
, , 1{24 ()c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Parallel Formulations of Decision-TreeClassi�cation AlgorithmsAnurag Srivastava1 Eui-Hong Han2 Vipin Kumar2 Vineet Singh31Digital Impact2Dept. of Computer Science & Engineering, University of Minnesota3Information Technology Lab, Hitachi America, Ltd.Editor:Abstract. Classi�cation decision tree algorithms are used extensively for data mining in manydomains such as retail target marketing, fraud detection, etc. Highly parallel algorithms forconstructing classi�cation decision trees are desirable for dealing with large data sets in reasonableamount of time. Algorithms for building classi�cation decision trees have a natural concurrency,but are di�cult to parallelize due to the inherent dynamic nature of the computation. In thispaper, we present parallel formulations of classi�cation decision tree learning algorithm basedon induction. We describe two basic parallel formulations. One is based on Synchronous TreeConstruction Approach and the other is based on Partitioned Tree Construction Approach. Wediscuss the advantages and disadvantages of using these methods and propose a hybrid methodthat employs the good features of these methods. We also provide the analysis of the cost ofcomputation and communication of the proposed hybrid method. Moreover, experimental resultson an IBM SP-2 demonstrate excellent speedups and scalability.Keywords: Data mining, parallel processing, classi�cation, scalability, decision trees1. IntroductionClassi�cation is an important data mining problem. A classi�cation problem hasan input dataset called the training set which consists of a number of exampleseach having a number of attributes. The attributes are either continuous, whenthe attribute values are ordered, or categorical, when the attribute values are un-ordered. One of the categorical attributes is called the class label or the classifyingattribute. The objective is to use the training dataset to build a model of the classlabel based on the other attributes such that the model can be used to classifynew data not from the training dataset. Application domains include retail targetmarketing, fraud detection, and design of telecommunication service plans. Severalclassi�cation models like neural networks [17], genetic algorithms [11], and decisiontrees [20] have been proposed. Decision trees are probably the most popular sincethey obtain reasonable accuracy [9] and they are relatively inexpensive to compute.Most current classi�cation algorithms such as C4.5 [20], and SLIQ [18] are basedon the ID3 classi�cation decision tree algorithm [20].In the data mining domain, the data to be processed tends to be very large.Hence, it is highly desirable to design computationally e�cient as well as scalablealgorithms. One way to reduce the computational complexity of building a decisiontree classi�er using large training datasets is to use only a small sample of the



2training data. Such methods do not yield the same classi�cation accuracy as adecision tree classi�er that uses the entire data set [24, 5, 6, 7]. In order to getreasonable accuracy in a reasonable amount of time, parallel algorithms may berequired.Classi�cation decision tree construction algorithms have natural concurrency, asonce a node is generated, all of its children in the classi�cation tree can be gen-erated concurrently. Furthermore, the computation for generating successors of aclassi�cation tree node can also be decomposed by performing data decompositionon the training data. Nevertheless, parallelization of the algorithms for construc-tion the classi�cation tree is challenging for the following reasons. First, the shapeof the tree is highly irregular and is determined only at runtime. Furthermore,the amount of work associated with each node also varies, and is data dependent.Hence any static allocation scheme is likely to su�er from major load imbalance.Second, even though the successors of a node can be processed concurrently, theyall use the training data associated with the parent node. If this data is dynam-ically partitioned and allocated to di�erent processors that perform computationfor di�erent nodes, then there is a high cost for data movements. If the data is notpartitioned appropriately, then performance can be bad due to the loss of locality.In this paper, we present parallel formulations of classi�cation decision tree learn-ing algorithm based on induction. We describe two basic parallel formulations. Oneis based on Synchronous Tree Construction Approach and the other is based on Par-titioned Tree Construction Approach. We discuss the advantages and disadvantagesof using these methods and propose a hybrid method that employs the good fea-tures of these methods. We also provide the analysis of the cost of computation andcommunication of the proposed hybrid method. Moreover, experimental results onan IBM SP-2 demonstrate excellent speedups and scalability.2. Related Work2.1. Sequential Decision-Tree Classi�cation AlgorithmsMost of the existing induction{based algorithms like C4.5 [20], CDP [1], SLIQ [18],and SPRINT [21] use Hunt's method [20] as the basic algorithm. Here is a recursivedescription of Hunt's method for constructing a decision tree from a set T of trainingcases with classes denoted fC1; C2; : : : ; Ckg.Case 1 T contains cases all belonging to a single class Cj . The decision tree forT is a leaf identifying class Cj .Case 2 T contains cases that belong to a mixture of classes. A test is chosen,based on a single attribute, that has one or more mutually exclusive outcomesfO1; O2; : : : ; Ong. Note that in many implementations, n is chosen to be 2 andthis leads to a binary decision tree. T is partitioned into subsets T1; T2; : : : ; Tn,where Ti contains all the cases in T that have outcome Oi of the chosen test.The decision tree for T consists of a decision node identifying the test, and one



