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Abstract —Consolidation of workloads has emerged as a key mechanisnarmpeh the rapidly
growing energy expenditure within enterprise-scale dataars. To gainfully utilize consolidation-based
techniques, we must be able to characterize the power cqsumof groups of co-located applications.
Such characterization is crucial for effective predicteamd enforcement of appropriate limits on power
consumption—power budgets or capswithin the data center. Power caps need to be enforced aipheul
spatial granularities within a data center: from server eaxk to the room-level. Furthermore, power
budgets must be also enforced at multiple temporal gratiekrfrom durations of less than a second
(dictated by fuses for reliability concerns) to longer pds of several minutes to hours (relevant to energy
optimization considerations.) We capture these requirgsnim the form of two kinds of power budgets
at each spatial level: (i) aaverage budgeto capture an upper bound on long-term energy consumption
within that level and (ii) asustained budgeto capture any restrictions on sustained draw of current
above a certain threshold. Using a simple measuremenstnidure, we deriveower profiles—statistical
descriptions of the power consumption of applications. Bawse insights gained from detailed profiling
of several applications—both individual and consolidatede develop models for predicting average and
sustained power consumption of consolidated applicatdfessconduct an experimental evaluation of our
techniques on a Xen-based server that consolidates ajpmtisalrawn from a diverse pool. For a variety
of consolidation scenarios, we are able to predict averagespconsumptions within 5% error-margin.
Our sustained power prediction techniques allow us to ptetlhse yet safe upper bounds on the sustained
power consumption of consolidated applications.

I. INTRODUCTION
A. Motivation

To accommodate modern resource-intensive high-perfarenapplications, large-scale computing and
storage platforms have grown at a rapid pace in a variety afailos ranging from research labs and
academic groups to industry. The fast-growing power comgiam of these platforms is a major concern
due to its implications on the cost and efficiency of thesdaf@ias as well as the well-being of our
environment. Trends from such platforms suggest that teepaonsumption in high-performance com-
puting platforms (or data centers) accounts for 1.2% of therall electricity consumption in the U.S.
More alarmingly, if current practices for the design andragien of these platforms continue, their power
consumption is projected to keep growing at 18% every ydas& observations have spurred great interest
among providers of high-end computing platforms to expleags to dampen the growth rate of servers
by doing betterconsolidation For example, as workload conditions change, it may be @aalsirto pack
hosted applications on to different subsets of racks/semuthin the data center and turn off machines
that are not needed [6], [7], [25]. Another major concerndoch large-scale computing platforms is the
increase in power density of the servers which are reaclmedimits of the power delivery and cooling
infrastructure of these platforms, thereby affecting thkability concerns of these platforms. This has
been addressed in literature by reducing the peak poweungtsn both at the server level [14] as well
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Fig. 1. Measured power consumption behaves differently when GRlWading applications are co-located from when CPU-saturating and
non-CPU-saturating applications are co-located. The graph providegresentative (median) sample for every 2 second interval. TPC-W
is running 60 simultaneous sessions.

as at the cluster level [27]. Consolidation further increas® power density of the servers, aggravating
the reliability concerns of the facility.

Literature has addressed the energy and reliability r@latercerns in a data center using the notion
of power budgets [14], [27], [26]. Power budget is typicadligforced at different hierarchies of a data
center and it specifies a cap on the power consumption ofcghigins consolidated under that hierarchy.
Previous work looked at mechanisms to enforce power budgetis at the server level [21] and at
the cluster level [40]. Typically power budget violationee ghandled either by throttling [40], [21] or
by migrating [22], [36] the applications. These power budgare ignorant of the power requirement
of the applications that are consolidated and thereforddcmsult either in poor performance or less
efficient enforcement. Solutions for consolidation in eptise-scale systems have benefited from detailed
studies of the workloads and resource needs (like CPU) oicgigins [39]. Insights gained from these
studies have been utilized to build models for predicting plerformance and resource usage behavior
of consolidated applicationd. Similar research on the power consumption of consolidapgalications,
however, has received much less attention. Such reseandld Wwe useful to an energy-friendly operation
and management of consolidated platforms in a variety ofsw&yrst, it will facilitate the prediction
and control of energy consumption in consolidated enviremis1 Second, in combination with existing
research on workload characterization and applicationetimgl it will facilitate meaningful trade-offs
between energy costs and application performance. Thivdl|lienable data centers to operate in regimes
that are profitable yet safe from power surges likely to baiged by aggressive consolidation. Finally,
ongoing efforts to develop power benchmarks would also fiteinem such characterization [31].

Consolidation may occur at multiple spatial granularitr@smging from co-location of multiple applica-
tions on a single server to diversion of workloads to a subktite server racks or rooms. Correspondingly,
characterization of power consumption is desirable at eddmese levels. Two aspects of power con-
sumption are of particular significance at all these leveist, the long-termaverage power consumption
(several minutes to hours) within a subsystem dictates nieegg costs involved in operating it. Second,
the possibility ofsustained power consumpti@bove thresholds associated with fuses/circuit-breakers
(typically a few seconds or even sub-second durationsicalliy affects the safe operation of devices
protected by these elements. Thermal effects can also ttaéseeed for both these budgets. At coarse
spatial granularity (such as a room), average power may ttebd curtailed to avoid excess heating. For
smaller components (such as chips), power consumption bauspntrolled at finer time scales. In this

1This research is commonly referred to as application modeling [38].



paper, we characterize the power requirement of individyglications and use these characteristics to
predict average and sustained power requirement of calagetl applications.

Characterizing the properties of power consumption withigivden consolidation hierarchy results
in problems that are significantly different from those andered in characterizing performance and
resource usage. As a motivating example, consider the atsopaof power consumption for two different
consolidation scenarios, each packing a pair of applination the same server, shown in Figure 1. In
each case, we compare the power consumptions of indiviqualications with that when they were
co-located. Power consumption was sampled once every 2, rasdove report the median sample over
successive 2 second intervals as representative of ther mangples obtained during that interval. When
two CPU-saturating applications (Art and Mesa, two applica from the SPEC CPU2000 suite [29])
are co-located (Figure 1(a)), they consume what appears tanbaverage of their individual power
consumptions. When a CPU-saturating application (Bzip2, fimm the SPEC CPU2000 suite) is co-
located with a non-CPU-saturating application (TPC-W [3#, EECommerce benchmark that spends
significant time blocked on 1/O), the power consumed app&amxceed their individual consumptions
(Figure 1(b)). Roughly speaking, this can be explained dsvisl In Figure 1(a), the two applications,
both whose power consumption was attributable almostentio the CPU, share this resource. On the
other hand, in Figure 1(b), the aggregate power consumpggpends on the resource usage characteristics
of the individual applications including the variance in CRWd 1/0 usage. While traditional resource
usage aware consolidation is likely to favor scenario (lgra@), from power consumption perspective
(a) may be considered better than (b).

More generally, both average and sustained power consomiptia consolidated environment depend in
non-trivial ways on the power consumption as well as resusage patterns of the individual applications.
Prediction of power consumption requires us to accuratiytify these dependencies. Furthermore, the
success of such prediction also depends on the methodok®gl/to measure and characterize individual
consumption. The design of measurement techniques antfiwadnodels that can address these concerns
is the focus of this paper.

B. Research Contributions

Using a simple combination of hardware and software tooksdesign an offline technique to measure
the power usage of individual applications. Thessver profilesare converted into convenient statistical
descriptions of power usage. Similar profiles are obtairmeddsource usage of the applications. These
profiles are used to build predictive models for average aisthéned power consumption of consolidated
applications. Two key insights behind these models aradétifying crucial dependencies between the
power consumption of individual applications and theirorgse usage patterns and (ii) identifying how
key power-consuming resources would be multiplexed amogg/en set of consolidated applications.
Our profiling and prediction techniques are general enoadbetuseful for a wide variety of applications
and consolidation scenarios.

We conduct an empirical evaluation of our techniques usipgototype server running the Xen virtual
machine monitor [2]. This server is capable of consolidatmultiple applications, each encapsulated
within its own virtual machine. Our evaluation employs a &ihriety of applications with diverse power
and resource usage behavior to demonstrate the utility andrgl applicability of our models. Our offline
profiling yields crucial insights into the power usage of lagggions and its relationship with their resource
usage. Our predictive models, built upon these insightseappromising. For a variety of consolidation
scenarios, we are able to predict average power consurspiidh in a 5% error-margin. Our sustained
power prediction techniques provide close yet safe uppand® on the sustained power consumption of
consolidated applications. Finally, we demonstrate hogsehtechniques could be employed to improve
system utilization without compromising the safety of ifsecation.



