Network Coding With Wireless Applications

William Wu¹

¹Department of Electrical Engineering Information Systems Laboratory Stanford University

メロメ メ都 メメ 老 メメ 差 メー

目

Motivation

▶ Network coding is a theory for communicating information across networks more efficiently.

イロメ イ何メ イヨメ イヨメー

 299

目

Motivation

- \triangleright Network coding is a theory for communicating information across networks more efficiently.
- ▶ Although it has been around since the year 2000, there still isn't a single deployed product that uses it.

イロメ イ何メ イヨメ イヨメー

Motivation

- ▶ Network coding is a theory for communicating information across networks more efficiently.
- ▶ Although it has been around since the year 2000, there still isn't a single deployed product that uses it.

Question:

イロメ イ何メ イヨメ イヨメー

Motivation

- \triangleright Network coding is a theory for communicating information across networks more efficiently.
- ▶ Although it has been around since the year 2000, there still isn't a single deployed product that uses it.

Question:

 \triangleright Is network coding only an impractical theory?

イロメ イ何メ イヨメ イヨメー

Motivation

- \triangleright Network coding is a theory for communicating information across networks more efficiently.
- ▶ Although it has been around since the year 2000, there still isn't a single deployed product that uses it.

Question:

- \triangleright Is network coding only an impractical theory?
- \triangleright Or does industry just need to learn about it?

イロメ イ何メ イヨメ イヨメー

Motivation

- \triangleright Network coding is a theory for communicating information across networks more efficiently.
- ▶ Although it has been around since the year 2000, there still isn't a single deployed product that uses it.

Question:

- \triangleright Is network coding only an impractical theory?
- \triangleright Or does industry just need to learn about it?

\blacktriangleright Goal of Talk:

Understand the main results in network coding to date.

イロト イ押 トイヨ トイヨ トーヨ

[Outline](#page-7-0)

[What is Network Coding?](#page-8-0) [Main Theorem of Network Coding](#page-52-0) [Wireless Applications](#page-77-0) [Conclusion](#page-101-0)

Outline of Talk

- ► What is Network Coding?
- ▶ Theory of Network Coding
- \blacktriangleright Wireless Applications
- \blacktriangleright Conclusion

メロメ メ御 メメ きょうぼきょう

目

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

What is Network Coding?

- \triangleright Network coding is a strategy for sending data across a communication network.
- Instead of forwarding the data, we **transform** it along the way.
- \blacktriangleright This allows us to communicate more efficiently!

イロト イ押 トイヨ トイヨト

[Basic Idea](#page-8-0) [Definition of XOR](#page-11-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Preliminaries: The XOR Operator

メロメ メ御う メミメ メミメー

 \equiv

[Basic Idea](#page-8-0) [Definition of XOR](#page-11-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Preliminaries: The XOR Operator

- \triangleright In network coding, we often like to transform data by using the "XOR" operator, denoted by \oplus .
- \triangleright XOR is a binary operator that takes two bits as input, and returns one bit as output, as defined by this truth table:

イロメ イ何メ イヨメ イヨメー

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Preliminaries: The XOR Operator

- \triangleright In network coding, we often like to transform data by using the "XOR" operator, denoted by \oplus .
- \triangleright XOR is a binary operator that takes two bits as input, and returns one bit as output, as defined by this truth table:

► Summary: (Different inputs) \Rightarrow 1. (Same inputs) \Rightarrow 0.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \triangleright XOR naturally extends in a pairwise fashion to vectors of bits:

 $a = 010110$ $$ $a \oplus b = 101101$

メロメ メ御う メミメ メミメー

 \equiv

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \triangleright XOR naturally extends in a pairwise fashion to vectors of bits:

 $a = 010110$ $$ $a \oplus b = 101101$

► Fact: $\mathbf{a} \oplus (\mathbf{a} \oplus \mathbf{b}) = (\mathbf{a} \oplus \mathbf{a}) \oplus \mathbf{b} = 0 \oplus \mathbf{b} = \mathbf{b}$.

イロト イ押 トイヨ トイヨ トー

G.