3
Outlook Temp(F) Humidity(%) Windy? Class
sunny 75 70 true Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play

overcast 72 90 true Play
overcast 83 78 false Play
overcast 64 65 true Play
overcast 81 75 false Play

rain 71 80 true Don’t Play
rain 65 70 true Don’t Play
rain 75 80 false Play
rain 68 80 false Play
rain 70 96 false PlayTable 1. A small training data set [Qui93]

PlayDont’ Play Play

Play

Play Dont’ Play Dont’ Play Play

sunny
overcast rain

Outlook

Windy

sunny
overcast

rain

<= 75 > 75 true false

Play

Outlook

Humidity

non-leaf node

expandable leaf node

non-expandable leaf node

(a) Initial Classification Tree (b) Intermediate Classification Tree (c) Final Classification TreeFigure 1. Demonstration of Hunt's Methodbranch for each possible outcome. The same tree building machinery is appliedrecursively to each subset of training cases.Case 3 T contains no cases. The decision tree for T is a leaf, but the class to beassociated with the leaf must be determined from information other than T .For example, C4.5 chooses this to be the most frequent class at the parent ofthis node.



4
Attribute Value Class

Play Don’t Play
sunny 2 3

overcast 4 0
rain 3 2Table 2. Class Distribution Information of Attribute Outlook

Attribute Value Binary Test Class
Play Don’t Play

65 ≤ 1 0
> 8 5

70 ≤ 3 1
> 6 4

75 ≤ 4 1
> 5 4

78 ≤ 5 1
> 4 4

80 ≤ 7 2
> 2 3

85 ≤ 7 3
> 2 2

90 ≤ 8 4
> 1 1

95 ≤ 8 5
> 1 0

96 ≤ 9 5
> 0 0Table 3. Class Distribution Information of Attribute HumidityTable 1 shows a training data set with four data attributes and two classes. Fig-ure 1 shows how Hunt's method works with the training data set. In case 2 ofHunt's method, a test based on a single attribute is chosen for expanding the cur-rent node. The choice of an attribute is normally based on the entropy gains ofthe attributes. The entropy of an attribute is calculated from class distributioninformation. For a discrete attribute, class distribution information of each valueof the attribute is required. Table 2 shows the class distribution information ofdata attribute Outlook at the root of the decision tree shown in Figure 1. For acontinuous attribute, binary tests involving all the distinct values of the attributeare considered. Table 3 shows the class distribution information of data attributeHumidity. Once the class distribution information of all the attributes are gath-ered, each attribute is evaluated in terms of either entropy [20] or Gini Index [4].The best attribute is selected as a test for the node expansion.