C. Road-map

The rest of this paper is organized as follows. In Sectiowd,provide necessary background on power
consumption in enterprise-scale environments and fommdhe notions of average and sustained power
consumption. In Section lll, we develop an offline measumntechnique for deriving power profiles of
applications. In Sections IV and V, we develop and evaluatbriiques for predicting average and sustained
power consumption, respectively. In Section VI, we evaduidie utility of our prediction techniques in
packing applications in Xen-based consolidated settidgsdiscuss related work in Section VII. Finally,
we present concluding remarks in Section VIII.

[l. BACKGROUND
A. Power Consumption in Data Centers

In a typical data center, a primary switch board distribygeser among several uninterrupted power
supply substations (UPS; 1,000 KW) that, in turn, supply pawecollections of power distribution units
(PDUs; 200 KW.) A PDU is associated with a collection of semaeks (up to 50.) Each rack has several
chassis that host the individual servers. Power supplydcbel either at the server-level (as in rack-
mounted systems) or at the chassis-level (as in blade serviéiroughout the hierarchy of data center,
fuses/circuit-breakers are used to ensure that everyyestgrotected from surges in current drawn.

We focus on characterizing power consumption at theserdiitehierarchies of a data-center: (a) at the
lowest level, multiple applications are consolidated orhgsical server, (b) at the higher levels, multiple
servers are consolidated within a Power Delivery Unit (PDIHe power supplied to a server is utilized
by its various components, including the CPU, memory bankse$, hard disks, network interface cards,
etc. The CPU is by far the largest consumer of power within &esel6]. We view server power as
composed ofidle power, active/busypower and I/O power. Idle power is the power consumed by the
server when none of the applications are running on it (jushing operating system related processes).
We refer to this agdle CPU power’CPU power’ is the power consumed by the server when applications
are running on it. It is referred to ative CPU poweln this paper. Note the difference between what
we call idle power and static/leakage power of the CPUs. Wetlvaldynamic power contributed by the
I/0 devices ( disks, NICs etc.,) & power Note that the static power of the 1/O devices when they are
not doing any activities is included in thdle power. Modern CPUs are capable of running in multiple
power modes/states includii@ynamic Voltage and Frequency Scaling(DVE&tes andClock throttling
states. DVFS states are determined by the different vatagd frequencies the CPUs can employ. Clock
throttling states are typically represented as percestagich determine the effective duty cycle of
the processor. 1/0 devices including disks and NICs havelairpower states. Since I/O power in our
environment is significantly smaller than CPU power, we do Im&ak it down among individual 1/0
devices.

B. Average and Sustained Power Budgets

Two aspects of the power consumption within each level of gpatial hierarchy described above
play an important role in the safe and profitable operationthef data center. At time-scales over
which consolidation decisions are made (which, in turn, rbayrelated to the time-scales at which
workload characteristics change ), it may be desirablemid he energy consumption within the level to
values that yield acceptable trade-offs between appdicgterformance/revenue and energy costs. Such
decision-making, likely to be done once every several neisudr hours (we will simply refer to time-
scales of this order a®ng-tern), might involve solving complex optimization problems talénce the
performance/revenue yielded by operating a subset of a&urees against the costs expended towards
maintenance, operational power, and coolidAgRegardless of the nuances of this decision-making, it

2Examples of such formulations may be found in several papers ouns management in data centers. Ideas for incorporating power
costs into such dynamic optimization, however, are less common, anttselge still evolving .
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Fig. 2. lllustration of average and sustained power consumptions.

necessitates mechanisms to enforce limits on the long-¢engy expenditure within various levels. We
refer to such a limit for a level as thaverage power budgedpportioned to it by the consolidation
technique.

A second kind of budget, called thgustained power budgetesults from the reliability needs of
various hardware components in the data center defined kg fusr circuit breakers associated with that
component. In literature, the phrapeak powetis sometimes used for this aspect of power usage [14].
As we mentioned earlier, sustained power budgets are detimeda period of few secs or msecs. A
sustained power budget is represented by a tuglé.), which specifies a bound on the maximum power
S that could be sustained over any interval of lengthirhis tuple could be obtained from the time-current
characteristics curve of a fuse. Typically this curve is posed of multiple such tuples but for simplicity,
in this paper, we just refer to a single tuple. Figure 2 shoviny@othetical power series to illustrate the
difference between average and sustained power. Averagerps obtained by taking the average of the
power samples in the entire time interval (energy/time)st&ined power for any interval of length
corresponds to theninimumpower consumed during that interval. This is because swestgdower is the
maximum power that was sustained throughout that intervathvis nothing but the minimum power of
that interval.

[11. POWERPROFILES. MEASUREMENT AND CHARACTERIZATION

In this section, we develop techniques to measure and dkawecthe power consumption of individ-
ual applications. Borrowing techniques from existing reseawe also derive characterizations of their
resource usage. Finally, we measure and characterize ther @nd resource usage consumption when
these applications are consolidated. Taken togetheke thessurements set the background for techniques
we develop in subsequent sections for predicting usefybgtaes of power consumption in consolidated
settings.

A. Empirical Derivation of Power and Resource Usage Profiles

Our approach for characterizing the power and resourceeusb@n application employs an offline
profiling technique®, similar to those existing in current research [39]. Thefipng technique involves

SFuse is a metal wire that melts when heated by a prescribed currentngpbe underlying circuit and thereby protecting the circuit
from over-current situation. Typically a fuse is defined by its time-arobaracteristic curve which shows the time required to melt the fuse
for any given level of overload current. Circuit breaker is similar teefin its function except that it could be reused after a over-current
situation.

40ffline profiling is not unreasonable to assume, in fact, data-centdicappns do start in isolation. In addition, the usage patterns are
repetitive over "some” time granularity. Consequently, profiling can tweedduring the early stages of application deployment
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running the application on an isolated server. By isolategl,mean that the server runs only the system
services necessary for executing the application and ner @pplications are run on the server during
the profiling process—such isolation is necessary to mzemnterference from unrelated tasks when
determining the application’s power and resource usagdée application is then subjected to a realistic
workload and a combination of hardware and software maniganfrastructure is used to track its power
and resource usage. It is important to emphasize that thkloeor used during profiling should be both
realistic and representative of real-world workloads. Whéchniques for generating such workloads are
orthogonal to our current research, we note that a numbeiffefeht well-regarded workload-generation
techniques exist, ranging from trace replay of actual waalls to running the application in a “live”
setting, and from the use of synthetic workload generatrthé use of well-known benchmarks. Any
such technique suffices for our purpose as long as it reallstiemulates real-world conditions.

Profiling power consumption: We connect a multi-meter to the server used for our offlindilprg and
use it to measure the power consumption of the server oneg gyéme units. We refer to the resulting
time-series of (instantaneous) power consumption sangdethepower profileof the application. Note
that due to our ability to only measure power usage at theugmaty of the entire server (as opposed
to measuring the power usage of constituent componentsa€iPU, disk, etc.), our measurements are
only an approximation (in fact, an upper bound) of the poveerstimed by the application. By minimizing
any other interfering activities during the offline profdinwe attempt to keep this gap small. We find it
useful to convert these power profiles igower usage distributiond_et wi{’ be a random variable that
represents the average power consumption of the applicatiover durations ofl, time units, where
I, = k-t,, (k is a positive integers.) Note thazlﬁf represents the average consumption @srconsecutive
interval of sizel,. It is estimated by shifting a time window of siZg over the power profile, and then
constructing a distribution from these values. Figure (silates the process of converting a power profile
into a power usage distribution. Notice that our technique$ each power sample in a power profile to
be the power consumptiaihroughoutthe ¢, time units preceding it. Clearly, the inaccuracies due ts thi
assumption grow with,. As part of our profiling, we also profile the idle power of thenger running
the applications (approx. 156W for our server).