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \triangleright XOR naturally extends in a pairwise fashion to vectors of bits:

 $a = 010110$ $$ $a \oplus b = 101101$

► Fact: $\mathbf{a} \oplus (\mathbf{a} \oplus \mathbf{b}) = (\mathbf{a} \oplus \mathbf{a}) \oplus \mathbf{b} = 0 \oplus \mathbf{b} = \mathbf{b}$.

▶ Main Point:

If I know a, and someone gives me $a \oplus b$, I can decode b.

イロト イ押 トイヨ トイヨ トー

目

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Wireless Exchange

- \blacktriangleright Alice and Bob are wireless users.
- \blacktriangleright Alice wants to send message **a** to Bob.
- \triangleright Bob wants to send message **b** to Alice.
- ▶ Because Alice and Bob are too far away from each other, they must send their messages to a router.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

メロメ メタメ メモメ メモメー

€.

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

メロメ メ都 メメ 重 メメ 重 メー

€.

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

メロメ メタメ メミメ メミメー

重

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

メロメ メタメ メミメ メミメー

重

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

William Wu [Network Coding With Wireless Applications](#page-0-0)

メロメ メ御 メメ きょうくきょう

活

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Number of Transmissions = 4. Can [w](#page-20-0)e [d](#page-22-0)[o](#page-15-0) [b](#page-21-0)[e](#page-22-0)[t](#page-14-0)[te](#page-15-0)[r](#page-35-0)[?](#page-36-0) 지경 게

重

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

メロメ メ都 メメ 重 メメ 重 メー

€.

 299

William Wu [Network Coding With Wireless Applications](#page-0-0)

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

メロメ メタメ メミメ メミメー

重

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Network coding at the router: broadcast $\mathbf{a} \oplus \mathbf{b}$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 299

活

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

- ► Network coding at the router: broadcast $a \oplus b$.
- \blacktriangleright Alice knows a already (she sent it!).
- ► So Alice can decode $\mathbf{b} = \mathbf{a} \oplus (\mathbf{a} \oplus \mathbf{b})$. Similarly for Bob.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

- ► Network coding at the router: broadcast $a \oplus b$.
- \triangleright Alice knows a already (she sent it!).
- ► So Alice can decode $\mathbf{b} = \mathbf{a} \oplus (\mathbf{a} \oplus \mathbf{b})$. Similarly for Bob.
- \blacktriangleright Number of Transmissions = 3.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Multicast: Butterfly

- ▶ Senders: S1, S2
- Receivers: $R1, R2$
- \blacktriangleright Multicasting:
	- \triangleright S1 wants to send a to both receivers.
	- \triangleright S2 wants to send **b** to both receivers.

イロメ イ何メ イヨメ イヨメ

 Ω

 \blacktriangleright Every edge in the communication network has the same capacity.

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

The immediate recipients can do nothing but forward the data.

メロメ メ御 メメ きょうぼきょう

 \equiv

The immediate recipients can do nothing but forward the data.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Ε

The immediate recipients can do nothing but forward the data.

But what should the green node do? (ask audience)

メロメ メ母メ メミメ メミメ

Suppose he forwards one of the two messages; let's say $a \dots$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 299

∍

Suppose he forwards one of the two messages; let's say $a \dots$

Then $R2$ receives both a and **b**, but $R1$ only receives a.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

> ▶ Better idea: Use XOR to mix the information.

> > メロメ メ御 メメ きょうぼきょう

 \equiv

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

- ► Better idea: Use XOR to mix the information.
- ► R1 receives **a** and $\mathbf{a} \oplus \mathbf{b}$. Decode **b** = **a** \oplus (**a** \oplus **b**).
- ► R2 receives **b** and $\mathbf{a} \oplus \mathbf{b}$. Decode $\mathbf{a} = (\mathbf{a} \oplus \mathbf{b}) \oplus \mathbf{b}$.

メロメ メ母メ メミメ メミメ

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

- ► Better idea: Use XOR to mix the information.
- \triangleright R1 receives a and $a \oplus b$. Decode **b** = **a** \oplus (*a* \oplus *b*).
- ► R2 receives **b** and $\mathbf{a} \oplus \mathbf{b}$. Decode $\mathbf{a} = (\mathbf{a} \oplus \mathbf{b}) \oplus \mathbf{b}$.
- ► Both get two messages! Network coding increases capacity.

