
A Fully Kalman-Trained Radial Basis Function Networkfor Nonlinear Speech ModelingMartin BirgmeierInstitut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universität Wien,Guÿhausstraÿe 25/E389, A-1040 Vienna, AustriaAbstractThis paper presents a radial basis function neural network which is trained to learn the dynamics ofnonlinear autonomous systems. Contrary to conventional approaches, not only the output layer weights,but also the other parameters of the RBF network are trained using the extended Kalman �lter algorithm.The advantages over conventional methods are that centers and variances of the hidden layer nodes neednot be calculated before the optimum output weight matrix is determined, and that on-line training ispossible. Due to a suitable factorization of the Riccati di�erence equation as contained in the Kalman�lter, the algorithm can be implemented local to the nodes in the network, and a matrix inversion replacedby simple divisions, thereby signi�cantly reducing the computational complexity. Finally, the networkis applied to the task of learning the dynamics of speech signals obtained from sustained vowels, andsubsequently used to re-synthesize these vowels autonomously.1. Introduction
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In the last few years, there has been increased interest in the application of neural networks as nonlinearpredictors, particularly for the prediction of the time series produced by recursive nonlinear mappings,cf. e.g. Lapedes and Farber (1987), Lapedes and Farber (1988), Ris (1994), and Haykin and Li (1995),who use multilayer perceptrons and radial basis function networks for the prediction of various typesof chaotic time series. Kadirkamanathan and Niranjan (1992) and Kadirkamanathan et al. (1992) usethe principle of F-projection to arrive at growing Gaussian radial basis function (RBF) networks, wherethe adaptation step is improved by using the extended Kalman �lter in place of steepest descent (LMS)algorithm to estimate either the output weights or additionally the RBF centers.In this paper, a radial basis function network is presented which has all of its parameters except thenumber of hidden nodes (i.e. centers, spreads, and output weights) trained via the extended Kalman �lteralgorithm. The advantages over conventional methods, which separate the learning of the hidden layerparameters from that of the output layer, are that centers and variances of the hidden layer nodes neednot be calculated before the optimum output weight matrix is determined, and that on-line training ispossible.In order to test the performance of the training algorithm, and also to investigate the possible appli-cation of such networks for speech coding purposes, the network is then trained as a nonlinear predictor,where higher prediction gain than when using conventional linear methods like LPC analysis is expected(Wu et al., 1992).By feeding predicted samples back into the input delay line which is used in the reconstruction of theattractor during training, the network functions as an autonomous, nonlinear, bounded system, whoseattractor re-synthesizes the attractor associated with the training sequence (Casdagli, 1989; Vesin, 1993).For speech signals, Tishby (1990) reports that a neural network trained as a short-term predictor of voicedspeech can generate waveforms similar to the original when let run in a closed loop in an autonomousfashion. Such a system may be used for speech compression and modi�cation; for this purpose, Kubinand Kleijn (1994) use a nonparametric method for constructing a predictor codebook directly from themost recent speech segment. This clearly has the disadvantage of requiring relatively large storage andan exhaustive search procedure. Therefore it is desirable to construct a parameterized system whichreproduces some desired sound as an attractor in state space.Thus, the aim of the paper is twofold: First, derive the Kalman-based network training algorithm;second, evaluate the prediction capability of trained networks and use them to synthesize voiced phonemes.2. The Extended Kalman Filter Learning Algorithm for Radial Basis FunctionNetworksIn this section, the extended Kalman �lter learning algorithm for the parameters of an RBF network,centers, covariance matrices, and output weights, is derived.The following de�nitions are used (vector quantities are denoted by boldface letters):