Profiling resource usage:We use measurement techniques similar to those existingsearch [39]
to record resource scheduling events of interest. By reegr@PU scheduling/de-scheduling instants for
the virtual machine running our application, we derive itsUClsage profile, an ON-OFF time series of
its CPU usage. Similarly, packet transmission/receptioresi and lengths yield its network bandwidth

®In practice, a distributed application with multiple components may require rfeukigrvers to meet its resource needs. We only consider
applications whose resource needs can be met by a single servaeddnique easily extends to applications requiring multiple servers by
simply running the application on the appropriate number of servers @mdlicting measurements on each of them.



usage profile. We also record time series of memory consomgnd disk 1/0O requests made by the
application. Similar to power measurements, we find it usefuconstruct resource usage distributions
from these profiles. Finally, we also record applicatioresfic performance metrics (e.g., response time,
throughput.)

B. Discussion on Our Profiling Technique

The efficacy of our prediction technique depends crucialiytiee credibility as well as the feasibility
of our offline profiling.

¢ On the feasibility of collecting profileIhe workload used during profiling should be both realiaticl
representative of real-world workloads. There are a nuroberays to ensure this, implying that offline
profiling is not unreasonable to assume. While techniquegdaerating such workloads are orthogonal
to our current research, we note that a number of differefitregarded workload-generation techniques
exist, ranging from the use of synthetic workload genegatorthe use of well-known benchmarks,
and from trace replay of actual workloads to running the iappbn in a “live” setting. Any such
technique suffices for our purpose as long as it realisyi@tulates real-world conditions. In fact, (with
regard to running an application in a live setting) many d=ater applications do start in isolation.
Consequently, profiling can be done during the early stagegpplication deployment, similar to that
proposed in current research [39], [34]. Furthermore, Voad patterns are often repetitive over some
time granularity (such as daily cycles [19]), providing opoinities to incorporate increased confidence
into gathered profiles by conducting multiple measurements

¢ Dealing with varying resource/power usadenplicit in the power/resource profiles described above is
an assumption of stationarity of power/resource usagevilmh&xecutions of realistic applications are
likely to exhibit “phases” across which their power and gse usage behavior change significantly. An
example of this is the change in resource needs (and henca powsumption) of a Web server whose
workload exhibits the well-known “time-of-day” variatigd9]. Similarly, many scientific applications
alternate between doing significant amounts of 1/O (whedirggpin parameters from files or dumping
results to them) and computation. Clearly, the utility of guower profiles depends on effectively
determining such phases. Power and resource profiles doeitdide derived separately for every such
phase. Enhancing our techniques to deal with these issyssti®f our future work.

e Measurement infrastructure related consideratioNste that due to our ability to only measure power
usage at the granularity of the entire server (as opposedeasuning the power usage of constituent
components such as CPU, disk, etc.), our measurements grammpproximation (in fact, an upper
bound) of the power consumed by the application. By miningzany other interfering activities during
the offline profiling, we attempt to keep this gap small.

e On application modelingWe do not concern ourselves with identifying relationshiggtween applica-
tion's performance metrics (such as response time) andiresaisage. This is a well-studied area in
itself [33], [4], [9], [11], [38]. We borrow from this literure whenever it is easily done. Generally, we
make simplifying assumptions about these dependencieésvithaxpect not to affect the nature of our
findings.

C. Profiling Applications: Experimental Results

In this section, we profile a diverse set of applicationsltesitate the process of deriving an application’s
power consumption behavior. We also present selectednmafiton about resource usage and performance.
These experiments provide us with a number of key insights @) how such profiling should be done,
(b) the relationship between an application’s power condion and its usage of various resources, and
(c) the extent of variability in the power consumption ofgbeapplications.

Our testbed consists of several Dell PowerEdge serverailglappear in Table I.) We use one of these
servers for running the applications that we profile. We ewmtra Signametrics SM2040 multi-meter



[ Dell PowerEdge SC1450 Features [10] |

Processor Two(2) Intel(R) Xeon 64bit 3.4 GHZ
Processor Power 80W/110W(Thermal Power)
DVFS states (4) 3.4 GHz, 3.2 Ghz 3.0 Ghz, 2.8 Ghz

Clock throttling states (8) 100%, 87.5% up to 12.5%
Main Memory 2GB

L2 Cache 2MB

Hard Disk WD Caviar 40GB 7200rpm
Hard Disk Power 7TW/1W (Active/Standby)
Network Interface Dual embedded Intel Gigabit2 NICg

Power Supply 450Wx1
TABLE |

SPECIFICATIONS OF THE SERVER USED FOR PROFILING

[ Signametrics SM2040 Features [28] ]

Digits of Resolution 6-1/2
Measurement Rates 0.2/sec - 1000/seg
Measurement Range (AC current) 2.5A
Interface PCI
TABLE I

DETAILS OF THE MULTI-METER USED IN OUR PROFILING

(details appear in Table 1) in series to the power supplyhis server. The multi-meter sits on the PCI
bus of another server which is solely used for logging puepo3his multi-meter is capable of recording
power consumption as frequently as once every millisecond.

Applications that we profile are encapsulated within sepavatual machines and are run on top of
the Xen VMM (The profiles that we obtain include the contribotof the Xen VMM but this is not a
problem since it will be present when are consolidated.) §éwwer running the application is connected
to the multi-meter and we use the remaining servers to genéna workload for the application. We
ensure that all the machines are lightly loaded and thatasitessential system services are turned off to
prevent interference during profiling. We profile a wide e&yiof applications. In this paper, we report
our observations for the representative applicationgdish Table Ill. In our environment, CPU is the
largest contributor to power consumption, so we find it uséfuclassify these applications based on
their CPU usage. Applications in the SPECCPU suite GiPéJ-saturating in that they are ready to use
the CPU at all times. The remaining applications alternatevéen using the CPU and being blocked
(e.g., on 1/O, synchronization activities, etc.) and théRPU utilization depends on the workload they
are offered. We profile theseon-CPU-saturatingapplications at different workload intensities. TPC-W
is profiled with the the number of simultaneous web sessianging from 10 to 100, in increments of
10. For experiments involving TPC-W, we represent the wattlntensity TPC-W(x) where X’ is the
number of sessions.

[ Applications |
TPC-W [37] 3-tiered NYU implementation of the TPC-W
transactional Web-based E-commerce benchmark
Streaming Media Home-grown UDP streaming server,
runs with specified no. of clients and data rate
SPEC|jbb2005 [30] SPEC's 3-tiered client-server benchmark
emulating server-side java applications
SPEC CPU2000 [29] SPEC CPU2000 suite (Art, Bzip2, Mcf, Mesa

TABLE 1l
SALIENT PROPERTIES OF OUR APPLICATIONSTPC-W, SSREAMING, AND SPECQBB ARE NONCPU-SATURATING, WHEREAS
APPLICATIONS IN THESPEC CPU2008UITE ARE CPU-SATURATING.
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We now present key results from our profiling study. Throughtbis section, we have,=1,=2 msec
(sampling interval). We begin by observing the power disttions of our applications and comparing key
properties. We present a subset of these results in Figure 4.

Given that CPU consumes significantly more power than 1/O aésvin our environment, not sur-
prisingly, power distributions for non CPU-saturating apgtions (Figures 4 (a) and (b)) are found to
exhibit higher variance than CPU-saturating applicatidgrigures 4 (c) and (d).) For all our applications,
we find that their power consumption, when running on the CRagsdnot vary a lot over time (that
is, our chosen application do not exhibit multiple phaseth wespect to power consumption that were
mentioned in Section IlI-B.) Even an application like Mdhat is known to exhibit significant temporal
variations in its memory access patterns, is found to notvséxcessive temporal variation in its power
consumption. Consequently, the power distribution of Mdimilar to that of Bzip2, that does not exhibit
such variations. This observation leads us to realize thatpsimary contributor to variance in the power
usage of an application iscnange in its CPU scheduling statEhe CPU profile of a non CPU-saturating
application exhibits a ON-OFF behavior, correspondingh application being in running and blocked
states, respectively. When such an application blocks,ogep consumption corresponds to the server’s
idle power. This ON-OFF CPU usage contributes to the higheanee in its power consumption.