メロメ メ母メ メミメ メミメ
[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

The Key Idea

Key Idea of Network Coding

- \blacktriangleright Information is not a physical commodity!
- \triangleright We don't have to keep it in its original packaging. (routing)
- \triangleright Sometimes we should open the package and change it! (network coding)

イロメ イ何メ イヨメ イヨメー

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-38-0)

Multicast: 3-ary Graph

▶ Node s wants to send the same set of messages to three different receivers t_1, t_2 , and t_3 . (This is called "multicast".) Every edge has the same capacity.

イロメ イ何メ イヨメ イヨメー

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Multicast: 3-ary Graph

- ▶ Node s wants to send the same set of messages to three different receivers t_1, t_2 , and t_3 . (This is called "multicast".) Every edge has the same capacity.
- \blacktriangleright How many different messages can s send simultaneously? (ask audience) K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \blacktriangleright Routing cannot even multicast two messages. (Why?)

メロメ メ御 メメ きょうくきょう

重

 299

 \blacktriangleright Routing cannot even multicast two messages. (Why?)

メロメ メ都 メメ きょうほんし

重

 299

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \blacktriangleright Routing cannot even multicast two messages. (Why?)

 \triangleright Solution: Use coding before and after a relay.

メロメ メ部メ メミメ メミメ

 299

Ε

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \blacktriangleright Routing cannot even multicast two messages. (Why?)

 \triangleright Solution: Use coding before and after a relay.

メロメ メ部メ メミメ メミメ

 299

∍

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

- \blacktriangleright Routing cannot even multicast two messages. (Why?)
	- routing s t_1 $\begin{pmatrix} t_2 \end{pmatrix}$ $\begin{pmatrix} t_3 \end{pmatrix}$ v_2 \qquad \qquad $b_1 \,\,\diagup\,\, b_2$ $b_1 \mid b_2 \nearrow b_1 \quad b_1 \nearrow b_2$ $\overline{\mathcal{R}}_1$ $b₁$ b_1

 \triangleright Solution: Use coding before and after a relay.

メロメ メ部メ メミメ メミメ

 Ω

 \blacktriangleright This was harder than the previous problems.

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

 \blacktriangleright Routing cannot even multicast two messages. (Why?)

 \triangleright Solution: Use coding before and after a relay.

 \blacktriangleright This was harder than the previous problems.

▶ How do we know that we cannot send [thr](#page-43-0)[ee](#page-45-0)[m](#page-39-0)[e](#page-51-0)[s](#page-52-0)[sa](#page-36-0)[g](#page-37-0)es[?](#page-7-0)

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Natural Questions

William Wu [Network Coding With Wireless Applications](#page-0-0)

メロメ メ御 メメ きょうぼきょう

重

 299

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Natural Questions

 \triangleright Given a network, what is the most information we can send?

イロト イ押ト イヨト イヨト

 \equiv

 299

[Basic Idea](#page-8-0) [Definition of XOR](#page-9-0) [Two Examples](#page-15-0) [The Key Idea](#page-36-0) [Toward Theory](#page-37-0)

Natural Questions

- \triangleright Given a network, what is the most information we can send?
- ► How can we do network coding on a complex network?

 \blacktriangleright Satisfying answers to these questions are available for one sender multicasting on an acyclic graph.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

- \blacktriangleright Satisfying answers to these questions are available for one sender multicasting on an acyclic graph.
- \blacktriangleright Extension: Many senders multicasting to the same receivers is just like having only one sender. (Why?)

メロメ メ都 メメ きょ メモメ

- \blacktriangleright Satisfying answers to these questions are available for one sender multicasting on an acyclic graph.
- \blacktriangleright Extension: Many senders multicasting to the same receivers is just like having only one sender. (Why?)

メロメ メ母メ メミメ メミメ

 Ω

▶ Other scenarios are open problems.

- \blacktriangleright Satisfying answers to these questions are available for one sender multicasting on an acyclic graph.
- \blacktriangleright Extension: Many senders multicasting to the same receivers is just like having only one sender. (Why?)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- \triangleright Other scenarios are open problems.
- \blacktriangleright To understand the existing answers, consider flowing water ...