5The C4.5 algorithm generates a classi�cation{decision tree for the given trainingdata set by recursively partitioning the data. The decision tree is grown usingdepth{�rst strategy. The algorithm considers all the possible tests that can splitthe data set and selects a test that gives the best information gain. For each discreteattribute, one test with outcomes as many as the number of distinct values of theattribute is considered. For each continuous attribute, binary tests involving everydistinct value of the attribute are considered. In order to gather the entropy gainof all these binary tests e�ciently, the training data set belonging to the node inconsideration is sorted for the values of the continuous attribute and the entropygains of the binary cut based on each distinct values are calculated in one scan ofthe sorted data. This process is repeated for each continuous attribute.Recently proposed classi�cation algorithms SLIQ [18] and SPRINT [21] avoidcostly sorting at each node by pre-sorting continuous attributes once in the begin-ning. In SPRINT, each continuous attribute is maintained in a sorted attribute list.In this list, each entry contains a value of the attribute and its corresponding recordid. Once the best attribute to split a node in a classi�cation tree is determined,each attribute list has to be split according to the split decision. A hash table, ofthe same order as the number of training cases, has the mapping between recordids and where each record belongs according to the split decision. Each entry inthe attribute list is moved to a classi�cation tree node according to the informationretrieved by probing the hash table. The sorted order is maintained as the entriesare moved in pre-sorted order.Decision trees are usually built in two steps. First, an initial tree is built till theleaf nodes belong to a single class only. Second, pruning is done to remove anyover�tting to the training data. Typically, the time spent on pruning for a largedataset is a small fraction, less than 1% of the initial tree generation. Therefore,in this paper, we focus on the initial tree generation only and not on the pruningpart of the computation.2.2. Parallel Decision-Tree Classi�cation AlgorithmsSeveral parallel formulations of classi�cation rule learning have been proposed re-cently. Pearson presented an approach that combines node-based decompositionand attribute-based decomposition [19]. It is shown that the node-based decompo-sition (task parallelism) alone has several probelms. One problem is that only a fewprocessors are utilized in the beginning due to the small number of expanded treenodes. Another problem is that many processors become idle in the later stage dueto the load imbalance. The attribute-based decomposition is used to remedy the�rst problem. When the number of expanded nodes is smaller than the availablenumber of processors, multiple processors are assigned to a node and attributesare distributed among these processors. This approach is related in nature to thepartitioned tree construction approach discussed in this paper. In the partitionedtree construction approach, actual data samples are partitioned (horizontal parti-tioning) whereas in this approach attributes are partitioned (vertical partitioning).



6 In [8], a few general approaches for parallelizing C4.5 are discussed. In the Dy-namic Task Distribution (DTD) scheme, a master processor allocates a subtree ofthe decision tree to an idle slave processor. This scheme does not require com-munication among processors, but su�ers from the load imbalance. DTD becomessimilar to the partitioned tree construction approach discussed in this paper oncethe number of available nodes in the decision tree exceeds the number of processors.The DP-rec scheme distributes the data set evenly and builds decision tree one nodeat a time. This scheme is identical to the synchronous tree construction approachdiscussed in this paper and su�ers from the high communication overhead. TheDP-att scheme distributes the attributes. This scheme has the advantages of beingboth load-balanced and requiring minimal communications. However, this schemedoes not scale well with increasing number of processors. The results in [8] showthat the e�ectiveness of di�erent parallelization schemes varies signi�cantly withdata sets being used.Kufrin proposed an approach called Parallel Decision Trees (PDT) in [15]. Thisapproach is similar to the DP-rec scheme [8] and synchronous tree constructionapproach discussed in this paper, as the data sets are partitioned among proces-sors. The PDT approach designate one processor as the \host" processor and theremaining processors as \worker" processors. The host processor does not have anydata sets, but only receives frequency statistics or gain calculations from the workerprocessors. The host processor determines the split based on the collected statis-tics and notify the split decision to the worker processors. The worker processorscollect the statistics of local data following the instruction from the host processor.The PDT approach su�ers from the high communication overhead, just like DP-recscheme and synchronous tree construction approach. The PDT approach has anadditional communication bottleneck, as every worker processor sends the collectedstatistics to the host processor at the roughly same time and the host processorsends out the split decision to all working processors at the same time.The parallel implementation of SPRINT [21] and ScalParC [13] use methods forpartitioning work that is identical to the one used in the synchronous tree con-struction approach discussed in this paper. Serial SPRINT [21] sorts the continu-ous attributes only once in the beginning and keeps a separate attribute list withrecord identi�ers. The splitting phase of a decision tree node maintains this sortedorder without requiring to sort the records again. In order to split the attributelists according to the splitting decision, SPRINT creates a hash table that recordsa mapping between a record identi�er and the node to which it goes to based onthe splitting decision. In the parallel implementation of SPRINT, the attributelists are split evenly among processors and the split point for a node in the decisiontree is found in parallel. However, in order to split the attribute lists, the full sizehash table is required on all the processors. In order to construct the hash table,all-to-all broadcast [16] is performed, that makes this algorithm unscalable withrespect to runtime and memory requirements. The reason is that each processorrequires O(N) memory to store the hash table and O(N) communication overheadfor all-to-all broadcast, where N is the number of records in the data set. Therecently proposed ScalParC [13] improves upon the SPRINT by employing a dis-