Observation 1: Typically, power distributions of non-CPU-saturating apations exhibit higher vari-
ance (and longer tails) than those of CPU-saturating apita

Power CPU Utilization Normalized Power

state | Average | 95th | 99th | Peak| Performace degradation (Watt)

S1 0.41 0.92 ] 093 0.95 1 185.6

S2 0.44 0.93 | 0.95| 0.98 1.18 175.3

S4 0.92 0.97 | 0.98 | 0.99 15.69 173.2
TABLE IV

CPUUSAGE OFTPC-W(60)OPERATING AT THREE DIFFERENTDVFS STATES.
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Next, we study the impact of changing CPU power states (DVRSdwck throttling) on the power
consumption of applications. We represent the power stdtéee CPU as a tuplép,q), wherep represents
the DVFS state and represents the percentage duty cycle due to clock thrpttPU power states are
represented as, S1: (3,4GHz,100%), S2: (3.2GHz,100%)(33B5Hz,100%) and S4: (2.8GHz,50%). As
a representative result, Figure 5 shows the power PDF of TP&Wjg{hen it was run with the CPU
at three different CPU power states; Table IV presents its CBagjel profile and performance during
each of these executions. When a non CPU-saturating apphciatirun at a lower CPU power state, the
fraction of time the CPU remains idle decreases. The peak poaresumption reduces upon running an
application at a lower power state. However, this reduceak pe sustained for a longer period of time
than in the high power state. becomes less bursty at loweeipstates.

Observation 2: For non CPU-saturating applications, CPU utilization inse=aand power distribution
becomes less bursty at lower power states.

Power Bzip2 TPC-W(20)

state | Power | CPU Norm. | Power | CPU Norm.
(W) (frac.) | degrad.| (W) (frac.) | degrad.
S1 2249 | 0.98 1 164.7 | 0.14 1
S2 200.1 | 0.99 1.10 1619 | 0.15 1.07
S3 189.2 | 0.99 1.19 160.5 | 0.16 1.12
S4 172.1 | 0.99 2.19 161.3 | 0.33 2.02

TABLE V
IMPACT OF DVFS STATES ON POWER CONSUMPTION AND PERFORMANCE OF APPLICATIGN

Finally, we observe the trade-off between power consummitd application performance as the CPU
state is varied. Table V presents this comparison for a CRUraang application (Bzip2) and non CPU-
saturating application (TPC-W(60)). The performance medwicBzip2 was program completion time;
the metric for TPC-W was average response time. As seen ire Mlaind Table 1V, changes in average
power usage are more pronounced for CPU-saturating apph¢atduction of 50W (between the two
extreme power states in the table) for Bzip2, compared witedaation of only 15W for TPC-W(60)
and negligible reduction for TPC-W(20). Non CPU-saturatingli@ptions spend significant amounts of
time idling on the CPU and therefore a change to CPU power stetdelss effect on their average power
consumption. Their average power usage is dominated bypuller, unless they are subjected to high-
intensity workloads requiring them to consume significantGiycles. However, while the performance
degradation is easy to predict for CPU-saturating appboati(directly proportional to the ratio of clock
rates), it can depend in non-trivial ways on the workloadsaf CPU-saturating applications. For example,
with a higher load (60 simultaneous browsing sessions), WKE0) exhibits 15.69 times longer response
time while it suffers only 2.02 times response time degriadawith 20 simultaneous sessions. The higher
performance degradation for TPC-W(60) is due it's very high QRilization (92% - almost close to



saturation). This results in the TPC-W threads spending idinee waiting in the run queue, further
delaying the time for receiving the next 1/0 request.

Observation 3: Power-performance trade-offs when operating at diffel@RU power states differ
significantly for CPU-saturating and non-CPU-saturatingliappons. While it is easy to predict for
CPU-saturating applications, it can depend in non-trivialys/for non-CPU-saturating applications.

Applications Art+Mesa Bzip2+TPC-W(60)
Consolidated Art Mesa | Bzip2 | TPC-W(60)
Power (W) 227.1 217 224.1 185.6
Consolidated Power (W 226.1 224.6
TABLE VI

AVERAGE POWER CONSUMPTION OFCPU-SATURATING APPLICATIONS AND NON-CPU-SATURATING APPLICATIONS BEHAVE
DIFFERENTLY.
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Fig. 6. Sustained power when CPU-saturating applications are co-lobatexves differently from when CPU-saturating and non-CPU-
saturating applications are co-located. We report the minimum poweucgt®n over windows of length 2 sec each.

D. Power Profiles of Consolidated Applications: ExperimerRakults

Next, we present our salient observations on power consampt consolidated applications.

We had seen in Figure 1 the server power consumption in twerdift consolidation scenarios, each
co-locating a pair of applications. In Table( VI), we preséme observed average power consumption
and individual power consumption of two sets of consolaatiThe power consumed when two CPU-
saturating applications (Art and Mesa) are co-located Wasedo the average of individual power usages.
This happened because the sole significant power consurasmince—the CPU—watsme-sharedby
these two applications. When a non-CPU-saturating appicdiiPC-W(60)) was co-located with a CPU-
saturating application (Bzip2), however, the aggregategoayonsumption seems to exceed the average
of the power consumption of the individual applications. Bay this happens because this pair of
applications exercises both CPU and 1/0O devices concuyrent!

Generalizing the above observation, for predicting povegrsamption of consolidated applications, it is
important to separate out the significant components of p¢evg., CPU versus I/O power) consumed by
individual applications. Furthermore, these componeetedrnto be considered along with usage patterns
of the relevant resources.

Observation 4: There exist significant differences in average power comsiom when co-locating
CPU-saturating applications versus when co-locating CRU-stzng and non-CPU-saturating applications.

Similar observations apply to the behavior of sustainedggawnsumed by a set of co-located applica-
tions. Figure 6 plots the minimum power usage seen duringavenlapping intervals of length 2 sec each




for two consolidation settings: (a) when CPU-saturatingliappons are co-located and (b) when a CPU-
saturating and a non CPU-saturating application are cdaddca’he minimum power usage during each
interval is its sustained power consumption. In each caseprgsent the sustained usage for individual
applications as well as upon consolidation.

Observation 5: Sustained power consumption for consolidated applicatloehaves significantly dif-
ferently from the average power consumption.

IV. AVERAGE POWER PREDICTION

In this section we firstdevelop techniques to predict theraye power consumption of a server and
then extend it to predict average power consumption acrest af servers.

A. Average Power Prediction for a server

In this section, we develop techniques to predict the aeemmver consumption of a server which
consolidatesn’ applications. Input for these set of algorithms is the poavet resource usage distributions
of the individual applications. We provide experimentauks to illustrate the efficacy of these techniques.

1) Baseline PredictionWe consider scenarios where applications are consolidet¢de same CPU on
our dual-processor server (see Table 1.) Note that in theses; the unused CPU continues to consume idle
(leakage) power. We begin with the following simgdaselinepredictor for average power consumption
of a server on which applicationsAy,---, A, are consolidated. Our predictor employs a sum of the
average power consumptions of the individual applicatiovesghted by their respective CPU utilization,

_ Yy (Pa, - RYY) /lwhen CPU busy
Paypen, = T 1)
pidle (1 -3 RY") Ilwhen CPU idle

whereP,. is the average of the power distribution of the applicatigr{obtained from the offline profile);
and R7" (0 < RY" < 1) is the CPU allocation for it® Note thatP,, is the average of the total system
power measured when applicatidn alone is running on the server and this includes the poweswoerd
by the applications in all the components of the server. Tiw fierm captures the power dissipation of
the server when the CPU is busy, whereas the second term ishfem W is idle.

We present in Table VII the efficacy of baseline predictionthnee consolidation settings, each co-
locating a pair of applications.

Applications Baseline prediction| Observed | Error
consolidated (W) average (W)| (%)
Art + Mesa 222.1 226.1 1.7
Art + TPC-W(60) 209.3 224.6 6.8
TPC-W(10) + TPC-W(60) 167.4 190.1 11.9
TABLE VII

BASELINE PREDICTOR OF AVERAGE POWER CONSUMPTIQN

In the first consolidation setting, two CPU-saturating aggilons Art and Mesa, time-share the CPU
equally, and our baseline approach proves to be an exceltedictor of average power. When Art and
TPC-W(60) are co-located, the baseline approach assumeBRRawW(60) would utilize 40% of the CPU
(as seen from its offline profile), while the CPU-saturatingwould consume the remaining 60%. Finally,
when TPC-W(60) and TPC-W(10) were consolidated, the baselipeoaph uses a CPU utilization of
40% and 7% for these copies, respectively. Note that ourigired technique uses the utilization of the
individual applications from their offline profile to preditheir utilization in the consolidated setting.

®These CPU allocations for the applications are set by the administrator imtiselilated setting. Figuring out these allocations for the
applications is done using well studied techniques called application moda&&hg [
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Fig. 7. Capturing the non-idle power portion for TPC-W(60).

