

among UF network users), it is possible to identify the actual identity of a user even if the

user uses several different devices. Thanks to this additional information, it is possible to

further track the same person across multiple devices (although through this dissertation

our study is based on the assumption that each unique MAC address is a unique user).

This capability potentially allows us to go beyond device level and study individual users

directly. However, there is also a potential danger of compromising the privacy of the

users. Privacy-preserving processing techniques (e.g., to anonymize the traces so that it is

still useful, but one cannot link the identities in the trace to real-life identities) are out of

the scope of this dissertation, but is a current research agenda in our research group.
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CHAPTER 4
CASE STUDY I: MODELING INDIVIDUAL USER MOBILITY

In this chapter we present the first case study in the dissertation. This first case

study deals with individual users in the trace as independent entities, analyzing their

microscopic behavior in terms of the association to the WLANs and mobility within

this infrastructure. We first observe the mobility characteristics of individual users from

multiple traces, comparing their similarity and differences, in section 4.1. We identify

several major mobility characteristics, such as the nodes not being always on, the skewed

location visiting preferences and the periodical re-appearance of nodes at the same location,

as prominent mobility characteristics from the traces we study. Then, we propose a

mobility model in section 4.2, which is flexible to capture the spatial and temporal

dependency of the prominent mobility characteristics we observe empirically from the

traces. In addition, this model is also mathematically tractable, hence it facilitates

theoretical analysis of protocols in mobile networks.

4.1 On Modeling User Associations in Wireless LAN Traces

4.1.1 Introduction

Recently, wireless networks have been deployed ubiquitously in various environments,

especially in university campuses and corporations, and gained popularity rapidly. With

more users switching to wireless networks, the importance of understanding user behavior

in such environments is becoming clearer. From the vast amount of wireless LAN (WLAN)

traces available to the research community, one can obtain important and fundamental

knowledge about its users. Among the vast space for potential investigation, we focus on

the following question: How do we realistically model user1 behavior and usage in campus

WLANs? More specifically, if we are interested in modeling the mobility patterns of

1 In this dissertation we use the terms user, node, and mobile node (MN) interchangeably. We assume
that one MAC address in the trace corresponds to a unique device (MN), and a MN is always tied to the
same unique user.
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individual users in such environments, what characteristics are important to observe from

the traces? And, how do users in different environments differ (or not) on these aspects?

We seek to answer these questions by an extensive study of WLAN traces.

In this section we gain further understanding of realistic user behavior (e.g. usage

and mobility) utilizing the most extensive wireless LAN traces collected to date from

three university campuses (USC, Dartmouth, UCSD) and one corporate network. Such

an understanding is important for several reasons: Most importantly, trace analysis

is a necessary first step towards developing realistic mobility models that are crucial

for the design, simulation and evaluation of wireless networking protocols. We will

follow up on this task in section 4.2. Additionally, analysis of user behavior and network

usage patterns enables accurate assessment of wireless network utilization and aids the

development of better management techniques and capacity planning decisions. As new

technologies evolve (e.g., variants of 802.11 WLANs, or ad hoc networks), fundamental

understanding of user behavior becomes essential for the successful deployment of such

emerging technologies.

Several studies have been previously conducted on the analysis of WLAN traces [10],

[11], [13], and we borrow from these traces and studies. These studies are quite helpful,

but each of them is based on a single campus with a different focus, and hence it becomes

unclear whether their findings generalize beyond the studied campus. In our study, we go

beyond previous work to compare user behavior across different traces, and try to observe

the general trends and quantify the detailed differences among them. We look into the

aspects that we consider important to model user behavior in WLANs, and reason about

the commonalities and differences of these aspects between campuses. For the metrics we

study, we find that in general most of the campuses follow similar trends, such as (1) Most

nodes display on-off usage pattern. They are offline for non-negligible amount of time, and

switch between online and offline states often. This fact is largely overlooked by previous

researches on modeling WLAN users although it is an omnipresent phenomenon from all
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traces. (2) Most nodes visit only a small portion of the access points (APs) on campus.

Therefore, preference in user association is another important aspect to model users of

WLANs. The above findings may be intuitive, but it is surprising to observe that the

on-off pattern of users change significantly as the popularity of WLAN increases through

years, but the ratio of visited APs hardly changes. In other words, there are varying and

invariant user characteristics as one technology gains its popularity. (3) In most cases we

identify repetitive patterns in user association over various time frames (e.g., days, weeks).

Users re-appear at the same AP it previously associated with higher probabilities after

time gaps of integer multiples of days. We propose the network similarity index (NSI) as a

quantitative metric to capture such repetitive pattern. These findings point to unrealistic

assumptions often made in user modeling (for both usage model and mobility model)

and simulation, as the findings from traces are significantly different from the general

assumptions (e.g., always-on users with no preferences in their association patterns). We

later leverage the findings as guidelines for a realistic mobility model in section 4.2.

As one expects, the details of these user behavior metrics depend on the underlying

campus environment and user device type; we will comment on the findings throughout

the section. In addition to that, in this work we also compare two different trace collection

methodologies, polling-based (e.g. SNMP) and event-based (e.g. syslog). We show the

difference between these two trace collection methods by generating an emulated SNMP

trace in post-processing from syslog traces (which have better time resolution than SNMP

traces), and compare the differences among the two traces. Sometimes, major differences

can be attributed to different trace collection methods used. This suggests the need for

a standard methodology for trace collection to make data from different environments

comparable.

4.1.2 Analysis of Individual User Behavior

In this section we propose metrics to describe and compare behaviors of individual

users in the studied environments. These metrics correspond to different aspects of MN
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Figure 4-1. Illustration of a MN’s association pattern with respect to time of the day.

association behaviors in a WLAN. We shall use Fig. 4-1 to illustrate. One could see the

association pattern of a MN as a sequence of associated APs (shown by shades in Fig.

4-1), potentially with time segments during which the MN is offline (e.g. not associated

with any AP) between associations. We look into four major categories to understand user

behavior as follows:

(a) Activeness of users: This category captures the tendency of a user to be online (i.e.,

How actively the user shows up in WLAN?). In general wireless network users are not

always on, but show up in the trace intermittently, as opposed to the always-on nodes

assumed in the synthetic models.

(b) Macro-level mobility of users: This category captures how widely a MN moves in the

network in the long run (i.e., for the whole trace duration), and how its online time is

distributed among the APs. The intention is to capture overall long-run statistics and

preference of a MN visiting APs. (i.e., How are the shades distributed in Fig. 4-1? Do we

need many different intensities of shades for each user as it associates with many APs?

Can we find a few “dominant” APs for each MN?)

(c) Micro-level mobility of users: This category captures how MNs move in the network

while it remains associated with some AP (i.e., handoff). The intention here is to capture

the mobility of a MN while using the wireless network, a different objective from the

macro-level mobility. (i.e., How often does the MN change associations without leaving the

network?)
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Figure 4-2. CCDF of online time fraction

(d) Repetitive association pattern of users: This category captures the user association

behavior with respect to time. We expect users to show repetitive structure in association

patterns during similar times of different days, as their mobility patterns are dictated by

their daily schedule. This idea is also illustrated in Fig. 4-1: the user appears at AP1

during late evenings in both days. We propose the network similarity index (NSI) as a

metric to quantify the tendency of users to show repetitive patterns in their associations.

4.1.2.1 Activeness of the users

Activeness of users is the first aspect we look into in attempt to compare the different

traces. Activeness of users can be captured by either total online time fraction of a MN or

the number of association sessions generated by a MN.

We choose to define the online time fraction as the ratio between MN’s total online

time to its existence time2 , and plot the CCDF3 of online time fraction of users in

2 Note that, following this definition, MNs that associate with the APs for only one session have online
time fraction of 1.0. This definition tend to over-estimate user activeness for one-time users.

3 CCDF, or the complimentary cumulative distribution function, is the probability for a random vari-
able to exceed a given quantity x. It is a non-increasing function taking values between the range [0, 1].
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various traces in Fig. 4-2. From Fig. 4-2 we observe that in all traces only a small

portion of users are always on even though by definition the user activeness is already

over-estimated, except for the Dart-04 trace. The average online time fraction is 87.68%

for Dart-04 trace, and between 36.44% (Dart-03) and 14.12% (UCSD) for other traces.

The standard deviation for online time fraction is large, varying from 0.24 to 0.36 for

all traces. These observations argue strongly that users have on-off usage patterns,

where some of the users are heavy users (with high on time) while many

are light users. The distributions of the on/off times seem to depend heavily on the

environments (i.e., campus) and the device types in the traces. UCSD trace, which focused

only on PDA users, is the least active one among all traces. The other traces (MIT, USC,

Dart-03) are not very different in online time fraction distribution. The activeness of

MNs increase significantly from 2003 to 2004 in Dartmouth trace, which agrees with the

findings in [13]. By comparing the curves of Dart-04, Dart-rel, and Dart-cons, we observe

that online time fraction is consistent for the same trace under different trace

collection (or trace reconstruction) methods. Comparison between Dart-04 with

Dart-PDA and Dart-VoIP shows that during the same trace period, the handheld devices

are less active than the average of the total population. However, handheld devices in the

Dartmouth trace are much more active than the UCSD trace, but the reason is not clear

at this point and warrants further investigation.

We also check whether the significantly higher online time fraction in Dart-04 trace

is caused by users with only one short association session (hence its online time fraction

is over-estimated by our definition). It turns out that the high online time fraction in

Dart-04 trace is caused by significant increase of always-on users. In Dart-04 trace, there

are 27.5% of users that initiate only one association session which lasts for the duration of

30 days, the whole trace period. The same number for Dart-03 trace is less than 0.04%.

There are two possible reasons for the very different behavior in the two time periods.

(1) July 2003 was during summer vacation, hence the activity was significantly lower,
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Figure 4-3. CCDF of number of association sessions by users

or (2) The way people use WLAN has changed between these two trace period at the

Dartmouth College. Users in Dart-04 trace tend to use wireless LAN as a replacement

for wired network, and keep their device associated with WLAN, instead of establishing

the connection only when it is needed. If the later speculation is true, as we see this

paradigm shift from using WLAN as a temporary connection to an always-on, permanent

connection, it is possible that the online time fraction will also increase significantly for

other deployments.

We further compare the CCDF of the number of association sessions generated

by users in these traces in Fig. 4-3. We observe that the PDA users in the UCSD

trace generate more association sessions than users in other traces (except

MIT-con trace, explained below), which include generic wireless network devices (mainly

laptop users) during comparable trace duration. This fact, together with the less online

time fraction in Fig. 4-2, indicates that the UCSD PDA users are more likely to use

the devices for shorter but more frequent sessions. However, this observation does not

apply to the handheld devices in Dartmouth. Both PDAs and VoIP devices initiate less

sessions than the general devices in Dartmouth. From the figure we also observe that

count of association sessions is sensitive to the trace collection method. The emulated
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polling traces (Dart-rel and Dart-cons) show very different distributions form the original

Dart-04 trace, since traces collected by polling at regular intervals will overlook

association sessions shorter than the polling interval. Comparing the CCDF curve

of Dart-04 to Dart-rel or Dart-cons in Fig. 4-3, we see that the emulated polling traces

observe only one fifth of sessions for the MN with the largest number of sessions (200

versus 1000). Another technical difficulty here is to adequately translate a sample seen in

the polling-based traces to the duration of association appropriately, as we find the curves

of MIT-cons and MIT-rel drastically different. A closer investigation into the MIT trace

reveals that although SNMP polling intervals are typically 5 minutes, sometimes records

of MN association are obtained at longer intervals, leading to bogus terminations and

re-initiation of association sessions if the conservative assumption is used and hence the

high association session counts shown by the curve MIT-cons.

4.1.2.2 Macro-level mobility of users

In this section we capture the long-term mobility of users by obtaining the overall

statistics of AP association history during the whole trace period. We investigate the

number of APs a user associates with and the fraction of online time it associates

with each of the APs. The purpose of this section to understand the preference of MN

association at the access point level. Note that the observation could not directly translate

to the preference of user visits at geographic level, as APs are not uniformly deployed on

the campuses. For example, popular locations on campus may have multiple APs deployed

in anticipation of high usage, hence artificially reduce the load observed for each of these

APs in the trace. Nevertheless, we can have some idea about how widely a MN visit (in

terms of number of visited APs) from this section. If a user visits more APs, and stays at

more APs with non-negligible fraction of its online time, it is an indication that the user

visits wider range on the campus (i.e., more mobile in the long run) than another user who

visits few APs and spend most of its online time at one or two APs.
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Figure 4-4. CCDF of coverage of users.

We define the coverage of a user as the percentage of APs on the campus the user

associates with during the trace period. For the USC trace we use switch ports in place

of APs. The distributions of the coverage of users in the traces are shown in Fig. 4-4.

This metric captures how widely a user moves for the whole period of trace in the studied

network environments.

We observe that users have small coverage in all environments. The average

coverage is between 4.52% (UCSD) and 1.10% (Dart-cons/rel). None of these traces has

even a single user visiting more than 35% of all APs. In the UCSD trace, the PDA users

seem likely to visit a larger portion of campus than the generic users do in the other

campus-wide traces, due to the portability of PDAs. Similar observation applies to the

VoIP devices in the Dartmouth trace, which is the most mobile sub-user group in the

Dartmouth trace. However, PDAs in the Dartmouth trace are less mobile than the generic

users in the period we studied. We suspect that the result may be influenced by a few

extreme users (there are only 25 PDA users identified during this period, and half of them

visit only 4 or less APs). The MIT trace is collected from only three buildings, hence

the relative coverage of users is a bit higher. It is important to note that the coverage

seems to remain stable with respect to time change, although the activeness of

users changes significantly (compare Dart-03 and Dart-04). The coverage is sensitive
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to the trace collection method since the polling-based method overlooks short sessions

and under-estimates the coverage metric. However, different re-construction methods of

the polling-based trace (conservative or relaxed approaches) result in the same coverage, as

the metric counts the number of APs a MN associates with, not the association duration.

We further study the average percentage of online time a user spends with every AP

it visits. We order the APs a user ever visits during the trace period by the user’s total

association time with each AP, and average across users to get the average percentage

of online time a user spends with its most visited AP to least visited AP. These results

are shown in Fig. 4-5. From the figure we observe that for all environments, the general

trend is that each user has very few APs at which it spends most of its online

time. In particular, for all the traces, a MN spends on average more than 65% of its

online time with one AP, and more than 95% of online time at as few as the top-5 APs

combined. The left-end of the curves are similar, but the tails vary. The higher

mobility of the UCSD PDA users translates into a longer tail, where in addition to those

few most visited APs, the users also access the wireless network at much more locations

with a small fraction of the user’s online time as compared to other traces. Similar

observations apply to Dart-VoIP and Dart-PDA traces. It is interesting why Dart-PDA

trace shows small coverage in Fig. 4-4 but high average fraction of time associated with

less popular APs here. These two points, however, do not contradict each other. A closer

investigation reveals that although there are a small fraction of widely-visited PDAs (from

Fig. 4-4), those who visit many APs contribute more of their online time to less popular

APs. This metric is robust to different trace collection methods and assumptions of

trace post-processing, as the curve for Dart-04 is close to Dart-cons or Dart-rel. Similar

observations are made for the MIT trace.

4.1.2.3 Micro-level mobility of users

In this section we study the per-association session mobility of a user, which reflects

its short-term mobility. This captures a different dimension of user mobility as compared
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Figure 4-5. Average fraction of time a MN associated with APs. For each MN, the AP list
is sorted based on association time before taking the average across users.

to the previous section: How mobile the user is while using the network. We use handoff

statistics as a measure of user mobility while using the network. However, after the

investigation of the handoff statistics, we discover a lot of handoff events are due to

so-called “ping-pong effect” rather than real movements. The term “ping-pong effect”

refers to the phenomenon of excessive handoff events due to disturbance in wireless

channels while the MN itself might be stationary. Hence, we cannot directly link the

handoff statistics to the micro-level mobility of the users. Development of better filters for

ping-pong effects is needed before we can really understand the micro-level mobility form

the WLAN traces.

First we show the CCDF curves for the total handoff event count during the whole

trace period in Fig. 4-6. Our first intuition is that user mobility should be dependent on

the device type, and handheld devices should display higher mobility than users in other

traces. This is true for the Dart-VoIP trace, as the VoIP devices have the most per-user

handoff count among all traces. However, the PDAs in both UCSD and Dartmouth

trace do not have more handoff events than other traces. For the UCSD trace, this may

be related to the fact that the PDAs are usually used for short sessions, hence they

experience less handoff events. For the Dart-PDA trace, some of the PDAs are online for
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Figure 4-6. CCDF of total handoff count per MN.

long durations, but they do not have many handoff events. The reason is not clear at this

point.

From Fig. 4-6 we observe that the exact number of handoff count depends heavily on

the network environment (e.g., the deployment of the APs, etc). In the USC trace, the

coarse location granularity directly leads to the lower handoff counts. On the other hand,

the Dartmouth traces have much more handoff events than other traces. We also observe

that the handoff counts in Fig. 4-6 are sensitive to the trace collection method, as the

curve for Dart-04 differs significantly from Dart-rel and Dart-cons. This is again because

the polling-based method overlooks quick changes of user associations between polling

intervals and hence many handoff events are not captured. In addition to the above, we

also observe that for all the traces, handoff counts vary significantly among the users -

There are some users with many handoff events and some with few.

To better understand the cause of handoff events, we look into the relationship

between session lengths and handoff events in the session for each trace. As an example,

we show a scatter plot for session lengths (in minutes) and handoff counts for all sessions

in the USC trace in Fig. 4-7. From the graph, we see that there is no clear trend between

the session lengths and the handoff counts. In some cases, we see extremely long sessions
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Figure 4-7. Scatter plot: Session durations versus handoff count in the session for the USC
trace.

without any handoff events, or extremely many handoff events in a session with short

duration. The correlation coefficients between session lengths and handoff counts for all

the studied traces are between 0.377 and 0.030. So we can see that the session length and

the handoff count have a weak linear correlation to each other in all traces.

We further look into the following statistics to observe whether the sessions with

high handoff counts are all from a small set of extremely mobile users: For each user, we

calculate the average handoff event per unit time (i.e. the handoff rate) for each of its

sessions, and then calculate the mean and variance for the user’s handoff rate from all the

sessions the user initiates. If a high degree of mobility leading to the high handoff count

is an intrinsic property for some users, we should see that those users show high average

and low variance in their handoff rates. We use the coefficient of variation (the standard

deviation divided by the mean) to understand the degree of variation in the handoff rates

for users. In Fig. 4-8, we show the CDF of the coefficient of variation of the handoff rate

for the studied traces. Only the users with more than one session and one handoff event

are considered in the graph, since users with only one session automatically result in 0

variance for its handoff rate. From the figure, we see that the handoff rate displays

high variance for most of the users. In all traces, more than 60% of users have its
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Figure 4-8. CDF for the coefficient of variation of the handoff rate of the users. Note that
for all traces, coefficient of variation is larger than 1.0 for at least 60% of MNs
with more than one session.

coefficient of variation of the handoff rate larger than 1.0 (i.e., the standard deviation

being larger than the mean). This indicates even for a given MN, handoff rate varies

drastically from session to session.

Combining the observations in the preceding paragraphs, we conclude that handoff

events not only distribute unevenly between users, but also happen unevenly between the

sessions for the same user. This indicates that the handoff events are greatly influenced

by the environmental condition when a session is established rather than the property

of the MN who initiates the session. We even observe that some MNs have hundreds,

sometimes even thousands, handoff events between less than 5 APs within a session. Such

a scenario is much more likely due to ping-pong effect rather than true user mobility. The

reduction of ping-pong effect is an important issue to make better interpretation about the

micro-level user mobility from the WLAN traces and warrants further study.

4.1.2.4 The repetitive association pattern of users

Naturally, user behavior changes with respect to time of the day and day of the

week, as people follow daily and weekly schedules in their lives. In some cases, the user

association pattern repeats itself day to day or week to week. In this section we try to
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quantify such repetitive pattern by defining the network similarity index (NSI) below. We

try to find the tendency of users displaying periodical association behavior by calculating

the NSI of the traces.

We start the definition with location similarity index for individual users. First we

take snapshots of associated APs of the user every minute. To study the tendency of

the user showing repetitive behavior after a certain time gap (e.g., every 24 hours), we

consider all snapshot pairs that are separated by this time gap, and calculate the fraction

of all such pairs where the user associates with the same AP in both snapshots. This

is an indication of how likely this user re-appears at the same location after the chosen

time gap. Network similarity index (NSI) for a given time gap is the average of location

similarity index of all users for this time gap. Hence, NSI represents, in average sense, how

likely would a node associates with the same AP after the given time gap for the trace

under discussion.

In Fig. 4-9 we show the NSI for all the traces. To see the details better, we split the

figure into two parts: curves with smaller absolute NSI values are shown in Fig. 4-9(a),

and curves with bigger absolute NSI values are shown in Fig. 4-9(b). We will discuss the

physical meaning of the absolute value of NSI later in this section.

From Fig. 4-9(a), we see that in most of these traces (i.e., USC, MIT, Dart-03)

we observe noticeably higher network similarity index if the time gap is close

to integer multiples of a day. This is an indication that users have the strongest

tendency to show repetitive association pattern at the same time of each day.

It is also interesting to observe that for these traces, the network similarity index for

the gap of 7 days (i.e., a week) is the second highest, only slightly lower than

that for the gap of 1 day. This indicates weekly repetitive pattern is also strong in

these traces. On the other hand, the UCSD trace shows little repetitive pattern as there

is almost no obvious spikes in its NSI curve. This can be attributed to its user population

being PDA users. Unlike laptops, which are more related to work, PDAs are usually used
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(a)

(b)

Figure 4-9. Network similarity indexes. The peaks represent intervals for which there is
high similarity. (a) NSI curves with smaller absolute values (less always-on,
stationary users), (b) NSI curves with larger absolute values (more always-on,
stationary users).

in a more casual way in short, scattered durations. Hence it is expected that PDA users

show less repetitiveness in their usage pattern.
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However, we see that in Fig. 4-9(b), the NSI curves for the Dart-04 trace or its

sub-groups of users4 do not show strong patterns of periodicity as discussed above. We

suspect that the periodical association behavior in the Dart-04 trace is hidden (only

minor fluctuation is visible closer to integer multiple of days) due to the increase of

always-on users (cf. section 4.1.2.1). In the 2004 trace, we have more always-on, stationary

users using WLAN as a replacement of wired networks. This is reflected by the higher

average value of the NSI curves, indicating larger fraction of users always stay at the

same location. This may be attributed to the fact that Dartmouth traces include users

in student dormitories, which are mainly stationary users and have contributed to high

location similarity indexes. We further compare the NSI curve of the Dart-04 trace in Fig.

4-9(b) to the NSI curve of Dart-04-March (only used in this experiment) in Fig. 4-9(a).

For the Dartmouth College, the month of March contains the spring break, when some of

the stationary users in dorms are absent, and we see that the periodicity of association

behavior is more visible in the March trace. From the above experiment, we argue that

the periodic behavior in the average NSI curve comes from non-stationary users (e.g.,

those who come to work or classes during day time and follow a regular schedule), not the

stationary users who use WLANs as a replacement of wired LANs. This point is partly

supported by the findings in [36]: Most users displaying periodicity in association have

home locations at academic buildings. The USC has not deployed WLAN in dormitories

yet (for the one-moth trace we have chosen for this study), and the MIT trace is mainly

focused on buildings for work. That may be the reason why periodic association behaviors

are more obvious in those traces.

4 Curves for Dart-cons and Dart-rel are not shown to make the graph more readable. They are not
very different from the Dart-04 curve.
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4.1.3 Conclusions and Future Work

Our contributions: The major contributions of this study are the following: First, by

using WLAN traces from four different sources, comparing the results and highlighting

both similarities and differences, it is the largest scale trace-based study in the literature

as we are aware of. Although some of the findings in the study match with simple

intuition of user behaviors, by extensive investigation we are able to further quantify and

show the minor differences in detail systematically, and reason about the cause of those

differences (e.g., methodology of trace collection, user population, network environment,

time of trace collection, etc.). Second, by proposing metrics for describing individual

MN behaviors, we propose a basis on which mobility models for individual MNs can be

established. We also find several facts indicating that conventional, randomly generated

synthetic mobility models (such as random waypoint, random walk, etc.) are not adequate

for a heterogeneous environment such as university campuses and corporations. This work

extends previous works [10], [13], [11] on analyses of WLAN traces by considering traces

from multiple campuses and multiple aspects to model user behavior. We also make our

own WLAN traces collected at USC campus available at [1], together with many pointers

to existing WLAN trace archives.

To summarize, the findings from the traces point out important common features in

all studied environments. Wireless network users in university campuses and corporate

network are characterized by (1) limited number of visited APs in the network and a

large proportion of online time spent at very few of its most visited APs. The coverage of

users never exceeds 35% in all traces, and users spend more than 95% of their online time

with as few as five APs. Furthermore, these numbers seem to remain relatively stable in

a given environment, even if the WLAN gains popularity and users become more active.

(2) Periodic association patterns with strong daily/weekly pattern. We believe that these

metrics capture important characteristics about users in wireless networks that are largely

overlooked by earlier work on mobility modeling and wireless network simulation. (3)
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Large percentages of offline time. Except for the Dart-04 trace, there are less than 20% of

users that are always on, and more than 68% of users are offline more than 50% of time.

Even in the most active Dart-04 trace, there are more than 30% of users not always on.

We will continue on to the development of a realistic time-variant community mobility

model based on these characteristics in the next section.

By comparing the traces collected by event-based logging method and the emulated

polling-based traces for the same environment, we find that they sometimes show

dissimilar results. Hence, although polling-based trace collection is suitable for usage

statistics, they are not very suitable for deriving the association patterns of users, as they

tend to overlook details of association changes. Also, we need better heuristics to remove

the ping-pong effects to make better interpretation about micro-level mobility events (i.e.

handoff) from the traces.

Finally, the statistics obtained using the fore-mentioned metrics can be considered as

characteristics or “fingerprint” for particular environments or user population. It should

be interesting to develop mechanisms to inspect these “fingerprints” and argue about

similarity/dissimilarity between environments.

4.2 Modeling Spatial and Temporal Dependencies of User Mobility in
Wireless Mobile Networks

4.2.1 Introduction

In the mobile ad hoc networks (MANETs) [3], as the devices are usually easily

portable and the scenarios of deployment are inherently dynamic, mobility becomes

one of its key characteristics. It has been shown that mobility impacts MANETs in

multiple ways, such as network capacity [48], routing performance [20], and cluster

maintenance [79]. In short, the evaluation of protocols and services for MANETs seems to

be inseparable from the underlying mobility models. It is, thus, of crucial importance to

have suitable mobility models as the foundation for the study of ad hoc networks.
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Our main contribution in this section is the proposal of a time-variant community

mobility model, referred to as the TVC model, which is realistic, flexible, and mathemat-

ically tractable. The model captures several important mobility characteristics we, and

other researchers, have observed empirically from various WLAN traces [66]. As we show

in the previous section, one of the salient characteristics is location preference. In the TVC

model, we extend the concept of communities from [52] to serve as popular locations for

the nodes. Another important characteristic is the time-dependent, periodical behavior

of many nodes. To capture this, we implement time periods in which the nodes move

differently [67]. To our best knowledge, this is the first synthetic mobility model that

captures non-homogeneous behavior in both space and time.

In addition to the improved realism, the TVC model can be mathematically

treated to derive analytical expressions for important quantities of interest, such as

the nodal spatial distribution, the average node degree, the hitting time (time required

for a mobile node to hit a randomly selected coordinate) and the meeting time (time

required for two mobile nodes to come within communication range of each other). These

quantities are often fundamental to theoretically study issues such as routing performance,

capacity, connectivity, etc. We show that our theoretical derivations are accurate through

simulation cases with a wide range of parameter sets, and additionally provide examples of

how our theory could be utilized in actual protocol design.

To establish the flexibility of our TVC model we also show that we can match its

two prominent properties, location visiting preferences and periodical re-appearance, with

multiple WLAN traces, collected from environments such as university campuses [80, 81]

and corporate buildings [82]. More interestingly, although we motivate the TVC model

with the observations made on WLAN traces, our model is generic enough to have

wider applicability. We validate this claim by examples of matching our TVC model

with two additional mobility traces: a vehicle mobility trace[17] and a human encounter

trace[84]. In the former case, we observe that location visiting preferences and periodical
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re-appearance are also prominent characteristics in vehicular movements. In the later case,

we are able to match our TVC model with some other mobility characteristics, namely

the inter meeting time and encounter duration between different users/devices. These

latter quantities are particularly important for encounter-based (or “delay-tolerant” [4])

protocols. Despite these characteristics are not explicitly incorporated in our model by its

construction, they can be still realistically reproduced.

To our best knowledge, this is the first synthetic mobility model proposed that

matches measurement sets (traces) collected from multiple scenarios, and has also been

theoretically treated to the extent presented here. Due to its strengths in both flexibility

and theoretical tractability, the TVC model has two major applications: to generate

realistic mobility patterns under a wide range of different scenarios and to facilitate

performance analysis and prediction. We also make the code of the TVC model available

at [9].

In this section, we first re-iterate the mobility characteristics we discovered from the

traces, discuss how we construct a mobility model to capture them, and then formally

introduce our TVC model in section 4.2.2. Then, in Section 4.2.3, we embark to present

our theoretical framework and derive generic expressions of various quantities under the

TVC model. The accuracy of these expressions is validated against simulations in Section

4.2.4. Finally we show the two major applications of the TVC model: in Section 4.2.5, we

show how to generate realistic mobility scenarios with matching mobility characteristics in

various traces; in Section 4.2.6, we motivate our theoretical framework further, by applying

our analysis to provide guidelines and performance predictions in protocol design.

4.2.2 Time-variant Mobility Model

In this section, we first motivate the need of incorporating realistic mobility

characteristics in the mobility models by contrasting the observations we make from

the WLAN traces to the same properties generated by currently available mobility

models. The results clearly display the failure of existing models to capture these
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realistic observations. Then we present the design of our TVC model inspired by these

observations.

4.2.2.1 Mobility characteristics observed in WLAN traces

Our main objective is to propose a mobility model that captures the important

mobility characteristics observed in daily life. To better understand this mobility, we have

chosen to study a number of wireless LAN traces collected by several research groups

(e.g., traces available at [1] or [2]). The reason for this choice is that WLAN traces log

information regarding large numbers of nodes, and thus are more reliable for statistical

analysis. After analyzing a large number of traces, we have observed two important

properties that seem to be recurrent in all of them: skewed location visiting preferences

and time-dependent mobility behavior [66].

First, by location visiting preference we mean the amount of time that a node spends

associated with a given access point (AP). In Fig. 4-10(a) we calculate for various traces

the fraction of the total online time an average node spends with its most favorite AP,

its second favorite AP, etc., up to its least favorite AP. (This is essentially the probability

density function of the association time of a node with an AP, with the APs sorted in

descending order of total association time.) It is clear from the plot that a node on

average spends more than 65% of its online time associated with its favorite AP, and more

than 95% of its online time at only five APs. We refer to this behavior by saying that the

location visiting preference (or in short “location preference”) of nodes is skewed.

Second, by time-dependent mobility behavior we refer to the fact that nodes tend to

behave differently during different times of the day (or even during different days), and

most specifically to exhibit some amount of periodicity in terms of the locations they

choose to visit. In Fig. 4-10(b) we plot the probability of a node appearing in the same

location at some time in the future, as a function of the difference in time. It is evident

from the plot that nodes appear at the same AP with a higher probability after a time-gap

of integer multiples of days. This creates the saw-tooth pattern in the curves. A slightly
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Figure 4-10. Two important mobility features observed from WLAN traces. (a) Skewed
location visiting preferences. (b) Periodical re-appearance at the same
location. Labels of traces used: MIT: trace from [82], Dart: trace from [81],
UCSD: trace from [83], USC: trace from [80].

stronger weekly correlation could also be observed in some plots (see for example the

slightly large peak in the MIT curve for a time gap of seven days). It is thus clear that

nodes behave differently in different periods in time, and that similar behaviors tend be

repeated on a daily basis.

Unfortunately, most existing mobility models fail to capture these two properties. For

simple random models, like random direction, random waypoint, random walk, etc., there

is obviously no preference in both space and time. This is demonstrated in Fig. 4-10 by

a straight line (uniform distribution) for the Random Direction model for the respective

probabilities. Even for more sophisticated models that try to capture other aspects of

mobility, such as group mobility in the RPGM model [58] or a model considering obstacles

and pathways [59], these two properties would also be straight lines in the plots as spatial

and temporal preference is not a part of these models5 . There do exist some more recent

models (e.g., [21, 52, 62–64]) that aim at capturing spatial preference explicitly. An

example of such a model is the simpler community model of [52]. As is shown in Fig.

4-10(a), with appropriately assigned parameters this model is able to capture the skewed

5 In the case of the obstacle-based model, some locations are not allowed to be visited at all; yet among
all the permissible ones, no particular preference is assigned to any node.
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location visiting preference, to some extent. However, time-dependent behavior is not

captured, and thus the periodical re-appearance property cannot be reproduced, as shown

by the flat curve labeled community model in Fig. 4-10(b).

