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Abstract —Consolidation of workloads has emerged as a key mechanism to dampen the rapidly
growing energy expenditure within enterprise-scale data centers. To gainfully utilize consolidation-based
techniques, we must be able to characterize the power consumption of groups of co-located applications.
Such characterization is crucial for effective predictionand enforcement of appropriate limits on power
consumption—power budgets or caps—within the data center. Power caps need to be enforced at multiple
spatial granularities within a data center: from server andrack to the room-level. Furthermore, power
budgets must be also enforced at multiple temporal granularities: from durations of less than a second
(dictated by fuses for reliability concerns) to longer periods of several minutes to hours (relevant to energy
optimization considerations.) We capture these requirements in the form of two kinds of power budgets
at each spatial level: (i) anaverage budgetto capture an upper bound on long-term energy consumption
within that level and (ii) asustained budgetto capture any restrictions on sustained draw of current
above a certain threshold. Using a simple measurement infrastructure, we derivepower profiles—statistical
descriptions of the power consumption of applications. Based on insights gained from detailed profiling
of several applications—both individual and consolidated—we develop models for predicting average and
sustained power consumption of consolidated applications. We conduct an experimental evaluation of our
techniques on a Xen-based server that consolidates applications drawn from a diverse pool. For a variety
of consolidation scenarios, we are able to predict average power consumptions within 5% error-margin.
Our sustained power prediction techniques allow us to predict close yet safe upper bounds on the sustained
power consumption of consolidated applications.

I. I NTRODUCTION

A. Motivation

To accommodate modern resource-intensive high-performance applications, large-scale computing and
storage platforms have grown at a rapid pace in a variety of domains ranging from research labs and
academic groups to industry. The fast-growing power consumption of these platforms is a major concern
due to its implications on the cost and efficiency of these platforms as well as the well-being of our
environment. Trends from such platforms suggest that the power consumption in high-performance com-
puting platforms (or data centers) accounts for 1.2% of the overall electricity consumption in the U.S.
More alarmingly, if current practices for the design and operation of these platforms continue, their power
consumption is projected to keep growing at 18% every year. These observations have spurred great interest
among providers of high-end computing platforms to exploreways to dampen the growth rate of servers
by doing betterconsolidation. For example, as workload conditions change, it may be desirable to pack
hosted applications on to different subsets of racks/servers within the data center and turn off machines
that are not needed [6], [7], [25]. Another major concern forsuch large-scale computing platforms is the
increase in power density of the servers which are reaching the limits of the power delivery and cooling
infrastructure of these platforms, thereby affecting the reliability concerns of these platforms. This has
been addressed in literature by reducing the peak power consumption both at the server level [14] as well
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(a) Two CPU-saturating applications: Art and Mesa (b) A CPU-saturating (Bzip2) and a non CPU-saturating
(TPC-W) application

Fig. 1. Measured power consumption behaves differently when CPU-saturating applications are co-located from when CPU-saturating and
non-CPU-saturating applications are co-located. The graph provides arepresentative (median) sample for every 2 second interval. TPC-W
is running 60 simultaneous sessions.

as at the cluster level [27]. Consolidation further increases the power density of the servers, aggravating
the reliability concerns of the facility.

Literature has addressed the energy and reliability related concerns in a data center using the notion
of power budgets [14], [27], [26]. Power budget is typicallyenforced at different hierarchies of a data
center and it specifies a cap on the power consumption of applications consolidated under that hierarchy.
Previous work looked at mechanisms to enforce power budgetsboth at the server level [21] and at
the cluster level [40]. Typically power budget violations are handled either by throttling [40], [21] or
by migrating [22], [36] the applications. These power budgets are ignorant of the power requirement
of the applications that are consolidated and therefore could result either in poor performance or less
efficient enforcement. Solutions for consolidation in enterprise-scale systems have benefited from detailed
studies of the workloads and resource needs (like CPU) of applications [39]. Insights gained from these
studies have been utilized to build models for predicting the performance and resource usage behavior
of consolidated applications.1 Similar research on the power consumption of consolidated applications,
however, has received much less attention. Such research would be useful to an energy-friendly operation
and management of consolidated platforms in a variety of ways. First, it will facilitate the prediction
and control of energy consumption in consolidated environments. Second, in combination with existing
research on workload characterization and application modeling, it will facilitate meaningful trade-offs
between energy costs and application performance. Third, it will enable data centers to operate in regimes
that are profitable yet safe from power surges likely to be induced by aggressive consolidation. Finally,
ongoing efforts to develop power benchmarks would also benefit from such characterization [31].

Consolidation may occur at multiple spatial granularities,ranging from co-location of multiple applica-
tions on a single server to diversion of workloads to a subsetof the server racks or rooms. Correspondingly,
characterization of power consumption is desirable at eachof these levels. Two aspects of power con-
sumption are of particular significance at all these levels.First, the long-termaverage power consumption
(several minutes to hours) within a subsystem dictates the energy costs involved in operating it. Second,
the possibility ofsustained power consumptionabove thresholds associated with fuses/circuit-breakers
(typically a few seconds or even sub-second durations) critically affects the safe operation of devices
protected by these elements. Thermal effects can also raisethe need for both these budgets. At coarse
spatial granularity (such as a room), average power may needto be curtailed to avoid excess heating. For
smaller components (such as chips), power consumption mustbe controlled at finer time scales. In this

1This research is commonly referred to as application modeling [38].



paper, we characterize the power requirement of individualapplications and use these characteristics to
predict average and sustained power requirement of consolidated applications.

Characterizing the properties of power consumption within agiven consolidation hierarchy results
in problems that are significantly different from those encountered in characterizing performance and
resource usage. As a motivating example, consider the comparison of power consumption for two different
consolidation scenarios, each packing a pair of applications on the same server, shown in Figure 1. In
each case, we compare the power consumptions of individual applications with that when they were
co-located. Power consumption was sampled once every 2 msec, and we report the median sample over
successive 2 second intervals as representative of the power samples obtained during that interval. When
two CPU-saturating applications (Art and Mesa, two applications from the SPEC CPU2000 suite [29])
are co-located (Figure 1(a)), they consume what appears to be an average of their individual power
consumptions. When a CPU-saturating application (Bzip2, alsofrom the SPEC CPU2000 suite) is co-
located with a non-CPU-saturating application (TPC-W [37], an E-Commerce benchmark that spends
significant time blocked on I/O), the power consumed appearsto exceed their individual consumptions
(Figure 1(b)). Roughly speaking, this can be explained as follows. In Figure 1(a), the two applications,
both whose power consumption was attributable almost entirely to the CPU, share this resource. On the
other hand, in Figure 1(b), the aggregate power consumptiondepends on the resource usage characteristics
of the individual applications including the variance in CPUand I/O usage. While traditional resource
usage aware consolidation is likely to favor scenario (b) over (a), from power consumption perspective
(a) may be considered better than (b).

More generally, both average and sustained power consumption in a consolidated environment depend in
non-trivial ways on the power consumption as well as resource usage patterns of the individual applications.
Prediction of power consumption requires us to accurately identify these dependencies. Furthermore, the
success of such prediction also depends on the methodology used to measure and characterize individual
consumption. The design of measurement techniques and prediction models that can address these concerns
is the focus of this paper.

B. Research Contributions

Using a simple combination of hardware and software tools, we design an offline technique to measure
the power usage of individual applications. Thesepower profilesare converted into convenient statistical
descriptions of power usage. Similar profiles are obtained for resource usage of the applications. These
profiles are used to build predictive models for average and sustained power consumption of consolidated
applications. Two key insights behind these models are: (i)identifying crucial dependencies between the
power consumption of individual applications and their resource usage patterns and (ii) identifying how
key power-consuming resources would be multiplexed among agiven set of consolidated applications.
Our profiling and prediction techniques are general enough to be useful for a wide variety of applications
and consolidation scenarios.

We conduct an empirical evaluation of our techniques using aprototype server running the Xen virtual
machine monitor [2]. This server is capable of consolidating multiple applications, each encapsulated
within its own virtual machine. Our evaluation employs a wide variety of applications with diverse power
and resource usage behavior to demonstrate the utility and general applicability of our models. Our offline
profiling yields crucial insights into the power usage of applications and its relationship with their resource
usage. Our predictive models, built upon these insights, appear promising. For a variety of consolidation
scenarios, we are able to predict average power consumptions with in a 5% error-margin. Our sustained
power prediction techniques provide close yet safe upper bounds on the sustained power consumption of
consolidated applications. Finally, we demonstrate how these techniques could be employed to improve
system utilization without compromising the safety of its operation.