Even though this simple utilization prediction may not wdok all kinds of applications, it works with
reasonable accuracy for our applications.

In the latter two consolidation settings, where we have @é&wJ-saturating applications, we observe
increasing error margins in the baseline prediction. Tleeetwo main reasons for these inaccuracies.
First, the quantityP,, represents the average of thetire power distribution for application!; including
the durations when the CPU was idle. Non-CPU-saturating egtpins can have significant such idle
periods. Upon consolidation, however, these idle duratiare likely to be occupied by other co-located
applications. Therefore, we need to employ the average poaresumption by the applicatioonly over
durations when it was using the CPU. The second cause forureaes is that the baseline predictor
does not accurately account for the power consumption da# tmmponents other than the CPUs. Even
though the power contributed by these /0O components ateded in P, they are assumed to be totally
in proportion to the CPU (this may even be true for most of thgliagtions, but at this point we do not
know if this was a reasonable assumption to make). In pdaticthe I/O-intensive TPC-W application
uses the disk and NIC on the server, which contribute to thheepaonsumption besides the CPUs. In the
rest of this section, we will enhance our baseline preditdcaddress these two sources of inaccuracies.

2) Improving Prediction of Average Power:

Improved Estimate of Active PoweYe are interested in determining the average power consumed
by an application only over durations when it was schedutedut on the CPU. This can be estimated
by considering the power distribution beyond 130 - (1 — U*)"* percentile, wherd/{" is the average
CPU usage forA as obtained from its offline CPU usage profile (note ttigt* should not be confused
with the allocationR}" that we encountered above.) The average power for this soligbe entire
distribution corresponds exactly to the power consumednvithe application was running on the CPU.
Figure 7 shows this for TPC-W(60) whose CPU utilization was 49%. denote this quantity bng?Sy
and replaceP,, in Eg. 1 with it. In this exampIePf;ﬁ’ was found to be 225W, whilé,., was 185W
— note the difference.

Based on observations from several consolidation scenamedind that this enhancement results in
improved predictions of average power. As specific exampésall the prediction of average power for
a server hosting (a) Art and TPC-W(60) and (b) TPC-W(60) and TPCOY(Table VII.) With this
enhancement, our estimates of average power improved f@@W2o 226W for (a), and from 167W to
188W for (b) which reduces the error margin to 1.76% and 1.8%pectively.

Note that our enhancement to separate out the power consumplien the CPU was busy, in fact,
(partly) also includes power consumed by I/O devices. Thidbecause the I/O devices can be busy
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Fig. 8. Multiple regression for estimating average active CPU and 1/0O pdite maximum of the absolute value of the deviation of the
data from the model is 0.45 and this is sufficiently small to be confident ti@ehreasonably fits the data.

simultaneously with the CPU. Fortunately, in our setting tettage of 1/0 devices was substantially
smaller than the CPU power consumption (e.g., our disk hasxamman rating of only 7W), rendering
our enhancement a reasonable predictor. In general, howiévs desirable to also separate out the
contribution of I/O devices.

Incorporating 1/0 Power:As already described in Section II-A, in this research wérig@sourselves
to the dissection of power consumed by an application inteettcomponents: idle CPU power, active
CPU power, and I/O power.

We further refine our representation of average power coadurg an application by explicitly incorpo-
rating power consumed on its behalf by I/O devices. It isaiely possible to employ similar techniques
to further partition 1/O power into that due to individualOl/devices (e.g., breaking down I/O power
into that consumed by disk and NIC), but we find this unnecgsisaour environment. We introduce an
additional componenle/o to represent the 1/0O portion of the average power consumeahlgpplication.

To estimate this parametéf”", we enhance our offline profiling in the following way. We seiddjthe
application under investigation tmultiple workload intensities and formulate equations of the foitayv
form based on the average power usage and CPU, /O utilizatessurements from these.

pA — Pjpu/busy . Uzpu + pidle (1 _ Uzpu) + —2/0 . 11‘4/0 (2)

Where pP/tusy - pidie - pif ° represent averages of active CPU power, idle CPU power, angdier,
respectively. Unlike/ ", Ui{” is hard to define since: (i) it represents multiple I/O desiaad (ii) utiliza-
tion of 1/0 devices are not necessarily directly propordibto their throughput. We make the following
simple approximation. We consider the combined data tesinsfte (recorded during the profiling) for
disk and NIC induced by the application as proportional ts titilization. The maximum data transfer
rate we see in our profiling experiments is taken to corredgora utilization of 1(other utilizations are
normalized to this). '

We then employ multiple regression to estimate the two unkisaP?*/**¥ and P/°. This is shown
in Figure 8. We subject TPC-W to different workload interestiranging from 10 to 60 (Recall from
Section I, these represents the workload intensity oftRE€-W benchmark - in the graph, we normalize
these 1/0O intensities to 10). The measured power varied b8n7W to 185.6W over this workload range.
The active CPU power and I/O power are estimated to be 255W #&W.0

3) Component-aware Average Power Predictiowith the break-up of average power among the
components described above, our predictor operates asvéofbr a server that consolidates applications
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As two specific examples of the efficacy of these enhancemeantsprediction of the average power
consumed by Art and TPC-W(60) improved to 226W (within 0.8% bserved power); the prediction
for TPC-W(60) and TPC-W(60) improved to 189 (within 0.5% of olveer power.)

B. Average Power Prediction across multiple servers

Our prediction mechanism can easily be extended to a setredérseor a multi-processor system. For
a system withk servers and each server witlprocessors hosting applications, - - -, A,,, the average
power consumption is given by,

i1 (PZZSWCW -RYT") /ICPU busy

+
Payoon, =4 P (kx1 -7 RT") /ICPU idle (4)
+

L (PR INIO power



In Figure 9 and 10, we present the performance of our basatideenhanced predictors for a variety of
consolidation scenarios. Since we do not have an infrasteico measure power across a set of servers,
we evaluate our prediction technique by running applicetion both the processors of our server. This
is analogous to predicting average power consumption of @ RBich is connected to two servers. Our
enhanced prediction is able to predict within 5% (on an ayeEb) of the observed power while baseline
approach has up to 20% (on an average 9%) error margin.

C. Average power - Discussion and Lessons Learned

Our study provides the following useful hints on predictengerage power. It is important to separate
out power expended when the application was not using the €& the off-line power distribution of
an application. This is easily achieved if we collect CPU esprpfile along with the power profile. It is
also important to separate out the consumption of resowttes than the CPU. While non-CPU devices
contribute only a small amount to the overall power in ouriemment, including them in the analysis
may be crucial in platforms where they are more significamitrioutors. Even in our environment, we
were able to improve our prediction by incorporating estesaof 1/0O power in our calculations.

Based on our empirical evaluation, we conclude that it is iptesdo predict average power with
reasonable accuracy using simple profiling and predictemiriiques. We expect our technique to be
easily extended for settings with other consumers of poweh &s graphic cards, storage over networks,
networking equipment, etc.

V. SUSTAINED POWER PREDICTION

Next, we turn our attention to sustained power budgets irsalhated servers. Recall that sustained
power budgets are enforced at different hierarchies of a danter to ensure that the applications
consolidated under that level do not cause the capacity efctrresponding PDU to be exceeded. of
the PDU deployed at that hierarchy In Section V-A we devel@grianisms to predict sustained power
consumption of applications consolidated on a server. Ahgle server level, sustained power prediction
boils down to finding the possibility of a single server caméng enough power to reach the limit of
its power supply. Though this may seem unlikely given the that the capacity of a server-level power
supply is typically much higher than its peak power consuompfl3], this method will later be extended
to predict the possibility of applications consolidated aset of servers reaching the capacity of their
PDU which is very much a concern. Also, taking a cue from tlegeahentioned over-provisioning present
in existing power supplies, recent research [21] has sugdeassing lower capacity (and cheaper) power
supplies for servers to cut costs. Such an approach coul@ s of effective prediction techniques to
determine the possibility of the limit of a power supply lgpiviolated. In Section V-B we extend our
approach to predict sustained power violation at the PDUaok itevel (across a set of servers.)