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Preliminaries: Max-Flow Min-Cut Theorem

- \blacktriangleright Consider a network of water pipes. There is a single input pipe, and a single output pipe.
- \blacktriangleright Every pipe has a certain flow capacity that it can support (e.g., 2 gal/sec).
- \blacktriangleright Question: What is the maximum water flow between input and output?

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \triangleright Definition: A cut is a set of pipes that together completely separate the input and output.
- ▶ Definition: The size of a cut is the sum of the capacities of all the pipes in the cut.

William Wu [Network Coding With Wireless Applications](#page-0-0)

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

▶ Ford-Fulkerson Max-Flow Min-Cut Theorem:

The maximum flow is equal to the size of the smallest cut.

 \blacktriangleright The smallest cut is called the "min-cut[".](#page-53-0)

イロト イ押 トイヨ トイヨ トー

 \Rightarrow

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

 \blacktriangleright This result extends to information transfer!

メロメ メタメ メミメ メミメー

E

 QQ

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \blacktriangleright This result extends to information transfer!
- ▶ New Question: Given a graph, what is the maximum number of bits we can route from s to t ?

メロメ メ御 メメ きょうくきょう

G

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \blacktriangleright This result extends to information transfer!
- ▶ New Question: Given a graph, what is the maximum number of bits we can route from s to t ?
- \blacktriangleright Answer: The size of the min-cut. (Why?)

メロメ メ御 メメ きょうぼきょう

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \blacktriangleright This result extends to information transfer!
- ▶ New Question: Given a graph, what is the maximum number of bits we can route from s to t ?
- \blacktriangleright Answer: The size of the min-cut. (Why?)

イロメ イ何 ト イヨ ト イヨ トー

 Ω

Full solution to one-sender one-receiver problem. Ford-Fulkerson routing achieves optimal throughput.

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-62-0) [Sketch of Achievability Proof](#page-70-0)

Multicasting Problem Statement

Now let's look at one sender and multiple receivers.

イロト イ押ト イヨト イヨト

目

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-62-0) [Sketch of Achievability Proof](#page-70-0)

Multicasting Problem Statement

Now let's look at one sender and multiple receivers.

- ► Given: A graph $G = (V, E, w)$, where
	- \triangleright V is the set of nodes.
	- \triangleright E is the set of edges, and
	- ► w is a mapping s.t. for $e \in E$, $w(e)$ is the bitrate capacity of e.

イロト イ押ト イヨト イヨト

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-62-0) [Sketch of Achievability Proof](#page-70-0)

Multicasting Problem Statement

Now let's look at one sender and multiple receivers.

- ► Given: A graph $G = (V, E, w)$, where
	- \triangleright V is the set of nodes.
	- \triangleright E is the set of edges, and
	- ► w is a mapping s.t. for $e \in E$, $w(e)$ is the bitrate capacity of e.

▶ Problem 1 (Multicast Rate): Find maximum number of "symbols" h that node $s \in V$ can simultaneously send to a set of receivers $T \triangleq \{t_1,t_2,\ldots,t_n\} \subset V$, such that every receiver can decode the same h symbols.

イロト イ押ト イヨト イヨト

 209

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Multicasting Problem Statement

Now let's look at one sender and multiple receivers.

- ► Given: A graph $G = (V, E, w)$, where
	- \triangleright V is the set of nodes.
	- \triangleright E is the set of edges, and
	- ► w is a mapping s.t. for $e \in E$, $w(e)$ is the bitrate capacity of e.
- ▶ Problem 1 (Multicast Rate): Find maximum number of "symbols" h that node $s \in V$ can simultaneously send to a set of receivers $T \triangleq \{t_1,t_2,\ldots,t_n\} \subset V$, such that every receiver can decode the same h symbols.
- \triangleright Problem 2 (Code): Find the routing/coding scheme which achieves the maximum rate.