It is our goal to design a mobility model that successfully captures both of these

two properties, observed in the majority of traces. One could argue that a potential

shortcoming of this approach is that WLAN traces do not register continuous movement

of the devices, but rather associations of users/nodes with specific APs. What is more,

some devices are not always on, and typically there are some gaps in the coverage of access

points in these networks. However, we believe that the two main properties we observed,

namely skewed location preference and time-dependency, are prevalent in real-life mobility.

This belief is further supported by observing typical daily activities of humans: most

of us tend to spend most of the time at a handful of frequently visited locations, and a

recurrent daily or weekly schedule is an inseparable part of our lives. As a result, a model

supporting location-preference and time-dependent mobility should be able to capture

human mobility in many contexts, if carefully designed. Comparison with non-WLAN

traces in Section 4.2.5 confirms our argument.

4.2.2.2 Construction of the time-variant community model

Skewed location preferences arises naturally due to extended stay at locations that

bear importance to us, such as homes and offices, cafeterias and libraries. To capture

this phenomenon, we construct popular location(s) for the nodes in the simulation

field. These locations, or rather geographical areas, we call communities, and we make

a node visit its own community more often than other areas. Different nodes can

pick different communities, creating nodes with very diverse behaviors. Furthermore,

multiple communities could be defined if a node tends to visit multiple locations with

high probability, some of which could also be shared by more than one nodes (e.g. people

working in the same building, libraries, etc.).
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Table 4-1. Parameters of the time-variant community mobility model
For all parameters, we follow the convention that the subscript of a quantity represents its community index, and the
superscript represents the time period index.

N Edge length of simulation area
V Number of time periods
T t Duration of t-th time period
St Number of communities in time period t
Ct

j Edge length of community j in time period t

Commt
j The j-th community during time period t

πt
j

Probability that the next epoch is performed in
community j during time period t

vmin, vmax, v Minimum, maximum, and average speed6

Dmax,j , Dj Maximum and average pause time after each epoch6

Lj Average epoch length for community j

P t
move,j |P t

pause,j
Probability that a node is moving | pausing
when being in community j during period t

P t
j

Fraction of time the node is in
state j (P t

j = P t
move,j + P t

pause,j)

K Transmission range of nodes

A(at
j , bt

k)
The overlapped area between Commt

j of node a

and Commt
k of node b

wt A specific relationship between a target coordinate
and the communities in time period t

Ωt The set of all possible relationships between
a target coordinate and the communities in time period t

P (wt) Probability of a given relationship wt in time period t
A(wt) Area corresponding to the relationship wt

Ph(wt) Unit-time hitting probability
under the specific scenario wt

PH(wt) Hitting probability for a time period t
under specific scenario wt

Pm Unit-time meeting probability
PM Meeting probability for a time period t

HT (case) Expected hitting time under the given ”case”
MT (case) Expected meeting time under the given ”case”

Periodical re-appearance at a given location is related to omnipresent schedules in our

lives. Almost everyone follows recurrent daily or weekly schedules, and different behaviors

based on time-of-day have been observed in many contexts. To capture time-dependent

behaviors, we introduce structure in the time domain by the use of time periods. For

a given node, we assign several time periods during which it behaves differently. For

example, a node may have different communities during different periods or the same

communities but different mobility parameters to move between them. To further ensure

periodicity, the time period assignment follows a recurrent structure, with the same

“time-period” and its respective statistical characteristics occurring, say, for all weekday

mornings.

We illustrate the model with an example in Fig. 4-11. We also use this example to

introduce the notations we use (see Table 4-1) in the rest of the section. As shown in
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the example, there are V = 3 (where V denotes the total number of time periods) time

periods TP1, TP2, and TP3 (of duration T 1, T 2, and T 3, respectively). During each time

period, there are a number of communities, that is, geographical areas that are heavily

visited. These communities can be chosen differently in each time period, as shown by

the three sub-plots. Within a given time period t, the j-th community is denoted as

Commt
j.

6 This is a square geographical area of edge length Ct
j . Note that by construction

the communities can overlap (as in TP1 in Fig. 4-11), or one community can even contain

the other (as in TP2 in Fig. 4-11). Finally, the number of communities in each time

period may vary. For example, there are 3 communities in total in the first period, 2 in the

second one, and 4 in the third7 . The total number of communities in period t is denoted

as St. This construction allows for maximum flexibility when designing the simulation

setup for nodes with different behaviors. As for the structure in time domain, we need to

arrange time periods in a re-current sequence (see Fig. 4-11 or Fig. 4-12) that corresponds

to a daily or weekly schedule.

We now describe how a node moves inside the above construction. Node movement

consists of a sequence of epochs. Each of these epochs is a Random Direction movement8 .

In a typical Random Direction epoch, a node chooses at the beginning its speed uniformly

in [vmin, vmax], and a direction (angle) uniformly in [0, 2π]; it also chooses the length

(distance) of movement (usually distributed exponentially with average in the order of the

network dimension), and moves towards this direction with the chosen speed and for the

6 For all parameters used in this work, we follow the convention that the subscript of a quantity repre-
sents its community index, and the superscript represents the time period index. Note that all parameters
used in the TVC model can be set differently for each node. When necessary, we use a pair of parentheses
to include the node ID for a particular parameter, e.g., Ct

j(i) denotes the edge length of the j-th commu-
nity during time period t for node i.

7 To allow a node to move randomly among the whole simulation field sometimes, we often allocate one
community to be the whole simulation field (e.g. Comm1

3 in period TP1 in Fig. 4-11).

8 Note that we could also choose random waypoint or random walk models for the type of movement
during each epoch.
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Figure 4-11. Illustration of a generic scenario of the time-variant mobility model, with
three time periods and different numbers of communities in each time period.
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Figure 4-12. An illustration of a simple weekly schedule, where we use time period 1
(TP1) to capture weekday working hour, TP2 to capture night time, and
TP3 to capture weekend day time.

chosen distance; at the end of the epoch, the node picks a pause time randomly and then

proceeds to the next epoch.

The difference between our community model and the Random Direction model is

that in addition to all other parameters, in the community model the node also chooses

randomly the community in which the next epoch will be performed. That is, with

probability πj the next epoch takes place inside the node’s j-th community (
∑St

j=1 πj = 1),

rather than moving around the whole simulation area randomly, as in the standard

Random Direction model. (Note that we usually add superscript t in the notation, i.e. πt
j,

to denote that these probabilities might change between time periods.) We say the node

is in state j when it has an epoch in the j-th community. Further, to ensure that a local

move is compatible with the local community size, we also scale the local epoch length by

drawing it from an exponential distribution with average length Lj, that is, in the order
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of the given community size9 . It is important to note that a node can still perform some

of its epochs in the whole simulation area, by assigning an additional community that

corresponds to the whole simulation field (e.g. Comm1
3 in period TP1 in Fig. 4-11). We

refer to such epochs as roaming epochs. Finally, after an epoch, a node pauses for a time

uniformly chosen in [0, Dmax,j], where the maximum pause time is again dependent on the

community.

As a final note, one may argue that capturing location preference and time-dependencies

could plausibly be achieved with a mobility model constructed with different ways than

the one we propose. However, our choices are largely guided by the fact that most of the

building blocks we utilize to create our mobility model (e.g. random direction epochs,

communities, etc.) are easy to understand, and have been shown to be amenable to

theoretical analysis [52]. The benefits will become evident in Section 4.2.3. At the same

time, we will also show in section 4.2.5 that these choices do not compromise our model’s

ability to accurately capture real life mobility scenarios.

4.2.3 Theoretical Analysis of the TVC Model

So far, we have established the general framework of the TVC model. We make the

framework very flexible in order to create a model that can be used in many realistic

contexts. Yet, one of the biggest advantages of our model is that, in addition to the

realism, it is also analytically tractable with respect to some important quantities which

determine protocol performance. We focus on demonstrating this last point in this section.

We start here by deriving the theoretic expressions of various properties of the

proposed mobility model. We first calculate the nodal spatial distribution. This can be

represented as a two-dimensional probability density function of nodes at any given point

in the space. The expected number of nodes in an area is then calculated by integrating

9 To avoid boundary effects, we assume that if the node hits the community boundary it is re-inserted
from the other end of the area (i.e., the boundaries are ”torus” boundaries).
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the density function. This property provides a basic demographic profile of the simulation

area, and can also help to evaluate whether the model reflects the target environment.

Then, we derive the average node degree, which is the average number of nodes residing

within the communication range of a given node. This is a quantity of interest due to

its implication on the success rate of various tasks in mobile ad hoc networks [86, 87].

Finally, we derive the expected hitting and meeting times for our model. The hitting

time is the time it takes a node, starting from the stationary distribution, to move within

transmission range of a fixed, randomly chosen target coordinate in the simulation field.

The meeting time is the time until two mobile nodes, both starting from the stationary

distribution, move into the transmission range of each other. These two quantities are of

interest due to their close relationship to the performance of DTN routing protocols, or in

general the performance of processes that rely on node encounters. Knowing the meeting

time for a mobility model is, for example, crucial when using a “mobility-assisted” or

“store-carry-and-forward” protocol to deliver a message [55–57], while hitting times might

be needed if some nodes in the network are static (e.g. sensors, base stations, etc.).

We note that a preliminary version of some of the theoretical derivations presented

here appear for a special case of our TVC model only in [67] (that model included one

community and two time periods only). Here, we generalize all derivations for any

community and time-period structure. Moreover, we present some additional results

regarding the spatial distribution and the average node degree that are relevant to various

wireless communication protocols, as we show in Section 4.2.6. We start with a useful

lemma that calculates the probability of a node to reside in a particular state.

Lemma 4.1. The probability that a node moves or pauses (after the completion of an

epoch) in state j, at any given time instant during time period t, is:

P t
move,j = πt

j(L
t
j/v

t
j)/

St∑

k=1

πt
k(L

t
k/v

t
k + Dt

k), (4–1)
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P t
pause,j = πt

jD
t
j/

St∑

k=1

πt
k(L

t
k/v

t
k + Dt

k). (4–2)

Proof. The result follows from the ratio of the average durations of the moving part

(Lt
j/v

t
j) and the pause part (Dt

j) of each state, weighted by the probabilities of choosing

the state.

Note that the above stationary probabilities can be calculated for each time period

and node separately. We use P t
j (i) to denote the probability that node i is in state j

during time period t (i.e., P t
j (i) = P t

move,j(i) + P t
pause,j(i)).

4.2.3.1 Nodal spatial distribution

We start with the derivation of the nodal spatial distribution. This becomes relatively

straight-forward after we observe that a node follows a basic random mobility model (i.e.,

random direction) in each community. Hence, when a given node is in state j, it appears

equally likely in any point within Commj.

Theorem 4.2. For a given area A, the probability for a node to appear in A at any given

time instant during time period t is

∫∫

A

p(x, y) dxdy, (4–3)

where the function p(x, y) is the spatial density function,

p(x, y) =
∑

{∀j|(x,y)∈Commt
j}

P t
j /C

t
j
2
. (4–4)

Proof. A node could appear at a given point in space when it is in state j if and only if

the j-th community includes the point. Within the community, the appearance probability

of the node is uniformly distributed. Considering a given point (x, y), the probability for

a node to appear at the point is the sum of the contributions from all of its communities

that contain the point.
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Note that the nodal spatial distribution for each time period is independent, hence

can be calculated separately with the above Theorem.

4.2.3.2 Average node degree

The average node degree of a node is defined as the expected number of nodes falling

within its communication range. Each node contributes to the average node degree

independently, as nodes make independent movement decisions.

Lemma 4.3. Consider a pair of nodes, a and b. Assume further that, in time period t,

community j of node a and community k of node b overlap with each other for an area

A(at
j, b

t
k). Then, the contribution of node b to the average node degree of node a, when a

resides in its j-th community and b resides in its k-th community, is given by

πK2

Ct
j
2(a)

A(at
j, b

t
k)

Ct
k
2(b)

, (4–5)

where K is the communication range of the nodes.

Proof. Since nodes are uniformly distributed within each community, the probability

for node b to fall in the j-th community of node a is simply the ratio of the overlapped

area over the size of the k-th community of node b. Node a covers any given point in

its community equal-likely, hence given node b is in the overlapped area, it is within the

communication range of node a with probability πK2/Ct
j
2
(a).

Following the same principle in Lemma 4.3, we include all community pairs and arrive

at the following Theorem.

Theorem 4.4. The average node degree of a given node a is

∑

∀Commt
j(a)

P t
j (a)

∑

∀b

∑

∀Commt
k(b)

P t
j (b)

πK2

Ct
j
2(a)

A(at
j, b

t
k)

Ct
k
2(b)

. (4–6)

Proof. Eq. (4–6) is simply a weighted average of the node degree of node a conditioning

on its states. For each state with probability P t
j (a), the expected node degree is a sum

85



over all other nodes’ probability of being within the communication range of node a, again

conditioning on all possible states.

Corollary 4.5. In the special case when all nodes choose their communities uniformly at

random among the simulation field, Eq. (4–6) degenerates to

∑

∀b

∑

∀Commt
k(b)

P t
k(b)

πK2

Ct
k
2(b)

Ct
k
2
(b)

N2

=
∑

∀b

πK2

N2

∑

∀Commt
k(b)

P t
k(b) =

∑

∀b

πK2

N2
.

(4–7)

Proof. This result follows from that a randomly chosen community is anywhere in

the simulation field equally likely. If nodes pick their communities randomly and

independently, the actual location of node a would not make any difference in its average

node degree. Regardless of the location of node a, it falls within the k-th community of

node b with probability Ct
k
2
(b)/N2. Within the community, node b appears uniformly,

and with probability πK2/Ct
k
2
(b) it appears within the communication range of node a.

Note that the equation reduces to each node b contributing πK2/N2 to the average node

degree, which is the same as if node b roams around the whole simulation area without any

preference in space (i.e., communities).

Similar to the nodal spatial distribution, the average node degree can be calculated

for each time period separately.

4.2.3.3 Hitting time

The sketch of the derivation of the hitting time is as follows: (1) We first condition

on the relative location of the target coordinate with respect to a node’s communities (e.g.

target inside community i, target outside community, etc.). We thus have to derive the

hitting time for each sub-case separately. (2) We then derive the unit-step probabilities of

hitting a target, Ph, for a given sub-case. The unit-step probability is the probability of

encountering the target exactly within the next time-unit (rather than within the duration

of a whole epoch). In other words, we approximate the continuous mobility with a discrete
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version of it where nodes move in discrete steps. It has been shown in [52] that the

latter provides a good approximation for the continuous version, and is easier to analyze

for our purposes. (3) The expected hitting probability for a whole time period, PH , is

then calculated for each sub-case from the unit-step probability, by assuming “hitting”

occurs independently in each time step10 . (4) Finally, taking the weighted average of

each sub-case (i.e. weighted by probability of a given target being located inside a given

community) we get the overall hitting time.

The most influential factor for the hitting time is whether the target coordinate is

chosen inside the node’s communities. We denote the possible relationships between the

target location and the set up of communities during time period t as the set Ωt. Note

that the cardinality of set Ωt is at most 2St
(i.e. for each of the St communities, the target

coordinate is either in or out of it). Also, not all of the 2St
combinations are always valid.

For example, in the set up of time period 2 in Fig. 4-11, the communities are overlapped,

hence if the target is within Comm2
1 it must be within Comm2

2.

Lemma 4.6. By the law of total probability, the average hitting time can be written as

HT =
∑

w1∈Ω1,...,wV ∈ΩV

P (w1, ..., wV )HT (w1, ..., wV ), (4–8)

where w1, w2, ..., wV denote one particular relationship (i.e. a combination of {out, in}St
)

between the target coordinate and the community set up during time period 1, 2, ..., V ,

respectively. Functions P (·) and HT (·) denote the corresponding probability for this

scenario and the conditional hitting time under this scenario, respectively. Note that each

sub-case {w1, w2, ..., wV } is disjoint from all other sub-cases.

10 This assumption of independence is shown in [52] to be a good approximation, when the expected
length of an epoch is in the order of the square root of the area of the community the epoch takes place
in.
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To evaluate Eq. (4–8), we need to calculate P (w1, ..., wV ) and HT (w1, ..., wV ) for each

possible sub-case (w1, ..., wV ).

Lemma 4.7. If the target coordinate is chosen independent of the communities and the

communities in each time period are chosen independently from other periods, then

P (w1, ..., wV ) = ΠV
t=1P (wt), (4–9)

where P (wt) = A(wt)/N2, i.e., the probability of a sub-case wt is proportional to the area

A(wt) that corresponds to the specific scenario wt, which is a series of conditions of the

following type: ({target ∈ commt
1}, {target /∈ commt

2}, ..., {target ∈ commt
S}).

Proof. The result follows from simple geometric arguments.

The first step for calculating HT (w1, ..., wV ) is to derive the unit-time hitting

probability in time period t under target coordinate-community relationship wt, denoted

as P t
h(w

t).

Lemma 4.8. For a given time period t and a specific scenario wt,

P t
h(w

t) =
St∑

j=1

I(target ∈ Commt
j|wt)P t

move,j2Kvt
j/C

t
j
2
, (4–10)

where I(·) is the indicator function.

Proof. The overall unit-time hitting probability is the sum of the hitting probabilities

contributed by epochs in each state. Note that the hitting event can only occur when the

node is physically moving, and the node can hit the target when it is moving in its j-th

community only if the target coordinate is within the community11 . When a node moves

with average speed vj in community j, on average it covers a new area of 2Kvj in unit

time. Since a node following random direction movements visits the area it moves about

11 We neglect the small probability that the target is chosen out of the community but close to it, and
make the contributions from epochs in state j zero if the chosen target coordinate is not in community j.
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with equal probability, and the target coordinate is chosen at random, it falls in this newly

covered area with probability 2Kvj/C
t
j
2

[52]. Hence the contribution to the unit-time

hitting probability by movements made in state j is P t
move,j2Kvt

j/C
t
j
2
, i.e., when the node

moves in community j and the target is in the newly covered area in the time unit.

Note that the movement made in each time unit does not increase or decrease the

probability of hitting the target in the subsequent time units, therefore each time unit

can be considered as an independent Bernoulli trial with success probability given in Eq.

(4–10). The corollary below immediately follows.

Corollary 4.9. The probability for at least one hitting event to occur during time period t

under scenario wt is

P t
H(wt) = 1− (1− P t

h(w
t))T t

. (4–11)

Finally, using the law of total probability, we derive the conditional hitting time under

a specific target-community relationship, HT (w1, ..., wV ).

Theorem 4.10.

HT (w1, ..., wV ) =
V∑

t=1

HT (w1, ..., wV |first hit in period t)·

P (w1, ..., wV , first hit in period t),

(4–12)

where the probability for the first hitting event to happen in time period t is

P (w1, ..., wV , f irst hit in period t) =
Πt−1

i=1(1− P i
H(wi)) · P t

H(wt)

P
, (4–13)

and the hitting time under this specific condition is

HT (w1, ..., wV |first hit in period t) =
V∑

i=1

T i · ( 1

P
− 1) +

t−1∑
i=1

T i +
1

P t
h(w

t)
, (4–14)

where P = 1− ΠV
t=1(1− P t

H(wt)) is the hitting probability for one full cycle of time periods.
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Proof. The probability for the first hitting event to happen in time period t can be derived

as follows: we consider the occurrence of hitting events in each type of time periods as

independent coin toss trials, which give head with probability P t
H(wt) for time period t.

The probability of the first hitting event occurring in time period t is equivalent to the

probability of getting the first head from t-th coin, when we flip these coins in turns,

following the same order as the time periods appearing in the structure. The success

probability for each full cycle is P = 1 − ΠT
i=1(1 − P i

H(wi)). The probabilities for the first

hitting event to occur in time period t is as given in Eq. (4–13), since in each cycle of time

periods follows the same repetitive structure. The first term in Eq. (4–14) corresponds

to the expected duration of full time period cycles until the hitting event occurs. Since

for each cycle the success probability of hitting the target is P , in expectation it takes

1/P cycles to hit the target, and there are 1/P − 1 full cycles. The second term in Eq.

(4–14) is the sum of duration of time periods before the time period t in which the hitting

event occurs in the last cycle. Finally, the third term is the fraction of the last time period

before the hitting event occurs. Note that the last part is an approximation which holds if

the time periods we consider are much longer than unit-time.

4.2.3.4 Meeting time

The procedures of the derivation of the meeting time is similar to that of the hitting

time detailed in the last section. In short, we derive the unit-step (or unit-time) meeting

probability, Pm, and the meeting probability for each type of time period, PM , and put

them together to get the overall meeting time in a similar fashion as in Theorem 4.10.

Similar to Lemma 4.8, we add up the contributions to the meeting probability from

all community pairs from node a and b in the following Lemma.

Lemma 4.11. Let community j of node a and community k of node b overlap with each

other for an area A(at
j, b

t
k) in time period t. Then, the conditional unit-time meeting

probability in time period t when node a and b are in its community j and k, respectively,

is
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(4–15)

Proof. Equation (4–15) consists of two parts:

(I) Both of the nodes are moving within the overlapped area. This adds the first term

in Eq. (4–15) to the meeting probability. The two ratios,
A(at

j ,bt
k)

Ct
j
2(a)

and
A(at

j ,bt
k)

Ct
k
2(b)

, capture

the probabilities that the nodes are in the overlapped area of the communities. The

contribution to the unit-time meeting probability is the product of probabilities of both

nodes moving within the overlapped area and the term 2Kv
A(at

j ,bt
k)

, which reflects the covered

area in unit time. We use the fact that when both nodes move according to the random

direction model, one can calculate the effective (extra) area covered by assuming that one

node is static, and the other is moving with the (higher) relative speed between the two.

This difference is capture with the multiplicative factor v̂ [52].

(II) One node is moving in the overlapped area, and the other one pauses within

the area. This adds the remaining two terms in Eq. (4–15) to the unit-time meeting

probability. These terms follow similar rationale as the previous one, with the difference

that now only one node is moving. The second term corresponds to the case when node

a moves (and b is static), and the third term corresponds to the case when node b moves

(and a is static).

The derivation of the unit-time meeting probability between nodes a and b for

time period t includes all possible scenarios of community overlap. If node a has

St(a) communities and node b has St(b) communities, there can be at most St(a)St(b)

community-overlapping scenarios in time period t.
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Note that (4–15) is the general form of Equation (13) and (14) in [67]. If we assume

perfect overlap and a single community from both nodes, we arrive at (14). If we assume

no overlap, we result in (13). Also note in the general expressions presented in this work,

the whole simulation area is also considered as a community. Therefore we do not have to

include a separate term to capture the roaming epochs.

Corollary 4.12. The probability for at least one meeting event to occur during time period

t is

P t
M =1−

∑

∀(j,k)

{Pov(a
t
j, b

t
k) · (1− P t

m(at
j, b

t
k))

T t}, (4–16)

where Pov(a
t
j, b

t
k) is the probability that the community j of node a overlaps with commu-

nity k of node b. This quantity is simply 1 if the communities have fixed assignments and

A(at
j, b

t
k) 6= 0. If the communities are chosen randomly, this probability can be derived by

Lemma 4.5 in [67]. The Lemma is re-produced below for completeness.

Lemma 4.13. For a specific time period t, if the j-th community of node a and the k-th

community of node b are randomly chosen within the simulation area, they overlap with

probability

Pov(a
t
j, b

t
k) =

(Ct
j(a) + 2K)2

N2
. (4–17)

Proof. As shown in Fig. 4-13, when a mobile node moves within its community, the

area covered by the node (i.e., the area that could fall in the communication range of

the node) actually extends out of the community by the transmission range of the node.

Hence, the “footage” of the community is larger than Ct
j
2
. We approximate this area by

(Ct
j + 2K)2, ignoring the small differences at the corners. Finally, since each node selects

its community at random within the simulation area, the probability that part of the

footage of the community of node a is chosen as part of the community of node b is simply

(Ct
j(a)+2K)2

N2 .

Finally, similarly to Theorem 4.10, the expected meeting time can be calculated using

the results in the Lemmas in this section.
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Figure 4-13. Illustration of the expansion of the “footage” of community.

Theorem 4.14. The expected meeting time is

MT =
V∑

t=1

MT (meet in period t)P (meet in period t). (4–18)

Where the quantities in the above equation are calculated by

P (meet in period t) =
Πt−1

i=1(1− P i
M) · P t

M

Q
, (4–19)

MT (meet in period t) =
V∑

i=1

T i · ( 1

Q
− 1) +

t−1∑
i=1

T i +
1

P t
m

, (4–20)

where Q = 1− ΠV
i=1(1− P i

M) is the meeting probability for one full cycle of time periods.

Proof. The proof is parallel to that of Theorem 4.10 and is omitted.

4.2.4 Validation of the Theory with Simulations

In this section, we compare the theoretical derivations of the previous section against

the corresponding simulation results, for various parameter settings. Through extensive

simulations with multiple scenarios and parameter settings, we establish the accuracy of

the theoretical framework.

We summarize the parameters for the tested scenarios in Table 4-2. Table 4-2 (a)

lists the parameters we use for a simplified model (two time periods with two communities

in each time period, where one of the communities is the whole simulation field). For

more complex models, we try out the setup of tiered communities and multiple randomly
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Figure 4-14. Illustration of the community setup for the generic cases of TVC model. (a)
Concentric multiple-tier communities setting. (b) Multiple randomly placed
communities setting.

placed communities. In the tiered communities layout, as illustrated in Fig. 4-14(a), a

randomly chosen point in the simulation field serves as the center of the communities, and

multiple tiers of communities with different sizes share the same center. This construction

is suggested by a common observation from our daily lives: People visit the vicinity area of

locations that bear importance to them more often than roam far away. When we assign

the tiered community structure, it naturally makes sense to have the node visit the outer

tiers less frequently than the inner tiers, although this is not required for the theoretical

derivation. In the simulations, we use two alternative time periods with a two-tier local

community in each time period, and the parameters are listed in Table 4-2 (b). In the

multiple randomly placed communities layout, as illustrated in Fig. 4-14(b), multiple

communities are instantiated randomly to show that our theory is not limited to a single

community. We use two time periods with two randomly placed communities each for

this scenario. Other than the difference in community setup and sizes, we again use the

parameters in Table 4-2 (b) for this case. Our discrete-time simulator is written in C++,

and nodes move as described in Section 4.2.2. More details about the simulator, as well as

the simulator code, can be found at [9].
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Figure 4-15. Spatial distribution of the node (shown as the probability for a node to
appear in each 50x50 grid block). (a) Randomly placed community. (b)
Single-tier community centered at (300, 300) or (700, 700) with one half
probability. (c) Two-tier community centered at (300, 300) or (700, 700) with
one half probability.

4.2.4.1 Nodal spatial distribution

To observe the nodal spatial distribution, we divide the simulation area into a

20-by-20 grid and count the average number of nodes in each grid block during the

simulation. The results presented in this subsection is the average of 5000 runs of

independent simulations.

If the communities are randomly chosen, the node should appear at each of the 400

evenly divided grid equal-likely, with probability 1/400. We observe that the spatial

distribution of node varies a bit about this value in the simulation, as shown in Fig. 4-15

(a). The minor discrepancy is due to the finite number of samples. To make the scenario

more interesting, we also generate the spatial distribution for nodes when the communities

are fixed. We use the parameter sets of Model-1 (one community in each time period) and

Model-5 (two-tier community in each time period) from table 4-2, and assign the center of

the community at either (300, 300) or (700, 700) with one half probability. The resulting

nodal spatial distributions are shown in Fig. 4-15 (b) and (c), respectively. The node

appears with higher probability where the communities are assigned. From Eq. (4–3), for

the scenario in Fig. 4-15 (b), the node appears in the community with probability 0.0864

and in other area with probability 0.0008, respectively. For the scenario in Fig. 4-15 (c),

the node appears in the first-tier community, the second-tier community, and the other
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Figure 4-16. Comparison of theoretical and simulation results (the average node degree).
(a) Randomly placed community. (b) Relative error for scenarios with fixed
single-tier community. (c) Relative error for scenarios with fixed two-tier
communities.

area with probability 0.0759, 0.0039, and 0.0004, respectively. In both cases the simulation

results follow the theoretical results reasonably well, within about 10% error for the area

in the communities.

4.2.4.2 Average node degree

For the average node degree, we create simulation scenarios with 50 nodes in the

simulation area, and calculate the average node degree of each node by taking the time

average across snapshots taken every second during the simulation, and then average

across all nodes. All the runs last for 60000 seconds in this subsection.

As we show in Corollary 4.5, when the communities are randomly chosen, the average

node degree turns out to be the average number of nodes falling in the communication

range of a given node, as if all nodes are uniformly distributed. Hence the average node

degree does not depend on the exact choices of community setup (i.e. single, multiple, or

multi-tier communities) or other mobility parameters. In Fig. 4-16 (a), we compare the

evolution of the theoretical average node degree versus the communication range (K) to

the simulation results for some of the models listed in Table 4-2. The simulation curves

follow the prediction of the theory well. Other configurations we tried (not listed here)

also show similar trends.

Again, to make the scenario a bit more realistic, we simulate some more scenarios

when the communities are fixed. Among the 50 nodes, we make 25 of them pick the
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community centered at (300, 300) and the other 25 pick the community centered at

(700, 700). We simulate scenarios for all seven sets of parameters listed in Table 4-2.

Models 1 through 4 correspond to scenarios with single-tier communities in each time

period, and models 5 through 7 correspond to scenarios with multi-tier communities. We

show the relative errors, calculated as Error = (Theory − Simulation)/Simulation,

in Fig. 4-16 (b) and (c). A positive error indicates the theoretical value is larger than

the simulation result, while a negative error indicates the converse. In the simulations,

when the communication ranges are small as compared to the edge of the communities,

the relative errors are low, typically below 10% except for Model-3, indicating a good

match between the theory and the simulation. However, as the communication range

increases, the area covered by the communication disk becomes comparable to the size of

the community and Eq. (4–5) is no longer accurate since the communication disk extends

out of the overlapped area in most cases. That is the reason for the discrepancies between

the theory and simulation. Besides Model-3, we observe at most 20% of relative error when

the communication disk is less than 20% the size of the inner-most community, indicating

that our theory is valid when the communication range is relatively small.

4.2.4.3 Hitting time and meeting time

We perform simulations for the hitting and the meeting times for 50, 000 independent

iterations for each scenario listed in Table 4-2, and compare the average results with the

theoretical values derived from the corresponding equations (i.e. (4–8) and (4–18)). To

find out the hitting or the meeting time, we move the nodes in the simulator indefinitely

until they hit the target or meet with each other, respectively.

Again we show the relative errors between the theoretical values and the simulation

results for various scenarios in Fig. 4-17. We see that for all the scenarios, the relative

errors are within acceptable range. These results display the accuracy of our theory under

a wide range of parameter settings. The absolute values for the error are within 16% for

the hitting time and within 20% for the meeting time. For more than 70% of the tested
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Figure 4-17. Relative error between theoretical and simulation results (the hitting time
and the meeting time). (a) Hitting time, simple model. (b) Hitting time,
multi-tier communities. (c) Hitting time, multiple random communities. (d)
Meeting time, simple model. (e) Meeting time, multi-tier communities. (f)
Meeting time, multiple random communities.

scenarios, the error is below 10%. The errors between the theoretical and simulation

results are mainly due to some of the approximations we made in the various derivations.

For example, there exist some border effects with respect to the hitting and meeting

probabilities within a community. When a node is close to the border of a community, it

could also “see” some other nodes outside of the community if its transmission range is

large enough. However, we have chosen to ignore such occurrences to keep our analysis

simpler. Furthermore, the approximation of the hitting and meeting processes with

discrete Bernoulli trials is valid only for the epochs that are large enough (in the order

of community size). Nevertheless, as shown in the figures, the errors are always within

acceptable ranges, justifying our simplifying assumptions.

4.2.5 Application I: Generation of Mobility Scenarios for Simulation

After establishing the theoretical results in previous sections, in this and the next

sections we display the usefulness of the TVC model. The TVC model is flexible to

match the mobility characteristics we obtain from several qualitatively different traces,
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hence provide a good platform for researchers to evaluate the protocols and services they

propose for various environments. The theoretical tractability, on the other hand, assists

system operators to make management decisions about a given protocol operated under an

environment described by the TVC model.

In the first application, we show that the TVC model provides a general framework to

model a wide range of mobility scenarios, and provides a powerful tool for simulation-based

protocol or service evaluations in MANETs. We have made our mobility trace generator

available at [9]. The tool provides mobility traces in both ns-2[88] compatible format and

time-location (i.e., (t, x, y)) format.

In this section, our aim is twofold: (i) first, we would like to demonstrate the

model’s flexibility and how it can be configured to generate mobility instances that are

representative of various target wireless networks such as WLANs, VANETs, etc.; (ii) at

the same time, we would like to validate the model’s “realism” or “accuracy” by explicitly

comparing mobility instances produced by our model with real mobility instances captured

in well-known, publicly-available traces. However, it is important to note that the use

of such a model is not merely to match it with any specific trace instance available; this

is only done for validation and calibration purposes. Rather, the goal is to be able to

reproduce a much larger range of realistic mobility instances than a single trace can

provide.

We first outline here some general guidelines about how to use the model in order

to construct specific mobility scenarios. Then, we show how to explicitly configure the

TVC model in order to match the mobility characteristics observed in three case studies:

a wireless LAN trace, a vehicular trace, and a human-encounter trace. All the parameter

values we use in the examples in this section are also available at [9].