A. Sustained Power Prediction for a server

Recall that our goal is to predict the probabilifyra, ... 4, (S, L), upon consolidating: applications
Ay, .-+, A, on a server, ofS or more units of power being consumed for ahyconsecutive time units.
We will refer to Pr_ as theprobability of violating the sustained power budgsbte the trivial feasibility
requirement on the sustained power budget that it alwaysidgigeehthan the idle power (as defined in
Section 1I-A)—if this does not hold, the server would be ieggble. Recall from Section IV-A3 that 1/0
power contribution for our set of applications and serversary low and therefore we do not consider
it for predicting sustained power. Note that we are not igrpipower contributed by I/O components.
The entire server power (from all the components in the seiseassumed to be proportional to the CPU
utilization.



1) Baseline Prediction:To bring out the difficulties in predicting the probability a given sustained
power consumption, we evaluate a simple baseline apprbatioperates as follows. It first estimates the
number of slotsn; each of lengtht, (recall thatt, is our power measurement granularity) during which
the applicationA4; is expected to occupy the CPU over a duration_.dime units,

_L-RY'
=~
where R1" is the CPU allocation for applicatiod; in the consolidated setting. Assuming stationarity of

power consumption across durations of lengttior each of the applications, the probability of violation
is estimated as,

m;

Pry, ..a,(S,L) = H{Pr(wifi > S)mi (5)
=1

wherePr(wZ’i > S) is the probability that applicatiod;’s power consumption obtained from its power
distribution at the granularity of, time units exceeds the sustained-power limiit,Note that the above
assumes independence among the execution patterns ofatedoapplications—a reasonable assumption
in our settings. We make this assumption throughout thisiasecThere are three key shortcomings in
the baseline approach.

Shortcoming (A) due to assuming saturated CPUFirst, the baseline approach does not capture the
likelihood that the CPU could be idle for some portion of givdarations of length.. Any such duration
should not qualify as one where a violation of sustained pdwelget occurs (recall we assume that the
sustained budget is greater than idle power.)

Shortcoming (B) due to stationarity assumption: Second, the assumption of stationarity of power
consumption at the granularity ¢f time units holds only for a very selected type of applicadioAmong
our set of applications, this applies only to some of the CRturating applications which does not
exhibit large temporal variation in its power consumpti®ecall our observation from Section Il that
the CPU-saturating Mcf application exhibits temporal @oias in its memory access patterns resulting
in variations in its power consumption measured at the daaityi of ¢, units. We have already seen that
all our non-CPU-saturating applications exhibit significaariations in power usage.

Shortcoming (C) due to ignoring CPU usage variation:Finally, the baseline approach assumes that
the CPU usage of each of the co-located applications woulgréaselyequal to their CPU allocations
(RY" for application A;) over any period of lengtiL. Again, while this assumption is fine for a set of
co-located CPU-saturating applications whose CPU usagerpsittio not exhibit variability, it introduces
inaccuracies when there is even one application that doeaditere to such behavior. In particular, it
becomes inaccurate when predicting the sustained poweavioehof a set consisting of one or more
non-CPU-saturating applications (when these applicatmadlocked on I/O activities, those idle periods
will likely be used by other co-located applications reisgjtin a different CPU allocation than specified
by R7}" for the applications).

Notice that (A) necessarily under-estimates and (B) nedéssaer-estimates the probability of viola-
tion. (C), however, can cause errors in either direction.hin rest of this section, we will address these
three shortcomings.

2) Improving Prediction of Sustained Power:

Addressing shortcoming (A)We had encountered a similar problem when dealing with rgaluc
of average power. The idle periods included in the CPU profiesion-CPU-saturating applications
must be handled correctly because upon consolidation treelikely to be occupied by other co-located
applications. Exactly as in Section IV-A2, we remove thikeigortion by only considering the power
distribution beyond it400(1 — U$")™ percentile, wheré/ " is the average CPU usage fdras obtained
from its CPU usage profile. Figure 11 presents the power bligton of the TPC-W application before
and after removing the idle-power portion.
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Fig. 11. Removing idle portion rom TPCW time series.

Addressing shortcoming (BjThis problem arose because we used the distribution of powart,
units to predict the probability that an applicatiea consumes power above units for 7,,, = m, - t,
consecutive time units during which it occupies the CPU. We ioaprove this prediction by using the
power profile forA; to explicitly find this probability, rather than relying ohd power distribution over
t, time units. Equivalently, givem;, we are interested in the power distribution ower- ¢, time units.
This distribution is easily derived from the power profile imoving a window the size ofn, - ¢, time
units, shifting it by¢, units. For each such window, we find the maximum sustainedepalroughout
that duration by taking theninimumpower sample within that window(as explained in SectioB)I-The
samples obtained from these windows are converted intotebdison of sustained power overn; - ¢,
time units. With this modification, our predictor takes tlo#idwing form (compare with Eq. 5),

Pra,..a,(S, L) = [[{Pr(wy" > 9)} (6)
=1

We provide an example to illustrate the seriousness of thiblem, For TPC-W, the probability of
violating a budget of (200W, 2ms) as obtained from TPC-W poprefile collected at 2ms is 99.64%.
The probability of violating 200W for a period of 1 second Webbe approximated as9964)>° which is
16.47% But when we compute the actual sustained power by mavindow of size 1 sec over TPC-W
time series, we find this probability to be 21.55%.

Addressing shortcoming (C)We find this to be the most interesting and challenging sbariog
to address. Recall that this shortcoming arose because weedsthat the applications would always
consume the CPU exactly in accordance with their their CPLtations @7 for application4;). We
attempt to alleviate this problem by incorporating into puediction the possibility of multiple ways in
which the CPU could be shared among the applications ovetidaosaof lengthZ. We derive this using
the individual applications’ CPU profile collected over dioa of length L (from offline profile). Let
PT{U(IALW,An) = (c1,--+,c,)} be the probability thate,---,¢,), are the fractional CPU consumption
of applications(A;,-- -, A,), respectively, over all intervals of length in our consolidated setting. We
estimate this for all possible combination @f,---,¢,) as follows.

The CPU utilization of the applications in the consolidatetisg depends mainly on two things: (a) The
CPU reservation of applications in the consolidated seitir)grhe CPU requirement of the applications
(both over periods of lengtlh). When the reservation is higher than the requirement, themeans the
application has spare CPU which could be used by other apiplisawhose reservations are smaller than
their requirements. Most reservation-based schedularoes) divides this spare CPU equally among
these needy applications. Our estimate for the CPU utiimatif applications in the consolidated setting
takes the above into account. We start by constructing thiilalitions of fractional CPU usages (CPU
requirement) for every application over durations of léngt This distribution can be easily derived
from the CPU usage profiles of the applications. IBt(U; > c) represent the probability that the
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CPU utilization of application4; over duration of lengthl, exceeds:(0 < ¢ < 1). We construct CPU
requirement bins (RB) for every application over bins of léngit RB4,[6, 26,30, ---,(1 — d), 1], where
RBu,lj) = Pr(U%, > (j — 0)) — Pr(Us, > j), that is each bin represents the probability of utilization
being within its bin boundaries.

For simplicity, we conduct the rest of the discussion in thetext of two applications4; and A;. We are
interested in findingDT(U(LAhAz) = (c1,¢2)) (which is the probability that CPU utilization of applicatio
Ay is ¢; and that ofA; is ¢p) for ¢; =6,26,---1 andey, = 6,26, --- 1. 1t could be obtained by,

RBA1 [57 Tty 1] : (RBA2 [67 Ty 1]>l

where (RBy,[5,---,1])’ represents the transpose of the arfa# 4, [0, - - -, 1]. Multiplying these two one
dimensional matrices will generate a two dimensional matvhich provides the probability for all
utilization pairs(c;,cy). * Note that inPfr{U(LAl,AQ) = (¢1,¢2)}, (e1+cg) ranges from O to 2. But in a
consolidated setting, utilization of the CPU cannot go belyd®0%. Letr; andr, be the reservations for
the applicationA; and A, respectively. We estimate the utilization of the applizasi in the consolidated
setting as follows,

1: for all (c1,¢2) such thate; + ¢, > 1 do

2. if (¢g > ry)and(cy > 13) then
3 Pr(Uf;h,AQ) = (ry,m)) = PT(U&LAQ) = (ry,r9)) + Pr(U(IAl’AQ) = (c1,¢2))
4. else if écl > r1)and(cy < 1r9) then