イロト イ押ト イヨト イヨト

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Example: 3-ary Multicast, Again

 \triangleright One sender s, and three receivers $\mathcal{T} \triangleq \{t_1,t_2,t_3\}.$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Example: 3-ary Multicast, Again

 \triangleright One sender s, and three receivers $T \triangleq \{t_1,t_2,t_3\}.$

 Ω

► For each $t \in \mathcal{T}$, define the "subgraph" G_t to be the graph consisting of all paths which run from s to t.

William Wu [Network Coding With Wireless Applications](#page-0-0)

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Receiver's Perspective: "If I were the only receiver, then s ought to send me data at rate $MINCUT(G_t)$."

メロメ メ御 メメ きょうくきょう

G

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \triangleright Receiver's Perspective: "If I were the only receiver, then s ought to send me data at rate $MINCUT(G_t)$."
- ▶ Sender's Perspective: "I cannot multicast at a rate higher than min_t MINCUT(G_t)." (Why?)

メロメ メ都 メメ 老 メメ 差 メー

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \triangleright Receiver's Perspective: "If I were the only receiver, then s ought to send me data at rate $MINCUT(G_t)$."
- ▶ Sender's Perspective: "I cannot multicast at a rate higher than min_t MINCUT(G_t)." (Why?)
- **Graph's Perspective:** "Subgraphs overlap, so if you hope to multicast at rate min_t MINCUT(G_t), you need coding!"

イロメ イ何メ イヨメ イヨメー

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- \triangleright Receiver's Perspective: "If I were the only receiver, then s ought to send me data at rate $MINCUT(G_t)$."
- ▶ Sender's Perspective: "I cannot multicast at a rate higher than min_t MINCUT(G_t)." (Why?)
- **Graph's Perspective:** "Subgraphs overlap, so if you hope to multicast at rate min_t MINCUT(G_t), you need coding!"
- \triangleright The Theorem: MAXRATE = min_t MI[NC](#page-67-0)[U](#page-69-0)[T](#page-64-0)[\(](#page-65-0)[G](#page-68-0)_t[\)](#page-58-0)[.](#page-59-0)

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Main Theorem of Network Coding

Main Theorem of (Multicast) Network Coding

Let G_t be the subgraph between s and $t \in \mathcal{T}$. Then $MINCUT(s \rightarrow t)$ is the min-cut between s and t in $\mathcal{G}_t.$ Then, the maximum reliable multicast rate is:

$$
MAXRATE = \min_{t \in T} MINCUT(s \rightarrow t)
$$

This rate can be achieved with linear codes which can be found in polynomial time $O(|E|\cdot |\mathcal{T}|\cdot (h^2+|\mathcal{T}|^2)).$

イロト イ押ト イヨト イヨト

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-72-0)

How To Find The Code?

1. Key Idea: With every edge $e_{ii} \in E$, we will associate a vector $\mathbf{b}(e_{ii})$ representing the information on that edge.

イロメ イ何メ イヨメ イヨメー

目

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-72-0)

How To Find The Code?

- 1. Key Idea: With every edge $e_{ii} \in E$, we will associate a vector $\mathbf{b}(e_{ii})$ representing the information on that edge.
- 2. Find the maximum symbol rate $h \triangleq \min_{t \in \mathcal{T}} \text{MINCUT}(s \to t)$.

イロト イ押ト イヨト イヨト

目
[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

How To Find The Code?

- 1. Key Idea: With every edge $e_{ii} \in E$, we will associate a vector $\mathbf{b}(e_{ii})$ representing the information on that edge.
- 2. Find the maximum symbol rate $h \triangleq \min_{t \in \mathcal{T}} \text{MINCUT}(s \to t)$.
- 3. Represent each of the h symbols generated at s by unit vectors:

$$
\mathbf{b}(e_i) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{b}(e_2) = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{b}(e_h) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 209

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

4. Linear Coding

 \blacktriangleright **b**(e_{ii}) is a *random linear combination* of information received from incoming edges $\mathbf{b}(e_{ki})$:

$$
\mathbf{b}(e_{ij}) = \sum_{e_{ki} \in E} \alpha_e(e_{ki}) \mathbf{b}(e_{ki})
$$

where $\alpha_{e}(e_{ki})$ are drawn randomly from a field (set) \mathcal{F} .