7tributed hash table to e�ciently implement the splitting phase of the SPRINT. InScalParC, the hash table is split among the processors, and an e�cient personalizedcommunication is used to update the hash table, making it scalable with respectto memory and runtime requirements.Goil, Aluru, and Ranka proposed the Concatenated Parallelism strategy for ef-�cient parallel solution of divide and conquer problems [10]. In this strategy, themix of data parallelism and task parallelism is used as a solution to the paralleldivide and conquer algorithm. Data parallelism is used until there are enough sub-tasks are genearted, and then task parallelism is used, i.e., each processor workson independent subtasks. This strategy is similar in principle to the partitionedtree construction approach discussed in this paper. The Concatenated Parallelismstrategy is useful for problems where the workload can be determined based on thesize of subtasks when the task parallelism is employed. However, in the problem ofclassi�catoin decision tree, the workload cannot be determined based on the size ofdata at a particular node of the tree. Hence, one time load balancing used in thisstrategy is not well suited for this particular divide and conquer problem.3. Parallel FormulationsIn this section, we give two basic parallel formulations for the classi�cation decisiontree construction and a hybrid scheme that combines good features of both of theseapproaches. We focus our presentation for discrete attributes only. The handlingof continuous attributes is discussed in Section 3.4. In all parallel formulations,we assume that N training cases are randomly distributed to P processors initiallysuch that each processor has N=P cases.3.1. Synchronous Tree Construction ApproachIn this approach, all processors construct a decision tree synchronously by sendingand receiving class distribution information of local data. Major steps for theapproach are shown below:1. Select a node to expand according to a decision tree expansion strategy (eg.Depth-First or Breadth-First), and call that node as the current node. At thebeginning, root node is selected as the current node.2. For each data attribute, collect class distribution information of the local dataat the current node.3. Exchange the local class distribution information using global reduction [16]among processors.4. Simultaneously compute the entropy gains of each attribute at each processorand select the best attribute for child node expansion.5. Depending on the branching factor of the tree desired, create child nodes forthe same number of partitions of attribute values, and split training cases ac-cordingly.



8

Proc 0

Proc 0 Proc 1 Proc 2 Proc 3

Proc 1 Proc 2 Proc 3

Class Distribution Information

Class Distribution InformationFigure 2. Synchronous Tree Construction Approach with Depth{First Expansion Strategy6. Repeat above steps (1{5) until no more nodes are available for the expansion.Figure 2 shows the overall picture. The root node has already been expandedand the current node is the leftmost child of the root (as shown in the top part ofthe �gure). All the four processors cooperate to expand this node to have two childnodes. Next, the leftmost node of these child nodes is selected as the current node(in the bottom of the �gure) and all four processors again cooperate to expand thenode.The advantage of this approach is that it does not require any movement of thetraining data items. However, this algorithm su�ers from high communication costand load imbalance. For each node in the decision tree, after collecting the classdistribution information, all the processors need to synchronize and exchange thedistribution information. At the nodes of shallow depth, the communication over-head is relatively small, because the number of training data items to be processedis relatively large. But as the decision tree grows and deepens, the number oftraining set items at the nodes decreases and as a consequence, the computationof the class distribution information for each of the nodes decreases. If the averagebranching factor of the decision tree is k, then the number of data items in a childnode is on the average 1k th of the number of data items in the parent. However, thesize of communication does not decrease as much, as the number of attributes to be