STEP 1: Determine the structure in space and time: The first step to construct

the TVC model for a given scenario is to setup the communities and the time period

structure. If the map of the target environment is available, one should observe the map
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and identify the points of attractions in the given environment and how they vary with

respect to time (e.g., restaurants on campus during lunch time, hotels in an amusement

park during nights), and assign the communities/time periods in the TVC model

accordingly. If the map is not available, alternatively, one could use the general mobility

characteristics observed in typical traces for the particular target network (as shown,

for example, in Fig. 4-10) as guidelines to assign the structure in space and time. For

example, from location preference curves like the one in Fig. 4-10(a), one can determine

the number of communities one needs to explicitly create; as a very simple example, if

in most WLAN traces it is observed that the typical node spends say 95% of its time at

around 2 to 5 preferred locations (depending on the node), then one could assign each

node to have from 2 to 5 local communities in the network (with the actual number

and locations of communities randomly chosen for each node), with a larger (roaming)

community representing the rest of the 5% of mobility time12 . Similarly, from curves like

the ones in Fig. 4-10(b), one may observe the re-appearance periodicity and decide on the

time period structure accordingly. If a finer time granularity is necessary (e.g. time-of-day)

one could additionally observe the mobility characteristics (e.g. location preferences) on an

hour-by-hour basis and identify clear changes in a node’s daily behavior.

STEP 2: Assign community-related parameters: Ideally, for a given environment,

once the communities are identified, the related parameters (e.g., πt
j, D

t
j, L

t
j, which

represent the probability, average pause time, and average epoch length, at community

j during time period t) could be assigned according to the mobile nodes’ behavior in

each community (e.g., how long does a typical person spend at the cafeteria for lunch?).

Nevertheless, in most cases such information is not available, or extremely difficult to

obtain. Hence, one could again resort to measured statistics from typical traces to guide

12 In reality, one may be able to capture more complex structures with more communities or structure
between them, by combining knowledge from the actual network area (map), generic mobility characteris-
tics, and other information about the network.
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the assignment of the parameters. It is not difficult to see that, typically, the attraction of

the communities (πt
j) and the time spent in each community (related to Dt

j, Lt
j) determine

the shape of the location visiting preference curve. Thus, one can use basic probability

theory to calculate the expected fraction of time a node spends in a given community

as a function of these parameters, and derive from it the values needed to obtain a

given location preference profile observed in a curve in Fig. 4-10(a). We calculate these

community stay probabilities later in Lemma 4.1.

STEP 3: Assign user on-off behavior: Note that the mobility trace generated by the

TVC model is an “always-on” mobility trajectory of the mobile node (i.e., the node is

always present somewhere in the simulation field). Depending on the target environment,

this always-on behavior may not be realistic. In many empirically collected traces, not

all nodes are present all the time (i.e., some of the nodes are “off” or not in the observed

area sometimes). This is the case in two of the scenarios we discuss below - in the WLAN

traces, nodes are “on” only when they are not moving; in the vehicle mobility trace,

nodes are “on” when they are moving. Thus, before producing the final synthetic trace,

assumptions about when the user is considered “on” should sometimes be made and

superimposed to the TVC mobility traces generated. We have applied this step to the

traces of the two scenarios mentioned above.

Next, we look into three specific case studies, namely a set of WLAN traces,

a vehicular trace, and a trace of inter-node encounters. We show how to apply the

fore-mentioned procedure in each case, and show that synthetic mobility traces produced

by the TVC model successfully match the characteristics observed in the real traces.

4.2.5.1 Matching mobility characteristics with WLAN traces

In the first example, we show that the TVC model can re-create the location pref-

erences and re-appearance probability curves observed in WLANs. We construct our

synthetic trace from the TVC model with the following steps: (STEP1) We divide the

simulation area into a 10-by-10 grid and use these 100 grid cells as the locations for the
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purpose of measuring mobility statistics for the simulated nodes. For each node, we assign

some of the grids to serve as the node’s communities during each time period, according

to the method described earlier. (STEP2) We use the mobility characteristics obtained

from the WLAN traces (i.e., curves in Fig. 4-10(a)) to calculate the attraction from the

communities (πt
j) and the pause times of the node (Dt

j) to shape a decaying tail of location

visiting preference. (STEP3) Since devices are usually turned off when users move them in

the real WLANs, we make a similar assumption that the mobile nodes are considered “on”

only when they are not moving. When the simulated node moves, we assume that it is not

associated with the grid. Note that the curves in Fig. 4-10(b) represent the probability

of an “on” node associated with the same community after the given time gap, and the

peaks appear when the considered points in time are in the same type of time period.

Therefore, the peak value is
∑St

j=1(π
t
j)

2(P t
on,j)

2, where P t
on,j denotes the probability a node

is considered “on”. Hence, the fraction of time nodes spend on moving (Lt
j/v) and pause

(Dt
j) can be adjusted (note that in this case, P t

on,j = Dt
j/(D

t
j + Lt

j/v)) to change the peak

values in the curve of periodical re-appearance property to match with the curves in Fig.

4-10(b).

We use the MIT WLAN trace[82] as an example to display the match between the

synthetic trace derived from the TVC model and the real trace. We also achieved good

matching with the USC[80] or the Dartmouth[81] traces, but do not show it here due

to space limitations (see [9]). We show the skewed location visiting preferences and the

periodical re-appearance properties in Fig. 4-18 (a) and (b), respectively. We first try a

simple synthetic model (labeled as model-simplified, using the parameters of Model-1 in

Table 4-2) with one community in two time periods. While this simple model captures the

major trends in the mobility characteristics, there are several noticeable differences. First,

since there is only one community, the tail in the model-simplified curve in Fig. 4-18(a) is

“flat” as opposed to the exponentially diminishing tail of the MIT curve (notice the Y-axis

in Fig. 4-18(a) is in log scale). Second, the peaks in the model-simplified curve in Fig.
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Figure 4-18. Matching the MIT WLAN trace with the synthetic trace. (a) Skewed location
visiting preferences. (b) Periodical re-appearance at the same location.

4-18(b) are of equal heights, due to the simple two-alternating-time-period structure, as

opposed to varying peak values of the MIT curve. We can improve the matching between

the synthetic trace and the real trace by adding complexity in both space (using more

communities) and time (using more complex schedule, such as the weekly schedule shown

in Fig. 4-12). In a refined model labeled as Model-complex in Fig. 4-18, we show that

the resulting mobility characteristics match very closely with the MIT trace. This also

demonstrates the flexibility of our model - the user can adjust its complexity by choosing

the number of communities and time periods needed to achieve a desired level of matching

with the mobility characteristics.

4.2.5.2 Matching mobility characteristics with vehicle mobility traces

In this example we display that skewed location visiting preferences and periodical

re-appearance are also prominent mobility properties in vehicle mobility traces. We obtain

a vehicle movement trace from [17], a website that tracks participating taxis in the greater

San Francisco area. We process a 40-day trace obtained between Sep. 22, 2006 and Nov.

1, 2006 for 549 taxis. We obtain the mobility characteristics of the taxis by the following

steps. For each taxi, we first identify its movement range within the 40-day period, then

draw a rectangular area that bounds the movement of the taxi, and divide this area into

equal-sized 10-by-10 grids. We tally the mobility statistics of the taxis using these 100

grids as locations, and show the results in Fig. 4-19 (a) and (b), respectively, with the

104



$Y
HUD
JH�
IUDF

WLRQ
�RI�

RQO
LQH
�WLP

H
DVV
RFL
DWH
G�Z

LWK�
WKH
�ORF

DWLR
Q

� �( ���

� �( ���

� �( ���

� �( ���

� �( ���

� �( ���

� �(���
� �� �� �� �� �� �� �� �� ��

/RFD WLRQ �VRUWHG �E\�WRWD O�DP RXQ W�RI�WLP H �DVVRFLD WHG �Z LWK �LW

0 RGH O 9 HK LFOH �WUDFH

(a)

�

� ���

� ��

� �� �

� ��

� �� �

� ��

� � � � �

9 HK LFOH�WUDFH

0 RGHO

7 LP H�JDS ��GD\V�

3UR
E��1

RGH
�UH�

DSS
HDU
�DW�
WKH
�VDP

H
ORF
DWLR

Q�D
IWHU

�WKH
�WLP

H�J
DS�

(b)

Figure 4-19. Matching the vehicle mobility trace with the synthetic trace. (a) Skewed
location visiting preferences. (b) Periodical re-appearance at the same
location.

label Vehicle-trace. It is interesting to observe that the trend of vehicular movements is

very similar to that of WLAN users in terms of these two properties.

We further show that, using the outlined procedures, we can generate a synthetic

trace with similar mobility characteristics as the vehicle mobility trace. After observing

the trace closely, we discover that the taxis are offline (i.e., not reporting their locations)

when not in operation. Hence in the synthetic trace we make the corresponding

assumption (in STEP3) that the nodes are associated with the current grid they reside

in only when they are moving; we then consider the pause times as breaks in the taxi

operation (hence P t
on,j = (Lt

j/v)/(Dt
j + Lt

j/v) in this case), from which we can calculate

or adjust the respective model parameters. The curves in Fig. 4-19 with label Model

correspond to the mobility characteristics of the synthetic trace. As a final note, although

vehicular movements are generally constrained by streets and our TVC model does not

capture such microscopic behaviors, designated paths and other constraints could still

be added in the model’s map (for vehicular or human mobility) without losing its basic

properties. We defer this for future work.

4.2.5.3 Matching contact characteristics with encounter-based traces

In this example, we show that the TVC model is generic enough to also reproduce

the distributions of the inter-meeting time and the encounter duration observed from

a human encounter trace [84], by setting up its parameters properly. Specifically, we
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tune our mobility model to mimic the behaviors observed in an experiment performed

at INFOCOM 2005 [27]. In this experiment, wireless devices were distributed to

41 participants of the conference, with appropriate software installed that could log

encounters between nodes (i.e. coming within Bluetooth communication range), as they

moved around the premises of the conference area.

The inter-meeting time and the encounter duration distributions of all 820 pairs of

users obtained from this trace are shown in Fig. 4-20 with label Cambridge-INFOCOM-

trace. To mimic such behaviors using our TVC model, we observe the conference schedule

at INFOCOM, and set up a daily recurrent schedule with five different types of time

periods (STEP 1): technical sessions, coffee breaks, breakfast/lunch time, evening,

and late night (see [9] for the detailed parameters). For each time period we set up

communities as the conference rooms, the dining room, etc. We also generate a community

that is far away from the rest of the communities for each node and make the node

sometimes isolated in this community to mimic the behavior of patrons skipping part of

the conference. It is interesting to note that the inter-meeting time distribution has a

sharp drop (the “knee” in the curve) at 16 hours, which is approximately the time gap

between the end of the day and the beginning of the subsequent day at the conference.

This suggests the nodes (naturally) meet with lower probability during the nights, and

thus the time-dependent mobility provided by our TVC model is appropriate. We can

naturally achieve this by assigning nodes to disjoint communities (i.e., the “hotel rooms”)

during the nights. In STEP2, we use the theory presented in section 4.2.3 to adjust the

parameters and shape the inter-meeting time and encounter duration curves. For example,

a stronger tendency for nodes to choose roaming epochs (setting larger πt
r) would increase

the meeting probability (see, e.g., Eq. (4–15)), hence reducing inter-meeting times. Since

the devices used to collect the encounter traces are always-on, we do not apply any

changes to the synthetic trace in STEP 3. We randomly generate 820 pairs of users and

obtain their corresponding distributions of the inter-meeting time and the encounter
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Figure 4-20. Matching inter-meeting time and encounter duration distributions with the
human encounter trace. (a) Inter-meeting Time. (b) Encounter duration.

duration. These distributions are shown in Fig. 4-20 with label Model. It is clear that our

TVC model has the capability to reproduce the observed distributions, even if it is not

constructed explicitly to do so. This displays its success in capturing the decisive factors of

typical human mobility.

It is clear from the cases studied here that, once we observe the target environment

closely and come up with the right underlying parameters, the TVC model is able to

capture the consequent mobility characteristics well. In addition, with the respective

configuration, it is possible to generate synthetic traces with much larger scale (i.e., more

nodes) than the empirical ones while maintaining the same mobility characteristics. It is

also possible to generate multiple instances of the synthetic traces with the same mobility

characteristics to complement the original, empirically collected trace. Although other

proposed models have also managed to match some sets of collected measurements [62–65],

none of the existing works has been shown to capture the variety of qualitatively different

traces (e.g. WLAN, vehicles, inter-contacts) that the TVC model does.

4.2.6 Application II: Using Theory for Performance Prediction

Although the various theoretical quantities derived for the TVC model in Section

4.2.3 are interesting in their own merit, they are particularly useful in predicting protocol

performance, which in turn can guide the decisions of system operation. We illustrate this

point with two examples in this section.
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4.2.6.1 Estimation of the number of nodes needed for geographic routing

It has been shown in geographic routing that the average node degree determines the

success rate of messages delivered [87]. Thus, using the results of Section 4.2.3.2 we can

estimate the number of nodes (as a function of the average node degree) needed to achieve

a target performance for geographic routing, for a given scenario.

We consider the same setup as in Section 4.2.4.2, where half of the nodes are

assigned to a community centered at (300, 300) and the other half are assigned to another

community centered at (700, 700). We are interested in routing messages across one of the

communities, from coordinate (250, 250) to coordinate (350, 350) with simple geographic

routing (i.e., greedy forwarding only, without face routing [89]). Using simulations we

obtain the success rate of geographic routing under various communication ranges when

200 nodes move according to the mobility parameters of Model-1 (Table 4-2). Results

are shown in Fig. 4-21 (each point is the percentage of success out of 2000 trials). If we

assume now that the mobility model was different, say Model-3, we would like to know

how many nodes we would need to achieve similar performance. Using Eq. (4–6) we find

that 760 nodes are needed to create a similar average node degree for Model-3. To validate

this, we also simulate geographic routing for a scenario where 760 nodes follow Model-3.

Comparing the resulting message delivery ratio for this scenario to the original scenario

(200 nodes with Model-1) in Fig. 4-21, we see that similar success rates are achieved in

both scenarios under the same transmission range, which confirms the accuracy of our

analysis.

4.2.6.2 Predicting message delivery delay with epidemic routing

Epidemic routing is a simple and popular protocol that has been proposed for

networks where connectivity is only intermittent (often referred to as Delay Tolerant

Networks) [71]. It has been shown that message propagation under epidemic routing

can be modeled with sufficient accuracy (assuming the number of nodes is large enough)

using a simple fluid-based model [91]. (Note that its performance has also been analyzed
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Figure 4-21. Geographic routing success rate under different mobility parameter sets and

node numbers.

using Markov Chain [33, 92] and Random Walk [56] models.) This fluid model has been

borrowed from the Mathematical Biology community, and is usually referred to as the

SI (Susceptible-Infected) epidemic model. The gist of the SI model is that the rate by

which the number of “infected” nodes increases (“infected” nodes here are nodes who have

received a copy of the message) can be approximated by the product of three quantities:

the number of already infected nodes, the number of susceptible (not yet infected)

nodes, and the pair-wise contact rate, β (the implicit assumption there of course being

that nodes meet independently). This contact rate in the SI model is equivalent to the

unit-step meeting probabilities calculated in Section 4.2.3.4. Thus, one could in essence

plug-in these meeting probabilities into the SI model equations and calculate the delay for

epidemic routing. Yet, in the TVC model (and often in real life) there are multiple groups

of nodes with different communities, and thus different pair-wise contact rates that depend

on the community setup. For example, nodes with the same or overlapping communities

tend to meet much more often than nodes in far away communities. For this reason, we

extend the basic SI model to a more general scenario that is applicable to the TVC model.

We consider the following setup in the case study: We use Model-3 (Table 4-2) for the

mobility parameters. A total of M = 50 nodes are divided into two groups of 25 nodes

each. One group has its community centered at (300, 300) and the other at (700, 700). One

packet starts from a randomly picked source node and the time needed until it reaches all
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other nodes in the network using epidemic routing is calculated. The propagation of the

message can be described by the following equations:





dI1(t)
dt

= βovI1(t)S1(t) + βno ovI2(t)S1(t)

dI2(t)
dt

= βovI2(t)S2(t) + βno ovI1(t)S2(t)

S1(t) + I1(t) = M/2

S2(t) + I2(t) = M/2.

(4–21)

where Sx(t) and Ix(t) denote the number of susceptible and infected nodes at time t in

group x, respectively. Parameters βov and βno ov represent the pair-wise unit-time meeting

probability when the communities are overlapped (i.e., for nodes in the same group) and

not overlapped (i.e., nodes in different groups), respectively. We use Eq. (4–15) to obtain

these quantities. This model is an extension from the standard SI model [91] and similar

extensions can be made for more than two groups [90]. The first equation governs the

change of infected nodes in the first group. Notice that the infection to susceptible nodes

in the group (S1(t)) can come from the infected nodes in the same group (I1(t)) or the

other group (I2(t)). We can solve the system of equations in (4–21) to get the evolution

of the total infected nodes in the network. As can be seen in Fig. 4-22, the theory curve

closely follows the trend in simulation curve (the non-perfect matching between the two

curves, is due to the fact that fluid models become more accurate approximations of the

actual stochastic spreading for large numbers of nodes). This indicates first that scenarios

generated by our mobility model are still amenable to fluid model based mathematical

analysis (SI), despite the increased complexity introduced by the concept of communities.

It also shows that results produced thus can be used by a system designer to predict

how fast messages propagate in a given network environment. This might, for example,

determine if extra nodes are needed in a wireless content distribution network to speed up

message dissemination.
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Figure 4-22. Packet propagation with epidemic routing. The total population is divided
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As a final note, in addition to the epidemic routing, the theoretical results for the

hitting and meeting times could be applied to predict the delay of various other DTN

routing protocols (see e.g. [52, 56, 91]), for a large range of mobility scenarios that can be

captured by the TVC model.

4.2.7 Conclusions and Future Work

Our contributions: We have proposed a time-variant community mobility model for

wireless mobile networks. Our model preserves common mobility characteristics, namely

skewed location visiting preferences and periodical re-appearance at the same location.

We have tuned the TVC model to match with the mobility characteristics of various

traces (WLAN traces, a vehicle mobility trace, and an encounter trace of moving human

beings), displaying its flexibility and generality. A mobility trace generator of our model

is available at [9]. In addition to providing realistic mobility patterns, the TVC model

can be mathematically analyzed to derive several quantities of interest: the nodal spatial

distribution, the average node degree, the hitting time and the meeting time. Through

extensive simulation studies, we have verified the accuracy of our theory.

The TVC model can be easily generalized to provide scenarios in which nodes display

more heterogeneous behavior. Nodes may have different set of parameters and even

the time period structure can be different for different nodes. With these extensions,

we have a mobility model to describe an environment including users with diverse

mobility characteristics. We believe such a model is a very important building block
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for understanding protocol performances in real-life settings. To demonstrate this last

point, we also provide some examples of how our theory can be used in practice to predict

protocol performance and guide design decisions.

In the future we would like to further analyze the performance of various routing

protocols (e.g., [56, 57]) under the time-variant community mobility model. We also

would like to construct a systematic way to automatically generate the configuration files,

such that the communities and time periods of nodes are set to capture the inter-node

encounter properties we observe in various traces (for example, the Small World encounter

patterns observed in WLAN traces [60], see chapter 6 for the details).
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CHAPTER 5
CASE STUDY II: MINING BEHAVIORAL GROUPS IN THE TRACES

After we have analyzed the individual user mobility in the last chapter, in this

chapter we widen the scope of analysis to consider the relationship between multiple users.

Specifically, we seek to answer a different question: given a WLAN trace, how can we

identify users with similar behaviors from the trace? We rely on unsupervised learning

techniques (i.e., clustering) as our main tool to investigate this question, and establish a

systematic method to identify the underlying groups of similar users from large-scale user

traces. We define a metric for similarity between user behaviors in the process, and we

further leverage the similarity metric to guide message delivery in a new service paradigm

– profile-cast, which delivers messages to groups implicitly identified by the behavior of the

nodes.

5.1 Introduction

In recent years, we have witnessed the mass deployments of portable computing and

communication devices (e.g., cellphones, laptops, PDAs) and wireless communication

infrastructures. As the adoption of these technologies becomes an inseparable part of

our lives, we expect fundamental behavioral change among the users. To estimate the

impact of this new paradigm shift in user behavior, it is not sufficient to study the

change exclusively from a technology perspective. There is a pressing need to capture

and understand the user behavioral patterns when these new technologies are adopted.

This understanding will also play a crucial role in solving a multitude of technical issues,

ranging from better network management to designing of behavior-aware protocols,

services, and user models.

Consider wireless LANs (WLANs) on university campuses as an example. One could

imagine the major work places (e.g., offices and classrooms) and the informational hubs

(e.g., libraries and computer centers) would dominate users’ behavioral patterns in terms

of network usage (in terms of the locations they access the network from). However, as the
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WLAN deployments prevail, the location from where people access information may start

to change. While the traditional “hot spots” still play an important role, we can expect

users to display diverse behavioral patterns that reflect their personal preferences (e.g., A

small group may prefer to work at a coffee shop), as these wireless devices become tiny

and personalized. We need to understand such behavioral patterns to better characterize

the users within a social context. The technique to discover such patterns from collected

data is the focus of this section. This is very different from the overall user mobility

statistics we look into in chapter 4, as we previously do not seek to distinguish users as

similar or dissimilar based on their behavioral patterns, which we will do in this chapter.

Specifically, we take a first step toward understanding and characterizing the

structure of behavioral patterns of users within large WLANs. We develop methods to

identify groups of users that demonstrate similar and coherent behavioral pattern. This is

important for several reasons: (1) From the application or service perspective, the groups

identify different existing major behavioral modes in the network, and, hence, can be

potentially utilized to identify targets for group-aware services. (2) From the network

management perspective, it helps us to understand the potential interplay of the user

groups with the network operation and reveals insight previously unavailable by looking at

the mere aggregate network statistics. (3) From a social sciences perspective, the results

unravel the relationships between users (i.e., their “closeness” in terms of network usage

behavior) when they embrace a new lifestyle.

We apply our analysis framework on long-term WLAN traces obtained from two

university campuses[80, 81] across the coasts of USA. We represent a user’s behavioral

features by constructing a normalized association matrix to which we apply our analysis.

While the applicability of our methods is not specific to WLANs, these are the most

extensive wireless user behavioral traces available today. We leverage unsupervised

learning (i.e., clustering) techniques [95] to determine groups of users displaying

similar behavior. While clustering has been widely-applied in other areas and in some
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cases[24, 38] to WLAN traces, the main contribution of the study is to construct proper

representations for our data sets and design novel distance metrics between users. These

two aspects are fundamental in the application of clustering techniques and determine the

quality of the results we obtain. The key challenge in designing a good distance metric

is to accurately and succinctly summarize the trends in the data, so the distances are

not influenced by noise and can be evaluated efficiently. We show that a singular-value

decomposition (SVD) based scheme not only provides the best summary of the data, but

also leads to a distance metric that is robust to noise and is computationally efficient.

The succinct summaries also help to reduce the processing, storage, and exchange (i.e.,

when nodes communicate with each other to convey their behavioral summaries) overhead.

Furthermore, we validate our methods and explain its significance.

We leverage our TRACE approach (outlined in the chapter 1) to understand user

grouping in this study. Specifically, the work starts with the WLAN Traces that capture

realistic user behavior. We then focus on a specific Representation distilled from the

traces that captures important aspects of user behavior, as we introduce in section

5.2. We then Analyze the clustering of the users based on the chosen representation,

normalized association vectors, from section 5.3 to section 5.6. We first show the need

for a good distance metric for clustering in section 5.3. To achieve that goal, we conduct

further analysis to understand the nature of user association patterns, and evaluate and

contrast various summaries to capture its major trend in section 5.4. We then utilize a

feature-based approach to achieve meaningful user clustering in section 5.5 and discuss its

interpretation in section 5.6, where we show the Characteristics of user groups we observed

from the traces. We briefly discuss how to Employ the of the methods and findings

we develop in the user-clustering effort in section 5.7, and take one application, the

behavior-aware message delivery, as the major focus in section 5.8 to show the usefulness

of the understanding of user grouping and our similarity metric.
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5.2 Preliminaries

We first introduce the traces we analyze in the study and the normalized association

vector representation we choose. We also briefly introduce the necessary background

knowledge about clustering in the section.

5.2.1 Choice of Data Sets and Representations

The widespread deployments of large-scale wireless LANs on university campuses

have attracted high adoption from its community. These deployments have outgrown

experimental networks and become commodities. Due to its high penetration and diversity

in users (as compared to corporate WLANs), campus networks are good platforms to

study the behavioral pattern of WLAN users. We elect two WLAN traces collected

from large populations for long durations for the study (namely, the semester-long

USC-06spring and quarter-long Dart-04spring traces). The details for the selected

traces are listed in Table 3-1. While the devices logged in the WLAN traces are mainly

laptop computers, we note that our methods are not limited to the specific data sets we

choose, and it would be of great interest to study traces from other mobile devices (e.g.,

cellphones, iPods), if available for a large population.

To understand user behavior from wireless network traces, the first fundamental task

is to choose a representation of the raw data. This chosen representation should have

significance to the network and in the greater social relationship context. We choose the

patterns of users visiting WLAN access points (APs) for the analysis. Visiting pattern is

important to WLANs as mobility is one of its defining characteristics. When a WLAN

user moves within the campus and associates with APs across the network, the set of APs

with which the user associates is considered an indicator of the user’s physical location.

From a social context, the places a person visits regularly and repeatedly usually have

a stronger connection to her identity and affiliation. It is perhaps one of the important

distinguishing factors for people with different social attributes.
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We represent a user’s visiting pattern by what we refer to as the normalized asso-

ciation vectors1 . The association vector is a summary of a user’s AP association during

a given time slot. Note that there are potentially many ways to represent user behavior

from a rich data set. Different representations certainly provide different insights. We

focus first on the normalized representation for daily association vectors to illustrate our

analysis, and briefly discuss about other alternatives in section 5.10. We choose to use

a day as the time slot since it represents the most natural behavior cycle in our lives.

The association vector for each time slot is an n-entry vector, (x1, x2, ..., xn), where n is

the number of unique locations (i.e., buildings2 ) in the given trace. Each entry in the

vector, xi, represents the fraction of online time the user spends at the location during

the time slot, i.e., we normalize the user association time with respect to his online

time in the considered time slot. With this representation, the conclusions we draw are

not influenced by the absolute value of online time, which varies across a wide range

among different users and different time slots of a given user. Note that the sum of the

entries in the association vector,
∑n

i=1 xi, is always 1 if the user has been online during

the time slot. We use a zero vector to represent the association vector when the user is

completely offline for the time slot. To represent a user’s association preference for the

long run, we construct the association matrix X for the user, as illustrated in Fig. 5-1,

i.e., we concatenate the association vectors for each time slot (day). If there are n distinct

locations and the trace period consists t time slots, the association matrix for a user is a

t-by-n matrix.

1 For brevity, we sometimes use the shortened term association vector to refer to the normalized associ-
ation vector unless stated otherwise.

2 We aggregate APs in the same building as a single location for better interpretation of user behavior.
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Figure 5-1. Illustration of association matrix representation.

5.2.2 Preliminaries of Clustering Techniques

Clustering (one of the key methods in unsupervised learning) is a widely-applied

technique to discover patterns from data sets with unknown characteristics. It can be

roughly classified into hierarchical or partitional schemes [95]. We use the hierarchical

clustering, in which each element is initially considered as a cluster containing one

member. Then, at each step, based on the distances between the clusters3 , two clusters

that are the closest to each other among all cluster pairs are merged into one cluster with

larger membership. This process continues until a clustering threshold has been reached,

when all the inter-cluster distances for the remaining clusters are larger than a given

distance threshold, or the remaining cluster number reaches a given target.

One major issue in applying clustering to a data set with unknown characteristics is

that it is hard to pre-select a proper clustering threshold in advance. The indication of a

good clustering result is that the distances between elements belonged to the same cluster

are low, and the distances between elements in different clusters are high. (i.e., there is

a clear separation between inter-cluster and intra-cluster element distance distributions.)

Usually the clustering threshold comes from the domain knowledge or trial-and-error.

3 Among several alternatives, we use the average distance of all element pairs between the clusters. Use
of other methods does not change the results significantly.
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Often the decisive factor for the quality of the clustering results is the selection of the

distance metric, which is our main contribution as we show in the following sections.

5.3 Challenges

As mentioned previously, the most important step in clustering is to define the

similarity or distance metric between users4 . We highlight the challenges in selecting a

proper distance metric with an example in this section.

An intuitive distance function between user association patterns of two individuals

is to consider all the association vector pairs. Formally, we define the average minimum

vector distance (AMVD) between users A and B, AMV D(A,B), as

AMV D(A,B) =
1

|A|
∑

∀Ai∈A

arg min
∀Bj∈B

d(Ai, Bj), (5–1)

where Ai and Bj denote an association vector of user A and B, respectively. |A| denotes

the cardinality of set A. d(Ai, Bj) denotes the Manhattan distance, defined as5

d(a, b) =
n∑

i=1

|ai − bi|, (5–2)

where ai and bi are the i-th element in vector a and b, respectively. AMV D(A,B) is the

average of distances from each of the vectors in set A to the closest vector (or the nearest

neighbor) in set B. Note that, with this definition, AMV D(A,B) is not necessarily equal

to AMV D(B, A). We define a symmetric distance metric between users A and B as

D(A,B) = (AMV D(A, B) + AMV D(B,A))/2.

We apply the hierarchical clustering algorithm to users with the distance metric

derived from AMV D. As mentioned earlier, a clustering algorithm requires properly

4 d(x, y) is a distance function if d(x, x) = 0 and d(x, y) is small if x and y are similar and large other-
wise. Similarity can be considered to be the opposite of distance i.e. sim(x, y) = 0 means x,y are dissimi-
lar.

5 We use Manhattan distance, or the L1 norm, since it is robust to statistical noise. Note that by our
representation, 0 ≤ d(a, b) ≤ 2 for normalized association vectors a and b.
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Figure 5-2. Cumulative distribution function of distances for inter-cluster and intra-cluster
user pairs (AMVD distance). (a) USC. (b) Dartmouth.

chosen thresholds, and the particular choice is data-dependent. We experiment with

various thresholds, and discover that for the USC trace, we can group the populations into

200 clusters with a clear separation between inter and intra cluster distance distributions

(Fig. 5-2 (a)), which is a qualitative indicator for a tight clustering. However, the distance

metric works poorly for the Dartmouth trace, as shown in Fig. 5-2 (b). The separation

between inter and intra cluster distance distributions is not clear, regardless of the cluster

thresholds we use (we have tried several).

One problem with the AMV D metric is that it considers all association vectors,

i.e., it includes not only the important trends, but also the noise vectors when the users

deviate from the dominant trend, leading to bad clustering results. A meaningful distance

metric should capture the major trends of user behavior and be robust to noise and

outliers. Another problem of the AMV D metric is its computational complexity. We have

to calculate the distances between all t2 pairs of association vectors for each user pair.

If there are N users the computation requirement is of order O(N2t2). Furthermore, it

requires significant space to store t association vectors for all N users. Thus we would

like to design a metric that is both (1) robust to noise and (2) computation and storage

efficient. In order to achieve both goals, we start by studying the characteristics of

the association patterns of a single user to validate the repetitive patterns or modes of

behavior. We show that this study leads us to the appropriate distance metric.
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Figure 5-3. Distribution of number of clusters (behavioral modes) for users. (a) Clustering
threshold = 0.2. (b) Clustering threshold = 0.9.

5.4 Summarizing the Association Patterns

In this section, we identify association trends of an individual and construct

a compact representation of her association matrix, which is suitable for distance

computations used in clustering.

5.4.1 Characteristics of Association Patterns

We first understand the repetitive trend in a single user’s associations pattern, and

how dominant the trend is (i.e., are there dominant behavioral modes?). We obtain this

understanding by applying hierarchical clustering to all the association vectors of a single

individual.

Consider the clustering of the association vectors, Xi for i = 1, ..., t (i.e., row vectors

of an association matrix X) of a single user. The identified clusters represent distinct

behavioral modes of the user. Similar association vectors will be merged into a cluster and

its size indicates its dominance – a large cluster with many association vectors implies that

the user follows consistent association patterns in many time slots (in our case, days) as its

major behavioral modes.

We apply hierarchical clustering to the association vectors of each user in the USC

and the Dartmouth traces using various clustering thresholds. The distribution of number

of clusters (or behavioral modes) obtained are shown in Fig. 5-3. In Fig. 5-3(a), we use

a small clustering threshold (0.2), with which only very similar association vectors are
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merged. We see that for the USC and the Dartmouth traces, respectively, about 50% and

67% of users have less than 10 different clusters or behavioral modes (much fewer than

total number of time slots, 94 and 61) with this low clustering threshold. This indicates

the users have distinct repetitive trends in its association vectors. On the other hand, if we

consider a moderate clustering threshold (0.9), we see in Fig. 5-3 (b) that users still show

multiple behavioral modes. On average, with 0.9 as the clustering threshold, the number

of behavioral modes for USC and Dartmouth users are 5.57 and 4.32, respectively, and the

users with the most behavioral modes have 32 clusters in both cases.

Most of those users with two behavioral modes have a consistent association pattern:

One mode corresponds to the association vectors when the user is offline, and the other

one corresponds to the association vectors when the user is online. These users switch

between online and offline behaviors from day to day, and when they are online, the

association vectors are consistent and fall in a single behavioral mode. We refer to these

users as single-modal users. On the other hand, we also observe many multi-modal users.