C. Road-map

The rest of this paper is organized as follows. In Section II,we provide necessary background on power
consumption in enterprise-scale environments and formalize the notions of average and sustained power
consumption. In Section III, we develop an offline measurement technique for deriving power profiles of
applications. In Sections IV and V, we develop and evaluate techniques for predicting average and sustained
power consumption, respectively. In Section VI, we evaluate the utility of our prediction techniques in
packing applications in Xen-based consolidated settings.We discuss related work in Section VII. Finally,
we present concluding remarks in Section VIII.

II. BACKGROUND

A. Power Consumption in Data Centers

In a typical data center, a primary switch board distributespower among several uninterrupted power
supply substations (UPS; 1,000 KW) that, in turn, supply power to collections of power distribution units
(PDUs; 200 KW.) A PDU is associated with a collection of server racks (up to 50.) Each rack has several
chassis that host the individual servers. Power supply could be either at the server-level (as in rack-
mounted systems) or at the chassis-level (as in blade servers.) Throughout the hierarchy of data center,
fuses/circuit-breakers are used to ensure that every entity is protected from surges in current drawn.

We focus on characterizing power consumption at these different hierarchies of a data-center: (a) at the
lowest level, multiple applications are consolidated on a physical server, (b) at the higher levels, multiple
servers are consolidated within a Power Delivery Unit (PDU). The power supplied to a server is utilized
by its various components, including the CPU, memory banks, buses, hard disks, network interface cards,
etc. The CPU is by far the largest consumer of power within a server [6]. We view server power as
composed ofidle power, active/busypower and I/O power. Idle power is the power consumed by the
server when none of the applications are running on it (just running operating system related processes).
We refer to this asidle CPU power. ’CPU power’ is the power consumed by the server when applications
are running on it. It is referred to asactive CPU powerin this paper. Note the difference between what
we call idle power and static/leakage power of the CPUs. We call the dynamic power contributed by the
I/O devices ( disks, NICs etc.,) asI/O power. Note that the static power of the I/O devices when they are
not doing any activities is included in theidle power. Modern CPUs are capable of running in multiple
power modes/states includingDynamic Voltage and Frequency Scaling(DVFS)states andClock throttling
states. DVFS states are determined by the different voltages and frequencies the CPUs can employ. Clock
throttling states are typically represented as percentages, which determine the effective duty cycle of
the processor. I/O devices including disks and NICs have similar power states. Since I/O power in our
environment is significantly smaller than CPU power, we do notbreak it down among individual I/O
devices.

B. Average and Sustained Power Budgets

Two aspects of the power consumption within each level of thespatial hierarchy described above
play an important role in the safe and profitable operation ofthe data center. At time-scales over
which consolidation decisions are made (which, in turn, maybe related to the time-scales at which
workload characteristics change ), it may be desirable to limit the energy consumption within the level to
values that yield acceptable trade-offs between application performance/revenue and energy costs. Such
decision-making, likely to be done once every several minutes or hours (we will simply refer to time-
scales of this order aslong-term), might involve solving complex optimization problems to balance the
performance/revenue yielded by operating a subset of the resources against the costs expended towards
maintenance, operational power, and cooling.2 Regardless of the nuances of this decision-making, it

2Examples of such formulations may be found in several papers on resource management in data centers. Ideas for incorporating power
costs into such dynamic optimization, however, are less common, and seem to be still evolving .



Fig. 2. Illustration of average and sustained power consumptions.

necessitates mechanisms to enforce limits on the long-termenergy expenditure within various levels. We
refer to such a limit for a level as theaverage power budgetapportioned to it by the consolidation
technique.

A second kind of budget, called thesustained power budget, results from the reliability needs of
various hardware components in the data center defined by fuses 3 or circuit breakers associated with that
component. In literature, the phrasepeak poweris sometimes used for this aspect of power usage [14].
As we mentioned earlier, sustained power budgets are definedover a period of few secs or msecs. A
sustained power budget is represented by a tuple(S, L), which specifies a bound on the maximum power
S that could be sustained over any interval of lengthL. This tuple could be obtained from the time-current
characteristics curve of a fuse. Typically this curve is composed of multiple such tuples but for simplicity,
in this paper, we just refer to a single tuple. Figure 2 shows ahypothetical power series to illustrate the
difference between average and sustained power. Average power is obtained by taking the average of the
power samples in the entire time interval (energy/time). Sustained power for any interval of lengthL
corresponds to theminimumpower consumed during that interval. This is because sustained power is the
maximum power that was sustained throughout that interval which is nothing but the minimum power of
that interval.

III. POWER PROFILES: MEASUREMENT AND CHARACTERIZATION

In this section, we develop techniques to measure and characterize the power consumption of individ-
ual applications. Borrowing techniques from existing research, we also derive characterizations of their
resource usage. Finally, we measure and characterize the power and resource usage consumption when
these applications are consolidated. Taken together, these measurements set the background for techniques
we develop in subsequent sections for predicting useful properties of power consumption in consolidated
settings.

A. Empirical Derivation of Power and Resource Usage Profiles

Our approach for characterizing the power and resource usage of an application employs an offline
profiling technique4, similar to those existing in current research [39]. The profiling technique involves

3Fuse is a metal wire that melts when heated by a prescribed current, opening the underlying circuit and thereby protecting the circuit
from over-current situation. Typically a fuse is defined by its time-current characteristic curve which shows the time required to melt the fuse
for any given level of overload current. Circuit breaker is similar to fuse in its function except that it could be reused after a over-current
situation.

4Offline profiling is not unreasonable to assume, in fact, data-center applications do start in isolation. In addition, the usage patterns are
repetitive over ”some” time granularity. Consequently, profiling can be done during the early stages of application deployment



Fig. 3. Illustration of the derivation of power usage distribution from a power profile for tp = t andIp = I.

running the application on an isolated server. By isolated, we mean that the server runs only the system
services necessary for executing the application and no other applications are run on the server during
the profiling process—such isolation is necessary to minimize interference from unrelated tasks when
determining the application’s power and resource usage.5 The application is then subjected to a realistic
workload and a combination of hardware and software monitoring infrastructure is used to track its power
and resource usage. It is important to emphasize that the workload used during profiling should be both
realistic and representative of real-world workloads. While techniques for generating such workloads are
orthogonal to our current research, we note that a number of different well-regarded workload-generation
techniques exist, ranging from trace replay of actual workloads to running the application in a “live”
setting, and from the use of synthetic workload generators to the use of well-known benchmarks. Any
such technique suffices for our purpose as long as it realistically emulates real-world conditions.

Profiling power consumption: We connect a multi-meter to the server used for our offline profiling and
use it to measure the power consumption of the server once every tp time units. We refer to the resulting
time-series of (instantaneous) power consumption samplesas thepower profileof the application. Note
that due to our ability to only measure power usage at the granularity of the entire server (as opposed
to measuring the power usage of constituent components suchas CPU, disk, etc.), our measurements are
only an approximation (in fact, an upper bound) of the power consumed by the application. By minimizing
any other interfering activities during the offline profiling, we attempt to keep this gap small. We find it
useful to convert these power profiles intopower usage distributions. Let w

Ip

A be a random variable that
represents the average power consumption of the application A over durations ofIp time units, where
Ip = k·tp, (k is a positive integers.) Note thatw

Ip

A represents the average consumption overanyconsecutive
interval of sizeIp. It is estimated by shifting a time window of sizeIp over the power profile, and then
constructing a distribution from these values. Figure 3 illustrates the process of converting a power profile
into a power usage distribution. Notice that our technique takes each power sample in a power profile to
be the power consumptionthroughoutthe tp time units preceding it. Clearly, the inaccuracies due to this
assumption grow withtp. As part of our profiling, we also profile the idle power of the server running
the applications (approx. 156W for our server).

Profiling resource usage:We use measurement techniques similar to those existing in research [39]
to record resource scheduling events of interest. By recording CPU scheduling/de-scheduling instants for
the virtual machine running our application, we derive its CPU usage profile, an ON-OFF time series of
its CPU usage. Similarly, packet transmission/reception times and lengths yield its network bandwidth

5In practice, a distributed application with multiple components may require multiple servers to meet its resource needs. We only consider
applications whose resource needs can be met by a single server. Ourtechnique easily extends to applications requiring multiple servers by
simply running the application on the appropriate number of servers and conducting measurements on each of them.



usage profile. We also record time series of memory consumption and disk I/O requests made by the
application. Similar to power measurements, we find it useful to construct resource usage distributions
from these profiles. Finally, we also record application-specific performance metrics (e.g., response time,
throughput.)