9considered goes down only by one. Hence, as the tree deepens, the communicationoverhead dominates the overall processing time.The other problem is due to load imbalance. Even though each processor startedout with the same number of the training data items, the number of items belongingto the same node of the decision tree can vary substantially among processors. Forexample, processor 1 might have all the data items on leaf node A and none on leafnode B, while processor 2 might have all the data items on node B and none onnode A. When node A is selected as the current node, processor 2 does not haveany work to do and similarly when node B is selected as the current node, processor1 has no work to do.This load imbalance can be reduced if all the nodes on the frontier are expandedsimultaneously, i.e. one pass of all the data at each processor is used to computethe class distribution information for all nodes on the frontier. Note that thisimprovement also reduces the number of times communications are done and re-duces the message start{up overhead, but it does not reduce the overall volume ofcommunications.In the rest of the paper, we will assume that in the synchronous tree constructionalgorithm, the classi�cation tree is expanded breadth-�rst manner and all the nodesat a level will be processed at the same time.3.2. Partitioned Tree Construction ApproachIn this approach, whenever feasible, di�erent processors work on di�erent partsof the classi�cation tree. In particular, if more than one processors cooperate toexpand a node, then these processors are partitioned to expand the successors ofthis node. Consider the case in which a group of processors Pn cooperate to expandnode n. The algorithm consists of following steps:Step 1 Processors in Pn cooperate to expand node n using the method describedin Section 3.1.Step 2 Once the node n is expanded in to successor nodes, n1; n2; : : : ; nk, thenthe processor group Pn is also partitioned, and the successor nodes are assignedto processors as follows:Case 1: If the number of successor nodes is greater than jPnj,1. Partition the successor nodes into jPnj groups such that the total num-ber of training cases corresponding to each node group is roughly equal.Assign each processor to one node group.2. Shu�e the training data such that each processor has data items thatbelong to the nodes it is responsible for.3. Now the expansion of the subtrees rooted at a node group proceedscompletely independently at each processor as in the serial algorithm.Case 2: Otherwise (if the number of successor nodes is less than jPnj),1. Assign a subset of processors to each node such that number of proces-sors assigned to a node is proportional to the number of the trainingcases corresponding to the node.



10
Proc 0 Proc 1 Proc 2 Proc 3

Proc 0 Proc 1 Proc 2 Proc 3

Data Item

Data Item

Proc 0 Proc 1 Proc 3Proc 2Figure 3. Partitioned Tree Construction Approach2. Shu�e the training cases such that each subset of processors has train-ing cases that belong to the nodes it is responsible for.3. Processor subsets assigned to di�erent nodes develop subtrees inde-pendently. Processor subsets that contain only one processor use thesequential algorithm to expand the part of the classi�cation tree rootedat the node assigned to them. Processor subsets that contain more thanone processor proceed by following the above steps recursively.At the beginning, all processors work together to expand the root node of the clas-si�cation tree. At the end, the whole classi�cation tree is constructed by combiningsubtrees of each processor.Figure 3 shows an example. First (at the top of the �gure), all four processorscooperate to expand the root node just like they do in the synchronous tree con-