These users show a more complex behavior: their association vectors form more than two

clusters, which indicate that they display distinct behavioral modes when they are online.

71.9% of users in USC and 59.4% of users in Dartmouth are classified as multi-modal

when the clustering threshold is 0.9. Hence, we conclude that although users in WLANs

are not extremely mobile, they do move and display various association patterns over a

period of time.

To examine the degree of dominance of the most important behavior modes of users,

we compare the most important behavioral mode and the second most important one

(i.e., the largest and the second largest clusters) in terms of their sizes. In Fig. 5-4 we

plot the size (i.e. number of vectors) distributions of the first and the second behavioral

modes under clustering threshold 0.2 (solid lines) and 0.9 (dotted lines) for USC users.

We see that there is a clear separation between the sizes of these two behavioral modes.

(i.e., the most dominant behavioral mode is much more important than the second most
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Figure 5-4. Distribution of association vectors in the first and the second behavioral modes
for the USC trace. Right: the first cluster, Left: the second cluster.

important one for most users.) Different clustering thresholds do not change the results

much. In other words, observations of the most dominant behavioral mode could reveal

user characteristic to a good extent for many users. Similar observations also hold for the

Dartmouth users.

We show the distribution of the size ratio between the largest and the second largest

cluster in Fig. 5-5. Here we see for USC and Dartmouth, respectively, 36% and 31% of

users have the two most important behavior modes with comparable sizes (i.e., with size

ratio smaller than 2.0 - The second most important behavioral mode is followed at least

one half as often as the most important behavioral mode). Hence looking at the most

dominant cluster exclusively could still be sometimes misleading and we might be ignoring

information about the user’s detailed behavior. It is therefore desirable to have a summary

that takes not only the dominant behavioral mode, but also the subsequent ones into

account.

5.4.2 Summarization Methods

Now we investigate various ways to summarize the association vectors, and then judge

their quality based on a specific metric – the significance score.

Average of association vectors: This is the simplest way to calculate a summary.

Averaging naturally emphasizes the dominant behavioral mode (as there are more vectors
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Figure 5-5. Complementary CDF for the ratio of the first behavioral mode size to the
second behavioral mode size. Note that the X-axis is in log scale to make the
graph more visible.

in this mode). As users are not always online, the average should include only the online

days and ignore the zero vectors. It is defined as

Xonavg =

∑t
i=1 Xi∑t

i=1 ‖ Xi ‖1

, (5–3)

where ‖ Xi ‖1 is the L1 norm of vector Xi (recall that for online days, the elements in

association vectors sum to 1, hence ‖ Xi ‖1 = 1 if the user is online for the time slot i or 0

if the user is offline.).

Centroid of the first cluster: We observe for many users, the first behavioral mode

is dominant. Hence we can use the centroid of vectors in the first non-trivial behavioral

mode (i.e., if the first behavioral mode is the cluster of zero vectors, we take the second

behavioral mode instead) as a summary. Formally,

Xcentroid1 =

∑
Xi∈C1

Xi∑t
i=1 I(Xi ∈ C1)

, (5–4)

where C1 denotes the largest non-trivial behavioral mode for the user and I(·) is the

indicator function. Intuitively, it works well if the first behavioral mode is dominant, but

less so if there are multiple behavioral modes with comparable importance for the user.

We experiment with two different clustering thresholds, 0.5 or 0.9, when we obtain the

124



Table 5-1. The average significance score for various summaries of user association vectors

Xonavg
Xcentroid1 Xcentroid1 SVD

threshold 0.5 threshold 0.9
USC 0.646 0.716 0.702 0.764

Dartmouth 0.690 0.757 0.747 0.789

clusters of different behavioral modes from the association vectors of the user and identify

the dominant behavioral mode.

In order to quantitatively compare the quality of the summary techniques, we propose

to measure the significance score of a summary vector with respect to a user by summing

the projections of all association vectors on the summary vector, normalized by the online

days of the user.

SIG(Y ) =

∑t
i=1 |Xi · Y |∑t
i=1 ‖ Xi ‖1

, (5–5)

where Y is any summary vector. The physical interpretation of the significance score is

the percentage of power in the association vectors Xi’s explained by the summary vector

Y . Following the definition, we calculate the average score of the significance for Xonavg

and Xcentroid1, and list them in Table 5-1. We observe that the centroid of the first cluster

better explains the behavioral pattern of a given user than the average, since averaging

sometimes lead to a vector that falls between the behavioral modes.

Singular value decomposition: We revisit our definition of the significance score in Eq.

(5–5), and pose it as an optimization question: Given the association vectors Xi’s, what

is the best possible summary vector Y to maximize its significance? Mathematically, we

want the vector Y to be

Y = arg max
|v|=1

t∑
i=1

|Xi · v|. (5–6)

This is exactly the procedure to obtain the first singular vector if we perform singular

value decomposition (SVD) [41] to the association matrix X. In other words, if we want

the summary vector Y to capture the maximum possible power in the association vector

Xi’s, the optimal solution is to apply singular value decomposition to extract the first

singular vector of the association matrix X. We apply this technique and calculate the
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significance score in the last column in Table 5-1. It is evident from the numbers that

among all the candidates, SVD provides the best summary. Hence we focus on the use of

the SVD-based summary, and defer the discussion of other summary techniques to section

5.10.

5.4.3 Interpreting Singular Value Decomposition

In this subsection we explain other important properties of SVD as applied to the

association matrices.

From linear algebra [41], we know that for any t-by-n matrix X, it is possible to

perform singular value decomposition, such that

X = U · Σ · V T , (5–7)

where U is a t-by-t matrix, Σ is a t-by-n matrix with r non-zero entries on its main

diagonal, and V T is an n-by-n matrix where the superscript T in V T indicates the

transpose operation to matrix V . r is the rank of the original association matrix X.

The column vectors of the matrix V are the eigenvectors of the covariance matrix XT X,

and Σ is a diagonal matrix with the corresponding singular values to these eigenvectors on

its diagonal, denoted as σ1, σ2, ..., σr. These singular values are ordered by their values

(i.e. σ1 ≥ σ2 ≥ ... ≥ σr). We can re-write Eq. (5–7) in a different form:

X̃k =
k∑

i=1

uiσiv
T
i . (5–8)

Here ui’s and vi’s are the column vectors of matrix U and V . They are used as the

building blocks to reconstruct the original matrix X. With this format, SVD can be

viewed as a way to decompose a matrix: It breaks the matrix X into column vectors

ui, vi and real numbers σi. If we retain all these components (i.e., k = rank(X)), SVD

is a lossless operation and the matrix X can be reconstructed accurately. However, in

practical applications, SVD can be treated as a lossy compression and only the important

components are retained to give a rank-k approximation of the matrix X. The percentage
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of power in the original matrix X captured in the rank-k reconstruction in Eq. (5–8) can

be calculated by ∑k
i=1 σ2

i∑Rank(X)
i=1 σ2

i

. (5–9)

For our data sets, the users have much fewer behavioral modes than the number of

association vectors, and for most users the dominant behavioral modes are much stronger

than the others (c.f. Fig. 5-4). Hence we expect SVD to achieve great data reduction on

the association matrices. This is indeed the case, as we show in Fig. 5-6: Most of the users

have a high percentage of power in their association matrices X explained by a relatively

low-rank reconstruction – For example, in the USC trace (Fig. 5-6(a)), if we use a rank-1

reconstruction matrix, it captures 50% or more of power in the association matrices for

more than 98% of users, and a rank-3 reconstruction is sufficient to capture more than

50% of power in the association matrices for all users. Even if we consider an extreme

requirement, capturing 90% of the power in the association matrices, it is achievable

for 68% of users using a rank-1 reconstruction matrix, and for more than 99% of users

using at most a rank-7 reconstruction matrix. Similar observations can be made for the

Dartmouth users (in Fig. 5-6(b)). For both campuses, five components are sufficient to

capture 90% or more power for most (i.e., more than 90%) of the users. This indicates

although users show multi-modal association pattern, for most users the top behavioral

modes are relatively much more important then the remaining ones.

If a low-rank reconstruction of the association matrix is achievable, it is natural to

ask for the representative vectors for the behavioral modes of a user. For this purpose,

SVD can be viewed as a procedure to obtain representative vectors that capture the most
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Figure 5-6. Low association matrices dimensionality: A high target percentage of power is
captured with a low rank reconstruction matrix for many users. (a)USC.
(b)Dartmouth.

remaining power in the matrix. Mathematically6 ,

u1 = arg max
‖u‖=1

‖X · u‖

uk = arg max
‖u‖=1

‖(X −
k−1∑
i=1

Xuiu
′
i)u‖ ∀k ≥ 2.

(5–10)

We can interpret the singular vectors, uj’s, as the vectors that describe the user’s

behavioral modes in decreasing order of importance in the association matrix X, with its

relative weight (or the importance) quantified by σ2
j /

∑r
i=1 σ2

i , following Eq. (5–9). We

refer to these vectors as the eigen-behavior vectors for the user.

The eigen-behavior vectors, uj’s, are unit-length vectors. The absolute values of

entries in an eigen-behavior vector quantify the relative importance of the locations in the

user’s j-th behavioral mode. For example, suppose a given user visits location l almost

exclusively, then in his first eigen-behavior vector, the entry corresponds to location l

would carry a high value (i.e. close to 1), and the weight of the first eigen-behavior vector,

σ2
1/

∑r
i=1 σ2

i , shall be high. With a set of eigen-behavior vectors and their corresponding

weights, we can capture and quantify the relative importance of a user’s behavioral modes.

6 SVD on matrix X can be viewed as calculating the eigenvalues and eigenvectors of the covariance
matrix, XT X. This is also the procedure typically used to perform Principal Component Analysis (PCA)
for matrix X.
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There are several benefits of applying SVD to obtain the summary as compared to

other schemes: (1) SVD provides the optimal summary that captures the most remaining

power in the original matrix with each additional component. (2) The components can be

used to reconstruct the original matrix, while the calculation of average or centroid vectors

are non-reversible. Thus SVD provides a way to “compress” user association vectors and

helps us save storage space. (3) Not only the most important behavioral mode, but also

the subsequent ones can be systematically obtained with SVD, with a quantitative notion

of their relative importance.

5.5 Clustering Users by Eigen-Behavior Vectors

In this section, we define our novel distance measure between WLAN users based on

the eigen-behavior vectors and then use it for user clustering.

5.5.1 Eigen-Behavior Distance

Suppose ui’s and vj’s are the eigen-behavior vectors of two users, where i = 1, ..., ru,

and j = 1, ..., rv. ru and rv are the ranks of the corresponding association matrices.

The similarity between the two users can be calculated by the sum of pair-wise inner

products of their eigen-behavior vectors ui’s and vj’s, weighted by wui
and wvj

7 . Our

measure of similarity between two sets of eigen-behavior vectors, U = {u1, ..., uru} and

V = {v1, ..., vrv}, is defined as:

Sim(U, V ) =
ru∑
i=1

rv∑
j=1

wui
wvj

|ui · vj|. (5–11)

Higher similarity index Sim(U, V ) indicates that the eigen-behavior vectors U and V are

more similar, and hence the corresponding users have similar association patterns. We

7 wui represents the weight of the eigen-behavior vector ui, calculated by wui = σ2
ui

/
∑ru

k=1 σ2
uk

. The
weights wui ’s sum up to 1, and wvj ’s are defined similarly.
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define the eigen-behavior distance between users U and V as D′(U, V ) = 1− (Sim(U, V ) +

Sim(V, U))/2.8

Using the eigen-behavior distance also reduces the computation overhead. If we use

only the top-5 components (which captures more than 90% power in the association

matrices for most users, as shown in Fig. 5-6), instead of going through t-by-t pairs of

original association vectors as we did in the AMV D distance in section 5.3, we reduce

the distance calculation to 5-by-5 vector pairs. Since we have at least 61 days in the

traces, this is at least a (61/5)2 ≈ 148 fold saving for all N2 pair of users. By paying the

pre-processing (i.e., SVD for all N users) overhead of O(Nt2), we can reduce the distance

calculation complexity from O(N2t2) to O(c · N2). Since users follow repetitive trends in

the association patterns, its total eigen-behavior vectors would not grow with the number

of time slots, t. If we consider longer traces or association vector representations in finer

time scale, the reduction can be even more significant. In the following computations, we

consider only the eigen-behavior vectors that capture at least 0.1% of total power in the

user’s association matrix.

5.5.2 Significance of the Clusters

We cluster users based on the eigen-behavior distance and again validate the results

by plotting the intra-cluster and inter-cluster distance distributions, when we consider 200

clusters. With the eigen-behavior distance, for both the USC and Dartmouth traces, there

is a better separation between the CDF curves (shown in Fig. 5-7) as compared to the

results with the AMV D distance (shown in Fig 5-2), indicating a meaningful clustering.

This proves the eigen-behavior distance is a better metric than the AMV D distance as

it helps us to group users into well-separated behavioral groups based on their WLAN

association preferences, for both campuses.

8 We normalize the similarity indices from user U to all other users between (0, 1). Among all users,
we find the user K such that Sim(U,K) = max∀NSim(U,N). We than normalize Sim(U, V ) =
Sim(U, V )/Sim(U,K) for all users V .
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Figure 5-7. Cumulative distribution function of distances for inter-cluster and intra-cluster
user pairs (eigen-vector distance). (a) USC. (b) Dartmouth.

We further validate whether the resulting clusters indeed capture users with

similar behavioral trends. For this test, we construct the joint association matrix by

concatenating the daily association vectors of a cluster of m similar users in a larger

mt-by-n matrix, where n is the number of locations and t is the number of time slots.

When we perform SVD to the joint association matrix, the top eigen-behavior vectors

represent the dominant behavioral patterns within the group. If the users in the

group follow a coherent behavioral trend, the percentage of power captured by the top

eigen-behavior vectors should be high. On the other hand, if association vectors of

users with different association trends are put in one joint association matrix (i.e., if

dissimilar users are put in one cluster by mistake), the percentage of power captured by

its top eigen-behavior vectors should be much lower. Among all clusters, we pick those

with more than five users, and compare the cumulative power captured by the top four

eigen-behavior vectors of these clusters with random clusters of the same size (i.e., we

randomly pick the same number of users from the population and construct another joint

association matrix) in scatter graphs, shown in Fig. 5-8. Clearly, most the dots are well

above the 45-degree line for both campuses. This indicates the users in the same cluster

follow a much stronger coherent behavioral trend than randomly picked users, pointing to

the significance of our clustering results.

We would also like to see if each cluster from the population shows a distinct

behavioral pattern. To quantify this, we obtain the first eigen-behavior vector from
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Figure 5-8. Scatter graph: Cumulative power captured in top four eigen-behavior vectors
of random matrices (X) and the joint association matrices formed by users in
the same cluster (Y). Only clusters with 5 or more members are included. (a)
USC(129 clusters). (b) Dartmouth(136 clusters).

each group and calculate its significance score, defined in Eq. (5–5), for all the groups.

The results confirm with our goal of identifying groups following different behavioral

trend: For the USC trace, the first eigen-behavior vectors obtained from the joint asso-

ciation matrices have an average significance score of 0.779 for their own clusters and an

average score of 0.005 for other clusters, indicating the dominant behavioral trends from

each cluster is distinct. The corresponding numbers for the Dartmouth trace are 0.727 and

0.004, respectively.

We conclude that we have designed a distance metric that effectively partitions users

into groups based on behavioral patterns. In addition, these clusters are unique with

respect to their major behavioral trends.

5.6 Interpretation of the Clustering Results

In this section we analyze and interpret the results of clustering for both university

campuses from social perspective.

First we analyze the group size distribution, as shown in Fig. 5-9. We observe the

distributions of group sizes are highly-skewed for both campuses. There are dominant

behavioral groups that many users follow: the largest groups in the campuses include

504 and 546 members, out of the population of 5000 for USC and 6582 for Dartmouth,

respectively. The ten largest groups combined account for 39% and 33% of the total
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Figure 5-9. Rank plot (group size ranking v.s. group size) in log-log scale. User group size
follows a power-law distribution.

population, respectively. On the other hand, there are also many small groups, or even

singletons, for both populations: out of the 200 clusters, there are 68 and 57 of them with

less than five members, respectively, and in both campuses about half of the groups have

less than 10 members. More interestingly, we observe that besides these small clusters,

the distribution of the cluster size seems to follow a power-law distribution. In Fig. 5-9,

we plot the straight lines that illustrate the best power-law fits. The slopes for these lines

are −0.67 for Dartmouth and −0.75 for USC, respectively. The power law distribution of

group sizes may be related to the skewed popularity of locations on campuses - it has been

shown that the number of patrons to various locations differ significantly[13]. However,

the link between the distributions of number of patrons and the distribution of group sizes

is not direct. While the most-visited locations on both campuses easily attract thousands

of patrons, these people are broken into different behavioral groups depending on their

association preferences.

We now study the detailed behaviors of each cluster by using the eigen-behavior

vectors and their relative weights to understand the detailed preferences of the groups.

We discover for most of the groups, their top eigen-behavior vectors dominate, i.e.,

the contribution of the second-most important location is almost invisible in the first

eigen-behavior vector. Similar relationship holds between the second-most important

location and the third-most important one, and so on. Hence the association behavior of
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the group can be described by a sequence of locations of decreasing importance with a

clear ordering. This observation matches with the current status of WLAN usage: people

tend to access WLAN at only a limited number of locations, and the preference of visiting

locations is heavily skewed (c.f. chapter 4). For such users, its most visited locations might

be sufficient to classify them.

Most large user clusters belong to the fore-mentioned case. The largest clusters on

both campuses include the library visitors, as expected, since libraries are still the most

visited area on university campuses. For the USC campus, the largest user cluster visits

the library (the first eigen-behavior vector has a single high-value entry corresponding

to the library, and this eigen-behavior vector captures 83% of the power in the joint

association matrix for the group), followed by a couple locations around the Law school

(4.45%) and the school of Communication (4.5%), both are popular locations on campus.

For the Dartmouth campus, the largest user cluster visits LibBldg2 (72.85%), followed by

LibBldg1 (5.13%), SocBldg1 (3.56%), and LibBldg3 (1.93%). It seems this group consists

of library patrons who mainly move about the public area on the campus and access the

WLAN from these locations.

While libraries are popular WLAN hot spots, we also discover many user clusters that

rarely visit these locations. The second largest cluster for USC consists of users visiting

mostly the Law school (89.73% of power), school of accounting (6.37%), and a couple of

locations close to the Law school (0.59%). For Dartmouth, the second largest cluster visits

AcadBldg18 (56.38%), AcadBldg6 (13.4%), ResBldg83 (10.15%), AcadBldg31 (3.5%),

AcadBldg7 (3.12%), which seems to be a group of students going to classes at multiple

academic buildings. We have also observed various clusters featured different dorms and

classrooms as their most visited location from both campuses.

On the other hand, we have also discovered groups with multiple high-value entries

in its top eigen-behavior vectors from both campuses. One prominent example from the

USC trace consists of 32 users, who visit buildings VKC and THH, two major classrooms
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on the USC campus. The top two eigen-behavior vectors of the cluster both consist of

two high-value entries corresponding to these two buildings9 , and they combined capture

63.14% of power in the joint association matrix. This cluster consists of users who visit

these two locations with similar tendency, according to the eigen-behavior vectors, and

such a distinct behavioral trend exists for 32 users in the population. This cluster is a

good example to show why it is not sufficient to merely use the most dominant behavioral

mode (or the most-visited location) of a user to classify it. If the centroid of the dominant

behavioral mode (i.e., Eq (5–4)) is used to classify users, the behavioral trend of visiting

multiple locations with similar tendency will not be revealed. Instead, among the 32

users, 13 are classified with others who visit VKC frequently, 10 are classified with those

who visit THH frequently, and the rest are put into various groups. As portable wireless

devices gain popularity, we expect to see more users displaying diverse behavioral trends

in terms of network usage. To fully capture such behavior, average-based summary is not

sufficient, and this is where SVD shows its strength the most.

Interestingly, we also discover many small clusters with unique behavioral patterns

that deviate from the “main stream” users in both traces. For example, in the USC

trace, there is a small cluster of eight users who visit exclusively a fraternity house.

Probably these are the people who live there. In the Dartmouth trace, there is a cluster

of eight users who visit mostly athletic buildings (AthBldg5 (90.9%), AthBldg10 (4.62%),

AthBldg2 (3.14%), AthBldg3 (0.8%), and ResBldg26 (0.54%)). These are probably either

athletes or management staffs of the athletic facility. Such findings substantiate our

motivation of the study: as the wireless technology prevails, we can expect users to display

diverse behavioral patterns that reflect to their personal preferences, and it is important to

capture such behavioral trend and quantify its significance.

9 One of the eigen-behavior vectors has positive values for both entries, and the other has one positive
and one negative value, in order to adjust the ratio between these two locations in the association vectors.
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To sum up, we have demonstrated a systematic way to identify distinct behavioral

groups within on-campus populations, by using clustering techniques based on association

features obtained from large-scale wireless network traces. The method and findings are

useful for various applications, as we discuss the next.

5.7 Potential Applications

The insights of user grouping obtained from our analysis can be applied in many

different ways. We discuss some of these applications briefly in this section, including

(1) behavior-aware services and group-casting, (2) user modeling, and (3) network

management. We will further work on the details of designing a protocol for behavior-aware

group-casting in section 5.8.

Behavior-aware services: In the future, we expect the wireless devices to be very

portable and personalized. Hence, the services provided could be highly personalized, or at

least customized based on the interest groups. Our method would facilitate to identify the

dominant groups. Certainly, different representations of users (e.g., hobbies, interests) that

fit into the context might also be utilized rather, but our method would still be applicable.

Based on the targeted group of a given service, the service providers could assign a target

behavioral vector to describe the property of target users, and the user devices could easily

determine potential customers using a significance score (i.e., Eq. (5–5)) to compare

its eigen-behavior vector to the target behavioral vector. We refer to this scenario as

interest-based grouping and profile-casting. We will design a protocol for this service in

section 5.8.

In addition to facilitating clustering of the users, the eigen-behavior vectors could

also provide an efficient mechanism for users to exchange their behavioral features in

order to make new friends. Such social profiles could be applied in applications in social

networking, such as behavior pattern oriented matching.

User modeling: Results from the clusters of users could help us to propose more

realistic models for WLAN users, which is a challenge and a necessity for evaluating
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network protocols. Although mobility models with groups of user is not a new idea[58],

there has been little work in realistic models based on groups. Our decomposition

approach provides two pieces of important information: (1) the distribution of group

sizes follows a power-law distribution and (2) the detailed eigen-behavior vectors of the

groups. With such information, one can set up a generative model with the proper group

sizes and the weights for frequently visited locations (e.g., its communities in the TVC

model presented in chapter 4) to evaluate their impact on the network.

Network management: Our analysis provides a different view of network

management. WLAN management and planning could be done by monitoring the

activities of individual APs in order to identify the busy ones. From our clustering

technique, the manager can identify user groups and the relative importance of locations

to each group. Such information can be helpful in terms of load prediction and planning.

For example, if the business school is going to expand, by checking the behavioral groups

of business school students, it maybe possible to predict its impact on the load of different

parts of the WLAN. For better understanding, one may also observe the change in the

group structure with time and across semesters.

As large-scale city-wide WLAN deployments become commonplace, solutions to

issues in management, service design, and protocol validation could immensely benefit

from insight into the behavioral patterns of the users or the society. We believe that

our framework will be able to provide the behavioral patterns and help find solutions to

several problems ranging from wireless network management to understanding basic social

behavior of users.

5.8 Profile-Cast: Behavior-Aware Mobile Networking

In this section we focus on a new class of service named profile-cast. In this service,

instead of targeting a particular end-point or host, the message is to be delivered to all

hosts with a certain property (i.e., those who match with the specified profile are the

intended receivers). There exist a wide variety of ways by which a profile can be defined.
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The profile can be based on the user’s interest (e.g., movie-goers or baseball lovers), social

affiliation (e.g., graduate students in the computer science department, students from a

particular foreign country), or other behavioral patterns. Potential applications of such

a service include notification or advertisement for a scoped group within the general

population, or a matching service trying to find people with certain characteristics or

interests. Note that the notion of profiles refers to the implicit, intrinsic properties one

discovers from the behavioral patterns of users. This distinguishes the profile-cast from

the traditional multi-cast where users join multicast groups explicitly: In the profile-cast,

a user does not join particular groups to receive messages. Instead, it is a new service

paradigm in which the groups are implicitly defined by the intrinsic properties of the

users, and revealed by the way the users utilize the network.

In this section, we focus on providing the service of profile-cast within the commu-

nication framework of DTN. We believe this is a promising new direction – as the small

hand-held devices (e.g., smart-phones, PDAs) equipped with short-range radio (e.g.,

bluetooth) gain popularity, they provide a channel for information to propagate within

the mobile society independent of the existing infrastructure. The Profile-cast services

provide a new paradigm to navigate the messages through the mobile network, reaching

the targeted groups defined by their underlying properties or behavioral patterns (i.e., the

chosen profiles).

We consider user mobility profile as a case study to demonstrate the efficacy of

the profile-cast paradigm. We borrow from the user clustering results in the previous

sections, and target the message propagation to the identified groups. We analyze only

a special case in the generic framework of profile-cast here, focusing on delivering

messages to the same group in which the sender resides. A more generic form

of profile-cast service will be introduced later, in chapter 7, after we understand

the global structure of the network in chapter 6. In this case study, we propose a

similarity-based profile-cast protocol that makes the message forwarding decision based
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on the distance between users in the multi-dimensional profile space. We show that by

incorporating user mobility profiles, we can limit the scope of message delivery in DTNs

to a specific behavioral group. Thus we avoid the high overhead of the epidemic routing

[71] (i.e., we can eliminate more than half of the transmissions with a little reduction in

the delivery success rate) and out-perform random-walk based protocols in terms of the

delivery delay (for at least 30%).

5.8.1 Profile-Casting in Delay Tolerant Networks

One particular important decision to make for nodes in a DTN is whether to forward

a packet to other nodes they encounter with, as illustrated in Fig. 5-10(a). Such decisions

have implications on many aspects of how efficiently the routing strategies work, such as

delay, overhead, and message delivery success rate. There exists a tradeoff between these

performance metrics, and a well-designed protocol should provide a mechanism for its

users to strike a right balance for the given environment. The key research challenge in

designing the routing protocols is to make an intelligent decision with the local information

available to the two encountering nodes, assuming no knowledge about the global network

properties, which is usually unavailable in decentralized networks such as DTNs.

For our profile-cast service, the goal is to reach a set of nodes with a certain similar

property. The conceptual view of the problem is illustrated in Fig. 5-10(b). We consider

a virtual, high-dimensional profile space where each node is represented by a point in the

space. The nodes that are similar with respect to the property we use to construct the

profile space should be close to each other in this space, and dissimilar nodes should sit

far apart. Our specific application we consider here corresponds to a scoped-flooding in

the profile space: The goal is to reach all similar nodes (with respect to the profile we

choose to construct the profile space) to the sender. The nodes should keep forwarding the

message to those who are similar to them under the considered profile, but ignore those

who are dissimilar. Linking the figures in Fig. 5-10, they point out a need for nodes to

evaluate their mutual similarity in the considered profile space when they encounter, and
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Figure 5-10. Two different views of the profile-cast service in the DTN. (a) Physical view:
Forwarding decisions in the DTN. (b) Conceptual view: Scoped-flooding in
the profile space. The conceptual view of scoped flooding in the profile space
has to be implemented through message forwarding decisions at nodal
encounter events.

use this piece of information to guide the routing decisions in the DTN. We propose a

similarity-based protocol for this purpose in sub-section 5.8.2.

We use mobility profile as an example to illustrate the usefulness of the profile-cast

service paradigm. We choose the mobility profile for the study for the following reasons.

First, it has been shown in the previous sections that mobility is one of the distinguishing

feature to differentiate users from a large population. Groups with distinct behavioral

patterns can be identified with respect to the long-run mobility patterns, and we use these

groups as our targets in the profile-cast protocol. Second, mobility-profile-cast ties with

some new services in the ad hoc network. For example, a student loses a wallet and wishes

to send a message to other fellow students who visit similar places often as he does to

look for it. Or, the manager of the library may want to send an announcement about

power shutdown only to its frequent patrons. These services are mobility pattern specific,

and none of the existing service paradigms serves the need of identifying the intended

message recipients from a diverse population well. Third, to evaluate the effectiveness of

our proposed protocol realistically, we need detailed traces of user behavior with respect to
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the profile we choose. User mobility data is more available than other network traces (e.g.,

user interest or social affiliation), hence we choose to leverage these data sets first10 .

5.8.2 A Similarity-Based Profile-Cast Protocol

In this section we explain the details of the similarity-based profile-cast protocol,

using mobility profile as the example. The goal here is to reach other nodes with similar

mobility preferences to the sender itself. The protocol contains two phases. (1) Profiling:

Each mobile node keeps track of its own mobility profile as it moves around the given

environment. This is an individual effort made by each node independently – every node

is responsible only for keeping its own mobility profile. (2) Forwarding decision: When

nodes encounter with each other, they exchange the mobility profiles to determine whether

a message forwarding should take place.

Profiling user mobility: To enable mobility-profile-cast services, it is important to

first have a descriptive representation for user mobility profiles. We choose to construct

the association matrix, as illustrated in Fig. 5-1, to describe the long-run mobility trend

of a mobile user. For each time slot, each node generates an association vector that

summarizes its association with visited locations during this time slot, as described in

section 5.2.1. The association matrix representation captures the relative importance of

locations on the campus to each user (i.e., the preference in the user mobility process).

Based on this representation, we classify the whole user population into distinct behavioral

groups with clustering methods detailed in the previous sections. These groups correspond

to users with unique mobility profiles. In the protocol evaluation presented later, we take

these behavioral groups as the targets for mobility profile-cast.

Evaluation of user similarity based on the mobility profiles: When nodes

encounter with each other, they need to exchange the mobility profile for the evaluation of

10 Note, however, if other data sets were available, similar protocols as the one proposed in section 5.8.2
could be used for other types of user profile as well.
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their similarity. However, the raw association matrix is too large in size to be exchanged

efficiently. Hence we need a good method for summarizing the association matrix. We

have established that singular value decomposition (SVD) provides an efficient way for

this purpose in section 5.4.2. The eigen-behavior vectors (defined in Eq. (5–10)) and its

corresponding weights provide a concise yet highly accurate representation of user mobility

profile for exchange when the users encounter with each other.

When two users meet with each other, they exchange the summarized mobility

profiles (i.e., eigen-behavior vectors with their weights) of their previously collected

mobility pattern and decide whether they are similar at the spot. The similarity index

is calculated as the weighted sum of inner products of the eigen-behavior vectors, as

defined in Eq. (5–11). If the similarity index is larger than a threshold, they exchange the

message. Note this decision is solely local, involving only the two encountered nodes. The

philosophy behind the protocol is, if each node delivers the message only to others with

high similarity in mobility profile, the propagation of the message copies will be scoped

within a group of similar users. The threshold that triggers the message transmission

provides a control for the protocol user to adjust the tradeoff between the performance

metrics. A high-valued threshold favors low transmission overhead, while a low-valued

threshold leads to short delivery delay and high delivery success rate.

5.8.3 Evaluation and Comparison

5.8.3.1 Evaluation setup

In this section we describe the experiment setup to evaluate our similarity-based

profile-cast protocol presented in the previous section. We utilize the USC trace (i.e.,

USC-06spring) to study the message transmission schemes empirically. Some logistic

details of the data set can be found in Table 3-1. We assume that two nodes are able

to communicate (i.e., encounter with each other) when they are associated to the same

location in the WLAN. Note that the WLAN infrastructure is merely used to collect user
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location information, and the messages can be transferred only between the users without

using the infrastructure.

We compare the performance of our similarity-based protocol with several alternative

protocols described below based on the following metrics: (1) Delivery ratio: The number

of nodes receiving the message over the number of intended receivers. (2) Delay: The

average time taken to deliver the messages to the recipient nodes. (3) Overhead: The total

number of transmissions involved in the process of message delivery.

Flooding (epidemic routing): This is a simple decision rule for message forwarding in

DTNs. All nodes in the network are oblivious to the mobility profiles and blindly send out

copies of the message to nodes who have not received it yet. This scheme is also known

as the epidemic routing[71] in DTN, using the analogy that the message propagates in

the network like an epidemic. This is also the most aggressive forwarding strategy in

DTN. Under an idealistic environment (i.e., no packet drop due to wireless contention or

insufficient buffer size), this is also the strategy that achieves the shortest possible delay

and best delivery success rate.

Centralized: In this ideal scenario, we assume that all nodes acquire perfect knowledge

of the group membership through an oracle with no additional cost. In order to reduce the

transmission overhead, nodes only propagate the message to others if they are in the same

group. This ensures the message will never propagate to an unintended receiver, and only

members of each group participate in message dissemination for their own group.