B. Discussion on Our Profiling Technique

The efficacy of our prediction technique depends crucially on the credibility as well as the feasibility
of our offline profiling.

• On the feasibility of collecting profiles: The workload used during profiling should be both realisticand
representative of real-world workloads. There are a numberof ways to ensure this, implying that offline
profiling is not unreasonable to assume. While techniques forgenerating such workloads are orthogonal
to our current research, we note that a number of different well-regarded workload-generation techniques
exist, ranging from the use of synthetic workload generators to the use of well-known benchmarks,
and from trace replay of actual workloads to running the application in a “live” setting. Any such
technique suffices for our purpose as long as it realistically emulates real-world conditions. In fact, (with
regard to running an application in a live setting) many datacenter applications do start in isolation.
Consequently, profiling can be done during the early stages ofapplication deployment, similar to that
proposed in current research [39], [34]. Furthermore, workload patterns are often repetitive over some
time granularity (such as daily cycles [19]), providing opportunities to incorporate increased confidence
into gathered profiles by conducting multiple measurements.

• Dealing with varying resource/power usage: Implicit in the power/resource profiles described above is
an assumption of stationarity of power/resource usage behavior. Executions of realistic applications are
likely to exhibit “phases” across which their power and resource usage behavior change significantly. An
example of this is the change in resource needs (and hence power consumption) of a Web server whose
workload exhibits the well-known “time-of-day” variation[19]. Similarly, many scientific applications
alternate between doing significant amounts of I/O (when reading in parameters from files or dumping
results to them) and computation. Clearly, the utility of ourpower profiles depends on effectively
determining such phases. Power and resource profiles could then be derived separately for every such
phase. Enhancing our techniques to deal with these issues ispart of our future work.

• Measurement infrastructure related considerations: Note that due to our ability to only measure power
usage at the granularity of the entire server (as opposed to measuring the power usage of constituent
components such as CPU, disk, etc.), our measurements are only an approximation (in fact, an upper
bound) of the power consumed by the application. By minimizing any other interfering activities during
the offline profiling, we attempt to keep this gap small.

• On application modeling: We do not concern ourselves with identifying relationships between applica-
tion’s performance metrics (such as response time) and resource usage. This is a well-studied area in
itself [33], [4], [9], [11], [38]. We borrow from this literature whenever it is easily done. Generally, we
make simplifying assumptions about these dependencies that we expect not to affect the nature of our
findings.

C. Profiling Applications: Experimental Results

In this section, we profile a diverse set of applications to illustrate the process of deriving an application’s
power consumption behavior. We also present selected information about resource usage and performance.
These experiments provide us with a number of key insights into: (a) how such profiling should be done,
(b) the relationship between an application’s power consumption and its usage of various resources, and
(c) the extent of variability in the power consumption of these applications.

Our testbed consists of several Dell PowerEdge servers (details appear in Table I.) We use one of these
servers for running the applications that we profile. We connect a Signametrics SM2040 multi-meter



Dell PowerEdge SC1450 Features [10]
Processor Two(2) Intel(R) Xeon 64bit 3.4 GHz

Processor Power 80W/110W(Thermal Power)
DVFS states (4) 3.4 GHz, 3.2 Ghz 3.0 Ghz, 2.8 Ghz

Clock throttling states (8) 100%, 87.5% up to 12.5%
Main Memory 2GB

L2 Cache 2MB
Hard Disk WD Caviar 40GB 7200rpm

Hard Disk Power 7W/1W (Active/Standby)
Network Interface Dual embedded Intel Gigabit2 NICs

Power Supply 450Wx1

TABLE I
SPECIFICATIONS OF THE SERVER USED FOR PROFILING.

Signametrics SM2040 Features [28]
Digits of Resolution 6-1/2
Measurement Rates 0.2/sec - 1000/sec

Measurement Range (AC current) 2.5A
Interface PCI

TABLE II
DETAILS OF THE MULTI-METER USED IN OUR PROFILING.

(details appear in Table II) in series to the power supply of this server. The multi-meter sits on the PCI
bus of another server which is solely used for logging purposes. This multi-meter is capable of recording
power consumption as frequently as once every millisecond.

Applications that we profile are encapsulated within separate virtual machines and are run on top of
the Xen VMM (The profiles that we obtain include the contribution of the Xen VMM but this is not a
problem since it will be present when are consolidated.) Theserver running the application is connected
to the multi-meter and we use the remaining servers to generate the workload for the application. We
ensure that all the machines are lightly loaded and that all non-essential system services are turned off to
prevent interference during profiling. We profile a wide variety of applications. In this paper, we report
our observations for the representative applications listed in Table III. In our environment, CPU is the
largest contributor to power consumption, so we find it useful to classify these applications based on
their CPU usage. Applications in the SPECCPU suite areCPU-saturating, in that they are ready to use
the CPU at all times. The remaining applications alternate between using the CPU and being blocked
(e.g., on I/O, synchronization activities, etc.) and theirCPU utilization depends on the workload they
are offered. We profile thesenon-CPU-saturatingapplications at different workload intensities. TPC-W
is profiled with the the number of simultaneous web sessions varying from 10 to 100, in increments of
10. For experiments involving TPC-W, we represent the workload intensity TPC-W(x) where ’x’ is the
number of sessions.

Applications
TPC-W [37] 3-tiered NYU implementation of the TPC-W

transactional Web-based E-commerce benchmark
Streaming Media Home-grown UDP streaming server,

runs with specified no. of clients and data rate
SPECjbb2005 [30] SPEC’s 3-tiered client-server benchmark

emulating server-side java applications
SPEC CPU2000 [29] SPEC CPU2000 suite (Art, Bzip2, Mcf, Mesa)

TABLE III
SALIENT PROPERTIES OF OUR APPLICATIONS. TPC-W, STREAMING, AND SPECJBB ARE NONCPU-SATURATING, WHEREAS

APPLICATIONS IN THE SPEC CPU2000SUITE ARE CPU-SATURATING.
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(b) Streaming, 60 clients
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Fig. 4. Power distributions of SPECjbb, Streaming, Bzip2, and Mcf compared.

We now present key results from our profiling study. Throughout this section, we havetp=Ip=2 msec
(sampling interval). We begin by observing the power distributions of our applications and comparing key
properties. We present a subset of these results in Figure 4.

Given that CPU consumes significantly more power than I/O devices in our environment, not sur-
prisingly, power distributions for non CPU-saturating applications (Figures 4 (a) and (b)) are found to
exhibit higher variance than CPU-saturating applications (Figures 4 (c) and (d).) For all our applications,
we find that their power consumption, when running on the CPU, does not vary a lot over time (that
is, our chosen application do not exhibit multiple phases with respect to power consumption that were
mentioned in Section III-B.) Even an application like Mcf, that is known to exhibit significant temporal
variations in its memory access patterns, is found to not show excessive temporal variation in its power
consumption. Consequently, the power distribution of Mcf issimilar to that of Bzip2, that does not exhibit
such variations. This observation leads us to realize that one primary contributor to variance in the power
usage of an application is achange in its CPU scheduling state.The CPU profile of a non CPU-saturating
application exhibits a ON-OFF behavior, corresponding to the application being in running and blocked
states, respectively. When such an application blocks, its power consumption corresponds to the server’s
idle power. This ON-OFF CPU usage contributes to the higher variance in its power consumption.

Observation 1: Typically, power distributions of non-CPU-saturating applications exhibit higher vari-
ance (and longer tails) than those of CPU-saturating applications.

Power CPU Utilization Normalized Power
state Average 95th 99th Peak Performace degradation (Watt)
S1 0.41 0.92 0.93 0.95 1 185.6
S2 0.44 0.93 0.95 0.98 1.18 175.3
S4 0.92 0.97 0.98 0.99 15.69 173.2

TABLE IV
CPU USAGE OFTPC-W(60)OPERATING AT THREE DIFFERENTDVFS STATES.
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Fig. 5. Power distribution of TCP-W(60) collected at different CPU power states.