5 Pr(U(ﬁh,AQ) =(1—cy,¢2)) = P?"(U(LALAZ) =(1—cy,¢2))+ PT(U@LAQ) = (c1,¢2))

6. elseif (¢; < ry)and(ca > ry) then

7 PT(U&LAQ) =(cl,1—¢)) = PT(U(%%AQ) =(cl,1—¢c1))+ Pr(U&LAQ) = (c1,¢2))

g8 endif

9: end for

This algorithm is graphically illustrated in the Figure Ithe figure assumes, = 0.5 andr, = 0.5.
Lines 2 and 3 handles the case when the (fractional) CPU usddasth the application is above their

"This extends easily ta. applications; we omit these details here.
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Fig. 13. Comparison of measured and predicted sustained powarnaptisn (L=1 sec) for a server consolidating Bzip2 and TPC-W with
reservations 50 and 50 respectively. For clarity, we just present ithef these CDFs.

reservations (shown in the top right corner box of the figurethis case the CPU usages of the applications
in the consolidated setting would e, r5). Lines 4 through 7 handles the case when the CPU requirement
of one application is below its reservation and that of theeptapplication is above its reservation, in
which case, the needy application gets CPU from the surplubeofother (we add this probability as
shown by the arrows in the figure). Also notice that for allations with some idle portione{+ ¢, < 1),
the probability of sustained power violation would be zerecéll the trivial feasibility requirement for
sustained power budget which requires it to be higher thEnpdwer.) This is captured by line 1 of the
algorithm.

For any duration of lengthl, units where the applicationd; and A, occupy the CPU for; andc,
time units, the probability of sustained power (S watts)ation is given by,Pr4; a,(S, L) = Pr(wj, >
S) * Pr(wy, > S) (similar to what was described in Eq. 6.) We use the above tegu#o find the
probability of sustained power violation for all possililg, c;) pairs as follows,

1: PT‘ALAQ(S, L) =0

2: for 1=0to1; j=1100;i=i+J; j=j-0 do 4

3 Pra,a,(S,L) = Pra, a,(S, L) + Pr(wy, > S)- Pr(w), > S) - PriUly, 4, = (4,)}

4: end for

Line 2 of the above algorithm loops through all possibtg, c;) pairs that adds up to 1 (possible
violation regions). The algorithm predicts the probabilif sustained power budget violation for a given
value of the power budgef. We run the above algorithm with=1 sec and varying from 0 to 300W
for our experiments. Figure 13 compares our predictionk wie observed sustained power for a server
consolidating TPC-W and Bzip2. The graph also shows the CDF sthswed power when Bzip2 and
TPC-W are running alone. Notice from Figure 13 that TPC-W+Bzip2solidation has a lower sustained
power than TPC-W running alone. This provides an interestisgght that by interleaving low power-
consuming applications with high power consuming appbces, we can reduce the probability of violating
a given sustained power budget. Figure 14 and Table Vlliuatal our prediction mechanism for a server
consolidating 3 applications. We are able to bound the tathe sustained power consumption within
2% error margin (Table VIII).

B. Sustained Power Prediction across multiple servers

Having predicted the sustained power consumption of a eisgtver, we next predict the probabil-
ity of sustained power budget violation across a set of sen@ur goal is to predict the probability
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and Bzip2 with reservations 60, 20 and 20 respectively.

Probability of Measured Predicted Error

violation Sustained power (W) sustained power (W) (%)

20% 196.3 199.0 1.37

10% 197.5 200.1 1.31

1% 200.2 202.8 1.29

0% 204.0 207.0 1.47
TABLE VI

EFFICACY OF SUSTAINED POWER PREDICTION ON A SERVER CONSOLIDMNG TPC-W(60), TPC-W(60aND BzIP2 WITH
RESERVATIONS60, 20AND 20 RESPECTIVELY

Prpg, .. g, (S, L), (that upon consolidating: serversBy, - - -, B,,, on a PDU) ofS or more units of power
being consumed by the PDU for afyconsecutive time units. Unlike the case when applications share
the server, in this case, the applications are running samebusly and therefore the power consumption
would add up. Recall from section II-B that we are interestefinding the minimum power consumption
of the PDU over periods on lengihtime units. This minimum power consumption of the PDU (cetisg

of set of servers) is upper bounded by the sum of average p@wer intervals of length. time units)

of the individual servers. The proof is very simple, Consitvev setsU and V" consisting ofk elements
each. LetlV be a set obtained by adding any permutation of thelsetith any permutation of the set
V' (Note that setV also hast elements). The minimum value in s8t, W,,;, is upper bounded by its
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Fig. 15. Comparison of measured and sustained power consumptidnsgc) of a PDU connected to serverl (running TPC-W(60) and
SM(100)) and server2 (running SM(100) and Bzip2). SM(x) repnes Streaming Media Server streaming to x clients



Probability of Measured Predicted Error

violation Sustained power (W) sustained power (W) (%)

20% 214.0 226.2 5.70

10% 215.5 227.6 5.61

1% 217.5 230.4 5.93

0% 219.0 235.2 7.39
TABLE IX

EFFICACY OF SUSTAINED POWER PREDICTION ON DU CONSOLIDATING SERVERL (RUNNING TPC-W(60)AND SM(100))AND
SERVER2 (RUNNING SM(100)AND BzIP2). SM(X) REPRESENTSSTREAMING MEDIA SERVER STREAMING TO X CLIENTS

average W,,, (Wiin < Wy,,). Note that average of the sBt is nothing but the sum of the averages of
the setsU and V. (W,,y = U,y + Vaug) Therefore the sum of the averages of the gétand V' forms
the upper bound of the minimum in sBt (W,,i, < Usyg + Vang)-

We use the above idea to bound the maximum power sustaineldeby@U. This can be achieved in
2 steps:

(Stepl)Finding the distribution of average power consumption ef ittidividual servers (connected to the

PDU) over intervals of lengtl time units.

(Step2)Add all these average power distributions. Assuming imtlied consumptions to be independent—
a reasonable assumption—the resulting distribution ofapgregate can be computed from elementary
probability theory?

Stepl can be easily achieved by slightly modifying the tépies developed in section V-A. Initially
we estimate the CPU utilization of the consolidated appbecat PT<U(I;41,---,AH) = (c1,+++,¢,)) for all
(¢1,--+,c,) and then instead of finding the minimum power consumptiorhefderver, we compute the
average power consumption of the server using the distoibudf average power consumption of the
individual applications (obtained from offline profilingyer intervals of lengthZ. time units. Step2 is
straightforward.

Figure 15 and Table IX evaluates our prediction mechanisna feerver consisting of 2 processors each
consolidating 2 applications. Since we do not have an itriratire that could measure power consumption
of a set of servers (we can measure power consumption onlg single server), we did our evaluation
on a single server with 2 processors. This is analogous tanan@ment with two servers connected to a
PDU. Even though our approach provides an upper bound fosubtined power consumption, it is not
a tight upper bound. As part of our future work, we intend teedep mechanisms that provide a much
tighter upper bound on the sustained power consumption.

VI. POWER-AWARE PACKING

We now examine the utility of our prediction techniques inking consolidation decisions. A key
component of a consolidation-based system aaking algorithm that dynamically decides, based on
changing workload conditions, which server machines thstdwb applications should be made to run
till its next invocation. In an energy-conscious platforthe packing algorithm should incorporate both
performance (resource) and power (average and sustainadiderations into its decision-making.

To illustrate how our prediction techniques can facilitagrformance and power-aware packing, we
present the results of one representative experiment waerle packing is evaluated. We consider the
problem of packing one or more applications from the follogvset on our server: two copies of TPC-W,
each serving 20 sessions and one Streaming applicatiorieg@0 clients. As usual, we profile the power

8This is done using the z-transform. The z-transform of a randombiaria is the polynomialZ (U) = ag + zay + z%as + - - - where the
coefficient of thei*" term represents the probability that the random variable eduaks, U (7). If Uy, Us, ..., Uxy1 arek + 1 independent
random variables, and = "' U;, then Z(Y) = [[;* Z(U:). The distribution ofY" can then be computed using a polynomial
multiplication of the z-transforms df/y, Us, - - -, Ugt1.
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Fig. 16. lllustration of packing decisions made by our predicting techniaueving 3 applications.

consumption and resource usages of these applicationsthvéteerver operating at various power states
(see Table X.) The salient features of the power consummtidhese applications are as follows.

Since our work is not aimed at investigating the relatiopslatween application-level performance goals
and resources needed to meet them, we choose workloads eéhatewpirically found to be sustainable
even at the lowest CPU power state of the server. As mentioeéatey we consider this research as
complementary but orthogonal to our work.