Random-transmission (RTx): In the random transmission protocol, the current

message holder sends the message to another node randomly with probability p when they

encounter11 , and never transmits again (i.e., only the node who last received the message

will transmit in the future). The message propagates across the network as a random

11 In the dissertation we only show the results of p = 1.0 (always transmit on encounter). We have ex-
perimented with other values and discovered that they result in inferior performance.
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Figure 5-11. The chosen protocols for evaluation span the spectrum of user grouping
knowledge used in the forwarding decision process.

walk among the nodes. Loops are avoided by not sending to the nodes who have seen the

same message before. This process continues until a pre-set hop limit (i.e., TTL limit) is

reached. We also vary the number of copies of active message (i.e., number of threads in

the random walk) in the network. When m random walk threads are issued, the message

originator is responsible for spreading the copies to m different nodes it encounters with,

and each thread carries on independently as described above.

We have chosen the above protocols to span the spectrum of the degree of knowledge

about the user grouping in the evaluation, as illustrated in Fig. 5-11. On one extreme of

the spectrum we have the centralized protocol which has perfect knowledge about user

grouping. This information provides an opportunity of highly efficient operation, but

it is not realistic to assume its availability, hence the centralized protocol serves only as

the theoretical upper bound of the performance. On the other extreme are the flooding

and RTx protocols, both assuming no knowledge about user grouping at all. They are

extremely simple but not optimized for the specific task of profile-cast. Our similarity-

based protocol uses the similarity index defined in Eq. (5–11) to estimate the boundary

where the scoped flooding should be stopped. It operates in the middle of the spectrum

with inferred grouping information.

5.8.3.2 Evaluation results

For the evaluation, we split the WLAN trace into two halves. The first half of the

trace is used to determine the grouping of users based on their mobility profile and we

identify 200 groups with distinct behavioral pattern in terms of mobility using the methods

detailed in the previous sections. Then we evaluate the group-cast protocol performances
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using the second half of the same trace. For each group with more than 5 members, we

randomly pick 20% of the members as the source nodes sending out a one-shot message

to all other members in the same group at the beginning of the second half of the trace.

We use the same set of senders for all evaluated protocols to ensure a fair comparison. We

simulate the protocols for mobility-profile-cast and show the results in Fig. 5-12. For all

the performance metrics, we choose the results for flooding (i.e., epidemic routing) as the

baseline and show the normalized performance metrics of the other protocols relative to

that of the epidemic routing in the figures.

In the figures we see that flooding has the lowest delay and the highest delivery ratio

as it utilizes all the available encounters to propagate the message. However, it also incurs

significant overhead. The average delay, which is the lowest possible under the given

encounter patterns, is in the order of days (3.56 days in this particular case). Profile-cast

based on centralized group membership information, the ideal scenario, shows a great

promise for the behavior-aware protocols, as it significantly reduces the overhead (to only

3% of the flooding) while maintains almost perfect delivery ratio, with a little extra delay.

There is such extra delay in the centralized protocol because the messages are carried by

nodes in the targeted group only. It is possible to even reduce this delay by obtaining

predictions of future encounter events through an oracle, as in [54]. We choose not to

address this issue and instead show what can be achieved based on the perfect knowledge

of user grouping alone, focusing our analysis on the spectrum of grouping information

availability. The centralized protocol displays the ceiling performance one can achieve in

terms of overhead reduction by incorporating knowledge of user grouping in the profile-cast

service. However, note that it is not realistic to assume such centralized knowledge.

For our similarity-based protocol, its aggressiveness can be tuned with the forwarding

threshold of the similarity index. We show the simulation results with various similarity

thresholds in the figures. Label Similarity x indicates we use x as the threshold for
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message forwarding12 . Experiment results show a significant reduction of the overhead

(only 2.5% of the flooding) at the cost of the delivery ratio (61% of the flooding) if we set

a high threshold such as 0.7 (i.e., sending almost exclusively within the same group). Note

that the overhead is even less than that of the centralized protocol. This setting is perhaps

more suitable for applications that one would want to operate with low overhead, and it

is sufficient to reach a good part of the group but not essential to reach everyone. The

lost-and-found service may fall in this category. On the other hand, setting a low threshold

(e.g., 0.5) leads to a better delivery ratio (92% of the flooding) but still cuts the overhead

to 45% of the flooding. This is suitable for messages that are intended to be received by

most of the group, but one would not mind some misses in order to cut down unnecessary

transmissions to irrelevant users. Tuning the transmission threshold provides a natural

mechanism to strike a desired balance between overhead and delivery ratio. The delay

incurred in similarity-based protocol is also not much different form the optimal case, the

flooding (up to 14% more, for the case of similarity threshold 0.5).

For the random transmission protocol, its aggressiveness is tuned through the setting

of number of active copies of the message (m) in the network and the TTL value for each

thread. We use different variants of settings and show the results in the figure with labels

RTx. We first show that RTx with infinite TTL does not perform well. Even if there is

only one active copy (i.e., m = 1) in the network, the overhead is not low (0.367 of the

flooding protocol). Comparing with the similarity-based protocol, when the delivery ratio

is similar, the RTx protocol incurs much larger overhead (e.g., comparing similarity 0.7

with RTx m = 1 TTL = inf., or similarity 0.5 with RTx m = 6 TTL = inf.. In both

cases the RTx has 30% more overhead than the similarity-based protocol.). This is due to

the group-membership oblivious behavior of the RTx protocol – in many cases the message

12 x can be in the range of [0, 1]. Setting the threshold to 1 would eliminate all transmissions, while
setting it to 0 would degenerate the similarity-based protocol to flooding
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is transmitted to some node out of the desired group, as the membership information is

not included to guide the forwarding decisions. Hence the RTx protocol, without a proper

TTL control, makes a lot of unnecessary transmissions and results in high overhead. Using

multiple threads with long TTL essentially degenerates the protocol to flooding.

On a different note, we try to exercise better control of the RTx protocol by using

infinite number of threads with small TTL. The extreme example is to use m = inf.

TTL = 1. This degenerates the protocol to the scenario where the message sender sends

directly to all the nodes it encounters with. We observe that the delivery ratio is quite

high with this setup. This is mainly due to the choice of our application – when the goal

is to send to a group with similar mobility patterns as the sender, intuitively the intended

receivers will eventually meet with the sender directly. However, notice that the delay is

still much higher than the centralized or similarity-based protocols, as in this case RTx

protocol does not take advantage of the intermediate nodes in the network. We further

experiment with RTx m = inf. TTL = 5, and discover it achieves good delivery ratio

under moderate overhead, with improved delay. However, picking a suitable TTL is

context-dependent, and it is only effective if the goal is to send messages to the nodes that

are similar to the sender itself (i.e., close to the sender in the profile space).

We further illustrate the tradeoff between delivery ratio and overhead in Fig. 5-13,

and mark the “operational region” of the compared protocols. Ideally, one would want the

protocol to work at the bottom-right corner, with high delivery rate and low overhead,

as close to the centralized protocol as possible. The flooding protocol also achieves good

delivery rate, but the overhead is too much. Our similarity-based protocol is shown by

the white ellipse. Its operational region stretches from moderate delivery ratio with low

overhead to high delivery ratio with moderate overhead. The RTx protocol with infinite

TTL is represented by the dark grey ellipse, taking the space of moderate delivery ratio

with moderate overhead to high delivery ratio with high overhead. As m increases, it

degenerates to the flooding. However, with a properly chosen stopping threshold, the RTx
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Figure 5-13. The operation regions of the compared protocols in the delivery rate-overhead
space.

protocol has the potential to operate in the high delivery ratio, low overhead area, as

indicated by the light grey ellipse. However, its average delivery delay is still much higher

than that of the flooding or similarity-based protocols (in the best case, at least 30% more

than the similarity-based protocol), as RTx does not take full advantage of the available

intermediate nodes in the DTN framework.

5.8.4 Extensions of the Profile-Cast Service

In this section we focus on designing the service of mobility-profile-cast with target

nodes being the ones in the same behavioral group as the sender. There are various ways
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in which one would like to extend the capability of such a service, in particular, (1) How

could a message be delivered to a group with a specific mobility profile given by the sender

(instead of targeting at similar nodes to the sender)? (2) How could we use different type

of profiles to describe the target group (instead of the mobility profile) in the proposed

profile-cast service paradigm? In order to do these, we have to first understand a hidden

structure of nodal encounters in wireless mobile networks, which is the topic in the next

chapter. We will show one promising finding pointing out that the encounter patterns of

nodes in realistic mobility traces form SmallWorlds[8], and eventually leverage this finding

to design efficient message delivery protocols for more generic cases in chapter 7.

5.9 Conclusion

Our contributions: In this chapter, we classify groups of WLAN users based on the

trends in their association patterns in two major university campuses by leveraging

clustering techniques and our systematic TRACE approach. We design a novel distance

metric between users based on the similarity of their eigen-behavior vectors, obtained

through singular value decomposition (SVD) of the association matrices. SVD is the

optimal way to capture underlying trends in the data set, and it also leads to space

and time efficient computations. The eigen-behavior distance leads to a meaningful

partition of users. We establish that WLAN users on university campuses form a diverse

community, which includes hundreds of distinct behavioral groups in terms of association

patterns. We further propose profile-cast as a new service paradigm, and demonstrate that

mobility-based profile-cast can be utilized for scoped message dissemination in DTNs and

show improved performance over other candidates (i.e., the epidemic routing or random

transmission). The proposed similarity-based protocol shows significant overhead reduction

(less than 45% of overhead compared to the flooding with high delivery rate, or as low

as 3% of the overhead with a moderate 61% delivery rate). It is also better than the

random-transmission protocol in terms of the average delay (at least 30% improvement

over random-walk protocols). We display that the insight from a detailed study of user
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behavior might provide new directions to improve services and protocols, especially as

services become highly personalized. In the next two chapters, we will further pursue

this line of study, delve into the patterns of user encounter events using a graph analysis

approach, and use it to enrich the capability of the profile-cast service.

It is surprising to find qualitative commonalities in the user behavior almost across

the board considering the differences (e.g., Geographical locations, sizes and structures of

the campuses, different student bodies, etc.) among the campuses: (1) More than 60% of

the WLAN users display multi-modal behavior (their behavior can be decomposed into

multiple modes or types) in the long run. However, for many users the most dominant

behavioral mode is much stronger than the rest. This leads to efficient summaries of

their behavioral patterns. With SVD, we can capture more than 90% of the power in the

association patterns with just five components. (2) Current university WLANs consist of

a large number of user groups with distinct association patterns, in the order of hundreds.

We find that the distributions of sizes of the major groups, however, are highly skewed and

follow a power-law distribution. The top-10 groups contain at least 33% of the users while

about a half of the identified groups have less than 10 members.

5.10 Alternative Methods

Besides the normalized association vectors and eigen-behavior distance obtained

through SVD, there are many other potential representations of user association behavior

and distance metrics. In this section we briefly discuss these alternatives and some results

we obtain with those.

5.10.1 Various Distance Metrics

We establish a meaningful partition of both user populations in Fig. 5-7 with the

eigen-behavior distance. However, we have to note that the other summaries presented

in section 5.4.2 could also be used to obtain distance metrics. For these single-vector

summaries, such as the average of association vectors (Xonavg, Eq. (5–3)) or centroid of

the first cluster (Xcentroid1, Eq. (5–4)), we define distance metrics between users by simply
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Figure 5-14. Cumulative distribution function of distances for inter-cluster and
intra-cluster user pairs (other distance metrics). (a) USC, distance between
average of association vectors. (b) Dartmouth, distance between centroid of
the first behavioral mode.

calculating the Manhattan distance (Eq. (5–2)) between the corresponding summary

vectors. With these distance metrics, we could also arrive at meaningful partitions of user

populations and hence those are valid metrics, too. We show two such examples in Fig.

5-14 - the general observation is that while Xonavg leads to less well-separated clusters than

the eigen-behavior distance, Xcentroid1 leads to even better results.

We need to further compare these different partitions of the user population to

understand their properties. We choose to use the Jaccard index [96] to compare the

similarity between different partitions of the same population. The Jaccard index between

two partitions on the same population is defined as

J(P, Q) = r/(r + u + v), (5–12)

where r is the number of user pairs who are partitioned in the same cluster in both

partition P and Q (i.e., where the two partitions agree on the classification). u (or v) is

the number of pairs who are in the same cluster in P (or Q) but in different clusters in Q

(or P ) (i.e., where the two partitions disagree). We choose the Jaccard index among many

other indices for partition similarity due to its low variance on partitions with the same

transfer distance [96]. For both traces, we list the Jaccard indices between user partitions

from various distance metrics (Average and the Centroid of first behavioral mode) and the
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Table 5-2. Jaccard indices between user partitions based on the eigen-behavior distances
and various distance metrics.

Distance
Average

Centroid w/ Centroid w/
metric threshold = 0.5 threshold = 0.9
USC 0.757 0.741 0.696

Dartmouth 0.801 0.706 0.710

partition from the eigen-behavior distance in Table 5-2. The Jaccard indices are mostly in

the range of 0.7 to 0.8, indicating the partitions are in fact similar. The better separation

between intra and inter cluster distance distributions with the Xcentroid1 metric is partly

because the distances are calculated based on a subset of association vectors with a

coherent trend, discarding other vectors. Nonetheless, different distance metric has its own

emphasis. While we argue in section 5.6 with an example that the eigen-behavior distance

is useful for classifying users with multiple frequently visited locations with similar

preferences, this is not always the only goal. Depending on the application, sometimes one

may want to consider only the first behavioral mode and ignore the others.

Instead of applying SVD, one may propose to use the centroids for all behavioral

modes (i.e., all the clusters formed by the user’s association vectors) of a user as a

summary. However, the behavioral mode for each user is dependent on the clustering

threshold, and it is not simple to choose one that works well for many users, considering

the diversity. On the other hand, SVD does not require parameter tuning, and is optimal

in the sense of capturing remaining power in the association matrix, so we choose it over

the multiple centroids method, if all behavioral modes of a user should be considered.

5.10.2 Various Data Representations

In this section we discuss about alternative representations of user behavior and

compare the findings with the normalized association vector we choose in the chapter.

In section 5.2.1 we propose to use the normalized association vector in order to

mitigate the differences of user activeness across users and across time slots for a given

user. This is effective if the preference of the user for each time slot is the focus of study.
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For example, if a user visits exclusively location A or B on different days, for similar

number of days, one way to understand the user behavior is that locations A and B are of

the same importance for the given user, since he visits these two places exclusively with

similar frequency. However, if the user stays at location A whenever he visits for much

longer duration than B, the normalized vector would not reveal such information. On

the other hand, if absolute association time is used in the vectors, the large time spent at

location A will hide his visits to B when SVD is applied to extract the eigen-behaviors

from the user (i.e., vectors with large association time to A dominate the power of the

matrix), albeit the user pays a lot of visits to B.

Both representations may be of interest to some applications. So instead of arguing

the importance of one over the other, we try to understand its impact on how the users

are clustered. Using the USC trace as an example, we compare the results of user

partitions using the absolute association time vectors and the normalized association

vectors. We observe that the most active users (i.e., The first quarter in terms of the

online time) are almost classified the same regardless which representation is used, with

Jaccard index 0.9652. This is the case since the most active users are almost always on,

and the representation does not make much difference. We see the Jaccard indices drop

to 0.7910, 0.7090, and 0.6096 for the second, third, and fourth quarter of users in terms of

activeness, respectively, a clear decreasing trend. The least active users are more sensitive

to the choice of representation due to their sporadic usage of WLAN.

Time slot sizes to collect the association vectors is another dimension to experiment

with. In addition to daily vectors, we consider two other schemes: (1) Generate association

vectors for every three-hour time slot. We compare the partitions generated by this

fine-grained representation with the partition generated by the daily representation, and

get the Jaccard indices of 0.787 and 0.778 for USC and Dartmouth, respectively. This

indicates that a finer time scale does not change the user classification much, and our

original one-day interval would be sufficient to capture important trends in user behavior.
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We also try (2) generate the association vectors only during the time frame between 8AM

to 4PM, the busy part of a day, and compare the subsequent partition with the partition

generated by the daily representation in which the whole day is included. With this

representation, the two traces give very different result – the Jaccard indices are 0.752 and

0.033, respectively. Hence it is not always sufficient to use only the behavior trends during

working hours to classify users.

The choice of location granularity in the representation is also important to

understand the results. We have also attempted to use access points as locations for the

Dartmouth trace as the information is available. For most of the studies, the observations

are similar to what we presented so far in the chapter, although one can expect to

see more distinct behavior groups from the population if finer location granularity is

used. However, it is not easy to interpret these groups meaningfully unless we have the

information about detailed AP locations within the buildings and the significance of its

covered area in social context (e.g., it does not make much sense in the social context to

say a group is featured by visiting the South-East corner of an engineering building often,

unless we know a faculty lounge is at that corner.). On the other hand, it is also possible

that a group of buildings bear a higher-level meaning in social context (e.g., several

close-by dorms form a ”residential area”, or close-by buildings shared by the students from

the same department), and it is also related to understand user visiting preferences from a

higher-level behavioral context (e.g., home, at work, at class, etc.). We leave this as future

work.

On a different note, it may be possible to use other representations in different type

of networks. For example, in encounter-based networks, a representation of encounter

probability or duration would be appropriate. We plan to investigate this in our future

work.
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CHAPTER 6
CASE STUDY III: UNDERSTANDING THE GLOBAL NODAL ENCOUNTER

PATTERNS

After we study the behaviors of users in the WLAN traces, as individuals and as

members of groups of similar users, in chapter 4 and 5, respectively, we take an even more

macroscopic view in this chapter. We consider an important event between mobile nodes

in wireless networks – encounters. The scope of the analysis is one step wider than what

we presented in the last chapter – although we consider encounter events as the enabling

events of node-to-node communication in the profile-cast protocol, we utilize these events

in a localized fashion. In this chapter, we seek to understand encounters in the mobile

network from a different perspective – we take a holistic view on all encounter events

happening between all the nodes in the network and study the global encounter patterns

in the trace, by observing the encounter patterns with a graph analysis approach. Such an

analysis sheds light on the feasibility of forming a infrastructure-less network capable of

reaching most of the nodes through time-varying, partial connectivity to some nodes at a

given time instant through encounters.

6.1 Introduction

Our work in the previous chapters provides a good understanding of WLAN users.

However, most of the research work is focused on individual behavior of mobile nodes

(MNs) thus far. The understanding of individual behavior is important in itself, but it

does not reveal how MNs interact with one another in the real traces. In this chapter

we go beyond the level of individual users, and start to look into a simple yet important

interaction event among MNs: encounters. Encounters are important events in wireless

networks as they provide chances for MNs to directly communicate, even without an

infrastructure. We seek to understand encounter patterns in the mobile network from

a holistic view by a graph analysis approach. Such an analysis sheds light on the

diverse, non-homogenous nature of users in the given environments in terms of their

encounter events with other nodes. Furthermore, we evaluate the feasibility of forming an
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infrastructure-less network to reach most of the nodes utilizing time-varying inter-node

connectivity through encounters, and the robustness of such an ad hoc communication

network. We seek to understand encounter patterns of MNs by analyzing month-long

WLAN traces from university and corporation campuses in this chapter (i.e., the MIT-rel,

Dart-03, Dart-04, UCSD, USC, UF traces from Table 3-1) in addition to a real encounter

trace collected at a recent INFOCOM conference[27] (i.e., the Cambridge-INFOCOM05

trace in Table 3-1). We compare and contrast our observations for the various traces to

distill and explain the commonalities and differences observed.

Specifically, we aim to quantify the distribution of encounter events a MN has, and

look into the encounter patterns of all MNs to understand the relationship between

MNs formed by encounters. This is a research topic that received less attention in the

past, but can be useful and sometimes essential for classes of future mobile networking

protocols. For example, encounter histories are used to discover routes in ad hoc network

routing protocols (e.g. MAID[46], EASE[93]), and encounters are used directly in delay

tolerant networks (DTNs) to propagate packets. We define an encounter between two

users as the event of their association with the same AP for overlapped time intervals.

From all the WLAN-based traces we studied, we find that the distribution of encounters

is highly asymmetric, indicating a heterogeneous user population. Surprisingly, we find

that a user, on average, only encounters between 0.79% and 6.7% of the network user

population within a month. We also establish that the total number of encounters for

each MN follows BiPareto distribution, the parameters of which are environment specific.

We further utilize a graph analysis approach to understand the relationship between

MNs formed by encounter events. We utilize the Small World model [8] to understand

the characteristics of the encounter-relationship graphs (ER graphs), in which two nodes

are connected by a link if they ever encounter. We find that although direct encounters

of individual nodes happen only to a small portion of node pairs among the whole

population, WLAN users form connected Small World graphs via encounters, and the
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metrics of the formed Small Worlds (i.e., disconnected ratio, clustering coefficient, and

path length) converge quickly in about one day to its long-term steady values in most

cases.

Also, from chapter 4 we know MNs in WLAN traces are in fact not uniformly

distributed, and users with similar preferences show up at the same access point (AP)

more frequently. We look into this issue and try to identify the closeness (i.e., friendship)

between node pairs, and understand its influences on network connectivity if we make

connections between nodes based on their friendship. Specifically, we give several intuitive

definitions of friendship between MNs. These friendship indexes capture the observed

closeness between the involved MNs from the trace. Although such closeness may or may

not reflect friendship in a social context, it reveals the closeness between wireless devices

as displayed in their association patterns. The empirical distributions of these friendship

indexes mostly follow the exponential distribution, with few node pairs showing high

friendship index. Furthermore, we investigate the issue of how friendship influence the

characteristics of the encounter-relationship (ER) graphs. We find that if only nodes with

high friendship indexes are used in forming the ER graph, the resultant graph displays

higher clustering coefficient and average path length. In other words, it is more inclined

toward a regular graph. On the other hand, if we use only nodes with low friendship index

in the ER graph, it displays lower clustering coefficient and average path length. This

finding points out, similar to social networks, close friends in WLANs often form cliques

and random friends are keys to widely-reached connectivity in a network.

Finally, we propose information diffusion experiments to understand how information

could be spread among users without the help of an infrastructure. We use a simple

message spreading strategy to investigate whether it is possible to rely on mutual

encounters to spread messages across the network. Surprisingly, given the seemingly very

low ratio of the whole population a given node encounters with, the encounter events form

a wide-reaching communication network, and the messages spread to most of the whole
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population. We further show that even with a relatively high percentage of users being

selfish (i.e., not participating in information propagation), the information still spreads

and reaches most of the population, indicating the richness of the encounter patterns in

current WLAN users. Also, if encounters with short time duration are not exploited, the

performances of information diffusion also do not degrade significantly. In addition, the

delay of message delivery also does not increase significantly with the addition of selfish

users or the removal of short encounter events.

We study the encounters between MNs in section 6.2 and introduce the Small World

approach to explain the encounter-relationship graph in section 6.3. We further explain

the reason for the Small World to form in section 6.4. Then we discuss the findings in our

effort to capture friendship between MNs in section 6.5. Finally, the information diffusion

experiment is explained in section 6.6. We provide some discussions and conclude the

chapter in section 6.7, together with an outline of our proposed future work on an efficient

selective broadcasting protocol.

6.2 Encounters between Nodes

Nodal encounters in mobile networks are important events as they provide opportunities

for involved nodes to build up some relationship or to communicate directly. In this

chapter we focus on understanding the derived encounter events (refer to chapter 3 for

the details) from WLAN traces. Although these derived encounter traces may be not

completely accurate, we believe that the encounter events derived from WLAN traces

capture a major portion of MNs within direct communication range under current usage

pattern.

The distribution of these encounter events is the first step to understand the structure

of inter-MN relationship in the traces. The direct questions to ask about the encounter

events are: How many other MNs does a user meet? Do nodes meet with each other

repeatedly or not? Fig. 6-1 shows the CCDF of fraction of other MNs a given MN

has encountered through the whole trace period (i.e., one month). From the figure we
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observe that all the nodes in WLAN traces encounter only at most about 50% of the user

population within a month, with the UCSD trace being the only exception. This may be

partly due to the fact that the 275 PDA users in the UCSD trace were all selected from

the freshman class, and they tend to stay in several common dorms as stated in [11] (in

other words, the MNs in this trace are selected from a correlated sub-group of the whole

population on campus). In all other traces, on average a MN encounters with only

0.79% (UF) to 6.70% (Dart-04) of the whole user population within the 30-day

trace period. The small average encounter ratio is a combined result of several reasons: (1)

most MNs are not always on, and (2) most MNs do not visit many APs[66], hence they

can only meet with those who also visit this small set of APs.

Low encounter percentage as shown in the traces is not observed in any of the

simulation scenarios used for performance evaluation in the literature. For example, in

Fig. 6-2, we show the CCDF of unique encounter fraction obtained from the random

direction mobility model, one of the commonly used synthetic mobility model. We observe

two obvious differences from the empirical traces: (1) The unique encounter fraction

reaches 100% for all nodes within two days. This is because, in typical synthetic mobility

scenarios, as those summarized in [49], all nodes follow the same model to make movement

decision, albeit with randomness, and eventually encounter with all other nodes [46].

(2) The diversity of the unique encounter fraction, given an observation time period, is

not very high (e.g., Within six hours, all nodes encounter between 52% to 75% of the

population). The encounter pattern from real wireless network traces, on the other hand,

reflects that university campus is a heterogeneous environment rather than a homogeneous

one constructed by the synthetic models in which all nodes are statistically i.i.d.. To

better understand how protocols perform in such heterogeneous environment, using

homogeneous synthetic models is not sufficient. This finding adds to the motivation of

using a flexible mobility model, such as the TVC model we propose in chapter 4, which
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Figure 6-1. CCDF of unique encounter fraction, traces.

is capable of describing nodes with diverse, heterogeneous behavior for future protocol

evaluations.

On the other hand, from the Cambridge trace, most of the 41 users meet with the

majority of others during the short trace duration (4 days). Specifically, there are 12 MNs

who meet with all other 40 MNs, and 39 out of 41 MNs meet at least 38 other nodes. The

curve in Fig. 6-1 is mostly a horizontal line at high probability until the unique encounter

fraction reaches 0.95. This high unique encounter fraction may be due to the environment

setting (a conference, where the premises is considerably smaller than a university campus

or corporate buildings, and people are supposed to meet with each other at a conference)

or the fact that the selection of participants are related (i.e., people who are interested

in the study of mobility patterns and wireless networks in general) rather than randomly

picked from the conference attendees.

We also show the CCDF of the total encounter events a MN has throughout the

trace period in Fig. 6-3. We observe the total encounter counts for MNs in each

trace span across several orders of magnitude. There are both MNs with extremely

few or many encounters. This is an evidence of heterogeneous behavior among MNs.

The actual number of total encounters depends on the size of population in the traces.

Large traces (i.e., the USC and Dartmouth traces) tend to have more encounters than

small traces (i.e., the UCSD and Cambridge traces). However, regardless of the size of
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population, the curves for the total encounter count derived from WLAN traces

seem to follow the BiPareto distribution. We fit the BiPareto distribution curves to

the empirical distribution curves, and use the Kolmogorov-Smirnov test [98] to examine

the quality of fit. The resulting D-statistics for all traces are between 0.068 and 0.025,

which indicates we have a reasonably good fit between the BiPareto distribution curves

and the empirical distribution curves. The details about the Kolmogorov-Smirnov test and

the parameters of the fitted BiPareto distribution curves are listed in section 6.8. For the

Cambridge trace, the total encounter counts for MNs are not as diverse as those in WLAN

traces. This may be due to the fact that most nodes participate the conference actively

throughout the whole trace period (4 days), but this is unlikely for the longer, one-month

WLAN traces. The BiPareto distribution does not show a good fit for the Cambridge

trace, as its total encounter distribution drops sharply at a ”knee” around 250.

A closer investigation of the relationship between the unique encounter count and the

total encounter count of the same MN reveals that high unique encounter count does

not always imply high total encounter count. The correlation coefficients between

the unique encounter count and the total encounter count for various traces range from

0.732 to 0.195. Except for the UCSD trace, all other traces have correlation coefficients

below 0.6. As an illustration, we show the scatter plot of the unique encounter count

versus the total encounter count for the USC trace in Fig. 6-4. We observe that some
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Figure 6-3. CCDF of total encounter count.

Figure 6-4. Unique encounter count versus total encounter count, USC.

nodes have not many unique encounter counts, but high total encounter counts. This

indicates that some node pairs may have a lot of repetitive encounters, suggesting these

node pairs have closer relationship than other pairs. This point warrants further study,

and we will show some initial attempts on quantifying the friendship between MNs in

section 6.5.

6.3 Encounter-Relationship Graph

In section 6.2, we see that MNs have low percentage of unique encoun-

ters among the whole population. Given this fact, We raise a question regarding

the possibility of establishing campus-wide relationships among the majority of MNs

via encounters alone. That is, do encounters link MNs on the campus into one single

community, or just many small cliques?
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To investigate this question, we define a static encounter-relationship graph (ER

graph) as follows: Each MN is represented by a node in the ER graph, and an edge

is added between two nodes if the two corresponding MNs have encountered at least

once during the studied trace period. By the construction of the ER graph, we collect

all encounter events between MNs within a time period and collapse them on a static

graph. The exact timing of encounters are ignored, but we focus on the structure of

interconnections built between nodes by available encounter events during that period

of time. In other words, the concept of ER graph is introduced to capture the potential

of establishing a connected network among MNs based on direct encounters alone, and

understand the structure of such a network.

We use three important metrics to describe the characteristics of the encounter-relationship

graphs, defined as follows:

• The clustering coefficient (CC) is used to describe the tendency of nodes to form

cliques in a graph. It is formally defined as [44]:

CC =

∑M
n=1 CC(n)

M
, (6–1)

where

CC(n) =

∑
a,b∈N(n) I(a ∈ N(b))

|N(n)| · (|N(n)| − 1)
. (6–2)

N(n) is the set of neighbors of node n in the ER graph and |N(n)| is its cardinality.

I(·) is the indicator function. M is the total number of nodes in the graph.

Intuitively, the clustering coefficient is the average ratio of neighbors of a given node

that are also neighbors of one another. Higher CC indicates higher tendency that

neighbors of a given node are also neighbors to each other, or heavy “cliquishness” in

the relationship between MNs formed through encounters.

• The disconnected ratio (DR) is used to describe the connectivity of the ER

graph. It is defined as:
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DR =

∑M
a=1(M − |C(a)|)
M(M − 1)

, (6–3)

where C(a) is the set of nodes that are in the same connected sub-graph with node

a. DR indicates, on average, the percentage of unreachable node starting from a

given node in the graph.

• The average path length (PL) is used to describe the degree of separation of

nodes in the ER graph. It is defined as:

PL = (1−DR) · PLcon + DR · PLdisc, (6–4)

where PLcon is the average path length among the connected part of the ER graph,

defined as:

PLcon =

∑M
a=1

∑
b∈C(a) PL(a, b)

∑M
a=1 |C(a)| . (6–5)

PL(a, b) is the hop count of the shortest path between node pair (a, b) in the ER

graph1 . PLdisc is the penalty on the average path length for disconnected node pairs

in the ER graph. In the following we use the average path length of the regular

graphs (defined later) with the same node number and average node degree for

PLdisc.

We study how the above metrics evolve for the ER graphs derived from various

studied period of WLAN traces. Taking the USC trace, the Dartmouth trace (Dart-04),

and the UCSD trace as examples, we show the evolution of the three metrics with respect

to various studied trace periods in Fig. 6-5. The graphs for other traces show very similar

trends, and we leave them in section 6.9 to maintain conciseness here.

1 Note this path is not the same as the shortest spatial path between node pair (a, b),
which may not even exist.
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Figure 6-5. Change in the ER graph metrics with respect to trace period. (a)Disconnected
ratio. (b)Normalized clustering coefficient and average path length. The figure
is cut from above to show the details between 0 and 1 on Y-axis.

From Fig. 6-5 (a) we note that given sufficient long trace durations, the ER graphs

have low DR (not larger than 10% for traces longer than one day in most

cases), which implies that nodal encounters are sufficient to provide oppor-

tunities to connect almost all nodes in a single community, even though each

node encounters only a small subset of MNs directly. This is an encouraging result that

points out the feasibility of building a large, widely-reach network relying only on direct

encounters. Although the DR starts out very high with very short trace periods (i.e., for

trace durations under one day) since MNs have not moved around to create encounters

yet, it decreases rather quickly as the trace period increases. Within one day, DR’s reduce
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Table 6-1. Equations for the CC and PL for the regular and random graphs with M nodes
and average node degree d [8, 44].

Graph type Clustering coefficient Average path length
Regular graph 3(d− 2)/4(d− 1) M/2d
Random graph d/M log(d)/log(M)

to around 10%. Although the numbers of MNs in the ER graph keep increasing as we look

at longer trace periods, in most cases the DR does not change significantly after one day.