Next, we study the impact of changing CPU power states (DVFS and clock throttling) on the power
consumption of applications. We represent the power statesof the CPU as a tuple(p,q), wherep represents
the DVFS state andq represents the percentage duty cycle due to clock throttling. CPU power states are
represented as, S1: (3,4GHz,100%), S2: (3.2GHz,100%), S3:(3.0GHz,100%) and S4: (2.8GHz,50%). As
a representative result, Figure 5 shows the power PDF of TPC-W(60) when it was run with the CPU
at three different CPU power states; Table IV presents its CPU usage profile and performance during
each of these executions. When a non CPU-saturating application is run at a lower CPU power state, the
fraction of time the CPU remains idle decreases. The peak power consumption reduces upon running an
application at a lower power state. However, this reduced peak is sustained for a longer period of time
than in the high power state. becomes less bursty at lower power states.

Observation 2: For non CPU-saturating applications, CPU utilization increases and power distribution
becomes less bursty at lower power states.

Power Bzip2 TPC-W(20)
state Power CPU Norm. Power CPU Norm.

(W) (frac.) degrad. (W) (frac.) degrad.
S1 224.9 0.98 1 164.7 0.14 1
S2 200.1 0.99 1.10 161.9 0.15 1.07
S3 189.2 0.99 1.19 160.5 0.16 1.12
S4 172.1 0.99 2.19 161.3 0.33 2.02

TABLE V
IMPACT OF DVFS STATES ON POWER CONSUMPTION AND PERFORMANCE OF APPLICATIONS.

Finally, we observe the trade-off between power consumption and application performance as the CPU
state is varied. Table V presents this comparison for a CPU-saturating application (Bzip2) and non CPU-
saturating application (TPC-W(60)). The performance metricfor Bzip2 was program completion time;
the metric for TPC-W was average response time. As seen in Table V and Table IV, changes in average
power usage are more pronounced for CPU-saturating application, reduction of 50W (between the two
extreme power states in the table) for Bzip2, compared with a reduction of only 15W for TPC-W(60)
and negligible reduction for TPC-W(20). Non CPU-saturating applications spend significant amounts of
time idling on the CPU and therefore a change to CPU power state has less effect on their average power
consumption. Their average power usage is dominated by idlepower, unless they are subjected to high-
intensity workloads requiring them to consume significant CPU cycles. However, while the performance
degradation is easy to predict for CPU-saturating applications (directly proportional to the ratio of clock
rates), it can depend in non-trivial ways on the workloads ofnon CPU-saturating applications. For example,
with a higher load (60 simultaneous browsing sessions), TPC-W(60) exhibits 15.69 times longer response
time while it suffers only 2.02 times response time degradation with 20 simultaneous sessions. The higher
performance degradation for TPC-W(60) is due it’s very high CPUutilization (92% - almost close to



saturation). This results in the TPC-W threads spending lot of time waiting in the run queue, further
delaying the time for receiving the next I/O request.

Observation 3: Power-performance trade-offs when operating at differentCPU power states differ
significantly for CPU-saturating and non-CPU-saturating applications. While it is easy to predict for
CPU-saturating applications, it can depend in non-trivial ways for non-CPU-saturating applications.

Applications Art+Mesa Bzip2+TPC-W(60)
Consolidated Art Mesa Bzip2 TPC-W(60)
Power (W) 227.1 217 224.1 185.6

Consolidated Power (W) 226.1 224.6

TABLE VI
AVERAGE POWER CONSUMPTION OFCPU-SATURATING APPLICATIONS AND NON-CPU-SATURATING APPLICATIONS BEHAVE

DIFFERENTLY.
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Fig. 6. Sustained power when CPU-saturating applications are co-locatedbehaves differently from when CPU-saturating and non-CPU-
saturating applications are co-located. We report the minimum power consumption over windows of length 2 sec each.

D. Power Profiles of Consolidated Applications: ExperimentalResults

Next, we present our salient observations on power consumption of consolidated applications.
We had seen in Figure 1 the server power consumption in two different consolidation scenarios, each

co-locating a pair of applications. In Table( VI), we present the observed average power consumption
and individual power consumption of two sets of consolidation. The power consumed when two CPU-
saturating applications (Art and Mesa) are co-located was close to the average of individual power usages.
This happened because the sole significant power consuming resource—the CPU—wastime-sharedby
these two applications. When a non-CPU-saturating application (TPC-W(60)) was co-located with a CPU-
saturating application (Bzip2), however, the aggregate power consumption seems to exceed the average
of the power consumption of the individual applications. Roughly this happens because this pair of
applications exercises both CPU and I/O devices concurrently.

Generalizing the above observation, for predicting power consumption of consolidated applications, it is
important to separate out the significant components of power (e.g., CPU versus I/O power) consumed by
individual applications. Furthermore, these components need to be considered along with usage patterns
of the relevant resources.

Observation 4: There exist significant differences in average power consumption when co-locating
CPU-saturating applications versus when co-locating CPU-saturating and non-CPU-saturating applications.

Similar observations apply to the behavior of sustained power consumed by a set of co-located applica-
tions. Figure 6 plots the minimum power usage seen during non-overlapping intervals of length 2 sec each



for two consolidation settings: (a) when CPU-saturating applications are co-located and (b) when a CPU-
saturating and a non CPU-saturating application are co-located. The minimum power usage during each
interval is its sustained power consumption. In each case, we present the sustained usage for individual
applications as well as upon consolidation.

Observation 5: Sustained power consumption for consolidated applications behaves significantly dif-
ferently from the average power consumption.

IV. AVERAGE POWER PREDICTION

In this section we firstdevelop techniques to predict the average power consumption of a server and
then extend it to predict average power consumption across aset of servers.

A. Average Power Prediction for a server

In this section, we develop techniques to predict the average power consumption of a server which
consolidates’n’ applications. Input for these set of algorithms is the powerand resource usage distributions
of the individual applications. We provide experimental results to illustrate the efficacy of these techniques.

1) Baseline Prediction:We consider scenarios where applications are consolidatedon the same CPU on
our dual-processor server (see Table I.) Note that in these cases, the unused CPU continues to consume idle
(leakage) power. We begin with the following simplebaselinepredictor for average power consumption
of a server on whichn applicationsA1, · · · , An are consolidated. Our predictor employs a sum of the
average power consumptions of the individual applications, weighted by their respective CPU utilization,

P̄A1,···,An
=











∑n
i=1(P̄Ai

· Rcpu
Ai

) //when CPU busy
+
P̄ idle · (1 −

∑n
i=1 R

cpu
Ai

) //when CPU idle
(1)

whereP̄Ai
is the average of the power distribution of the applicationAi (obtained from the offline profile);

andR
cpu
Ai

(0 ≤ R
cpu
Ai

≤ 1) is the CPU allocation for it.6 Note thatP̄Ai
is the average of the total system

power measured when applicationAi alone is running on the server and this includes the power consumed
by the applications in all the components of the server. The first term captures the power dissipation of
the server when the CPU is busy, whereas the second term is for when it is idle.

We present in Table VII the efficacy of baseline prediction inthree consolidation settings, each co-
locating a pair of applications.

Applications Baseline prediction Observed Error
consolidated (W) average (W) (%)
Art + Mesa 222.1 226.1 1.7

Art + TPC-W(60) 209.3 224.6 6.8
TPC-W(10) + TPC-W(60) 167.4 190.1 11.9

TABLE VII
BASELINE PREDICTOR OF AVERAGE POWER CONSUMPTION.

In the first consolidation setting, two CPU-saturating applications Art and Mesa, time-share the CPU
equally, and our baseline approach proves to be an excellentpredictor of average power. When Art and
TPC-W(60) are co-located, the baseline approach assumes thatTPC-W(60) would utilize 40% of the CPU
(as seen from its offline profile), while the CPU-saturating Art would consume the remaining 60%. Finally,
when TPC-W(60) and TPC-W(10) were consolidated, the baseline approach uses a CPU utilization of
40% and 7% for these copies, respectively. Note that our prediction technique uses the utilization of the
individual applications from their offline profile to predict their utilization in the consolidated setting.

6These CPU allocations for the applications are set by the administrator in the consolidated setting. Figuring out these allocations for the
applications is done using well studied techniques called application modeling [38].
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Fig. 7. Capturing the non-idle power portion for TPC-W(60).

Even though this simple utilization prediction may not workfor all kinds of applications, it works with
reasonable accuracy for our applications.