D . . . . . . . . . . . . . input dimension (number of inputnodes)K . . . . . . . . . . . . hidden (RBF) layer sizen . . . . . . . . . . . . . discrete time indexx(n) . . . . . . . . . . input pattern at time nd(n) . . . . . . . . . . desired response (training value) attime ny(n) . . . . . . . . . . actual response at time nwk(n) . . . . . . . . output weight from hidden node ktk(n) . . . . . . . . . center of hidden node k
�k(n) . . . . . . . . covariance matrix of hidden node ksk(n) . . . . . . . . . output of hidden node kRmin = �I . . . measurement noise covariance ma-trix (assumed diagonal)C(n) . . . . . . . . . measurement matrix at time nG(n) . . . . . . . . . Kalman gain matrix at time nK(n) . . . . . . . . . (posterior) error covariance matrixat time n()T . . . . . . . . . . . matrix transpositionI . . . . . . . . . . . . . identity matrix of compatible sizeThe extended Kalman algorithm is used to estimate a state vector from measurements (cf. Andersonand Moore (1979)). In the most general case, the state vector consists of all the parameters of the RBFnetwork which are to be learnt. However, this amounts to a state vector length of l = DK +D2K +K,which � even for networks of only moderate size � would yield a prohibitively large state error covariancematrix. Therefore, the algorithm is decomposed in a way that it can be computed in smaller parts. Theapproach here follows the one described in Birgmeier (1994), which itself is similar to the MEKA methodpresented by Shah et al. (1992), or the algorithm described by Iiguni et al. (1992), all of which apply tomultilayer feedforward neural networks.Assuming that the optimum set of parameters a(n) is stationary, the Kalman algorithm can be for-mulated as follows (cf. Haykin (1986)):a(n) = a(n� 1) +G(n) [d(n)� y(n)] (1a)G(n) =K(n� 1)CT (n) hC(n)K(n� 1)CT (n) +Rmini�1 (1b)K(n) =K(n� 1)�G(n)C(n)K(n� 1) (1c)Its extension involves the computation of the Jacobian C(n), which is obtained as the linearization aboutthe current value of the nonlinear function y(w(n); t1(n) : : : tK(n);��11 (n) : : :��1K (n)) which de�nes therelationship between the state and output vectors at time n.For a radial basis function network with one output only, and using Gaussian kernel functions, thefollowing equation describes this relationship (cf. Haykin (1994)):y(n) = y(w(n); t1(n) : : : tK(n);��11 (n) : : :��1K (n)) ==Xk wk exp��12 (x(n)� tk(n))T ��1k (n) (x(n)� tk(n))� (2)The computation of the Jacobian C(n) requires the evaluation of the partial derivatives of y vs. theparameters of the RBF network:@y@wk = sk(x) (3a)@y@tk = wk @@tk sk(x) = wksk(x)��1k (x� tk) (3b)@y@��1k = wk @@��1k sk(x) = �12wksk(x)(x� tk)(x� tk)T (3c)The derivatives are evaluated at the current values of their respective arguments. This results in ameasurement matrix C(n) of size (DK +D2K +K)� 1.In order to make the problem computationally tractable, a localized version of the algorithm is de-veloped. Puskorius and Feldkamp (1991) and Iiguni et al. (1992) have shown that when a feedforwardnetwork's weights are ordered by node, the matrix inversion of the Riccati di�erence equation can beavoided. This result can be generalized to any set of parameters where the Jacobian of the network'soutputs with respect to its parameters can be factored to contain a common partial derivative term ofthe outputs versus a scalar variable. The state vector a is split into K + 1 componentsa0 = w (4a)ak = �tk ��1k � 1 � k � K: (4b)Additionally the covariance matrices �k are constrained to be equal to either �2kI or diag(�2k;1 : : : �2k;D),such that the size of the ak is only D+1 or 2D, respectively, and the positiveness of the covariance matrixis guaranteed. The Kalman �lter algorithm is then applied separately to each of the sub-problems de�ned



for ne(n) d(n)� y(n)for k from 1 to KAt hidden node k:�k(n) wk(n)sk(n)�k(n) ���2k;1:::D�x1:::D(n)� tk;1:::D(n)�; ���1k;1:::D�x1:::D(n)� tk;1:::D(n)�2� k(n) Kk(n� 1)�k(n)�k(n) �Tk (n) k(n)�k(n) �2kak(n) ak(n� 1) + k(n)�Tk (n) 1�+ �k(n)�k(n)e(n)Kk(n) Kk(n� 1)� �k(n)�+ �k(n)�k(n) k(n) Tk (n)endforAt output node:�(n) K0(n� 1)s(n)G(n) �(n) 1sT (n)�(n) + �wT (n) wT (n� 1) +G(n)e(n)K0(n) K0(n� 1)�G(n)�T (n)endfor Table 1. Pseudo-Code for Kalman Training of RBF Networks