Another interesting finding is revealed by the other two metrics, the clustering

coefficient (CC) and the average path length (PL). To highlight a unique property of these

ER graphs, we also calculate the CC and the PL for regular graphs and random graphs

with the same corresponding total node number M and average node degree d. These

quantities can be calculated according to equations in Table 6-1. In the regular graphs,

nodes are first arranged on a circle and each node is connected to d closest neighbors on

the circle. In the random graphs, d randomly chosen nodes are assigned as neighbors for

each node. Typically, regular graphs have high CC and PL while random graphs have

low CC and PL. They are the two extreme cases on the spectrum. In Fig. 6-5 (b), we

show the normalized CC’s and PL’s of the ER graphs for various trace periods. These

normalized metrics represent, on the scale from 0 (corresponding to the random graph) to

1 (corresponding to the regular graph), where the metrics of the ER graphs fall. They are

defined as:

CCnorm =
CC − CCrand

CCreg − CCrand

(6–6)

PLnorm =
PL− PLrand

PLreg − PLrand

, (6–7)

where CCnorm and PLnorm represent the normalized CC and PL, respectively. The

subscripts reg and rand imply that the corresponding metric is obtained from the regular

graph and the random graph, respectively, with the same total node number and average

node degree.
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We observe that ER graphs display high normalized CC’s which are close to those

of the corresponding regular graphs (i.e., normalized CC’s being close to 1, and in some

cases even higher than 1), and low normalized PL’s which are close to those of the

corresponding random graphs. This highlights that a special pattern of encounters exists

in all WLAN traces: Nodes visiting similar sets of APs are highly likely to encounter with

all others and introduce highly connected clusters among these nodes, leading to high

CC. This phenomenon is especially obvious for very short traces, since most MNs do not

change its association to the APs to create many encounters. The ER graphs for short

trace periods feature many small disconnected cliques, each of them being a full-mesh

formed by MNs associated with the same AP for that trace period. As we look at longer

traces, some of the nodes in one cluster also have random encounters with nodes in other

clusters, and these links serve as the “shortcuts” in the ER graphs that reduce the PL.

In previous literature, graphs with high CC close to the regular graphs and low PL close

to the random graphs are referred as Small World graphs [8], [44]. By looking at various

traces, we indicate that the ER graphs formed by encounters among nodes using

wireless network appear to be Small World graphs. We also observe that both PL

and CC converges to its final values rather quickly in about one day for most

traces, although the size of ER graphs keeps increasing as more nodes appear in longer

traces.

For the Cambridge trace, we look into similar metrics. We find that for even a small

period of time (e.g., 1 day) the 41 MNs encounter most of the whole population. Hence,

the CC is very high (above 0.91 even if we take only the first day into consideration),

and the PL is low (less than 1.1). Actually, the 41 MNs presented in the trace almost

form a fully-connected mesh, and the DR is 0. This may be partly due the nature of

the conference setting from which the trace was collected. People move around to meet

more often than in their regular daily life at universities or corporations, hence the

encounter pattern at a conference seems to be richer than in regular environments. The
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well-connected ER graph may also come from the fact that the conference was held in

a place much smaller than a university campus or a corporate building. Conceptually,

the single clique in the Cambridge-INFOCOM trace may in fact correspond to one of the

cliques observed in the WLAN traces (i.e., the MNs visiting similar sets of APs). However,

the above arguments need further validation, by more thorough study of encounters in

different settings.

6.4 The Reasons underneath the Small World Encounter Pattern

In this section, we follow up on the intuition briefly introduced in the last section to

further understand the reasons for the Small World encounter pattern to emerge. One

theory we suggest in the last section is that nodes visiting similar sets of APs are highly

likely to encounter others with similar mobility preference and introduce highly connected

cliques among these nodes, leading to high CC. And then, some of the nodes in one clique

also have random encounters with nodes in other cliques, and these links serve as the

“shortcuts” in the ER graphs that reduce the PL. We will correlate the notion of similarity

metric of nodal association pattern introduced in section 5.5.1 (see Eq. (5–11)) and the

Small World graphs to validate this intuition.

We devise the following experiment to understand the effect of mutual similarities

between users’ association patterns on the global encounter patterns. Using USC trace as

an example, we categorize all user pairs into four zones, as illustrated in Fig. 6-6. Zone

A consists of user pairs who are highly similar (with the similarity metric above 0.8), and

zone B, C, and D consist of user pairs with less similarity in each zone. The boundaries

between the zones are so chosen that, when we consider an average user, it has roughly

similar number of encountered users falling in each zone.

After designating user pairs into zones, we redraw the ER graphs to include only links

between two nodes in the graph if the node pair belongs to a certain zone. This is an

effort to evaluate how links among similar or dissimilar users play its roles in the resulting
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Figure 6-6. Classification of node pairs into different categories based on their similarity
metric range.

Table 6-2. The graph properties of the ER graphs with selected links (only links falling
into certain similarity categories (see Fig. 6-6 for the bins) are included).

Links included from zone A B C D AB BC CD ABC BCD ABCD (all)
Average node degree 72.48 72.16 62.27 62.73 144.62 134.43 125.00 206.89 197.16 269.62

Disconnected Ratio (%) 96.85 8.98 11.35 7.25 6.36 4.22 4.26 2.40 1.49 0.53
Clustering Coefficient 0.7814 0.4568 0.1737 0.2968 0.6973 0.4896 0.3578 0.6339 0.5003 0.6117
Average Path Length 1.537 3.102 2.638 2.563 3.092 2.397 2.359 2.385 2.236 2.200

ER graphs. For ER graphs including links from various zones, we again obtain the three

graph properties introduced in the last section, and summarize them in Table 6-2.

We see from Table 6-2 that when the ER graphs include only edges from one zone,

under similar average node degree in the ER graph (we have chosen the categorization

bins carefully to ensure this), if the edges are formed between nodes with high similarity,

it results in high disconnected ratio and clustering coefficient in general. This trend is

especially pronounced for the ER graph including only edges in zone A, validating our

intuition that extremely similar nodes (in terms of their mobility preferences) form disjoint

clusters. The node pairs that are dissimilar to each other (e.g., node pairs in zone D) lead

to an ER graph with low disconnected ratio, low clustering coefficient and low average

path length2 . Similar trend is also observed when we include edges from two or three

zones – indeed taking edges from only similar nodes increase the CC and PL, and the

inclusion of edges between dissimilar nodes decrease DR, CC, and PL.

The above observations reveal that the heavy cliqueness in the ER graphs stems from

groups of nodes visiting similar locations. Notice although it is not guaranteed that all

2 Notice that the average path length for the ER graph with only edges in zone A is
the lowest. However, this is an artifact due to the extremely high disconnected ratio – the
paths between nodes, if exist, are all short paths between nodes in the same clique.
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of them end up encountering each other3 , in general users do meet with other similar

users with higher probability. On the other hand, we observe that as encounter events

between dissimilar nodes are added into the ER graph, the DR, CC, and PL begin to

fall, indicating the special role of “short-cuts between the cliques” played by these random

links.

In the next section, we further investigate the interplay of inter-node relationship

and the ER graph structure, from a slightly different perspective. We consider the notion

of friends as people who I encounter repeatedly and frequently, and see how friendship

changes the structure of the ER graphs.

6.5 Capturing User Friendship in WLAN Traces

In this section we further try to quantify the friendship between MNs based on

information available from the traces, and its influences on the ER graphs when we include

only friends in the graph.

In our daily lives, we are bound to meet with colleagues and friends much more

often than others. In this section we try to investigate using the wireless LAN traces

whether such an uneven distribution of closeness among MN pairs exists, and try to

measure it using the concept of friendship dimensions. The likelihood or duration of

encounters between two MNs captures the friendship between them. This “friendship” in

WLAN trace may or may not reflect social friendship, which is impossible to validate from

anonymized traces. We propose to identify friendship between MN pairs based on three

different dimensions – Encounter duration, encounter count, and encounter AP count, with

the following definitions:

3 One can construct a synthetic trace where a group of people visit several locations in
a perfectly staggered cycle. Now while all these users are exactly the same in terms of the
location visiting preferences, they never encounter with one another.
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• Friendship based on encounter time is defined as Frdt(a, b) = Et(a, b)/OT (a),

which is the ratio of the sum of encounter durations between node a and b, Et(a, b),

to the total online time of node a, OT (a). This is an index for how close node b is

to node a based on the duration of encounters. Note that in general Frdt(a, b) 6=
Frdt(b, a) and 0.0 ≤ Frdt(a, b) ≤ 1.0 for any node pair a and b.

• Friendship based on encounter count is defined as Frdc(a, b) = Ec(a, b)/S(a),

which is the ratio between the count of association sessions of node a that contain

encounter events with node b, Ec(a, b), to the total association session count of node

a, S(a).

• Friendship based on encounter AP count is defined as FrdAP (a, b) =

EAP (a, b)/AP (a), which is the ratio between the number of APs at which node a

has encounter events with b, EAP (a, b), to the total APs node a visits, AP (a).

We first observe how friendship indexes distribute among all node pairs in the traces.

As shown in Fig. 6-7, the CCDF curves of friendship indexes based on encounter time

follow exponential distributions for all campuses. We again use the Kolmogorov-Smirnov

test [98] to examine the quality of fit. The resulting D-statistics for all traces are between

0.0356 and 0.0052, which indicates we have a reasonably good fit between the exponential

distribution curves and the empirical distribution curves. The actual parameters we use

for the fitting are listed in section 6.8.

The exponential distribution of the friendship indexes is an indication that the

majority of nodes do not have tight relationship with one another. In all the traces, only

less than 5% of ordered node pairs (a, b) have friendship index Frdt(a, b) larger than 0.01.

This reveals the fact that for node pairs that do encounter with each other, most of them

do not show strong relationship. Among all node pairs with non-zero friendship index,

only 4.47% of them have friendship index larger than 0.7, and another 11.85% of them

with friendship index between 0.4 to 0.7. In other words, we can say that the friendship

between the MNs is very “sparse” (i.e., only few pairs of nodes can be called “friends”
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Figure 6-7. CCDF of friendship index based on time.

Table 6-3. Correlation coefficient for friendship indexes for all traces.

Trace name
Friendship index based on

encounter time encounter count AP count
MIT-rel 0.415 0.327 0.186
UCSD -0.024 -0.004 -0.003
USC 0.158 0.205 0.130

Dart-03 0.351 0.278 0.043
Dart-04 0.629 0.201 0.068

UF 0.190 0.091 0.036

based on the above definitions). Friendship indexes based on encounter frequency or

encounter AP count also show similar exponential distributions.

We also look into the issue of whether the friendship index for an ordered node pair

Frdt(a, b) and the reversed tuple Frdt(b, a) are symmetric. We calculated the correlation

coefficients for all the traces for three definitions of friendship indexes, as shown in Table

6-3. The resulting correlation coefficients between ordered node pair (a, b) and (b, a)

are low in most cases (ranging from 0.415 to −0.024, the only exception being 0.629

for friendship index based on encounter time for Dartmouth 2004 trace), implying high

asymmetry in friendship indexes.

After seeing the sparseness and high asymmetry of the friendship relationship

between the MNs, we ask the following question: if we consider friendship in establishing

relationships between nodes, how would that influence the structure of the encounter-relationship

graphs? Typically, a MN may not maintain relationships with all other MNs it encounters
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with, but are more likely to maintain connections selectively only with those MNs that are

considered “trust-worthy”. For example, a MN may choose to trust those MNs with which

it has high friendship indexes. The criteria of choosing the nodes to keep a relationship

with may influence the structure of the ER graphs. To better understand the interplay

between the nodal friendship and the resulting ER graph structure, we try to include

friends with various degrees of closeness in the ER graph, and see how it influences the

structure of the graph. We use the friendship index based on time as an example to show

how different friendship levels of included links can change the structure of the ER graph

significantly.

We sort the list of nodes that node a has encountered according to friendship index,

Frdt(a, b),∀b 3 Frdt(a, b) 6= 0. After sorting, each node picks a certain percentage of

nodes from the list with which to establish a link on the ER graph. We choose nodes

from the top, middle, or bottom of the list and with various percentages, and obtain

the corresponding metrics for the new ER graphs that include only the links to the

chosen nodes. Note that the links in these ER graphs are directed links when we consider

friendship, as friendship is asymmetric between a given node pair. Therefore, we replace

the definition of the clustering coefficient of a node in Eq. (6–2) by the following

CC(n) =

∑
a∈F (n)

∑
b∈F (n) I(a ∈ F (b))

|F (n)| · (|F (n)| − 1)
, (6–8)

where F (n) is the set of chosen friends of node n to maintain links with. Note that

friendship is an asymmetric relationship, so b ∈ F (a) does not imply a ∈ F (b), and vice

versa. Intuitively, here the clustering coefficient is the average ratio of the included friends

of a node that also include each other as a friend. When calculating the average path

length and the disconnection ratio, we follow the same definitions as introduced in section

6.3, but the paths must follow the direction of edges on the ER graph.

Following the above definitions, we obtain the metrics when including given

percentages of all encountered nodes from the top, middle, or bottom of the sorted
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Figure 6-8. Metrics of encounter-relationship graph by taking various percentage of
friends. (a) Clustering coefficient. (b) Average path length. (c) Disconnected
ratio.

node list according to the friendship index based on time. The figures are shown in Fig.

6-8. We use the USC trace as an example, and similar results are also observed in other

traces. The figures show a clear trend that if neighbors ranked high in the friendship index

are included, the resultant ER graph shows stronger clustering, and the average path

length is much higher. The result stems from the fact that top friends of a given node

are also likely to be top friend between one another, forming small cliques in the graph.

The clustering coefficient remains high due to these cliques. The disconnected ratio and

the average path lengths are high due to the lack of links between different cliques. On

the other hand, when low-ranked friends are included in the graph, the links included

are distributed in a more random fashion, reflected by the low clustering coefficient and

low average path length. Similar results are also observed in a social science study of

friendship between pupils [99]. As a larger portion of friends are included in the graph, all

three metrics converge to the values when all encounters are included4 .

Therefore, although it is possible to create a campus-wide community based solely

on nodal encounters, it is not sufficient to trust and utilize only top-ranked friends (or

the MNs one encounters frequently), as this results in an ER graph with high clustering

4 Note that including 100% of friends means to include every MN encountered in the
ER graph, hence the resulting ER graph is the same as the one defined earlier in section
6.3).
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coefficient and average path length, and may lead to a disconnected network. In order to

remain connected to a larger community, one should also use some randomly-chosen users

(or middle-ranked friends) as they are the key to reduce the degree of separation in the

underlying ER graph.

6.6 Information Diffusion using Encounters

In addition to establishing relationship between nodes, encounters can also be utilized

to diffuse information throughout the network. In this model, information is spread with

nodal mobility and encounters, where nodes exchange information when they encounter

each other directly. The speed and reachability of information diffusion among the nodes

are determined by the actual pattern and sequences of encounters. In this section we seek

to answer the question of whether the current encounter patterns between MNs in wireless

networks are rich enough to be utilized for information diffusion. If the answer is yes, what

is the delay incurred in such a information diffusion scheme, and how robust is it?

In this section, we first understand the optimistic expectation of the potential

performance of information diffusion under idealistic assumptions in subsection 6.6.1.

We then remove some of the assumptions and evaluate the performance in more realistic

settings in subsequent subsections.

6.6.1 Ideal Scenarios

As the first step to understand the potential of information diffusion under realistic

encounter patterns, we make the following idealistic assumptions: (1) There are sufficient

bandwidth and reliable communication between MNs, and sufficient storage space on

all MNs. (2) MNs discover the communication opportunities immediately when they

encounter other MNs, and (3) every MN in the network is willing to participate in

forwarding information for others. In this experiment, we focus more on analyzing how

the encounter pattern itself influences the performance of information diffusion. The

experiments in subsection 6.6.2 and 6.6.3 deal with more realistic scenarios when some
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of the above assumptions are removed. However, we do not address the technology

limitations on the devices itself (i.e., storage capacity, power constraint, etc.).

The diffusion mechanism we use is the following: When a source node has some

information to send, it simply transmits it to all nodes it encounters with if they have not

received the information yet. All intermediate nodes cooperate in the information diffusion

process, keeping a copy of received information and forwarding it the same way as the

source node does. This simple approach is known as the epidemic routing in the literature

[71]. Under perfect environment with sufficient resources, it achieves the lowest delay and

the highest delivery rate possible.

In all the simulations (in this and the subsequent subsections), we use a traffic pattern

in which the source node has some information to send to all other nodes. The source

starts to “diffuse” the information when it is first online. As time evolves, nodes encounter

with each other and an increasing portion of the whole population receive the information.

We study the percentage of nodes that have received the information within various trace

periods (i.e., the number MNs that have received the message over the total MNs that

have appeared during the trace period under discussion) and show the results in Fig. 6-9,

using the USC, Dart-04, Dart-03, and MIT traces as examples. Each point in the figures

of this section is an average value of multiple experiments. In each experiment we start the

information diffusion from a different source node. We choose to use 30% of the nodes that

appear the earliest in the corresponding trace period as the sources.

From Fig. 6-9 we observe that even within a short trace period (e.g., two days) the

information can reach a moderate portion of the population as the unreachable ratio is

less than 25% in all traces. As the trace period increases, reachability also improves. In all

except the Dart-03 trace, the unreachable ratios are less than 2% if we allow one

month for the information diffusion. Given that most nodes encounter with only a

very small portion of the whole population (Fig. 6-1), this result is perhaps beyond our

original expectation. It gives a positive confirmation that it is potentially possible
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Figure 6-9. Unreachable ratio of information diffusion using the epidemic routing.

Figure 6-10. USC trace: Unreachable ratio with various selfish node percentage and trace
period.

to deliver information relying only on encounters, in a campus environment with

high success rate, under current user behavioral pattern.

6.6.2 Selfish Users

After studying the ideal case, we consider a more realistic setup. We first relax

the ideal assumption (3) above. In some cases, some nodes may not be cooperative to

propagate the information. To understand how uncooperative users potentially influence

the feasibility of information diffusion, we carry out the following experiment – we make a

portion of users selfish such that they never forward information for other sources, and we

study the performance degradation under this setup. For each of the trace periods used,

we increasingly make a certain percentage of nodes selfish, starting from those with the
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highest unique encounter counts. By making nodes with high unique encounter counts

selfish first, we eliminate more transmission opportunities than if we pick selfish nodes

randomly, hence we expect to observe a greater impact on the performance.

The relationship between the percentage of selfish node and the unreachable ratio

for the USC trace is shown in Fig. 6-10. For the sake of conciseness, we only show figures

for the USC trace here. The figures for other traces display similar trends and they

are shown in section 6.9. The result is very surprising – for all trace period tested, the

unreachable ratio does not increase significantly before at least 20% of nodes are selfish.

The performance is even more robust if we take longer period of trace. This implies that

even a significant portion of users are not willing to propagate information

for others, the underlying nodal encounter pattern is rich enough for the

information to find an alternative way through. Hence the delivery rate is quite

robust for up to an intermediate percentage of selfish nodes. Note that we make the MNs

with most unique encounters selfish first, hence the performance of information diffusion

is robust even if the nodes with the most chances to propagate the information are not

cooperative. We further show how the average delay of information diffusion changes

with the increasing selfish node percentage in Fig. 6-11 for the USC trace. In the figure,

the average delay increases for longer trace duration because information that is not

deliverable in shorter trace periods becomes deliverable. More interestingly, for all tested

trace durations, the average delay does not increase significantly before more than 40% of

the nodes are selfish. This implies the average delay is also robust against selfish

user behavior up to an intermediate percentage.

6.6.3 Removal of Short Encounters

Another idealistic assumption we made is that the MNs can communicate with

each other successfully regardless of the durations of encounter events. This may not be

true in realistic scenario due to wireless bandwidth limitations or delay in discovering

encounter events. To address this issue, we remove short-lived encounter events that do
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Figure 6-11. USC trace: Average message delay with various selfish node percentage and
trace period.

not permit prompt discovery and useful information exchange in the following experiment,

and re-evaluate the performance of information diffusion with different minimum duration

thresholds for an encounter event to be considered useable.

In Fig. 6-12, we show the relationship between the unreachable ratio versus the

lower limit of encounter duration (i.e., we remove all encounter events that have shorter

durations than the value), using the first 15-day traces from USC and Dartmouth as

examples. From the graph we observe that, the unreachable ratio increases almost linearly

as we increase the lower limit of usable encounter duration. There is no obvious point

at which the performance suddenly degrades severely. We carry out the experiments up

to the shortest usable encounter threshold set at one hour, a rather demanding scenario.

Even in such cases, besides the UF trace which has a very low encounter ratio (see Fig.

6-1), the unreachable ratio is below 30%. This implies removing encounters with

short durations does not cause abrupt degradation in the performance of

information diffusion, in terms of both the reachability and the average delay (see

Fig. 6-13). In other words, short encounters are not the key reason for the success of

information diffusion. The encounter events with long durations are also rich enough to be

utilized for message propagation in most cases.
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Figure 6-12. The unreachable ratio after removing short encounters under the duration
lower limit.

Figure 6-13. The delay after removing short encounters under the duration lower limit.

6.7 Conclusions and Future Work

Our contributions: The contributions of this work are two-folds: First, by investigating

the inter-node encounters and utilizing the concept of Small World, we provide new

methodologies to understand underlying user behaviors in wireless networks. The

understanding gained by studying distributions of encounter events and the encounter-

relationship graphs reveals how a network can be formed between MNs given their usage

pattern in the studied environments. It could be utilized to design better protocols or

applications in the future, as we detail in the next chapter. Second, by experimenting

information diffusion with current WLAN traces, we display the potential for the
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success of information diffusion by the participation of only wireless users (i.e. without

infrastructure). We consider these as important findings and they warrant further study.

In this chapter we investigate the encounters between MNs in WLAN traces from four

sources. We find that MNs encounter with only a small subset of other nodes (on average

between 0.79% to 6.70%), and the total encounter counts follow the BiPareto distribution.

In spite of low percentage of unique encounters, the relationship graph constructed using

encounters alone connects most of the MNs. Furthermore, such encounter-relationship

graphs display Small World graph characteristics, and its graph properties converge to its

long-term value within only short time periods. The relationship between different pairs

of MNs, however, is very skewed and can be modeled by the exponential distribution.

Establishing relationships only with those considered as high-ranked friends leads to a

network with high clustering and disconnections, and using low-ranked friends is the key

for good reachability in the encounter-relationship graphs. Finally, using simulation study

with a simple protocol, we also display the potential for information diffusion without

relying on the infrastructure, utilizing encounters and mobility of MNs alone.

The Small World approach to understand the ER graphs and the result of information

diffusion experiments both highlight positive potential of building a campus-wide network

without infrastructures. The robustness of information diffusion brings up two interesting

points: (1) For message delivery, the delivery ratio and delay are not affected significantly,

even if we can not choose the shortest paths due to non-cooperative users or unutilized

short encounters. (2) On the other hand, it would be difficult to prevent diffusion of

harmful or malicious messages, such as computer worms or viruses, from propagating

through encounters [104]. Both observations are due to the richness in the underlying

encounter pattern providing abundant chances for message delivery. The performance of

information diffusion under various information delivery schemes and potential methods to

prevent malicious information from spreading are both directions for future work.
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More specifically, the Small World encounter relationship patterns can be considered

as an ambient structure in human networks, and be used to design more efficient message

forwarding protocols than the epidemic routing [71] based on which we show the potential

of encounter-based information diffusion in this chapter. This task would be our main

focus in the next chapter.

6.8 BiPareto Distribution and Kolmogorov-Smirnov Test

In this section we first briefly introduce the Kolmogorov-Smirnov test and the

BiPareto distribution, and then list the detail numerical results of fitting BiPareto and

exponential distribution curves to total encounter (section 6.2) and friendship index

(section 6.5) distributions, respectively.

The BiPareto distribution is used in [101] to fit the number of connections per user

TCP session and mean connection inter-arrival time in a TCP session. Later, BiPareto

distribution is again used in [14] to fit the distribution of association session length in

wireless LAN. The CCDF of BiPareto distribution is as follows:

Prob(X > x) = (
x

k
)−α(

x + c

k + c
)α−β, x > k (6–9)

Prob(X > x) = 1, x ≤ k (6–10)

The left part of the CCDF curve of the BiPareto distribution on log-log scale is

a straight line with slope −α. As the x variable comes close to the turning point, c,

the slope of the CCDF curve gradually changes from −α to −β. In our study of total

encounter distributions, we choose k = 1 for all curves.

The Kolmogorov-Smirnov test is used to determine whether the hypothesized

distribution (in our case, the BiPareto distribution) adequately fits the empirical

distribution. The K-S test is not sensitive to the binning of data set, unlike the Chi-square

test[98]. Therefore we choose the K-S test in our study.

182



[

)��[���+\SRWKHVL]HG�GLVWULEXWLRQ

)Q�[��(PSLULFDO�GLVWULEXWLRQ

'Q

3URE�

Figure 6-14. Illustration of the D-statistics and the K-S test.

Referring to Fig. 6-14, in the K-S test the distances between the hypothesized

distribution and the empirical distribution are measured throughout the range of random

variable x, and the maximum of the measured distances is called the D-statistics. More

formally, the D-statistics is defined as:

Dn = supx[| Fn(x)− F0(x) |], (6–11)

where Fn(x) and F0(x) are the empirical and hypothesized distributions, respectively.

Intuitively, the D-statistics measure the maximum difference between the two distribution

curve. A smaller D-statistic indicates a better fit of the hypothesized distribution to the

empirical distribution.

We use the minimum squared error method to find the best fit of BiPareto distribution

curves to the empirical total encounter distributions for various traces. The parameters are

listed in Table 6-4. From the table we observe that the D-statistics are no larger than 0.05

except for UCSD trace (0.07), indicating a reasonable fit of the BiPareto distribution.

We also list the λ parameters we obtained using the minimum squared error method

to fit exponential distributions to the empirical distribution of friendship indexes based on

encounter time in Table 6-5. The corresponding D-statistics are also listed.
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Table 6-4. BiPareto distribution fitting to the total encounter curves and the D-statistics
for the K-S test.

Trace name
BiPareto parameters

D-statistics
α β c

MIT 0.027 9.8 4000 0.036
UCSD 0.062 16.3 9900 0.068
USC 0.019 0.83 550 0.049

Dart-03 0.0723 0.81 290 0.049
Dart-04 0.0285 4.43 11850 0.025

UF 0.1071 1.324 392 0.0066

Table 6-5. Exponential distribution fitting to the friendship index based on encounter time
curves and the D-statistics for the K-S test

Trace name λ D-statistics
MIT-rel 369.19 0.0167

USC 305.3 0.0356
Dart-03 500.4 0.0052
Dart-04 411.81 0.0116
Dart-rel 409.91 0.0120

Dart-cons 412.35 0.0119
UF 579.06 0.0023

6.9 Additional Experiment Results

In addition to the figures shown in section 6.3, we also obtain the same metrics for

MIT, Dart-03, and UF5 traces. The figures (Fig. 6-15) have similar trends as discussed in

section 6.3. One interesting observation here is that for the MIT trace, the disconnected

ratio is very high until day 3 in the trace. A further investigation reveals that the MIT

trace collection was started on a Saturday, and for a pure working environment (i.e.,

corporate buildings) Saturdays and Sundays are the least active days. The disconnected

ratio is almost 100% until day 3 because the MNs that were on during the weekend are

mostly stationary ones. We observe a jump of number of node in the trace, a sudden

decrease in DR, and an abrupt change in both CC and PL on day three. For the UF trace,

5 Due the the large size of the UF data set, the results shown in this section are based
on a random sampling of about 30% of users in the trace (We select 10, 000 at random out
of 32, 695). Please refer to [112] for more detailed and updated results.
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Figure 6-15. Change in the ER graph metrics with respect to trace period. (a)
Disconnected ratio. (b) Normalized clustering coefficient and average path
length.

based on the 10, 000 sampled user, the DR for 30-day trace is 8.85%, the normalized CC is

0.584 and the normalized PL is 0.099. We perform full analysis (based on all 32, 695 users

that appeared in the 30-day trace) in order to understand the effect of random sampling

on the above metrics. The results are as follows: DR 1.94%, CC 0.566, and PL 0.039. It

appears the additional users in the full trace lead to a significant decrease in the DR and

PL, due to added connectivity, but the CC remains similar. More detailed analysis can be

found at [112].

In addition to the USC trace, we further perform similar information diffusion

experiments on adding selfish user behavior to the Dartmouth, MIT, and UF traces.

The experiment setup is the same as described in subsection 6.6.2. The results for the

average unreachable ratio are shown in Fig. 6-16, 6-18, 6-20, and 6-22 for the Dart-04,
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MIT, Dart-03, and UF traces, respectively. The trends for the Dart-04 and MIT traces

are similar to those shown in subsection 6.6.2. For longer trace periods (above 9 days),

the unreachable ratio does not change significantly for up to 20% of selfish nodes, and

the robustness of performance increases if longer trace periods are used. This confirms

that the robustness of information diffusion under current encounter patterns is not an

artifact of coarse location granularity in the USC trace. In the Dart-03 and UF traces, the

performance of information diffusion is less robust than other traces, since they have the

smaller encounter ratio (cf. Fig. 6-1) among all the traces6 . The unreachable ratio for the

Dart-03 and UF traces increases faster as compared to other traces when we make users

selfish. The results for the average delay are shown in Fig. 6-17, 6-19, 6-21, and 6-23 for

the Dart-04, MIT, Dart-03, and UF traces, respectively. The results are similar to Fig.

6-11 in subsection 6.6.2. One noticeable difference is that, in some cases the average delay

first increases as the selfish node percentage increases, but later it decreases. This is due

to the low reachability (i.e., high unreachable ratio) – in this situation, only MNs that are

easy to reach will be able to receive the message, leading to a decrease in the average delay

(calculated from the small subgroup of still reachable MNs).

6 The resutls for UF trace shown here are based on the 10, 000 sampled users. Analysis
for the full trace is in process and will be available at [112].
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Figure 6-16. Dart-04 trace: Unreachable ratio with various selfish node percentage and
trace period.

Figure 6-17. Dart-04 trace: Average message delay with various selfish node percentage
and trace period.

Figure 6-18. MIT trace: Unreachable ratio with various selfish node percentage and trace
period.
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Figure 6-19. MIT trace: Average message delay with various selfish node percentage and
trace period.

Figure 6-20. Dart-03 trace: Unreachable ratio with various selfish node percentage and
trace period.

Figure 6-21. Dart-03 trace: Average message delay with various selfish node percentage
and trace period.
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Figure 6-22. UF trace: Unreachable ratio with various selfish node percentage and trace
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trace period.
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CHAPTER 7
CASE STUDY III: CSI: A PARADIGM FOR BEHAVIOR-ORIENTED DELIVERY

SERVICES IN MOBILE HUMAN NETWORKS

In this chapter, we further develop the profile-cast paradigm in mobile human

networks we first proposed in section 5.8. In such a paradigm, messages are sent to

inferred behavioral profiles, instead of explicit IDs. Using behavioral profile space gradients

and small world structures, we provide fully distributed and more generic message

dissemination protocols, named CSI, relying on the Implicit yet Stable relationship

discovered between mobile users. The choice of message target in CSI is more generic.

One can choose a target behavioral profile either with the same representation as the user

eigen-behavior (i.e., the mobility preferences) or in a totally orthogonal context.

7.1 Introduction

We envision future networks that consist of numerous ultra portable devices delivering

highly personalized, context-aware services to mobile users and societies. Such scenarios

elicit strong, tight-coupling between user behavior and the network. Users’ mobility

and on-line activities significantly impact wireless link characteristics and network

performance, and at the same time, the network performance can potentially influence

user activities and behavior. Such a tight user-network coupling provides a rich set of

opportunities and poses several challenges. On one hand, fundamental understanding

of the mobile user behavior becomes crucial to the design and analysis of future mobile

networks. On the other hand, novel services can now be introduced and utilize such

a coupling to effectively navigate mobile societies, providing efficient information

dissemination, search and resource discovery.

In this chapter, building on top of the findings in the previous chapter, we propose

a novel behavior-driven communication paradigm to enable a new class of services in

mobile societies. Current communication paradigms, including unicast and multicast,

require explicit identification of destination nodes (through node IDs or group membership

protocols), while directory services map logical, interest-specific queries into destination
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IDs where parties are then connected using interest-oblivious protocols. The power and

scalability of such conventional paradigms might be quite limited in the context of future,

highly dynamic mobile human networks, where it is desirable in many scenarios to support

implicit membership based on interest. In such scenarios, membership in interest-groups

is not explicitly expressed by users, it is rather implicitly and autonomously inferred by

network protocols based on behavioral profiles. This removes the dependence on third

parties (e.g. directory lookup), maintenance of group membership (e.g., in multicast) or

the need to flood user interests to the whole network, and minimizes delivery overhead to

uninterested users.

Applying such a behavior-driven paradigm in mobile networks poses several research

challenges. First, how can user behavior be captured and represented adequately? Second,

is user behavior stable enough to enable meaningful prediction of future behavior with a

short history? How can such services be provided when the interest or behavior cannot be

centrally monitored and processed? And finally, can we design privacy-preserving services

in this context?

To address these questions we propose a systematic framework with two phases 1)

behavioral profile extraction by analyzing large-scale empirical data sets, investigating the

stability of users in the behavioral space, and 2) leverage the behavioral profiles for service

design – We use the implicit structure in the human networks to guide message and query

dissemination given a target profile.

Specifically, we first analyze network activity traces and design a summary of user

behavioral profiles based on the mobility preferences. The similarity of the behavioral

profile for a given user to its future profile is high, above 0.75 for eight days and remains

above 0.6 for five weeks. The surprising observation is that, the similarity metric between

a pair of users predicts their future similarity reasonably well. The correlation coefficient

between their current and future similarity metrics is above 0.7 for four days, and remains

above 0.5 for fifteen days.
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This phenomenon demonstrates that the behavioral profile we design is an intrinsic

property of a given user and a valid representation of the user for a good period of

time into the future. We refer to this phenomenon as the stability of user behavioral

profiles, which can be used to map the users into a high dimensional behavioral space.

The behavioral space is defined as a space where each dimension reflects a particular

interest. For example, when we consider mobility preferences, each dimension represents

the fraction of time spent at a given location. The position of users in the behavioral

space reflects how similar they are with respect to the behavioral profile we construct.