We choose the following power budgets: (a) an average powedgdi of 180W and (b) a sustained
power budget of 185W per second It must be mentioned herewtbado not claim that these budgets
(particularly, the sustained budget) are realistic; irt,fdtese may appear to be rather low to the reader.
These values have just been chosen to bring out importaeti&spf our packing strategy without having
to conduct extremely large-scale consolidation expertmdtiowever, we believe that our results represent
general trends that are likely to apply in more realisticsmidation scenarios.

We pick these budgets so that they are feasible for any of pplications individually with the
CPU operating at the highest power-consuming state. We usprediction algorithms to determine the
average and sustained power consumption upon packingetiffeubsets of the applications with the CPU
operating at various available power states. For this éxyet, the clock throttling state is not changed.

DVFSO DVFS3
Applications consolidated avg. sust. avg. sust.
(W) w) w) w)
TCP-W(20)+TPC-W(20) 178.0 | 190.1 | 176.2 | 174.5
TPC-W(20)+TPC-W(20)+Streaming 193.5 | 193.2 | 177.0 | 172.0

TABLE X
PREDICTED VALUES FOR SUSTAINED AND AVERAGE POWER CONSUMPTIDFOR TWO SUBSET OF APPLICATIONS AT TWO PROCESSOR
POWER STATES

Our techniques predict that the only feasible configuratibrere all three of our applications could be
co-located on the same server while meeting both the powagdis is when the CPU operates at DVFS3
(CPU operating at 2.8GHz.) Furthermore, we predict that jpgckny two of our applications with the
CPU at the highest state DVFSO (CPU operating at 3.4GHz) waddltrin a violation of at least one
of the power budgets. We present our predictions for two e¢hsubsets; (TPC-W(20)+TPC-W(20))
and S,(TPC-W(20)+TPC-W(20)+streaming) and the two CPU DVFS statesainlel X. Based on our
prediction we recommend a packing of all three applicatwith the server using the DVFS3 state.

We then conduct a series of experiments to evaluate the @ffafaour predictions. Figure 16 presents
our observations for the two application sétsand.S;. The figure shows that both the susbsets can be
operated at DVFS3 within the power limits. It also shows tedgrmance degradation of the subsets (here,
we just mention the average performance degradation ohédientical instances of TPC-W(20) in terms
of their response times). Depending on the performanceadagjon of the subsets, the administrator may



either chooseS; or S,. We consider a few things worth mentioning about these t®shlrst, and most
direct, we find them encouraging because: (i) packings fochviour predictors indicated at least one
type of budget violation, were indeed found to result in adetdeing exceededs{ at both DVFSO and
DVFS3) and (ii) packings for which it was indicated there Wbuot be violationsf, at both DVFSO
and DVFS3), in fact, operated safely.

Second, these results suggest that our profiling and predlitichniques are effective at comparing the
power behavior of a variety of consolidation settings undiéfierent DVFS states. Techniques with such
capabilities are likely to be of value in the power-awarefplans our research is concerned with.

Finally, we claim that as a side-effect of striving to operatithin specified power budgets, packing
algorithms that use profiling and prediction, (in combiaatwith application models that can translate
performance goals into resource needs ) are likely to findabipg regimes that avoid excessive over-
provisioning of power. Whereas some amount of over-promis@ is desirable to handle transient excess
draw of power, lowering its degree without adversely affegsafety of operation can be very beneficial.
This is similar and complementary to research that empl@asfal measurement and characterization
of resource needs to achieve desirable trade-offs betwessrurce utilization and likelihood of resource
shortage.

VIlI. RELATED WORK

While limitation on battery lifetime has been the main concir mobile [16] and embedded systems,
research on server systems [5] have mainly been focusingducting energy consumption and handling
reliability constraints imposed due to electrical and oaplimits.

Reducing energy consumption: The tremendous increase in power consumption over the dast f
years in mainly attributed to the growth in the number of sesywith only a small percentage associated
with increase in the power use per unit. In an attempt to redibe number of active servers, mechanism
to dynamically turns ON/OFF servers based on utilizatiomengroposed [6], [7], [25]. while the above
research looked at reducing the number of servers, Fetall suggested that over-provisioning servers
may increase the performance of throughput-oriented egpns without compromising on the power
budget of the infrastructure [15]. Interplay of power andfgpenance both in the arena of uni-processors
and multi-processor has been studied in great detail [1],[B2]. Chaseet al. considered energy-aware
resource provisioning in a data center in accordance totizgd QoS agreements [7]. Stoedsal. [35]

did accounting and capping of energy consumption for cetatEd environments. Nathugt al. looked

at extending power management capabitites for the virtuathimes [24]. We believe that the above
techniques for energy management will greatly benefit froimaverage power prediction both in deciding
on the energy budgets for the servers as well as on the platerhapplications minimizing performance
degradation.

Reliability concerns: Felteret al. proposed a technique thaducegshe peak power demand on a server
by dynamically distributing the power among the system congmts based on their requirement [14].
Lefurgy et al. recently presented a technique that uses system-levelrpogasurement t@ap the
peak power consumption of the server while maintaining gstesn at the highest possible performance
state [21]. Wanget al. extended the power capping mechanism to a cluster of sgd@fsRanganathan
et al. and Fanet al. did extensive profiling of real-world server clusters aneytboth observed that the
probability of synchronized peagower consumption of all the servers happening at the same i
very low [27], [13]. Leveraging this fact, they showed thagrsficant more applications/servers could be
consolidated for the same power supply. Recent work from Raghy looked at coordinating multiple
power management activities (average and peak) happdmogghout the hierarchy of a data center [26].
To the best of our knowledge, we are the first to investigat@assible prediction of simultaneous peak
power consumption for a set of consolidated applications.Balieve that our prediction techniques will
greatly complement current research on deciding the riglgrek of consolidation keeping in mind the



reliability limits of the infrastructure. Thermal relidiby has extensively been looked at both server level
and data-center level including techniques to dynamicdlipttle or move applications upon reliability
violations [8], [23], [18], [3] Recent servers are currertilging shipped with in-built capability to measure
power at a very fine granularity. IBM’s Active Energy Managses this capability to dynamically measure
and control power consumption of a server [20].

Modeling/Characterization of power: Modeling of power consumption has been done at various
granularities from a data-center, server, individual congnts to an instruction [12], [17], [41] either by
using direct measurements or estimations from performeogeters or a combination of both. We borrow
ideas from the existing research correlating resourceeuaagd power consumption to extend it to predict
for consolidated setting. SPEC’s ongoing effort, SPECPowas at characterizing the performance and
power behavior of servers at different utilizations [31h the best of our knowledge, we are the first
ones to do such an extensive characterization of power ogpisen in a consolidated environment.

VIIl. CONCLUDING REMARKS AND FUTURE WORK

Our work was motivated by the need to ensure that emergemitgees for consolidating applications
in enterprise-scale data centers exhibit robust and peddec power dissipation behavior. Consolidation
of workloads has emerged as a key mechanism to dampen thélyrapowing energy expenditure
within enterprise-scale data centers. However, beforgethensolidation-based techniques can be gainfully
utilized, we must be able to predict and enforce approphiatiés on power consumption at various levels
within the data center. In particular, two kinds of power pets—average budgets defined over relatively
coarse time-scales and sustained budgets defined overtisherscales—were found to be crucial to the
safe and profitable operation of data centers.

Using a simple combination of hardware and software measeme infrastructure, we derivegbwer
profiles—statistical descriptions of the power consumption of eggpions. We used insights gained from
detailed profiling of several applications—both indivitlaad consolidated—to develop predictive models
for average and sustained power consumption of our servernmfllemented our technigues on a Xen-
based platform and evaluated them in a wide variety of cashestobn settings. Our results were promising.
For a variety of consolidation scenarios, we were able taipteaverage power consumptions with an
5% error-margin. Our sustained power prediction techrsquedict close yet safe upper bounds on the
sustained power consumption of consolidated applications

As part of our immediate future work, we plan to investigate the design of resource schedulers
within servers that can help enforce specified power budgétsut arbitrarily degrading performance.
In a well-designed system, these schedulers would compiethe packing techniques by reacting to
short-term/unanticipated fluctuations in the power usagjgabior that could violated budgets. We plan
to investigate how best to make our packing techniques wotlRndem with such power-aware resource
per-server schedulers.
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