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Figure 1. Comparison of prediction results for three training algorithms: Solid line � linearleast squares prediction; �� RBF network using standard training algorithm; �� RBF networkusing extended Kalman �lter training algorithm. About 560 German vowels are displayed alongthe x-axis, sorted according to their LLS prediction gain. Dash-dotted line: Smoothed predictiongain from RBF network using standard algorithm; dashed line: Smoothed prediction gain fromRBF network using extended Kalman �lter algorithm. (Left) 10 centers, (Right) 50 centers. Thehigh variability in prediction gain results from the nonstationarity of the natural sounds.by equation (4), and the scalar variable mentioned above can then be identi�ed as either an output of ahidden node or the global output. This yields the pseudo-code shown in table 11. Note that the algorithmfor updating a0 = w is just the normal Kalman (RLS) �lter due to the fact that the output node is alinear combiner.3. Learning the Dynamics of Nonlinear Autonomous SystemsIn order to test the performance of the new learning method, the network is trained as a predictor. Thetraining database consists of around 600 time series of sustained utterances of German vowels. The taskis to predict sample t+ 3 from samples t; t� 3 : : : t� 21 at 8 kHz sampling rate. Figure 1 shows resultsfor the prediction performance using three methods: Linear least squares prediction to obtain a baselinereference; standard RBF training using LBG clustering (Gersho and Gray, 1992) for determination ofhidden node centers and variances plus least squares solution for the output weights; and the new training1The notation is somewhat similar to Iiguni et al. (1992), so that a comparison of the algorithms is possible.
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Figure 2. Reconstructed waveforms and attractors for German vowel �a�: Top & left � train-ing data, bottom & right � synthesized. The delay taps used in the reconstruction, at 8 kHz are� = [1 : : : 9]. The �rst three delay taps are used in the display. The visible di�erence stems fromthe di�erent degrees of periodicity of the two systems.
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Figure 3. (Left) Smoothed spectra of original and synthesized German vowel �a�: Upper �training data, lower � synthesized. The synthesized version has the same formants, but adi�erent pitch. (Right) Smoothed spectra of linear and nonlinear prediction errors.algorithm. It can be seen that the new algorithm produces results superior to either of the other twoalgorithms for low numbers of hidden nodes, and results comparable to the standard algorithm when thereare many hidden nodes. In both cases, the Kalman-based algorithm is faster than the standard RBFtraining algorithm; the reason is that the clustering algorithm repeatedly needs to compute the activationsof the hidden nodes, and that the least-squares solution of the output weights is more complex than thecorresponding Kalman �lter solution.By Taken's theorem, an attractor may be reconstructed from a time-series by combining a su�cientnumber d of delayed samples of the observations into a d-dimensional embedding of the dynamics of thenonlinear system (Parker and Chua, 1987; Farmer and Sidorowich, 1988). Then, by feeding predictedvalues back into the input delay line, the resulting nonlinear autonomous dynamical system is expectedto re-synthesize the original attractor.Fig. 2 shows the original and the re-synthesized waveforms and attractors for an utterance of theGerman vowel �a�. The data is sampled at a frequency of 8 kHz and scaled to the range [�1:0 : : :1:0].The input dimension is d = 9, with the delay parameters �i = i=8 kHz (equivalent to 125 �s). 20 centersare initialized in the hypercube [�0:2 : : :0:2]9, with initial standard deviation set to 10:0. The trainingset consists of 2000 samples. For synthesis, the delay line is initialized with zeros (i.e. the origin belongsto the basin of attraction for this attractor). Note the very fast convergence of the synthesized vowel toits attractor, as seen in the lower left plot of �g. 2, where the initial zero sequence is visible.The left side of �g. 3 shows a comparison of the (smoothed) spectra of the original and re-synthesizedvowels. Note the appearance of subharmonics in the synthesized versions, indicating that the system(nearly) operates in the chaotic regime. The synthesized vowel has maxima in its spectrum correspondingto the formants of an �a�, which is supported by the high perceptual quality when listening to it. However,the pitch period is somewhat larger in the synthesized version; this may be explained by the fact thatthe oscillator adds some additional �loops� to the attractor.When used as a predictor, the network achieves about the same prediction gain as a global linear leastsquares approximation over a test sequence taken from the same utterance. (�14:5 dB for the nonlinearcase vs. �14:6 dB for the linear). However, as also noted by Tishby (1990), the spectrum of the residualis �whiter� in the nonlinear case, as can be seen in the right part of �g. 3. In terms of the �atness measure