We propose a new communication paradigm, in which a target profile is used to replace

network IDs to indicate the intended receiver(s) of a message (i.e., those with matching

behavioral profile to the target profile chosen by the sender are the intended receivers.).

It is a Communication paradigm in human networks based on the Stability of the user

behavioral profile to discover the receivers Implicitly, abbreviated as CSI. We present two

modes of operation under the over-arching paradigm: the target mode (CSI:T) and the

dissemination mode (CSI:D). The target mode is used when the target profile is specified

in the same context as the behavioral profile (i.e., the target profile is in terms of mobility

preferences). The dissemination mode, on the other hand, is used when the target profile is

de-coupled from mobility preferences.

We show that our CSI schemes perform very close to the delay-optimal schemes

assuming global knowledge and improve significantly over the baseline dissemination

schemes. For the CSI:T mode, comparing with the delay-optimal protocol, our protocol

is close in terms of success rate (more than 94%) and has less overhead (less than 84% to

the optimal), and the delay is about 40% more. For the CSI:D mode, our protocol features

lower storage overhead than the delay-optimal protocol with more than 98% success rate –

CSI:D uses a storage overhead less than 60% of the delay-optimal protocol, while the delay

of CSI:D is about 32% more than the optimal.

Our contributions:
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Figure 7-1. Illustration of the association matrix to describe a given user’s location visiting
preference.

(1) We introduce the notion of multi-dimensional behavioral space, and devise a representation

of user behavioral profiles to map users into the behavioral space. Our study is the first to

establish conditions for stability of the relationship between campus users in this space.

(2) We propose CSI, a new communication paradigm delivering message based on user

profiles. The target profile in CSI can even be independent of the context of behavioral

profile we use to construct the behavioral space.

(3) We design an efficient dissemination protocol utilizing the stability of behavioral

profiles and SmallWorld in mobile societies, then empirically evaluate and validate the

efficacy of our proposal using large-scale traces from university campuses.

The outline of the chapter is as follows. We summarize the important background

from previous chapters in section 7.2. This is followed by an analysis to understand the

user behavioral pattern in section 7.3. We further discuss the potential usages of this

understanding in section 7.4 and design our CSI schemes in section 7.5 as an example.

We use simulations to evaluate the performance of CSI schemes in section 7.6. Finally, we

discuss some finer points in section 7.7 and conclude in section 7.8.

7.2 Background

7.2.1 Mobility-Based User Behavior Representation

We represent mobile user behavior of a given user using the association matrix as

defined in chapter 5 and illustrated in Fig. 7-1. In the matrix, each row vector describes

the percentage of time the user spends at each location on a day, reflecting the importance
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of the locations to the user1 . In chapter 5 it has been shown that the location visiting

preferences can be leveraged to classify users of wireless networks on university campuses.

For a given user, the singular value decomposition (SVD) [41] is applied to its association

matrix M , such that

M = U · Σ · V T , (7–1)

where a set of eigen-behavior vectors, v1, v2, ..., vrank(V ) that summarize the important

trends in the original matrix M can be obtained from matrix V , with corresponding

weights wv1 , wv2 , ..., wvrank(V )
calculated from the eigen-values in matrix Σ. This set of

vectors are referred to as the behavioral profile of the particular user, denoted as BP (M),

as they summarize the important trends in user M ’s behavioral pattern. The behavioral

similarity metric between two users A and B is then defined based on their behavioral

profiles (this is the same definition as in Eq. (5–11) but reproduced here for clarity),

vectors ai’s and bj’s and the corresponding weights, as

Sim(BP (A), BP (B)) =
rank(A)∑

i=1

rank(B)∑

j=1

waiwbj |ai · bj |, (7–2)

which is essentially the weighted cosine similarity between the two sets of eigen-behavior

vectors.

7.2.2 Traces

For the study in this chapter, we present results based on two data sets from the

University of Southern California (USC-06spring) and the Dartmouth College (Dart-

04spring). The details of the data sets are listed in Table 3-1.

The information available from these anonymized traces contains many aspects of

the network usage (e.g., time-location information of the users by tracking the association

and disassociation events with the access points, amount of traffic sent/received, etc.).

1 While there may be numerous other representations of user behavior, we shall show
that this representation possesses desirable characteristics for the purposes of this study.
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Figure 7-2. Illustration: consider the trailing d days of behavioral profile at time points
that are T days apart.

The richness in user behavioral data poses a challenge in representing the user behavior

in a meaningful way, such that the representation not only reveals an intrinsic, stable

behavioral profile of a user, but the identified behavioral profile also leads to practical

applications. We show here that the location visiting preferences (which is only a

subset of the user behavioral data) is a stable attribute for both individual users and

the relationship between users. This property will prove quite valuable to the design of

efficient message dissemination schemes, which we empirically validate using the above

traces.

7.3 Understanding Spatio-Temporal Characteristics of User Behavioral
Patterns

In this section we introduce our analysis of user behavioral patterns and its

significance on the service design. While previous works on user classification based on

long-term behavioral trend [38, 73, 111] are useful and in line with our goal, the stability

of such classification over time has not been studied systematically. In particular, the

short-term behavior of a user may deviate significantly from the norm, and the stability of

user behavioral profiles is a decisive factor for whether it can be leveraged to represent the

user’s future behavior. In this section we investigate the following questions: (1) How long

of behavioral history do we need to classify a user? and (2) How much does the behavior

of a given user and its relationship with other users change with respect to time?

We consider the effect of the amount of past history (of user behavior) on its be-

havioral profiles. Each user uses the location visiting preference vectors in the past d

days to summarize the behavior in the most recent history – the user retains d location

visiting preference vectors for these days, organize them in a matrix, and use singular
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Figure 7-3. Similarity metrics for the same user at time gap T apart.
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Figure 7-4. Correlation coefficient of the similarity metrics between the same user pair at
time gap T apart.

value decomposition to obtain the behavioral profile, as described in section 7.2.1. We

seek to understand how d influences the representation and similarity calculations. More

specifically, we look into two important aspects: (1) Whether the representation of a given

user is stable across time, and (2) whether the relationships between user pairs remain

stable as time evolves.

We first consider the stability of the representation of a given user. Considering two

points in time that are T days apart, we obtain the behavioral profiles for the same user

at both end points, using the logs of the trailing d days ending at those end points, as

illustrated in Fig. 7-2. Then we use the similarity metric defined in Eq. (7–2) to compare

how stable a user’s behavioral profile is to one’s former self after T days has elapsed. The

average results with various values of the time gap, T , and considered behavioral history
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d are shown in Fig. 7-3. We notice that, even if we collect a short history of user behavior

(say d = 3), the representation is similar to the behavior of the user for a long time into

the future. When we consider T = 35 days apart, the behavioral profiles from the same

user still show high similarity, at about 0.6. The amount of history used does not influence

the result too much when the considered T is large enough to avoid overlaps in the used

behavioral history (i.e., when T > d). We conclude that on university campuses, the

behavioral profile for a given user is stable, i.e., it remains highly similar for the same user

across time. One interesting note is that, when the behavioral profile includes only part of

a week (d < 7), the similarity of the user to its former self shows a weekly pattern (i.e.,

when T is an integer multiple of seven, the similarity peaks), especially in USC.

Second, we try to quantify how the behavioral similarity between the same pair of

users varies with time. For this part, we use Eq. (7–2) to calculate the similarity between

two users, A and B, at two points in time, SimT1(A,B) and SimT2(A,B), where T1 and

T2 are T days apart. We perform this calculation to all user pairs, and then calculate the

correlation coefficient of the similarity metrics obtained after a T -day interval, as

r =

∑
∀A,B(X −X)(Y − Y )

NSXSY
, (7–3)

where X = SimT1(A, B) and Y = SimT2(A,B), and the notations X and SX denote the

average and standard deviation of X, respectively. N is the total number of user pairs.

The correlation coefficient quantifies how stable the relationship between user pairs is.

We repeat the calculation for all pairs of users with various d and T values to arrive at

Fig. 7-4. We observe that the similarity metrics between user pairs correlate reasonably

well if the considered time periods are not far apart. For T smaller than one week, the

correlation coefficient is above 0.62. This indicates, once the similarity between a pair of

user is obtained, it remains a reasonable predictor for their mutual relationship for some

time period into the future. Although the reliability of the stale similarity data decreases

with respect to time, the current similarity of a user pair remains moderately correlated to
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their future similarity, in the time range up to several weeks. The correlation is above 0.4

for up to five weeks.

This investigation establishes that the user behavioral profile is a stable

feature to represent the users – the representation of an individual user and

the relationship between users are well correlated with the past history for

the near future. Thus we map the behavioral profile to a virtual behavioral space [61],

in which each user’s behavior is quantified as a high dimensional point2 . The mutual

similarity metric between users is a function of their respective positions in this space. In

the following sections, when we say two users are similar, it means they are close in the

behavioral space (i.e., the distance between the two users is small). We also use the term

neighborhood of a node to refer to the other nodes that are similar to this particular node

in the behavioral space.

7.4 The Behavior-Driven Communication Paradigm

Profiling users based on stable behaviors is a fundamental step to understand human

behavior. Motivated by the stability of user behavioral profiles, we introduce a behavior-

driven communication paradigm where we use user behavioral profiles, instead of network

IDs, to represent users. We envision that such a radical approach has several benefits.

First, it enables behavior-aware message delivery in the network without mapping

attributes to network IDs. As each user maintains its behavioral profile, it is now possible

to deliver announcements about a sports event on campus towards sports enthusiasts (e.g.,

people who visit the gym often) or advertise a performance at the school auditorium to

the regular attendees of such events.

Second, it facilitates the discovery of nodes with certain behavior patterns. Consider,

for example, in the message ferry [108] architecture where nodes with high mobility

2 The dimension of the behavioral space is the same as the mobility preference vector
representation, typically in the order of a hundred for these two campuses.
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move messages across the network to facilitate the communication between otherwise

disconnected nodes. One can choose a target profile that reflects a mobility profile and

thus eliminate the need of knowing the identity of the ferry beforehand or enforcing this

mobility pattern on a controlled node – a typical user who happens to have the desired

mobility pattern can be discovered and serves as a ferry.

Our behavior-driven communication paradigm is applicable to several architectures.

In the centralized server-based architecture, user profiles could be collected and stored at

a data repository, and mined for user classification, abnormality detection, or targeted

advertisements. In the cellular networks, the low-bandwidth channel between the users

and the infrastructure can be leveraged to exchange behavioral profiles and match users.

In this dissertation, however, we mainly consider decentralized infrastructure-less networks,

and focus on how stable behavioral profiles are used for better message dissemination.

We name this scheme as CSI, since it is a Communication scheme based on the Stable,

Implicit structure in human networks.

7.5 Protocol Design

In this section, we first present our premises and design requirements for the CSI

schemes. We then discuss the design of the CSI schemes based on in-depth understanding

of the relationship between similar behavioral profiles and encounter events.

7.5.1 Assumptions and Design Requirements

We assume that each node profiles its own behavioral pattern by keeping track of

the visiting durations of different locations and summarizing the behavioral profile using

the technique discussed in 7.2.1. This is an individual effort by each node involving no

inter-node interactions. This can be done by the nodes over-hearing the beacon signals

from the fixed access points in the environment to find out its current location. Note that,

the use of these beacon signals is only for the node to profile its own behavior – they are

not used to help the communication in our protocols (we will re-visit detailed points of

this assumption in section 7.7). Also, for the ease of understanding, we assume in this
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section that nodes are willing to send its behavioral profiles to other nodes when needed.

A privacy-preserving option that eliminates this operation is also discussed in section 7.7.

The goal of our CSI scheme is to reach a group of nodes matching with the target

profile specified by the sender, under the following performance requirements: (1) The

protocol should be scalable, in particular not being dependent on a centralized directory to

map target profiles to user identities. (2) It should work in an efficient manner and avoid

transmission and storage overhead when possible. Also, it should avoid control message

exchanges in the absence of data traffic. (3) The syntax of the target profile should be

flexible, allowing the target profile to be not in the same context as the behavioral profiles

we use to represent the users. Also the operation of the protocol should be flexible to

allow tradeoff between various performance metrics. And finally, (4) the design should be

robust and help in protecting user privacy.

We design two modes of operation for the CSI scheme under the above requirements.

When the target profile is in the same context as the behavioral profile (in our example,

since the behavioral profile is a summary of user mobility, this corresponds to the scenario

when the target profile describes users that move in a particular way), the CSI:Target

mode (CSI:T) should be used. When the target profile is irrelevant to the behavioral

profile (e.g., when I want to send to everyone interested in movies on campus), the CSI:D

mode should be used instead. Although it seems that the applicability of CSI:T is limited,

we note that the behavioral profile (in terms mobility) can sometimes be used to infer

other social aspects of the users, such as affiliations or even interests (e.g., people who visit

the gym often should like sports in general). Such inferences expand the scenarios in which

CSI:T can be used. When this is not possible, CSI:Dissemination mode (CSI:D) provides

a more generic option.

The major challenge involved in the design process is that each node is only aware

of the behavioral profile of itself. Furthermore, we require no persistent control message

exchanges for the nodes to “learn” the structure of the network proactively when they
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Figure 7-5. Relationship between the similarity in behavioral pattern and other quantities.
(a) Total encounter duration. (b) Encounter probability. (c) Similarity of
encountered node sets.

have no message to send. Nodes only compare their behavioral profiles when they are

involved in message dissemination. Based on this very limited knowledge about the

behavioral space, a node must predict how useful a given encounter opportunity is

in terms of achieving the fore-mentioned requirements. Since encounter events may

occur sporadically in sparse, opportunistic networks, the nodes must make this decision

for each encounter event independent of other encounter events (that may occur long

before or after the current one under consideration). Such a heuristic must rely on the

understanding of the relationship between nodal behavioral profiles and encounters, which

we discuss the next.

7.5.2 Relationship between Behavioral Profiles and Encounters

We now analyze the relationship between user behavioral profiles and a key event

for user-to-user communication in an infrastructure-less network – encounters. While it

seems intuitive that users visiting similar locations should encounter with each other with

higher probability, this is not obvious on university campuses. Students and faculty have

their own schedules, and they may rarely encounter due to the difference in their schedules

although they might be in the same building at different times. Hence we investigate the

relationship between behavioral profiles and encounter events, first as a sanity check of our

intuition, and more importantly, to understand the relationship between the behavioral

profiles and various aspects of the encounter events (e.g., the encounter probabilities,
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encounter durations, etc.). This helps reveal the implicit structure existing in mobile

human networks, which is the key to the design of the CSI schemes in the following

sections.

We classify all node pairs into different bins of behavioral similarity metric (as defined

in Eq. (7–2)), and obtain various characteristics of encounter events as a function of the

pair-wise behavioral similarity. In Fig. 7-5 (a), we show the aggregate encounter time

duration between an average pair of nodes given the behavioral similarity. In Fig. 7-5

(b), we show the probability for a given node pair to encounter with each other, given

their similarity. Combining these two graphs, we see that if two users are similar in

behavioral profiles, they are much more likely to encounter, and the total time

they encounter with each other is much longer – an indication that nodes with

similar behavioral profiles indeed are more likely to have better opportunities to

communicate directly. When two users are similar enough (with behavioral similarity

larger than 0.3), they are almost guaranteed to encounter at some point (with probability

above 0.9). However, we note that some “random” encounter events happen between

dissimilar users. For users with very low (almost zero) similarity, the probability for them

to encounter is not zero, although such encounter events are much less reliable (i.e., they

occur with much shorter durations, see Fig. 7-5 (a)).

In Fig. 7-5 (c) we further compare the behavioral similarity of node A and B versus

the sets of nodes A and B encounter. We denote the set of nodes A encounters with as

E(A). The similarity of the two sets of nodes is quantified by |E(A) ∩ E(B)|/|E(A) ∪
E(B)|, where | · | is the cardinality of the set. This graph shows, as two nodes are

increasingly similar, there is larger intersection of nodes they encounter. When

an unlikely encounter event between dissimilar nodes occurs, it helps both nodes

to gain access to a very different set of nodes, which they are unlikely to

encounter directly.
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The above findings relate to the SmallWorld encounter patterns between mobile

users [60] we discuss in the previous chapter. The key features of SmallWorld networks [8]

are high clustering coefficient and low average path length. In the human networks we

analyze in this section, people with similar behavior form “cliques”. The “random”

encounter events between dissimilar nodes build short-cuts between these cliques to

shorten the distances between any two nodes. We leverage these properties in the protocol

design.

7.5.3 CSI: Target Mode

In the CSI:target mode (CSI:T), the sender specifies the target profile (TP) for

the recipients which must have the same format and semantics as that of the user

behavioral profile, i.e., in our case the TP is a summarized mobility preference vector

(i.e., the percentage of times the target node(s) visit various locations). For example,

we could reach people who like sports by sending messages to those who visit the gym

regularly. This criteria could be set up by specifying the TP as a vector with only one 1

corresponding to the gym location (hence only time spent at this location is considered).

If a given user A has Sim(BP (A), TP ) > thsim, i.e., its behavioral profile, BP (A), is more

similar to TP than a sender specified threshold, we say node A belongs to the group of

intended receivers. This threshold is set by the sender according to the desired degree of

similarity to the TP . The TP and the threshold, thsim, are included in the message header

to describe the intended receivers of the message.

We first discuss the intuition behind the design of the CSI:T mode using Fig. 7-6 as

an illustration. As per section 7.5.2, to deliver messages to receivers defined by a given

TP, one way is to gradually move the message towards nodes with increasing similarity to

the TP via encounters, in the hope that such transmissions will improve the probability

of encountering the intended receivers. Finally, when the message reaches a node close to

the TP (in the behavioral space), most nodes encounter frequently with this node are also
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similar to TP. Hence, the message should be spread to other nodes in the neighborhood (in

the behavioral space) of the node.

Consider the pseudo-code in Algorithm 1. There are two phases in the operation, the

gradient ascend phase and the group spread phase. (1) Starting from the sender, if node A

currently holding the message is not an intended receiver (i.e., Sim(BP (A), TP ) < thsim),

it works in the gradient ascend phase, otherwise it works in the group spread phase. (2)

In the gradient ascend phase, for each encountered node, the current message holder asks

the behavioral profile of the other node, and if the other node is more similar to the TP

in the behavioral space, the responsibility of forwarding the message is passed to this

node. One can imagine that these similarities form an inherent gradient for the message

to follow and reach the close neighborhood of the TP in the behavioral space, hence the

name gradient ascend phase. Note that, up to this point, there is only one copy of the

message in the network – these intermediate nodes who are not similar to the TP only

forward the message once. (3) When the message reaches a node with similarity larger

than thsim to the TP, the group spread phase starts. This intended receiver holds on to

the message, and requests the behavioral profiles from nodes it encounters. If they are also

intended receivers, copies of the messages will be delivered to them. All intended receivers,

after getting the message, continue to work in the group spread phase. Although multiple

copies of the message are generated in the group spread phase, it is triggered only when

the message is close to the TP, thus most of the encounter events and inquiries will occur

among the intended receivers, reducing unnecessary overhead.

7.5.4 CSI: Dissemination Mode

In the CSI:Dissemination mode (CSI:D), there does not exist a direct relationship

between the target profiles of the recipients and their measured behavioral profiles. One

particular example is to reach people who like movies on campus. If there is no movie

theaters on campus, the measured behavioral profiles (i.e., mobility preference) cannot

be used to infer such an interest. This situation is illustrated in Fig. 7-7. It appears
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Figure 7-6. Illustration of the CSI:T scheme in the high dimension behavioral space. One
copy of the message follows increasing similarity gradient to reach the
neighborhood of the target profile, then triggers group spread.

/* BP (A): Behavioral profile of node A */
if node A has the message then

if Sim(BP (A), TP ) > thsim then
Initiate Group spread();

else
Initiate Gradient ascend();

Gradient ascend(){
while the message is not sent do

foreach node E encountered do
Get BP (E) from E;
if Sim(BP (E), TP ) > Sim(BP (A), TP ) then

Send message to E;

}
Group spread(){
foreach node E encountered do

Get BP (E) from E;
if Sim(BP (E), TP ) > thsim then

Send message to E;

}
Algorithm 1: Algorithm for the CSI:T mode
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Figure 7-7. Design philosophy of the CSI:D scheme. Left chart: The goal is to send a
message to a group of nodes with a similar characteristic in the interest space
(white nodes in the circle). Right chart: However, they may not be similar to
each other in the behavioral space (nodes with the same legend represent
similar nodes in the behavioral space).

there is little insight provided by the similarities between the nodal behavioral profiles

to guide message propagation, as the intended receivers in this case may be scattered in

the behavioral space, and the relationship between the target profile and the behavioral

profile cannot be quantified. Although it is always possible to reach most users through

epidemic routing, as we have shown its robustness in the previous chapter (see section

6.6), this leads to high overhead, and requires all nodes in the network to keep a copy of

the message. The objective of CSI:D mode is to reduce the numbers of message copies

transmitted and stored in the network, yet make it possible for most nodes to get a copy

quickly, if they belong to the intended receivers.

We again first discuss the intuition behind the design of the CSI:D mode in this

paragraph, using Fig. 7-8 as an illustration. From section 7.5.2, since the nodes with

high similarity in their behavioral profiles are almost guaranteed to encounter,

there is really no need for each of them to keep a copy and disseminate the

message. Electing a few message holders within a single group of similar nodes

would suffice. This intuition leads to the construction of our message dissemination

strategy for the CSI:D. We aim to have only one message holder among the nodes who are

similar in their behavioral profiles (or equivalently, pick only one message holder within

a neighborhood in the behavioral space. In Fig. 7-7, this corresponds to having only one
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message holder among each group of nodes with the same legend). We add the messages

holders carefully to avoid overlaps in the encountered nodes among message holders. As

suggested by Fig. 7-5 (c), we should select nodes that are very dissimilar in their

behavioral profiles to achieve low overlaps. Recall that dissimilar node pairs still

encounter with non-zero probability, our design philosophy is to leverage these “random”

encounter events as short-cuts to navigate through the behavioral space efficiently, hopping

across the space to reach dissimilar nodes with relatively few message transmissions.

Such a design philosophy is also related to the SmallWorld human network structure – a

message will be received by an intended receiver shortly once it has reached someone in

the receiver’s “clique”.

Consider the pseudo-code in Algorithm 1. (1) The sender itself starts as the first

message holder in the network. (2) Each message holder tries to strategically add

additional message holders in the network. When it encounters with other nodes, it

asks for the behavioral profile of the other node to be considered as a potential additional

message holder. Each message holder keeps a list of the behavioral profiles of all known

message holders3 , and the new node has to be dissimilar (with the similarity metric lower

than a threshold, thfwd) to all known holders to be added as a new message holder and

keep another full copy of the message. (3) If, on the other hand, this node is similar to the

message holder (i.e., within similarity threshold thnbr), it uses a single bit to remember

that there is a message holder in its neighborhood and propagates this information

to similar nodes. This bit is used to prevent excessive message holders in the same

neighborhood, even if some nodes have not encountered with the message holders directly.

(4) When holders encounter, they update each other with the behavioral profiles of the

3 Note this list does not necessarily contain all holders in the network. Message holders
that are added by a particular message holder are not known to other holders until they
meet and sync the lists.
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Figure 7-8. Illustration of the CSI:D scheme. The idea is to select the message holders in a
non-overlapping fashion to cover the entire behavioral space.

known holders list, to gain a better view of the situation of message spreading. (5) If two

similar holders (i.e., when their similarity metric is above the threshold thnbr) encounter,

one of them should cease to be a holder to reduce duplicated efforts.

Each message holder is responsible for disseminating the actual message to the

intended receivers. The message holders sends the TP specified by the sender in the

message to the encountered nodes. If the encountered node is an intended receiver, the full

message will be transferred.

7.6 Simulation Results

In this section, we perform extensive simulations with the CSI schemes, based on the

derived encounters between users from the USC-06spring and Dart-04spring traces. We

compare the performances of our proposal to oracle-based forwarding decisions to show

that our performance is close to the optimum (in terms of the delivery success rate and

the overhead), and does not fall much behind in delay. We also compare CSI to epidemic

routing [71] and variants of random walk4 . In all the simulation cases, we split the traces

4 The CSI could not be directly compared with existing routing schemes (e.g.,
[61, 74, 76, 107]) in DTN as most of them have a different routing objective: reaching a
particular network ID.
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/* BP (A): Behavioral profile of node A */
/* Hi(A): The i-th known holder of node A */
/* holder in group(A): If A knows there is a message holder in its

neighborhood */
if node A is a message holder then

foreach node E encountered do
Get BP (E);
if E is not a holder then

if Sim(BP (E), BP (Hi(A))) < thfwd∀i and holder in group(E) = false
then

Elect E as an holder;
Add BP (E) to holder list;
Send the message;
Send BP (Hi(A)),∀i;

else if Sim(BP (E), BP (Hi(A))) > thnbr for any i then
Let E set holder in group(E) = true;

else
if Sim(BP (E), BP (A)) > thnbr then

A ceases to be a holder;
else

Sync holder lists between node A and E;

else if holder in group(A) = true then
foreach node E encountered do

Get BP (E);
if Sim(BP (A), BP (E)) > thnbr then

Let E set holder in group(E) = true;

Algorithm 2: Algorithm for CSI:D mode.

into two halves, use the first half to obtain the behavioral profiles for all users, and then

use the second half of the trace to evaluate the success of our proposed schemes.

7.6.1 CSI: Target Mode

7.6.1.1 Simulation setup

In the scenario of CSI:T mode, the sender specifies the TP and a threshold of

similarity thsim. If a node shows a similarity metric higher than thsim to the TP, it is an
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intended receiver. In our evaluation, we use the top-10 dominant behavioral profile5 (i.e.,

the behavioral profiles with the most number of people following it, typically in the order

of hundreds) in our traces as the TP, and for each TP we randomly pick 100 users as the

senders generating messages targeting at the TP. We use the threshold thsim = 0.8 as the

transition point between the gradient ascend phase and the group spread phase.

We compare our CSI:T scheme with several other protocols discussed below. The

epidemic routing [71] is a message dissemination scheme with simplistic decision rules:

all nodes in the network send copies of messages to all the encountered nodes who have

not received the message yet. The random walk (RW) protocol generates several copies of

the message from the sender, and each copy is transferred among the nodes in a random

fashion, until the hop count reaches a pre-set TTL value. Group spread only is a simplified

version of our protocol. It uses only the group spread phase, i.e., the original sender holds

on to the message until it encounters with someone who is more similar than thsim to the

TP and starts the group spread phase directly from there.

We also consider three protocols that require global knowledge of the future. The

delay-optimal protocol sends copies of the message only to the nodes which lead to the

fastest delivery to the targeted receivers, and no one else. This is the oracle-based optimal

protocol achievable if one has perfect knowledge of the future, and serves as the upper

bound for performance. The overhead-optimal protocol, on the other hand, optimizes (i.e.,

minimizes) the number of transmission counts using the knowledge of future encounter

events. This protocol delivers messages to all reachable receivers under the minimum

possible transmission count. The pseudo-code we use for these two optimal protocols

based on complete knowledge of all encounter events is summarized in Algorithm 3. Notice

5 We have also experimented with other target profiles, such as rarely visited locations
on campuses or profiles that contain a combination of several locations, and the results are
similar to those presented in this section.
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this is basically a generalized version of the Dijkstra algorithm, with different metrics

used in either protocol. More specifically, for the delay-optimal protocol, the metric to be

considered is the delay (i.e., the reach time at each node subtracts message send time); for

the overhead-optimal protocol, the metric to be considered is the hop count to reach the

node.

The optimal single-forwarding-path is the oracle-based protocol to find the fastest

path to deliver the message to the neighborhood of the TP – Using the knowledge of

the future, it identifies the path that leads to the earliest message delivery to any of

the intended receivers. That is, we use the results from the delay-optimal protocol,

identify the node that receives the message the earliest among all intended receivers,

and find the path taken from the sender to reach this particular node. The optimal

single-forwarding-path then uses this path to deliver one copy of the message to the

neighborhood of the intended receiver group. Once a copy of the message is delivered to

the thsim-neighborhood to the TP, it follows the same group spread phase as in CSI:T.

This is the optimal performance (upper bound) for the family of protocols delivering one

copy of message to the neighborhood of the target profile, if one chooses a good (shortest

delay) path – note that this shortest-delay path may not always follow an increasing

gradient of similarities to the TP.

We compare these message dissemination schemes with respect to three important

performance metrics: delivery ratio, average delay, and transmission overhead. The de-

livery ratio is defined as the percentage of the intended receivers (those with similarity

greater than thsim to the TP ) actually received the message. We account for the

transmission overhead as the total number of messages sent in the process of delivery.

See more discussions on the additional overhead of exchanging the behavioral profiles later

in section 7.7.1.
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/* done[i]: if the metric for node i is finalized */
/* metric[i]: The current best metric to reach node i */
/* from[i]: the previous hop of node i */
/* reach time[i]: the time node i receives the message */
/* s: the source node */
/* candidate: current node under consideration, from which all other

“unfinished” nodes could potentially improve the metric */
forall Node i do

set done[i] = false ;
set metric[i] = inf. ;
set from[i] = null ;
set reach time[i] = inf. ;

set done[s] = true ;
set metric[s] = 0 ;
set reach time[i] = sendtime ;
set candidate = s ;
while candidate 6= null do

foreach node k that done[k] = false do
foreach Encounter event after reach time[candidate] between candidate and
k do

if Message delivery from candidate to k improves (reduces) metric[k]
then

Modify metric[k] ;
set reach time[k] = Encounter event time ;
set from[k] = candidate ;

forall Node k such that done[k] = false and metric[k] 6= inf. do
Find node m with minimum metric[m] ;
if m 6= null then

set candidate = m ;
set done[m] = true ;

else
set candidate = null ;

Algorithm 3: Algorithm for the oracle-based optimal protocols.
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7.6.1.2 Simulation results

We show the normalized performance metrics with respect to that of epidemic routing

(the relative performance for each protocol assuming epidemic routing is 1.0) and its 95%

confidence intervals in Fig. 7-9. We observe that epidemic routing leads to the highest

overhead while its aggressiveness also results in the highest possible delivery ratio and

the lowest possible delay. The random walks do not work well regardless the number of

copies and the value of TTL, as they use no information to guide the propagation of the

message towards the right direction. Our CSI:T protocol leads to a success rate close to

the epidemic routing (0.96 for USC, 0.94 for Dartmouth) with very small overhead (0.02

for USC, 0.018 for Dartmouth). For the simplified version, group spread only, the delay

is longer and the success rate is lower than our protocol. We will further investigate this

phenomenon later.

When comparing CSI:T with the optimal protocols with future knowledge, we see

that there is really not much room for improvement in terms of the success rate and the

overhead. Our gradient ascend approach in CSI:T is similar to what is achievable even one

has the knowledge of the future in these two aspects. Specifically, CSI:T has more than

94% of delivery rate and uses less than 84% overhead of the delay-optimal strategy. When

comparing with the overhead-optimal protocol, we observe that the overhead CSI:T incurs

is about the same (with less than 5% difference) to the overhead-optimal protocol, and

the delay is less in the USC case (by 20%) but slightly more in the Dartmouth case (by

11%). We can therefore conclude that our CSI:T protocol does well in terms of overhead

and delivery rate, even compared to the optimal protocols with perfect information of the

intended receivers and future encounter events. The delay, on the other hand, has some

room for improvement. The key reason of this difference (in terms of delay) is that our

gradient ascend phase generates only one copy of message from the sender and it moves

towards the TP following strictly ascending similarity. Comparing with the best (fastest)

path to the TP used in the optimal single-forwarding-path, our CSI:T has 1.40 and 1.47
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Figure 7-9. Performance comparison of CSI:T to other protocols. (a) USC. (b)
Dartmouth.

times more delay, for USC and Dartmouth, respectively. If we compare with the delay-

optimal strategy, where multiple copies are generated whenever it helps to improve the

delay, the difference is even larger. This calls for a further investigation of selecting good

path(s) from the sender to the TP , which we leave out for future work.

We take a closer look at the performance metrics by splitting the simulation cases

into categories, depending on the original similarity metric between the sender’s behavioral

profile and the TP, Sim(BP (S), TP ). By the split statistics shown in Fig. 7-10, we see

why the gradient ascend phase is needed to improve the success rate and reduce the delay.

When we use only the group spread phase, and the sender is dissimilar from the TP, it

takes a longer time before any encounter event happens directly between the sender and
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Figure 7-10. Split performance metrics by the similarity between the sender and the target
profile (USC). (a) Delivery ratio. (b) Average delay.

anyone in the neighborhood of the TP, if it happens at all – hence the delay is longer, and

the success rate is lower.

Comparing the differences between two versions of random walks, few long threads

and many short threads, reveals an interesting difference. The concept that leads to the

difference is illustrated in Fig. 7-11. Many short threads are better if the sender is close to

the TP, in terms of both delivery ratio and delay, as the sender generates a lot of threads

to “occupy” the neighborhood – since the threads are short, and similar users encounter

more frequently, they are likely to stay in the neighborhood. Contrarily, if the sender is far

away from the TP, long random walk threads provide a legitimate chance of moving close

to the TP, while short threads provide less hope.