In the latter two consolidation settings, where we have non-CPU-saturating applications, we observe
increasing error margins in the baseline prediction. Thereare two main reasons for these inaccuracies.
First, the quantityP̄Ai

represents the average of theentire power distribution for applicationAi including
the durations when the CPU was idle. Non-CPU-saturating applications can have significant such idle
periods. Upon consolidation, however, these idle durations are likely to be occupied by other co-located
applications. Therefore, we need to employ the average power consumption by the applicationonly over
durations when it was using the CPU. The second cause for inaccuracies is that the baseline predictor
does not accurately account for the power consumption due toall components other than the CPUs. Even
though the power contributed by these I/O components are included inP̄Ai

, they are assumed to be totally
in proportion to the CPU (this may even be true for most of the applications, but at this point we do not
know if this was a reasonable assumption to make). In particular, the I/O-intensive TPC-W application
uses the disk and NIC on the server, which contribute to the power consumption besides the CPUs. In the
rest of this section, we will enhance our baseline predictorto address these two sources of inaccuracies.

2) Improving Prediction of Average Power:
Improved Estimate of Active Power:We are interested in determining the average power consumed

by an application only over durations when it was scheduled to run on the CPU. This can be estimated
by considering the power distribution beyond its100 · (1 − U

cpu
A )th percentile, whereU cpu

A is the average
CPU usage forA as obtained from its offline CPU usage profile (note thatU

cpu
A should not be confused

with the allocationR
cpu
A that we encountered above.) The average power for this subset of the entire

distribution corresponds exactly to the power consumed when the application was running on the CPU.
Figure 7 shows this for TPC-W(60) whose CPU utilization was 40%.We denote this quantity byP busy

Ai

and replacePAi
in Eq. 1 with it. In this example,P busy

tpcw was found to be 225W, whilePtpcw was 185W
– note the difference.

Based on observations from several consolidation scenarios, we find that this enhancement results in
improved predictions of average power. As specific examples, recall the prediction of average power for
a server hosting (a) Art and TPC-W(60) and (b) TPC-W(60) and TPC-W(10) (Table VII.) With this
enhancement, our estimates of average power improved from 209W to 226W for (a), and from 167W to
188W for (b) which reduces the error margin to 1.76% and 1.3% respectively.

Note that our enhancement to separate out the power consumption when the CPU was busy, in fact,
(partly) also includes power consumed by I/O devices. This is because the I/O devices can be busy
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Fig. 8. Multiple regression for estimating average active CPU and I/O power. The maximum of the absolute value of the deviation of the
data from the model is 0.45 and this is sufficiently small to be confident the model reasonably fits the data.

simultaneously with the CPU. Fortunately, in our setting thewattage of I/O devices was substantially
smaller than the CPU power consumption (e.g., our disk has a maximum rating of only 7W), rendering
our enhancement a reasonable predictor. In general, however, it is desirable to also separate out the
contribution of I/O devices.

Incorporating I/O Power:As already described in Section II-A, in this research we restrict ourselves
to the dissection of power consumed by an application into three components: idle CPU power, active
CPU power, and I/O power.

We further refine our representation of average power consumed by an application by explicitly incorpo-
rating power consumed on its behalf by I/O devices. It is certainly possible to employ similar techniques
to further partition I/O power into that due to individual I/O devices (e.g., breaking down I/O power
into that consumed by disk and NIC), but we find this unnecessary in our environment. We introduce an
additional componentP i/o

A to represent the I/O portion of the average power consumed byan application.
To estimate this parameterP

i/o
A , we enhance our offline profiling in the following way. We subject the

application under investigation tomultiple workload intensities and formulate equations of the following
form based on the average power usage and CPU, I/O utilizationmeasurements from these.

P̄A = P̄
cpu/busy
A · U cpu

A + P̄ idle · (1 − U
cpu
A ) + P̄

i/o
A · U

i/o
A (2)

where P̄
cpu/busy
A , P̄ idle, P̄

i/o
A represent averages of active CPU power, idle CPU power, and I/Opower,

respectively. UnlikeU cpu
A , U

i/o
A is hard to define since: (i) it represents multiple I/O devices and (ii) utiliza-

tion of I/O devices are not necessarily directly proportional to their throughput. We make the following
simple approximation. We consider the combined data transfer rate (recorded during the profiling) for
disk and NIC induced by the application as proportional to this utilization. The maximum data transfer
rate we see in our profiling experiments is taken to correspond to a utilization of 1(other utilizations are
normalized to this).

We then employ multiple regression to estimate the two unknowns P̄
cpu/busy
A and P̄

i/o
A . This is shown

in Figure 8. We subject TPC-W to different workload intensities ranging from 10 to 60 (Recall from
Section III, these represents the workload intensity of theTPC-W benchmark - in the graph, we normalize
these I/O intensities to 10). The measured power varied from159.7W to 185.6W over this workload range.
The active CPU power and I/O power are estimated to be 255W and 0.6W.

3) Component-aware Average Power Prediction:With the break-up of average power among the
components described above, our predictor operates as follows for a server that consolidates applications
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=
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As two specific examples of the efficacy of these enhancements, our prediction of the average power
consumed by Art and TPC-W(60) improved to 226W (within 0.8% of observed power); the prediction
for TPC-W(60) and TPC-W(60) improved to 189 (within 0.5% of observed power.)

B. Average Power Prediction across multiple servers

Our prediction mechanism can easily be extended to a set of servers or a multi-processor system. For
a system withk servers and each server withl processors hosting applicationsA1, · · · , An, the average
power consumption is given by,

P̄A1,···,An
=


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
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
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(4)



In Figure 9 and 10, we present the performance of our baselineand enhanced predictors for a variety of
consolidation scenarios. Since we do not have an infrastructure to measure power across a set of servers,
we evaluate our prediction technique by running applications on both the processors of our server. This
is analogous to predicting average power consumption of a PDU which is connected to two servers. Our
enhanced prediction is able to predict within 5% (on an average 1%) of the observed power while baseline
approach has up to 20% (on an average 9%) error margin.

C. Average power - Discussion and Lessons Learned

Our study provides the following useful hints on predictingaverage power. It is important to separate
out power expended when the application was not using the CPU from the off-line power distribution of
an application. This is easily achieved if we collect CPU usage profile along with the power profile. It is
also important to separate out the consumption of resourcesother than the CPU. While non-CPU devices
contribute only a small amount to the overall power in our environment, including them in the analysis
may be crucial in platforms where they are more significant contributors. Even in our environment, we
were able to improve our prediction by incorporating estimates of I/O power in our calculations.

Based on our empirical evaluation, we conclude that it is possible to predict average power with
reasonable accuracy using simple profiling and prediction techniques. We expect our technique to be
easily extended for settings with other consumers of power such as graphic cards, storage over networks,
networking equipment, etc.

V. SUSTAINED POWER PREDICTION

Next, we turn our attention to sustained power budgets in consolidated servers. Recall that sustained
power budgets are enforced at different hierarchies of a data center to ensure that the applications
consolidated under that level do not cause the capacity of the corresponding PDU to be exceeded. of
the PDU deployed at that hierarchy In Section V-A we develop mechanisms to predict sustained power
consumption of applications consolidated on a server. At a single server level, sustained power prediction
boils down to finding the possibility of a single server consuming enough power to reach the limit of
its power supply. Though this may seem unlikely given the fact that the capacity of a server-level power
supply is typically much higher than its peak power consumption [13], this method will later be extended
to predict the possibility of applications consolidated ona set of servers reaching the capacity of their
PDU which is very much a concern. Also, taking a cue from the aforementioned over-provisioning present
in existing power supplies, recent research [21] has suggested using lower capacity (and cheaper) power
supplies for servers to cut costs. Such an approach could make use of effective prediction techniques to
determine the possibility of the limit of a power supply being violated. In Section V-B we extend our
approach to predict sustained power violation at the PDU or rack level (across a set of servers.)

A. Sustained Power Prediction for a server

Recall that our goal is to predict the probabilityPrA1,···,An
(S, L), upon consolidatingn applications

A1, · · · , An on a server, ofS or more units of power being consumed for anyL consecutive time units.
We will refer toPr

−
as theprobability of violating the sustained power budget.Note the trivial feasibility

requirement on the sustained power budget that it always be higher than the idle power (as defined in
Section II-A)—if this does not hold, the server would be inoperable. Recall from Section IV-A3 that I/O
power contribution for our set of applications and servers is very low and therefore we do not consider
it for predicting sustained power. Note that we are not ignoring power contributed by I/O components.
The entire server power (from all the components in the server) is assumed to be proportional to the CPU
utilization.