イロメ イ何メ イヨメ イヨメー

目

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

4. Linear Coding

 \blacktriangleright **b**(e_{ii}) is a *random linear combination* of information received from incoming edges $\mathbf{b}(e_{ki})$:

$$
\mathbf{b}(e_{ij}) = \sum_{e_{ki} \in E} \alpha_e(e_{ki}) \mathbf{b}(e_{ki})
$$

where $\alpha_e(e_{ki})$ are drawn randomly from a field (set) F.

5. If $|\mathcal{F}| >> |\mathcal{T}|$, we will successfully multicast at rate h with high probability. イロメ イ何メ イヨメ イヨメー

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

Example

 \blacktriangleright The min-cut of each sender-to-receiver subgraph is 2.

$$
\blacktriangleright
$$
 So $h=2$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 QQ

Ε

[Max-Flow Min-Cut Theorem](#page-52-0) [Main Theorem](#page-59-0) [Sketch of Achievability Proof](#page-70-0)

- Introduce a virtual sender s' which supplies the symbols.
- \triangleright Our code can multicast if and only if for every receiver t, the determinant of the matrix of vectors entering t is nonzero.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Real Wireless Networks](#page-78-0)

[The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Toward Reality

- \triangleright We have been looking at networks which are
	- ◮ noiseless
	- \blacktriangleright have clearly defined communication links.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Ε

[Real Wireless Networks](#page-77-0)

[The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Toward Reality

- \triangleright We have been looking at networks which are
	- ◮ noiseless
	- \blacktriangleright have clearly defined communication links.
- \blacktriangleright Yet, real wireless networks
	- \blacktriangleright have noisy links
	- \blacktriangleright are broadcast in nature (unintended listeners).

メロメ メ母メ メミメ メミメ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

The Key Idea

Key Idea of Wireless Network Coding

- \blacktriangleright In wireless networks.
	- \triangleright information is always broadcast to many users, and
	- \triangleright information can be lost.
- \blacktriangleright Therefore,
	- \triangleright Sometimes Alice will hear something that Bob didn't.
	- \triangleright Sometimes Bob will hear something that Alice didn't.
- \triangleright Network coding can exploit this *diversity!*
- \blacktriangleright The wireless channel is naturally suited for network coding.

イロメ イ何メ イヨメ イヨメー

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-83-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

1

"Coding Opportunistically" (COPE)

メロメ メ部メ メミメ メミメ

 \Rightarrow

 299

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-83-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

1

"Coding Opportunistically" (COPE)

メロメ メ部メ メミメ メミメ

 299

目

William Wu [Network Coding With Wireless Applications](#page-0-0)

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-83-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

1

"Coding Opportunistically" (COPE)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 299

目

William Wu [Network Coding With Wireless Applications](#page-0-0)

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

1

"Coding Opportunistically" (COPE)

イロメ イ何メ イヨメ イヨメ

 299

目

William Wu [Network Coding With Wireless Applications](#page-0-0)

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Framework of COPE

- \triangleright Opportunistic Listening
	- \triangleright Set all nodes to *promiscuous* mode.
	- \blacktriangleright Everyone *records* what they have heard for a while.
	- ▶ Send reception reports stating what you have heard.

メロメ メ御 メメ きょうくきょう

目

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Framework of COPE

- \triangleright Opportunistic Listening
	- \triangleright Set all nodes to *promiscuous* mode.
	- \blacktriangleright Everyone *records* what they have heard for a while.
	- ▶ Send reception reports stating what you have heard.
- ► Learning Neighbor State
	- \triangleright From reception reports and probability modeling, make assumptions about what your neighbors know.

イロメ イ何メ イヨメ イヨメー

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Framework of COPE

- \triangleright Opportunistic Listening
	- \triangleright Set all nodes to *promiscuous* mode.
	- \blacktriangleright Everyone *records* what they have heard for a while.
	- ▶ Send reception reports stating what you have heard.
- ► Learning Neighbor State
	- \triangleright From reception reports and probability modeling, make assumptions about what your neighbors know.
- ▶ Opportunistic Coding
	- ► When sending, XOR together as many packets we can in order to maximize the number of intended receivers who can decode.
	- \blacktriangleright Never delay packets.