215



6

7�3�

66

7�3�

6LQJOH�ORQJ�5:

6

7�3�

66

7�3�

0XOWLSOH�VKRUW�5:

66

6LQJOH�ORQJ�5:

66

0XOWLSOH�VKRUW�5:

6HQGHU�LV�VLPLODU�WR�73 6HQGHU�LV�GLVVLPLODU�IURP�73

Figure 7-11. Illustrations for the comparison between one long random walk and many
short random walks.

7.6.2 CSI: Dissemination Mode

7.6.2.1 Simulation setup

In the scenario of CSI:D mode, the target profile specified by the sender cannot help

to determine to where the message should be sent in the behavioral space. Hence, the

strategy seeks to keep one copy in every neighborhood in the behavioral space. In our

evaluation, we start from 1000 randomly selected users as the senders. Since the target

profile of the intended receivers can be orthogonal to the behavioral profile, we create

the scenario for evaluation by randomly selecting 500 nodes as the intended receivers for

each sender, and consider the average performances. We vary the two thresholds, thfwd

and thnbr in our CSI:D mode scheme proposed in 7.5.4, to adjust the aggressiveness of

the forwarding scheme. Setting low values for both thresholds leads to less aggressive

operations and inferior performances. At the same time is also leads to lower overheads, as

the messages are copied to fewer message holders, and the existence of a message holder

prevents nodes in a larger neighborhood from becoming another message holder.

We compare various parameter settings of our CSI:D mode with two baseline

protocols, the epidemic routing and the random walk. The epidemic routing works the

same way as before, serving as the baseline for comparison. In the random walks, the

visited nodes along the walks become message holders and they will later disseminate

the messages further when encountering with the intended receivers. The delay-optimal

protocol again assumes global view of the network and the knowledge of the future. Every

node in the network knows who the intended receivers are, and sends the messages to
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other nodes only if they lead to the fastest delivery of the message to one of the receivers.

The Tx-optimal (transmission optimal) protocol sends the message to other nodes only

if they lead to the delivery of the message to one of the receivers with minimum number

of transmissions, considering future encounter events. In both optimal protocols, the

intermediate nodes (i.e., non-receivers) keep a copy of the message in the optimal protocols

as they have to store this for future transmission(s).

The performance metrics we consider are delivery ratio, average delay, transmission

overhead, and, in addition, storage overhead. Here the transmission overhead refers to the

total number of transmissions to reach the message holders and the intended receivers.

The storage overhead is the number of eventual message holders that remains in the

network after our scheme is stabilized (recall that some message holders may decide to

cease performing the task if another message holder is found with similar behavioral

pattern in CSI:D). This is the overall amount of storage space invested by the nodes

collectively to deliver the message6 . In the epidemic routing and the optimal protocol, all

nodes that receive the message hold on to the message for future transmissions (there is

no distinction between the message holder and a regular node), hence the transmission

overhead and the storage overhead are the same.

7.6.2.2 Simulation results

In Fig. 7-12 we show the average result of the 1000 simulation cases with the

95% confidence interval. We use the legend CSI:D-thfwd-thnbr for our CSI:D scheme.

Comparing with the epidemic routing, our protocol saves a lot of transmission and storage

overhead. It is possible to use only about 7.2% strategically chosen nodes as the message

holder and reach the intended receivers with little extra delay (about 32% more), when

6 Typically, only about a couple dozens of message holders drop the message in the
simulation cases. Even if we have accounted for the temporarily invested storage, it adds
less than 1% additional storage overhead.
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Figure 7-12. Performance comparison of CSI:D to other protocols. (a) USC. (b)
Dartmouth.

thfwd = 0.3 and thnbr = 0.7. Notice that the storage overhead of the CSI:D scheme is even

lower than the delay-optimal protocol (less than 60%) with the objective of minimizing

the delay. The delay of the CSI:D is not much more than the delay-optimal protocol, at

around 27% to 32% more when thfwd = 0.3 and thnbr = 0.7. On the other hand, if one

desires further reduction in the overhead, setting lower threshold values provide a way

to trade performance for overhead, e.g., setting thfwd = 0.05 and thnbr = 0.5 cuts the

transmission overhead to about the same as the Tx-optimal protocol (less than 7% more).

Performance-wise, the delivery ratio is still more than 96.7% with this less aggressive

parameter setting, and the delay is better than the Tx-optimal protocol by 60% and 150%

for USC and Dartmouth, respectively.
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For the random walks, we have configured the TTL values for them to have similar

overhead with the CSI:D (i.e., compare RW TTL=350 with CSI:D-0.7-0.3 and RW

TTL=150 with CSI:D-0.6-0.1). We notice that although the delivery rate of the random

walk is also pretty good (1.5% to 10% inferior to the corresponding CSI:D), thanks to the

non-zero encounter probability between dissimilar nodes, its delay is much longer than the

corresponding CSI:D (between 50% to 108% more). This is because the random walk does

not leverage the implicit structure of the human network to select the message holders

wisely, as the CSI:D does. The random walk leaves copies within the same neighborhood

of the original sender with higher probability, as similar nodes are more likely to encounter

(i.e., the random walk will not “leave the neighborhood” in a small number of hops).

Hence, there exists significant overlap between the nodes encountered by the selected

message holders, and the other nodes that are dissimilar to these holders have to wait for

a long time before some “random” encounter events occur to receive the message, resulting

in the longer delay.

7.7 Discussions

In this section we discuss about some more finer details of the CSI schemes, regarding

its overhead and privacy preserving feature.

7.7.1 Additional Overhead

In addition to the message transmission and storage, in our proposed CSI schemes,

due to the need for exchanging and maintaining the behavioral profiles, there are some

additional overhead. We discuss them in details in this section.

Overhead for exchanging the behavioral profiles: We identify some additional

components to the actual message transmissions when the encounter events between

mobile nodes are leveraged for message dissemination. Some of the components are

common to any message dissemination schemes, and the others are unique to our CSI

schemes.
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• The common overhead for all the DTN message dissemination schemes considered

include the beacon signals for nodes to discover each other when they encounter,

and the exchange of a list of “messages I have seen” to avoid a given node receiving

duplicated messages from different nodes. This type of overhead is a function of the

encounter patterns itself and is independent of the actual protocol used. We ignore

these common factors in our analysis.

• Exchanging the behavioral profiles for the evaluation of mutual similarity is an

additional component that exists only in our behavior-aware CSI schemes. These

profiles are a handful of vectors associated with its weights. For most of the users,

empirically, five to seven eigen-behavior vectors capture more than 90% of the power

in their association matrices [73]. This is a small constant overhead we pay for each

encounter when one of the nodes has some message to send. If the message size is

much larger than the overhead, which is usually the case as messages are transferred

in a bigger unit (i.e., a “bundle”) in DTNs, it is worthwhile to pay this overhead

to gain the reduction of transmission counts as we see in section 7.6. Furthermore,

with CSI, if there is no message to send, there is no need to exchange the behavioral

profile. Thus, comparing with the protocols that require proactive, persistent

exchanges of control messages when nodes encounter (e.g., ProPHET [74] requires

the exchange of encounter probability vectors), qualitatively, the CSI schemes have

lower overhead, especially when the volume of traffic is low in the network.

• The actual message size has to be augmented with the TP as well. This is a constant

overhead, and it can be reduced if the target vector is “sparse” (e.g., if the TP

considers only the visits to the gym exclusively, there is only one 1 in the vector.

Instead of adding a vector (0, ..., 0, 1, 0, ....) in the header, the vector can be encoded

(i.e., by specifying (gym, 1)) to save space.).

• In the CSI:D mode, the message holders have to exchange the list of behavioral

profiles of known holders. This happens only between a small subset (less than 8%)
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of the nodes, and the exchange is necessary only when there is a difference in the

lists. To further alleviate this, the two nodes can compare their known holder lists

using a hash value, and exchange only the difference.

Overhead for maintaining the behavioral profiles: In order to maintain the

behavioral profile, the nodes have to keep track of its visiting time to various locations.

Note this does not require a node be aware of all possible locations in the environment

– it has to keep track of only the ones it has been to. When two nodes exchange the

behavioral profiles, each entry in the behavioral profile contains only a subset of locations

with annotations for these locations (e.g., Node A specifies (library, gym) = (0.8, 0.2)

while node B specifies (library, computer lab) = (0.4, 0.6)). The nodes will take a union

of the location sets when comparing their similarities (e.g., in the previous example, when

node A sends the behavioral profile to B, B will convert the profiles to BP (A): (library,

gym, computer lab) = (0.8, 0.2, 0) and BP (B): (library, gym, computer lab) = (0.4, 0,

0.6) before comparing). The required storage on each node is minimal, as we show about

three to five days of summarized mobility preference is sufficient to establish a stable

behavioral profile for the user in section 7.3.

In addition, if the beacon signals from locations are not available, it is possible to

use the mutual encounter vectors as the behavioral descriptors for the nodes – nodes who

move similarly should have similar encounter sets. In this sense, we could replace the

representation to be totally independent of the infrastructure.

7.7.2 Privacy Issues

While the behavior-aware message dissemination schemes achieve good performance

with significant overhead reduction, it also raises user privacy concerns. In some cases,

individuals may not want to reveal their own behavior. We discuss privacy-preserving

options with our CSI scheme below.

First we emphasize that the original design of CSI presented in section 7.5 inherently

possesses a privacy-preserving feature: we only use a small subset of user behavior
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(specifically, the mobility preference) in the behavioral profile, and with the singular

value decomposition, we reveal only the summarized trend, not detailed location visiting

events for the user. In addition, the behavioral profiles are exchanged only between nodes,

not stored in any public directory, and it limits only to when a given node is involved in

message dissemination.

We can further reduce the behavioral profile exchanges in the CSI scheme, and hence

help to preserve privacy as follows. For the CSI:T mode, when nodes encounter, instead of

exchanging their behavioral profile, the node with a message to send would first send to

the other node the TP of the message and its similarity score to the TP. The other node

silently calculates its similarity to the TP and decides whether to request for the actual

message. This completely removes the need for behavioral profile exchanges in CSI:T

mode.

For the CSI:D mode, when a message holder looks for potential new holders, instead

of asking other nodes to send the behavioral profile, the message holder sends the list

of known holder’s behavioral profiles to the other node. Since this list contains only the

behavioral profiles of the known holders, not their identities, dissemination of such lists

in the network does not pose a threat to the privacy of the existing message holders.

Furthermore, when there are multiple holders in the list, the other node is not able to tell

which behavioral profile corresponds to the holder to whom it is currently corresponding

to. If the other node decides to become a message holder, its behavioral profile has to be

added to the list of known holders. Instead of immediately sending the behavioral profile

of the new holder to the old holder, which poses an opportunity for the old holder to link

the identity and the behavioral profile of the new holder, the new holder only adds its

behavioral profile to its own known holder list, and delays the dissemination for a later

holder profile list exchange.

Finally, as a last resort, privacy-minded individuals can always opt-out of the service,

and we expect this would not impact the performance severely, as it has been shown that
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the encounter pattern between nodes in mobile networks is rich enough to sustain up to

40% of nodes opting out before observing a performance degradation, in chapter 6.

7.8 Conclusions and Future Work

In this chapter, we propose a paradigm to represent, summarize and manipulate

behavioral profiles and use such profiles as targets for the communication. We have

presented a novel service of message dissemination in infrastructure-less mobile human

networks based on the behavioral profiles of the users. The CSI schemes meet the design

goals outlined in section 7.5.1 with respect to efficiency, flexibility and privacy preserving

properties. The CSI schemes perform closely to the delay-optimal protocols (with 94%

or more success rate, less than 83% of overhead, and the delay is inferior by 40% or less).

In addition, we also observe that human behavior as observed in the large-scale empirical

traces is quite robust and only a few days’ worth of data is adequate to summarize and

leverage for message dissemination, which is quite surprising.

We are working toward an implementation of the CSI schemes based on mobile

devices and consider a real-world evaluation. One key issue is to adapt our algorithm in a

more privacy-preserving fashion which is also resistant to spam (e.g., include a reputation

system). We are also considering different applications of behavioral profiles, including

targeted advertising via our CSI schemes.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

In this dissertation, we have performed realistic investigation of user-behaviors

based on the empirical data sets collected from actual users. The findings at different

levels, ranging from micro-scopic individual user mobility characteristics to macro-scopic

network-wide encounter patterns, show a significant deviation from the scenarios provided

by simplistic synthetic models. Furthermore, we have identified common characteristics

in mobile network user behaviors from multiple quantitatively and qualitatively different

environments – (a) For individual user mobility, we find infrequent online time, skewed

location visiting preferences and repetitive associations. (b) For relationship between user

pairs, we quantify their similarity based on mobility preferences, and observe different

node pairs have very different degree of similarity, and further cluster users based on the

similarity. (c) For the global encounter pattern, we see Small Worlds emerge from the

graph representing nodal encounter events. The first contribution of my dissertation,

hence, is to instantiate the significant deviations from the synthetic scenarios

in realistic mobile network environment, and such a discrepancy calls for more

investigation.

The second contribution of the dissertation is to leverage the above findings and

show-case its impact on various tasks in wireless mobile network design. I have

covered several topics, including (a) Design of a realistic time-variant community mobility

model, (b) Identification of the groups of similar users from the general population, and

(c) Proposal of the profile-cast, a new service paradigm to deliver messages to groups

with a certain property without the nodal IDs, based on the understanding of human

network structure. The success of the above case studies and its improvement over

environment-oblivious design approach highlights the need of understanding the

environments for the design of wireless mobile networks in the future. As the
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mobile devices become ubiquitous and strengthen their couplings with individual users, we

believe such environment-aware approach will become a necessity for network design.

Finally, we propose the TRACE framework as the over-arching guideline of the

dissertation. This is a methodical, step-by-step procedure we follow in each of the case

studies of the dissertation. While the details in each step has to be modified according to

the specific task at hands, we argue that the TRACE framework serves as a generic

guideline for environment-aware network design.

Future work:

There are multiple directions derived from this study.

Fundamental understanding of human behavior: As the mobile network

devices become ubiquitous and tightly coupled with individuals, monitoring users through

collected traces provides a powerful platform to observe and understand fundamental

human behaviors. Although the central focus in the dissertation is about its application in

wireless network design, the characteristics and patterns identified from the traces really

have generic utilizations beyond the scope of the dissertation. We would like to follow up

in this direction in the future.

User privacy preservation: As users spend increasing amount of time and perform

more tasks online, nowadays online lifestyle is really more exposed to the danger of privacy

leak through monitoring. While the trace-based studies provide great promises, it is also

of utmost importance to defend user privacy. Issues related to privacy emerge from all

steps through such a project, including the collection and post-processing of traces (better

anonymization techniques should be devised) and the design of behavior-based message

dissemination protocols (users should be able to decide when and how much to reveal their

behavior profiles, or opt out altogether). The mobile network paradigm provides various

new challenges in user privacy, which is related but out of the scope of this dissertation.

Testbed implementation: The evaluations in this dissertation are based on the

assumption that users would behave the same way as reflected by the collected traces
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while new services are added. In realistic scenarios, however, the users and the services

sometimes interact and modify the user behaviors. Hence, it would be of interest to deploy

some ideas on small handheld devices and deploy them, say, on university campuses.

One prominent example is the profile-cast service. It could be deployed and used for

disseminating announcements on university campuses. However, issues such as cost and

scale of experiment (ideally, one has to deploy users randomly, in the order of hundreds, to

have an unbiased sample) have prevented such a trial. We leave this as a potential future

work.
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APPENDIX: OBTAINING MOBILITY INFORMATION THROUGH SURVEYS

In this appendix we briefly discuss the effort we made to collect mobility information

from students on a university campus. The survey we handed out is shown in section A.1.

We build a mobility model, called the Weighted Waypoint model [21], base on the survey

results. Descriptions about the WWP model can be found in section A.2. Note that this

work is a primitive, bare-bone version of the TVC model we present in chapter 4 – many

important ideas can also be found here. Using this model, we show that there can be high

user concentration at popular spots on campus due to the high probabilities of visiting

the popular locations and the high stay durations at these locations, leading to potential

congestions at the APs in these locations. We propose a congestion alleviation protocol by

routing some traffic to near-by APs with low load through multi-hop routing across the

mobile users.

A.1 Mobility Survey

The survey we handed out includes two parts, for the mobility pattern and the

on-campus network usage of the participants, respectively. We show the survey form in

Fig. A-1.

(a)

(b)

Figure A-1. The survey form. (a). Mobility pattern. (b). Network usage.
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A.2 Weighted Waypoint Mobility Model and Its Impact on Ad Hoc Networks

In this section we describe a generic mobility model named weighted waypoint

(WWP) model. The WWP model captures the influences of mobile node’s preferences

in choosing destinations. It also incorporates location-dependent pause duration and

weights for choosing next destination. We built one example of the WWP model based on

a mobility survey carried out on the campus of University of Southern California (USC).

We further show that preferences in destination selection lead to significant difference in

network performance.

It is note-worthy that although the survey approach is labor intensive and hence

does not scale well, it has some strengths that complement the traces collected from the

existing network infrastructure. In particular, the network traces capture the on-line users

only, not potential users; hence it observes only part of the total population, and the

relationship between on-line and potential users (captured in the survey by questions in

Fig. A-1 (b), the probability of using wireless networks) cannot be directly deduced from

the network traces.

A.2.1 General Description of the Weighted Waypoint Model

For realistic mobility modeling, it is important to address the following issue: The

destination is not randomly chosen for pedestrians on a university campus. Given the

environment setting of a campus, there are usually popular locations where people

tend to visit more often than others. We investigate this issue in this work and propose

a new model called the Weighted Way Point (WWP) model. The major differences

between the WWP model and the popular Random Waypoint (RWP) model are: (a)

mobile nodes (MN) no longer randomly choose their respective destinations. We model

such a behavior by identifying popular locations in the environment and assigning

different “weights” to them according to the probability of choosing those locations as the

destinations of nodal movements. We refer to such identified areas as locations henceforth.

(b) The “weights” of choosing the next destination location depends on both the current
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Figure A-2. The virtual campus.

location and time. We use a time-variant Markov model to capture this location and time

dependent weight assignment. (c) The pause time distribution at each location is different

and is a property of that location. In sum, in the WWP model, the simulation area is no

longer a homogeneous area without any special point of interest.

A.2.2 Establishing an Example WWP Model based on USC Campus

We apply the above general framework to model a small part of the USC campus,

covering several major intersections and buildings. The modeled area is shown in Fig. A-2.

We refer this topology as the “virtual campus” henceforth. In this scenario we identify 7

noncontiguous locations: 3 classrooms (CL), 2 libraries (L), and 2 cafeterias (Ca).

In order to find adequate parameters for our WWP model example for the USC

campus, we conducted a mobility survey targeted at randomly selected students

on campus. During the period between March 22nd 2004 and April 16th 2004, we

collected 268 survey responses on the USC campus. The detailed questions we ask in

the surveys can be found in section A.1. The location granularity of our mobility survey

is per-building. In each survey, the student is asked to fill in his/her current location

(building), the previous building visited, the next building to visit, and the pause duration

at each of these 3 buildings. To set up the WWP model for a campus environment,

we categorize buildings on campus into three different location types: classrooms, li-

braries, and cafeterias. The buildings and area that does not belong to these 3 categories

are collectively referred to as other area. We also model the mobile nodes moving to

off-campus area with certain probabilities. MN chooses its next destination from one
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Figure A-3. Markov model of location transition of mobile nodes.

of these 5 location types according to a Markov model, as shown in Fig. A-3. We set

up the transition probabilities to different location types according to its “weights”

or popularity. From the survey we capture statistics about the following parameters:

(a) The pause time distributions at classrooms, libraries, cafeterias, and other area.

(b) The time-varying transition probability given the current location type and time

section (morning :9AM-1PM or afternoon:1PM-5PM) of the day. (c) In addition to

these mobility-related parameters, we also survey for the wireless network usage –

the probability and duration a respondent uses wireless networks at different types of

locations.

We discuss the main findings of our mobility survey below.

Pause Time Duration The pause time duration is as shown in Fig. A-4. (a) The

distribution of pause time at classroom is like a bell-shaped normal distribution with

the peak around the 60-120 minutes interval, which is the regular class duration (about 90

minutes) at USC. (b) Also we can see that people are more likely to stay in the library for

intervals greater than 240 minutes than in any other locations. For other area on campus,

the duration tends to be exponentially distributed.

Transition Probability The “transition probability matrix” from the survey data is shown

in Table A-1. (a) People tend to go to a cafeteria more in the morning interval (lunchtime)

than in the afternoon. Instead of visiting the other category, most transitions (more than

50%) are between classrooms and libraries. (b) Also most transitions involving off-campus
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Figure A-4. Pause time distribution for locations.

Destination
Classroom Library Cafe Others

Off
Current location/time Campus

Classroom
9-13 0.26 0.31 0.23 0.14 0.06
13-17 0.17 0.30 0.00 0.19 0.34

Library
9-12 0.14 0.14 0.26 0.03 0.43
13-17 0.36 0.23 0.04 0.13 0.24

Cafe
9-13 0.15 0.44 0.00 0.22 0.19
13-17 0.20 0.50 0.00 0.30 0.00

Others
9-13 0.09 0.12 0.25 0.30 0.24
13-17 0.20 0.43 0.09 0.14 0.14

Off 9-13 0.69 0.21 0.05 0.05 0.00
Campus 13-17 0.64 0.24 0.02 0.04 0.06

Table A-1. Transition probability matrix.

location are of the type “offcampus-class-offcampus” or “offcampus-library-offcampus”

which we believe reflects the general student behavior. This implies the fact that

off-campus students come to campus mostly to attend classes or to use libraries.

We also try to obtain the transition probability matrix from the USC wireless network

traces [80], with building-level granularity. There are three initial findings on this: (a)

Starting from a given building, the transition probabilities toward the others are not

equally distributed. This supports our assumption that some locations are more popular

than others in a campus environment. (b) From the trace we observe similar trends to

the survey – Cafeterias are more popular in the morning interval, and there are a lot

transitions between libraries and classrooms. (c) From a given building, the transition

probabilities toward close-by buildings are higher than buildings that are far away. This

may suggest that pedestrian mobility on campus exhibits locality.

Wireless Network flow duration The histogram of flow duration distributions at different

types of locations is shown in Fig. A-5. The flow duration distribution shows a heavier

tail for the library, probably due to people working in the libraries with their laptop

connected to the wireless network. We further compare the findings of this part with
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Figure A-5. Flow duration distribution for locations.

the distributions of user online time in the Dartmouth WLAN traces [13]. From the

Dartmouth trace [81] we find that for most buildings the online time distribution is highly

skewed toward short durations, regardless of the building type. The observation based on

our surveys and traces are similar except for the libraries.

A.2.3 Simulation Results

A.2.3.1 Properties of WWP model

We use simulations to show the characteristics of the WWP model, in comparison

with the RWP model. First, WWP model shows uneven spatial distribution of MNs. The

MNs tend to cluster within the popular locations, as shown in Fig. A-6. However the node

density is quite low for other area and off campus locations. This is a combined effect of

popular locations being chosen as destinations with higher probabilities and pause times

at those locations being long with higher probability. Second, although for a given fixed

transition probability matrix there should be some theoretical steady state of the MN

distribution, the transition probability matrix is time-dependent and changes from time to

time throughout the day, hence the MN distribution in the simulation area never reaches

a steady state in Fig. A-6. This suggests converging to a steady-state distribution is not

necessarily a requirement of realistic mobility models. Third, we use the move-stop ratio

(the total move time divided by the total stationary time) as one metric of a mobility

model and find that the WWP model based on our mobility survey data has a lower

move-stop ratio 0.12 as compare to 0.99 from the RWP model with common parameter
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Figure A-6. Mobile node density versus time.

Model and parameters Move-stop ratio
WWP with both transition matrix 0.12
RWP with pause time=[0,100](s),

0.99
speed=[2,50](m/s) — typical parameter setting

Table A-2. Move-stop ratio.

settings, as shown in Table A-2. This indicates, for a university campus scenario, people

are less mobile than typical scenarios generated by the RWP model.

A.2.3.2 Impact of the WWP model on network performance

We further show the impact of the WWP model on the network performance. We

consider both last-hop wireless networks (802.11 WLANs) and ad hoc networks. Assuming

MN only uses wireless networks with some probability (the probability of using the WLAN

at a given location type is obtained from the survey data) when it stops within classrooms,

libraries, and cafeterias, we find that as the number of MNs increases in the system, the

WWP model has about twice the number of flows as compared to the RWP model. Also

the congestion ratio (the ratio of flows connected to an AP with 7 or more simultaneous

connected flows) of the WWP model is doubled comparing with the congestion ratio of

the RWP model. Another interesting result reveals that even when both models have the

similar number of flows, the WWP model always has a higher congestion ratio than the

RWP model. This is because in the WWP model locations are chosen as MN destinations

with non-uniform weights. If a location is more popular than others, it attracts more MNs
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hence a greater proportion of the flows are initiated at the location. Thus some locations

have seen more flows and these flows are likely to be congested. Where as in the RWP

model the flows are more evenly distributed among the locations hence the congestion

ratio is not as high given the same number of total flows.

For ad hoc networks, we compare the success rate of route discovery using DSR

[103] as the routing protocol under two different MN location relationships, MN pairs in

the same location and MN pairs in different locations. If the WWP model is used, we

show that the route discovery success rates are 88.61% and 28.53% for MNs in the same

location and in different locations, respectively. The reason for the low route discovery

success rate for MNs in different locations is that the number of nodes present between

these locations is very small due to the preference of choosing popular locations as

destinations. Hence few nodes are able to serve as the intermediate nodes to establish a

route between MNs in different locations. Therefore it is likely that the network will be

partitioned into small subsets clustered at the popular locations, and it is difficult to find a

route between these subsets.

A.3 A Congestion Alleviation Mechanism for WLANs

As the MNs cluster at the popular locations, more flows are generated toward local

APs. However, since the distribution of MNs is uneven across locations, the distribution of

flows is also uneven across APs. We show the number of simultaneous flows at three APs

located in the upper-right corner of the virtual campus (Fig. A-2) as a function of time in

Fig. A-7 when there are 200 MNs in the simulation. While the AP at library1 has a large

number of flows, APs at classroom2 and cafeteria2 are quite underutilized. This uneven

distribution of flows suggests the possibility of using ad hoc network techniques to re-route

some flows to the underutilized neighboring APs in order to alleviate local congestion. It

is feasible to improve the QoS of the flows at the congested AP, if we can find a multi-hop

ad hoc route to redirect it to underutilized neighboring APs (NAPs). We propose the

following MN-initiated flow-switching mechanism to achieve this goal.
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Figure A-7. Uneven flow distribution across APs.

Figure A-8. The control flow chart of the proposed flow-switching mechanism.

A.3.1 Flow-Switching Mechanism

The nodes with on-going flows keep monitoring the average end-to-end throughput to

the local access point (LAP). If the average throughput is lower than an application-defined

threshold, the MN notifies the LAP that it would like to be re-routed to a NAP using an

ad hoc multi-hop route, in the hope of getting better average throughput. The following

operations of our proposed mechanism is also summarized in Fig A-8.

The MN notifies the LAP of its request to be switched to other APs by sending a

“re-route request” to the LAP. Upon receiving this message, the LAP requests help from

its neighbors by sending a “help” message to one of them. The choice of the neighbor

is based on the APs geographical knowledge of the AP-deployment topology. The LAP

235



will make a random choice from its close by neighbors. It is possible to make a better

choice by looking at the current loads of NAPs, but we do not incorporate this option

currently. The NAP replies with a “help ACK” message. The local AP then notifies the

two parties (MN and NAP) about the ID of each other. Based on this information, the

neighbor AP and the MN can send out a route request packet (We adopt DSR [103] as

the ad hoc routing protocol.) for each other simultaneously. This is achievable because

the wired network between the access points provides a “tunnel” to exchange information

between the MN and the NAP before they actually establish an ad hoc route to each

other. The intermediate nodes at which the bi-directional route request messages meet will

concatenate the partial routes from both ends and send back route reply messages to the

MN and the NAP. Such “meet in the halfway” behavior is possible because DSR caches

the partial route a route-request packet traversed before reaching the node, therefore an

intermediate node is able to establish the end-to-end path if it is visited by route-request

packets from both ends one after the other. The bi-directional search for the ad hoc route

can potentially reduce the route discovery time.

In our work we assume that MNs use a dedicated wireless channel to communicate

with other MNs, so that the ad hoc network does not interfere with congested local

wireless channel used by the LAP and other MNs. This can be achieved by reserving a

dedicated channel for the ad hoc network communication. All APs and MNs in the system

must agree on using this reserved channel only for the ad hoc network communication.

The channel is not used locally by any AP.

If the LAP assigns a MN to be switched to one of its neighbor, but there is no

available multi-hop route from the MN to the NAP, the switching is considered a failure

and the MN will reestablish its connection to the LAP after a fixed period of time. If the

MN is able to establish a route to the designated NAP, but the route breaks later due

to movement of intermediate nodes, the MN will also reestablish the connection to the

LAP. Such fall-back-to-LAP behavior is necessary to avoid a MN waiting indefinitely for
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an ad hoc route to the designated NAP, which may not appear for a long time. If the

LAP is still congested, the MN may start another switch trial later, possibly to another

NAP. Note that for the duration of the flow to the LAP, the MN stays stationary and

within the coverage of the LAP, so the route to the LAP is always available. The MN

switches the flow to a NAP only for better throughput, not because the route to the LAP

is unavailable.

In order to avoid the situation that all MNs sense the congestion at the LAP at

the same time and try to switch, potentially leaving the LAP underutilized and the

NAPs congested, we add a randomization factor in making switching decisions. When

a MN sense local congestion, it does not always try to switch immediately. Instead, it

sends the re-route request with a switching-initiation probability p. By adjusting the

switching-initiation probability, we can reduce the effect of shifting overload APs at the

cost of slower responses to local congestion.

A.3.2 Simulation Results

We use ns-2 [88] network simulator to simulate our proposed flow switching

mechanism. We vary the total number of MNs in the simulation area from 100 to 200

to create different degree of congestion. The mobility model used by the MNs is the

proposed WWP model introduced in section A.2. In the simulation, we assume that each

AP operates at 2Mb/s bit rate. Each MN flow requires 200Kb/s throughput. To simplify

the simulation, the MNs identify the LAP congestion by counting current number of flows

connected to the LAP. The local AP becomes congested and the throughput for local flows

start to drop if 7 or more simultaneous flows are connected to the LAP (This number was

obtained via detailed simulations. The wireless channel cannot reach 100% utilization

because of contentions in the wireless channel.) We simulate both the scenarios with and

without the flow switching mechanism.

The effect of the flow-switching algorithm is primarily to re-distribute the load of

traffic across the APs. If some AP becomes congested, the MNs sense the congestion by
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Figure A-9. Flows re-distributed across APs, relieving congestion at library1.

observing degradation in the throughput of the on-going flow and try to switch the flow

to one of the NAPs. If some of the MNs succeed in flow switching, the excessive flows at

the LAP will shift to its neighbors, and both the flows that are switched and the flows

that stay at the LAP can enjoy uncongested wireless channel and better throughput. The

consequence of the flow-switching is illustrated by comparing Fig. A-7 to Fig. A-9, where

we illustrate the number of flows at the same 3 APs located in the upper-right corner of

the virtual campus (Fig. A-2), with the flow-switching mechanism. We see that some flows

at library1 are switched to classroom2 and cafeteria2, so the congestion at library1 is not

as bad as in the case without flow-switching shown in Fig. A-7.

To better understand the effect of the flow-switching mechanism on the overall

improvements of the system, we propose to use the metrics “AP congested time ratio”

and “flow quality time ratio”. The former is defined as the time ratio an AP has at least

7 flows connected to it. This is the time ratio that the AP cannot provide adequate QoS

to the connected flows. The latter is defined as the time ratio of a flow connected to

any AP with less than 7 flows connected simultaneously. This is the proportion of time

the flow receives adequate throughput. Note that between the time a MN decides to

switch a flow to NAP until the time it finds a route to the designated NAP, the flow is

not connected to any AP hence this time period will not be included the quality time
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Figure A-10. All APs: Average AP congested time ratio.

ratio. The results shown below are the averages of 6 independent simulation runs, using a

different, randomly generated mobility scenario for each run.

Fig. A-10 shows the average of AP congested time ratio of all APs. Fig. A-11 shows

the average of AP congested time ratio of the most congested AP in each simulation run.

We can see that due to the uneven MN distribution resulting from the WWP model, the

overall congested time ratio is low for the whole system. However, the most congested

AP is quite overloaded. This is exactly the situation when switching some flows to the

NAPs should be helpful. From the figures we see that the congested time ratio of the

most congested AP is reduced by more than 50% in all except for the 100 MN case. This

implies flow-switching helps to reduce the local congestion of wireless LANs more than half

of the time when congestion exists. The flow quality time ratio is the metric to observe for

the improvement we get by employing flow-switching from user’s perspective. In Fig. A-12

we show the flow-switching mechanism improves the quality time ratio for all cases.

We observe in the case of smaller MN numbers (100 or 125 MNs) the effect of

flow-switching is not so pronounced. This is because when the network is sparse, there

is less chance to find a route to the designated NAP for the switching flows. Hence the

effectiveness of flow-switching is limited. The success rate for a switching flow to find a

route to the chosen NAP is about 0.27 when there are 100 MNs, and the success rate

increases to 0.43 when there are 200 MNs.
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Figure A-11. The most congested AP: Average AP congested time ratio.

Figure A-12. Average quality time ratio of all flows.
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