1) Baseline Prediction:To bring out the difficulties in predicting the probability of a given sustained
power consumption, we evaluate a simple baseline approach that operates as follows. It first estimates the
number of slotsmi each of lengthtp (recall thattp is our power measurement granularity) during which
the applicationAi is expected to occupy the CPU over a duration ofL time units,

mi =
L · Rcpu

Ai

tp

whereR
cpu
Ai

is the CPU allocation for applicationAi in the consolidated setting. Assuming stationarity of
power consumption across durations of lengthtp for each of the applications, the probability of violation
is estimated as,

PrA1,···,An
(S, L) =

n
∏

i=1

{Pr(w
tp
Ai

≥ S)}mi (5)

wherePr(w
tp
Ai

≥ S) is the probability that applicationAi’s power consumption obtained from its power
distribution at the granularity oftp time units exceeds the sustained-power limit,S. Note that the above
assumes independence among the execution patterns of co-located applications—a reasonable assumption
in our settings. We make this assumption throughout this section. There are three key shortcomings in
the baseline approach.

Shortcoming (A) due to assuming saturated CPU:First, the baseline approach does not capture the
likelihood that the CPU could be idle for some portion of givendurations of lengthL. Any such duration
should not qualify as one where a violation of sustained power budget occurs (recall we assume that the
sustained budget is greater than idle power.)

Shortcoming (B) due to stationarity assumption:Second, the assumption of stationarity of power
consumption at the granularity oftp time units holds only for a very selected type of applications. Among
our set of applications, this applies only to some of the CPU-saturating applications which does not
exhibit large temporal variation in its power consumption.Recall our observation from Section III that
the CPU-saturating Mcf application exhibits temporal variations in its memory access patterns resulting
in variations in its power consumption measured at the granularity of tp units. We have already seen that
all our non-CPU-saturating applications exhibit significant variations in power usage.

Shortcoming (C) due to ignoring CPU usage variation:Finally, the baseline approach assumes that
the CPU usage of each of the co-located applications would bepreciselyequal to their CPU allocations
(Rcpu

Ai
for applicationAi) over any period of lengthL. Again, while this assumption is fine for a set of

co-located CPU-saturating applications whose CPU usage patterns do not exhibit variability, it introduces
inaccuracies when there is even one application that does not adhere to such behavior. In particular, it
becomes inaccurate when predicting the sustained power behavior of a set consisting of one or more
non-CPU-saturating applications (when these applicationsare blocked on I/O activities, those idle periods
will likely be used by other co-located applications resulting in a different CPU allocation than specified
by R

cpu
Ai

for the applications).
Notice that (A) necessarily under-estimates and (B) necessarily over-estimates the probability of viola-

tion. (C), however, can cause errors in either direction. In the rest of this section, we will address these
three shortcomings.

2) Improving Prediction of Sustained Power:
Addressing shortcoming (A):We had encountered a similar problem when dealing with reduction

of average power. The idle periods included in the CPU profilesof non-CPU-saturating applications
must be handled correctly because upon consolidation they are likely to be occupied by other co-located
applications. Exactly as in Section IV-A2, we remove this idle portion by only considering the power
distribution beyond its100(1−U

cpu
A )th percentile, whereU cpu

A is the average CPU usage forA as obtained
from its CPU usage profile. Figure 11 presents the power distribution of the TPC-W application before
and after removing the idle-power portion.
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Fig. 11. Removing idle portion rom TPCW time series.

Addressing shortcoming (B):This problem arose because we used the distribution of powerover tp
units to predict the probability that an applicationAi consumes power aboveS units for Tmi

= mi · tp
consecutive time units during which it occupies the CPU. We can improve this prediction by using the
power profile forAi to explicitly find this probability, rather than relying on the power distribution over
tp time units. Equivalently, givenmi, we are interested in the power distribution overmi · tp time units.
This distribution is easily derived from the power profile bymoving a window the size ofmi · tp time
units, shifting it bytp units. For each such window, we find the maximum sustained power throughout
that duration by taking theminimumpower sample within that window(as explained in Section II-B). The
samples obtained from these windows are converted into a distribution of sustained power overmi · tp
time units. With this modification, our predictor takes the following form (compare with Eq. 5),

PrA1,···,An
(S, L) =

n
∏

i=1

{Pr(w
Tmi

Ai
≥ S)} (6)

We provide an example to illustrate the seriousness of this problem, For TPC-W, the probability of
violating a budget of (200W, 2ms) as obtained from TPC-W powerprofile collected at 2ms is 99.64%.
The probability of violating 200W for a period of 1 second would be approximated as(.9964)500 which is
16.47% But when we compute the actual sustained power by moving window of size 1 sec over TPC-W
time series, we find this probability to be 21.55%.

Addressing shortcoming (C):We find this to be the most interesting and challenging shortcoming
to address. Recall that this shortcoming arose because we assumed that the applications would always
consume the CPU exactly in accordance with their their CPU allocations (Rcpu

Ai
for applicationAi). We

attempt to alleviate this problem by incorporating into ourprediction the possibility of multiple ways in
which the CPU could be shared among the applications over durations of lengthL. We derive this using
the individual applications’ CPU profile collected over duration of lengthL (from offline profile). Let
Pr{UL

(A1,···,An) = (c1, · · · , cn)} be the probability that(c1, · · · , cn), are the fractional CPU consumption
of applications(A1, · · · , An), respectively, over all intervals of lengthL in our consolidated setting. We
estimate this for all possible combination of(c1, · · · , cn) as follows.

The CPU utilization of the applications in the consolidated setting depends mainly on two things: (a) The
CPU reservation of applications in the consolidated setting(b) The CPU requirement of the applications
(both over periods of lengthL). When the reservation is higher than the requirement, then it means the
application has spare CPU which could be used by other applications whose reservations are smaller than
their requirements. Most reservation-based schedulers (as ours) divides this spare CPU equally among
these needy applications. Our estimate for the CPU utilization of applications in the consolidated setting
takes the above into account. We start by constructing the distributions of fractional CPU usages (CPU
requirement) for every application over durations of length L. This distribution can be easily derived
from the CPU usage profiles of the applications. LetPr(UL

Ai
≥ c) represent the probability that the



Fig. 12. Estimation of the fractional CPU usages of the applicationsA1 andA2 over durations of lengthL upon consolidation on a single
server: size of the utilization binsδ = 0.01 for this experiment.

CPU utilization of applicationAi over duration of lengthL exceedsc(0 ≤ c ≤ 1). We construct CPU
requirement bins (RB) for every application over bins of length δ, RBAi

[δ, 2δ, 3δ, · · · , (1 − δ), 1], where
RBAi

[j] = Pr(UL
Ai

≥ (j − δ)) − Pr(UL
Ai

≥ j), that is each bin represents the probability of utilization
being within its bin boundaries.
For simplicity, we conduct the rest of the discussion in the context of two applications,A1 andA2. We are
interested in findingPr(UL

(A1,A2) = (c1, c2)) (which is the probability that CPU utilization of application
A1 is c1 and that ofA2 is c2) for c1 = δ, 2δ, · · · 1 andc2 = δ, 2δ, · · · 1. It could be obtained by,

RBA1
[δ, · · · , 1] · (RBA2

[δ, · · · , 1])
′

where(RBA2
[δ, · · · , 1])

′

represents the transpose of the arrayRBA2
[δ, · · · , 1]. Multiplying these two one

dimensional matrices will generate a two dimensional matrix which provides the probability for all
utilization pairs(c1, c2). 7 Note that inPr{UL

(A1,A2) = (c1, c2)}, (c1+c2) ranges from 0 to 2. But in a
consolidated setting, utilization of the CPU cannot go beyond 100%. Letr1 andr2 be the reservations for
the applicationA1 andA2 respectively. We estimate the utilization of the applications in the consolidated
setting as follows,

1: for all (c1,c2) such thatc1 + c2 > 1 do
2: if (c1 > r1)and(c2 > r2) then
3: Pr(UL

(A1,A2) = (r1, r2)) = Pr(UL
(A1,A2) = (r1, r2)) + Pr(UL

(A1,A2) = (c1, c2))
4: else if (c1 > r1)and(c2 < r2) then
5: Pr(UL

(A1,A2) = (1 − c2, c2)) = Pr(UL
(A1,A2) = (1 − c2, c2)) + Pr(UL

(A1,A2) = (c1, c2))
6: else if (c1 < r1)and(c2 > r2) then
7: Pr(UL

(A1,A2) = (c1, 1 − c1)) = Pr(UL
(A1,A2) = (c1, 1 − c1)) + Pr(UL

(A1,A2) = (c1, c2))
8: end if
9: end for
This algorithm is graphically illustrated in the Figure 12.The figure assumesr1 = 0.5 and r2 = 0.5.