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Figure 4. German vowel �i�: (Left) Smoothed spectra: Top � training data, bottom � syn-thesized. (Middle) Original (dashes) and synthesized (initialized from 9 samples of the original,circles) sequences, �rst 500 samples. (Right) Original and synthesized, samples 3000�3500.as de�ned in Markel and Gray (1976), linear prediction is inferior with a value of 6:8 � 10�4 compared tononlinear prediction with 3:3 � 10�3 (the original signal yields a value of 1:6 � 10�7).An interesting case is the synthesis of the German vowel �i�. The same sampling frequency, decimationfactor, input dimension, initial centers, and number of training samples as before are used. On the otherhand, the delay taps used are �i = (3i� 2)=8 kHz, which is chosen to correspond to the low �rst formantfrequency of this vowel. From the left part of �g. 4, one can see that the pitch and low-frequency formantof this vowel give a perfect match between original and synthesized version. However, the second andthird formants are missing. This can be explained by the network not capturing the �ne structure of theattractor which is caused by these formants, since they have an energy more than 30 dB below that ofthe �rst formant.On the other hand, looking at the middle and right parts of �g. 4, one can see that the original andfree-running synthesized versions of the vowel exhibit zero phase di�erence for many periods of the signal2.In fact, only when the amplitude of the original changes (starting at about sample 3000), the speaker atthe same time lowers his pitch frequency, which then results in a divergence between the two waveforms.This means that the long-term prediction error is small over many iterations of the system, which impliesthat the highest Lyapunov exponent of the underlying system must be very close to zero. This in turnindicates that the system is not chaotic, but rather exhibiting a stable limit cycle. The conclusion is thatin this case, the classical model of voiced speech, namely spectrally shaping a pulse train, together withsuitable generation of amplitude and pitch frequency, is adequate3. The nonlinear system only o�ers theadvantage of producing a stable limit cycle of the desired shape, with a large basin of attraction, in anautonomous fashion.One of the advantages of using the Kalman algorithm to determine the parameters of an RBF network isthe smaller number of free parameters. Nonetheless, their initial settings still in�uence the approximationcapability of the network, and best results are obtained when using the following values:� RBF centers closely spaced around the origin, relative to the diameter of the attractor.� RBF variances large relative to the diameter of the attractor.� � (corresponding to estimated measurement noise) about the diameter of the attractor.� Initial state error covariances large (diagonal).A network using these values works very well for time-series prediction, yielding results comparable tothose found in the literature, even for small embedding dimension and a small number of hidden nodes.When running as an oscillator, hand-tuning of the initial values of the parameters is necessary to achieveoptimal results. 4. ConclusionsThis paper has shown that it is possible to train all the parameters of a radial basis function networkusing an e�cient form of the extended Kalman �lter algorithm. This obviates the need for determiningcenters and variances of the hidden layer nodes a priori, opening the possibility of training the networkon-line.The learning algorithm has been applied to the task of predicting the dynamics of nonlinear systemsand shown to yield results better than or comparable to those found in the literature. The trained2In this case, in order to achieve initial synchronization, the delay line is initialized on the original signal.3Fricatives are best modeled as spectrally shaped random noise anyhow, cf. Kubin et al. (1993).
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