イロメ イ何 メ イヨメ イヨメー

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Experimental Results

Fully-implemented 20-node wireless testbed at MIT

▶ Wireless Ad-Hoc Network

(TCP backs off excessively due to collision-based losses.)

▶ Wireless Mesh Access

(higher [u](#page-88-0)plink traffic $=$ more diversity at o[utp](#page-86-0)[ut](#page-88-0) [q](#page-86-0)[ue](#page-87-0)u[e](#page-79-0)[s\)](#page-80-0)

 2990

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-89-0) [Analog Network Coding](#page-90-0)

Reliable Broadcast

Sender s broadcasts to receivers R1 and R2. Packets are lost.

イロメ イ団メ イモメ イモメー

 \equiv

 QQ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Reliable Broadcast

Sender s broadcasts to receivers R1 and R2. Packets are lost.

From negative acknowledgements (opposite of ACK), s knows who did not receive what. Use XOR to retransmit efficiently.

Received by R2

In practice, use a combination of FEC and n[et](#page-88-0)[wo](#page-90-0)[rk](#page-87-0) [c](#page-89-0)[o](#page-90-0)[d](#page-87-0)[i](#page-88-0)[n](#page-89-0)[g.](#page-90-0)

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何メ イヨメ イヨメー

目

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何メ イヨメ イヨメー

目

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何メ イヨメ イヨメー

目

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何メ イヨメ イヨメー

目

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何メ イヨメ イヨメー

目

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

メロメ メ母メ メミメ メミメ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

メロメ メ母メ メミメ メミメ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何 メ イヨメ イヨ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-99-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何 メ イヨメ イヨ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Analog Network Coding (ANC)

Idea: Increase throughput by letting analog signals collide.

How can we get away with this?

イロメ イ何 メ イヨメ イヨ

[Real Wireless Networks](#page-77-0) [The Key Idea](#page-79-0) [COPE](#page-80-0) [Reliable Broadcast](#page-88-0) [Analog Network Coding](#page-90-0)

Key Trick:

- \blacktriangleright The two simultaneously sent signals will not be exactly synchronized.
- \triangleright By using *MSK modulation*, we can deduce the original signals by analyzing the non-interfered parts of the combined signal.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

Result (software radios): Two senders $\implies \sim 70\%$ gain

Summary

Summary of Key Ideas

- ▶ Information is not a physical commodity. We can transform it at intermediate nodes.
- \blacktriangleright For multicasting between s and a set of receivers T,

$$
MAXRATE = \min_{t \in T} MINCUT(s \rightarrow t).
$$

Achievable with linear codes found in polynomial time.

 \blacktriangleright The wireless channel is naturally suited for network coding, since there is diversity in the received information.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

つへへ

Further Investigation

- \blacktriangleright How to use network coding ideas effectively in an indoor Wireless LAN?
	- \triangleright Wired APs in building
	- \triangleright Wireless users

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

G

- ► How can we improve on COPE (Coding Opportunistically)?
- ▶ New ideas in applying network coding to ad-hoc networks?
- ▶ How to best use network coding ideas in unicast scenarios?
- \blacktriangleright Thanks for listening!
- ▶ Comments and collaboration: willywutang@gmail.com

References

- R. Ahlswede, N. Cai, S. Li, and R. Yeung, Network Information Flow, 螶 IEEE Trans. Inform. Theory, IT-46: 1204-1216, 2000.
- 螶 P. Sanders, S. Egner, and L.M.G.M. Tolhuizen, Polynomial time algorithms for network information flow, Proc. 15-th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 286–294, June 2003.
- 暈 S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, XORs in the air: Practical wireless network coding, Sigcomm 2006.
- 暈 S. Katti, S. Gollakota, D. Katabi, Embracing Wireless Interference: Analog Network Coding, Sigcomm 2007.
- D. Nguyen, T. Nguyen, B. Bose, Wireless Broadcasting Using Network 暈 Coding, submitted to IEEE Transactions on Vehicular Technology, 2007.
- B. Nazer and M. Gastpar, Computing over Multiple-Access Channels with E. Connections to Wireless Network Coding, 2006.

イロメ イ何メ イヨメ イヨメ