Lines 2 and 3 handles the case when the (fractional) CPU usagesof both the application is above their

7This extends easily ton applications; we omit these details here.
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Fig. 13. Comparison of measured and predicted sustained power consumption (L=1 sec) for a server consolidating Bzip2 and TPC-W with
reservations 50 and 50 respectively. For clarity, we just present the tail of these CDFs.

reservations (shown in the top right corner box of the figure), in this case the CPU usages of the applications
in the consolidated setting would be(r1, r2). Lines 4 through 7 handles the case when the CPU requirement
of one application is below its reservation and that of the other application is above its reservation, in
which case, the needy application gets CPU from the surplus ofthe other (we add this probability as
shown by the arrows in the figure). Also notice that for all durations with some idle portion (c1 + c2 < 1),
the probability of sustained power violation would be zero (recall the trivial feasibility requirement for
sustained power budget which requires it to be higher than idle power.) This is captured by line 1 of the
algorithm.

For any duration of lengthL units where the applicationsA1 and A2 occupy the CPU forc1 and c2

time units, the probability of sustained power (S watts) violation is given by,PrA1,A2
(S, L) = Pr(wc1

A1
≥

S) ∗ Pr(wc2
A2

≥ S) (similar to what was described in Eq. 6.) We use the above equation to find the
probability of sustained power violation for all possible(c1, c2) pairs as follows,

1: PrA1,A2
(S, L) = 0

2: for i = 0 to 1; j = 1 to 0; i=i+δ; j=j-δ do
3: PrA1,A2

(S, L) = PrA1,A2
(S, L) + Pr(wi

A1
≥ S) · Pr(wj

A2
≥ S) · Pr{UL

(A1,A2) = (i, j)}
4: end for
Line 2 of the above algorithm loops through all possible(c1, c2) pairs that adds up to 1 (possible

violation regions). The algorithm predicts the probability of sustained power budget violation for a given
value of the power budgetS. We run the above algorithm withL=1 sec and varyingS from 0 to 300W
for our experiments. Figure 13 compares our predictions with the observed sustained power for a server
consolidating TPC-W and Bzip2. The graph also shows the CDF of sustained power when Bzip2 and
TPC-W are running alone. Notice from Figure 13 that TPC-W+Bzip2 consolidation has a lower sustained
power than TPC-W running alone. This provides an interestinginsight that by interleaving low power-
consuming applications with high power consuming applications, we can reduce the probability of violating
a given sustained power budget. Figure 14 and Table VIII evaluate our prediction mechanism for a server
consolidating 3 applications. We are able to bound the tail of the sustained power consumption within
2% error margin (Table VIII).

B. Sustained Power Prediction across multiple servers

Having predicted the sustained power consumption of a single server, we next predict the probabil-
ity of sustained power budget violation across a set of servers. Our goal is to predict the probability
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Fig. 14. Comparison of measured and predicted sustained power consumption (L=1 sec) for a server consolidating TPC-W(60), TPC-W(60)
and Bzip2 with reservations 60, 20 and 20 respectively.

Probability of Measured Predicted Error
violation Sustained power (W) sustained power (W) (%)

20% 196.3 199.0 1.37
10% 197.5 200.1 1.31
1% 200.2 202.8 1.29
0% 204.0 207.0 1.47

TABLE VIII
EFFICACY OF SUSTAINED POWER PREDICTION ON A SERVER CONSOLIDATING TPC-W(60), TPC-W(60)AND BZIP2 WITH

RESERVATIONS60, 20AND 20 RESPECTIVELY.

PrB1,···,Bm
(S, L), (that upon consolidatingm serversB1, · · · , Bm on a PDU) ofS or more units of power

being consumed by the PDU for anyL consecutive time units. Unlike the case when applications time share
the server, in this case, the applications are running simultaneously and therefore the power consumption
would add up. Recall from section II-B that we are interested in finding the minimum power consumption
of the PDU over periods on lengthL time units. This minimum power consumption of the PDU (consisting
of set of servers) is upper bounded by the sum of average power(over intervals of lengthL time units)
of the individual servers. The proof is very simple, Considertwo setsU andV consisting ofk elements
each. LetW be a set obtained by adding any permutation of the setU with any permutation of the set
V (Note that setW also hask elements). The minimum value in setW , Wmin is upper bounded by its
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Fig. 15. Comparison of measured and sustained power consumption (L=1 sec) of a PDU connected to server1 (running TPC-W(60) and
SM(100)) and server2 (running SM(100) and Bzip2). SM(x) represents Streaming Media Server streaming to x clients



Probability of Measured Predicted Error
violation Sustained power (W) sustained power (W) (%)

20% 214.0 226.2 5.70
10% 215.5 227.6 5.61
1% 217.5 230.4 5.93
0% 219.0 235.2 7.39

TABLE IX
EFFICACY OF SUSTAINED POWER PREDICTION ON APDU CONSOLIDATING SERVER1 (RUNNING TPC-W(60)AND SM(100))AND

SERVER2 (RUNNING SM(100)AND BZIP2). SM(X) REPRESENTSSTREAMING MEDIA SERVER STREAMING TO X CLIENTS

average,Wavg (Wmin ≤ Wavg). Note that average of the setW is nothing but the sum of the averages of
the setsU and V . (Wavg = Uavg + Vavg) Therefore the sum of the averages of the setsU and V forms
the upper bound of the minimum in setW (Wmin ≤ Uavg + Vavg).

We use the above idea to bound the maximum power sustained by the PDU. This can be achieved in
2 steps:
(Step1)Finding the distribution of average power consumption of the individual servers (connected to the
PDU) over intervals of lengthL time units.
(Step2)Add all these average power distributions. Assuming individual consumptions to be independent—
a reasonable assumption—the resulting distribution of theaggregate can be computed from elementary
probability theory.8

Step1 can be easily achieved by slightly modifying the techniques developed in section V-A. Initially
we estimate the CPU utilization of the consolidated applications, Pr(UL

(A1,···,An) = (c1, · · · , cn)) for all
(c1, · · · , cn) and then instead of finding the minimum power consumption of the server, we compute the
average power consumption of the server using the distribution of average power consumption of the
individual applications (obtained from offline profiling) over intervals of lengthL time units. Step2 is
straightforward.

Figure 15 and Table IX evaluates our prediction mechanism for a server consisting of 2 processors each
consolidating 2 applications. Since we do not have an infrastructure that could measure power consumption
of a set of servers (we can measure power consumption only fora single server), we did our evaluation
on a single server with 2 processors. This is analogous to an environment with two servers connected to a
PDU. Even though our approach provides an upper bound for thesustained power consumption, it is not
a tight upper bound. As part of our future work, we intend to develop mechanisms that provide a much
tighter upper bound on the sustained power consumption.

VI. POWER-AWARE PACKING

We now examine the utility of our prediction techniques in making consolidation decisions. A key
component of a consolidation-based system is apackingalgorithm that dynamically decides, based on
changing workload conditions, which server machines the hosted applications should be made to run
till its next invocation. In an energy-conscious platform,the packing algorithm should incorporate both
performance (resource) and power (average and sustained) considerations into its decision-making.

To illustrate how our prediction techniques can facilitateperformance and power-aware packing, we
present the results of one representative experiment wheresuch packing is evaluated. We consider the
problem of packing one or more applications from the following set on our server: two copies of TPC-W,
each serving 20 sessions and one Streaming applications serving 60 clients. As usual, we profile the power

8This is done using the z-transform. The z-transform of a random variable U is the polynomialZ(U) = a0 + za1 + z2a2 + · · · where the
coefficient of theith term represents the probability that the random variable equalsi (i.e., U(i)). If U1, U2, ..., Uk+1 arek +1 independent
random variables, andY =

∑k+1

i=1
Ui, then Z(Y ) =

∏k+1

i=1
Z(Ui). The distribution ofY can then be computed using a polynomial

multiplication of the z-transforms ofU1, U2, · · · , Uk+1.
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Fig. 16. Illustration of packing decisions made by our predicting techniqueinvolving 3 applications.

consumption and resource usages of these applications withthe server operating at various power states
(see Table X.) The salient features of the power consumptionof these applications are as follows.

Since our work is not aimed at investigating the relationship between application-level performance goals
and resources needed to meet them, we choose workloads that were empirically found to be sustainable
even at the lowest CPU power state of the server. As mentioned before, we consider this research as
complementary but orthogonal to our work.

We choose the following power budgets: (a) an average power budget of 180W and (b) a sustained
power budget of 185W per second It must be mentioned here thatwe do not claim that these budgets
(particularly, the sustained budget) are realistic; in fact, these may appear to be rather low to the reader.
These values have just been chosen to bring out important aspects of our packing strategy without having
to conduct extremely large-scale consolidation experiments. However, we believe that our results represent
general trends that are likely to apply in more realistic consolidation scenarios.

We pick these budgets so that they are feasible for any of our applications individually with the
CPU operating at the highest power-consuming state. We use our prediction algorithms to determine the
average and sustained power consumption upon packing different subsets of the applications with the CPU
operating at various available power states. For this experiment, the clock throttling state is not changed.

DVFS0 DVFS3
Applications consolidated avg. sust. avg. sust.

(W) (W) (W) (W)
TCP-W(20)+TPC-W(20) 178.0 190.1 176.2 174.5

TPC-W(20)+TPC-W(20)+Streaming 193.5 193.2 177.0 172.0

TABLE X
PREDICTED VALUES FOR SUSTAINED AND AVERAGE POWER CONSUMPTION FOR TWO SUBSET OF APPLICATIONS AT TWO PROCESSOR

POWER STATES

Our techniques predict that the only feasible configurationwhere all three of our applications could be
co-located on the same server while meeting both the power budgets is when the CPU operates at DVFS3
(CPU operating at 2.8GHz.) Furthermore, we predict that packing any two of our applications with the
CPU at the highest state DVFS0 (CPU operating at 3.4GHz) would result in a violation of at least one
of the power budgets. We present our predictions for two of these subsetsS1 (TPC-W(20)+TPC-W(20))
and S2(TPC-W(20)+TPC-W(20)+streaming) and the two CPU DVFS states in Table X. Based on our
prediction we recommend a packing of all three applicationswith the server using the DVFS3 state.

We then conduct a series of experiments to evaluate the efficacy of our predictions. Figure 16 presents
our observations for the two application setsS1 andS2. The figure shows that both the susbsets can be
operated at DVFS3 within the power limits. It also shows the performance degradation of the subsets (here,
we just mention the average performance degradation of the two identical instances of TPC-W(20) in terms
of their response times). Depending on the performance degradation of the subsets, the administrator may



either chooseS1 or S2. We consider a few things worth mentioning about these results. First, and most
direct, we find them encouraging because: (i) packings for which our predictors indicated at least one
type of budget violation, were indeed found to result in a budget being exceeded (S1 at both DVFS0 and
DVFS3) and (ii) packings for which it was indicated there would not be violations(S2 at both DVFS0
and DVFS3), in fact, operated safely.

Second, these results suggest that our profiling and prediction techniques are effective at comparing the
power behavior of a variety of consolidation settings underdifferent DVFS states. Techniques with such
capabilities are likely to be of value in the power-aware platforms our research is concerned with.

Finally, we claim that as a side-effect of striving to operate within specified power budgets, packing
algorithms that use profiling and prediction, (in combination with application models that can translate
performance goals into resource needs ) are likely to find operating regimes that avoid excessive over-
provisioning of power. Whereas some amount of over-provisioning is desirable to handle transient excess
draw of power, lowering its degree without adversely affecting safety of operation can be very beneficial.
This is similar and complementary to research that employs careful measurement and characterization
of resource needs to achieve desirable trade-offs between resource utilization and likelihood of resource
shortage.

VII. R ELATED WORK

While limitation on battery lifetime has been the main concern for mobile [16] and embedded systems,
research on server systems [5] have mainly been focusing on reducing energy consumption and handling
reliability constraints imposed due to electrical and cooling limits.

Reducing energy consumption: The tremendous increase in power consumption over the last few
years in mainly attributed to the growth in the number of servers, with only a small percentage associated
with increase in the power use per unit. In an attempt to reduce the number of active servers, mechanism
to dynamically turns ON/OFF servers based on utilization were proposed [6], [7], [25]. while the above
research looked at reducing the number of servers, Femalet al. suggested that over-provisioning servers
may increase the performance of throughput-oriented applications without compromising on the power
budget of the infrastructure [15]. Interplay of power and performance both in the arena of uni-processors
and multi-processor has been studied in great detail [1], [3], [32]. Chaseet al. considered energy-aware
resource provisioning in a data center in accordance to negotiated QoS agreements [7]. Stoesset al. [35]
did accounting and capping of energy consumption for consolidated environments. Nathujiet al. looked
at extending power management capabitites for the virtual machines [24]. We believe that the above
techniques for energy management will greatly benefit from our average power prediction both in deciding
on the energy budgets for the servers as well as on the placement of applications minimizing performance
degradation.

Reliability concerns: Felteret al.proposed a technique thatreducesthe peak power demand on a server
by dynamically distributing the power among the system components based on their requirement [14].
Lefurgy et al. recently presented a technique that uses system-level power measurement tocap the
peak power consumption of the server while maintaining the system at the highest possible performance
state [21]. Wanget al. extended the power capping mechanism to a cluster of servers[40]. Ranganathan
et al. and Fanet al. did extensive profiling of real-world server clusters and they both observed that the
probability of synchronized peakpower consumption of all the servers happening at the same time is
very low [27], [13]. Leveraging this fact, they showed that significant more applications/servers could be
consolidated for the same power supply. Recent work from Ramyaet al. looked at coordinating multiple
power management activities (average and peak) happening throughout the hierarchy of a data center [26].
To the best of our knowledge, we are the first to investigate onpossible prediction of simultaneous peak
power consumption for a set of consolidated applications. We believe that our prediction techniques will
greatly complement current research on deciding the right degree of consolidation keeping in mind the



reliability limits of the infrastructure. Thermal reliability has extensively been looked at both server level
and data-center level including techniques to dynamicallythrottle or move applications upon reliability
violations [8], [23], [18], [3] Recent servers are currentlybeing shipped with in-built capability to measure
power at a very fine granularity. IBM’s Active Energy Manager uses this capability to dynamically measure
and control power consumption of a server [20].

Modeling/Characterization of power: Modeling of power consumption has been done at various
granularities from a data-center, server, individual components to an instruction [12], [17], [41] either by
using direct measurements or estimations from performancecounters or a combination of both. We borrow
ideas from the existing research correlating resource usage and power consumption to extend it to predict
for consolidated setting. SPEC’s ongoing effort, SPECPower aims at characterizing the performance and
power behavior of servers at different utilizations [31]. To the best of our knowledge, we are the first
ones to do such an extensive characterization of power consumption in a consolidated environment.

VIII. C ONCLUDING REMARKS AND FUTURE WORK

Our work was motivated by the need to ensure that emergent techniques for consolidating applications
in enterprise-scale data centers exhibit robust and predictable power dissipation behavior. Consolidation
of workloads has emerged as a key mechanism to dampen the rapidly growing energy expenditure
within enterprise-scale data centers. However, before these consolidation-based techniques can be gainfully
utilized, we must be able to predict and enforce appropriatelimits on power consumption at various levels
within the data center. In particular, two kinds of power budgets—average budgets defined over relatively
coarse time-scales and sustained budgets defined over shorttime-scales—were found to be crucial to the
safe and profitable operation of data centers.

Using a simple combination of hardware and software measurement infrastructure, we derivedpower
profiles—statistical descriptions of the power consumption of applications. We used insights gained from
detailed profiling of several applications—both individual and consolidated—to develop predictive models
for average and sustained power consumption of our server. We implemented our techniques on a Xen-
based platform and evaluated them in a wide variety of consolidation settings. Our results were promising.
For a variety of consolidation scenarios, we were able to predict average power consumptions with an
5% error-margin. Our sustained power prediction techniques predict close yet safe upper bounds on the
sustained power consumption of consolidated applications.

As part of our immediate future work, we plan to investigate on the design of resource schedulers
within servers that can help enforce specified power budgetswithout arbitrarily degrading performance.
In a well-designed system, these schedulers would complement the packing techniques by reacting to
short-term/unanticipated fluctuations in the power usage behavior that could violated budgets. We plan
to investigate how best to make our packing techniques work in tandem with such power-aware resource
per-server schedulers.
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