11struction approach. Next (in the middle of the �gure), the set of four processorsis partitioned in three parts. The leftmost child is assigned to processors 0 and 1,while the other nodes are assigned to processors 2 and 3, respectively. Now thesesets of processors proceed independently to expand these assigned nodes. In par-ticular, processors 2 and processor 3 proceed to expand their part of the tree usingthe serial algorithm. The group containing processors 0 and 1 splits the leftmostchild node into three nodes. These three new nodes are partitioned in two parts(shown in the bottom of the �gure); the leftmost node is assigned to processor 0,while the other two are assigned to processor 1. From now on, processors 0 and 1also independently work on their respective subtrees.The advantage of this approach is that once a processor becomes solely responsiblefor a node, it can develop a subtree of the classi�cation tree independently withoutany communication overhead. However, there are a number of disadvantages ofthis approach. The �rst disadvantage is that it requires data movement after eachnode expansion until one processor becomes responsible for an entire subtree. Thecommunication cost is particularly expensive in the expansion of the upper part ofthe classi�cation tree. (Note that once the number of nodes in the frontier exceedsthe number of processors, then the communication cost becomes zero.) The seconddisadvantage is poor load balancing inherent in the algorithm. Assignment of nodesto processors is done based on the number of training cases in the successor nodes.However, the number of training cases associated with a node does not necessarilycorrespond to the amount of work needed to process the subtree rooted at the node.For example, if all training cases associated with a node happen to have the sameclass label, then no further expansion is needed.3.3. Hybrid Parallel FormulationOur hybrid parallel formulation has elements of both schemes. The SynchronousTree Construction Approach in Section 3.1 incurs high communication overhead asthe frontier gets larger. The Partitioned Tree Construction Approach of Section 3.2incurs cost of load balancing after each step. The hybrid scheme keeps continuingwith the �rst approach as long as the communication cost incurred by the �rstformulation is not too high. Once this cost becomes high, the processors as well asthe current frontier of the classi�cation tree are partitioned into two parts.Our description assumes that the number of processors is a power of 2, and thatthese processors are connected in a hypercube con�guration. The algorithm canbe appropriately modi�ed if P is not a power of 2. Also this algorithm can bemapped on to any parallel architecture by simply embedding a virtual hypercubein the architecture. More precisely the hybrid formulation works as follows.� The database of training cases is split equally among P processors. Thus, ifN is the total number of training cases, each processor has N=P training caseslocally. At the beginning, all processors are assigned to one partition. The rootnode of the classi�cation tree is allocated to the partition.� All the nodes at the frontier of the tree that belong to one partition are processedtogether using the synchronous tree construction approach of Section 3.1.



12� As the depth of the tree within a partition increases, the volume of statisticsgathered at each level also increases as discussed in Section 3.1. At some point,a level is reached when communication cost become prohibitive. At this point,the processors in the partition are divided into two partitions, and the currentset of frontier nodes are split and allocated to these partitions in such a waythat the number of training cases in each partition is roughly equal. This loadbalancing is done as described as follows:{ On a hypercube, each of the two partitions naturally correspond to a sub-cube. First, corresponding processors within the two sub-cubes exchangerelevant training cases to be transferred to the other sub-cube. After thisexchange, processors within each sub-cube collectively have all the trainingcases for their partition, but the number of training cases at each processorcan vary between 0 to 2�NP . Now, a load balancing step is done within eachsub-cube so that each processor has an equal number of data items.� Now, further processing within each partition proceeds asynchronously. Theabove steps are now repeated in each one of these partitions for the particularsubtrees. This process is repeated until a complete classi�cation tree is grown.� If a group of processors in a partition become idle, then this partition joins upwith any other partition that has work and has the same number of processors.This can be done by simply giving half of the training cases located at eachprocessor in the donor partition to a processor in the receiving partition.
Computation Frontier at depth 3Figure 4. The computation frontier during computation phaseA key element of the algorithm is the criterion that triggers the partitioning of thecurrent set of processors (and the corresponding frontier of the classi�cation tree). If partitioning is done too frequently, then the hybrid scheme will approximatethe partitioned tree construction approach, and thus will incur too much datamovement cost. If the partitioning is done too late, then it will su�er from highcost for communicating statistics generated for each node of the frontier, like thesynchronized tree construction approach. One possibility is to do splitting when theaccumulated cost of communication becomes equal to the cost of moving recordsaround in the splitting phase. More precisely, splitting is done when



13

Partition 1 Partition 2Figure 5. Binary partitioning of the tree to reduce communication costsX(Communication Cost) �MovingCost+ LoadBalancingAs an example of the hybrid algorithm, Figure 4 shows a classi�cation tree fron-tier at depth 3. So far, no partitioning has been done and all processors are workingcooperatively on each node of the frontier. At the next frontier at depth 4, parti-tioning is triggered, and the nodes and processors are partitioned into two partitionsas shown in Figure 5.A detailed analysis of the hybrid algorithm is presented in Section 4.3.4. Handling Continuous AttributesNote that handling continuous attributes requires sorting. If each processor con-tains N=P training cases, then one approach for handling continuous attributes isto perform a parallel sorting step for each such attribute at each node of the decisiontree being constructed. Once this parallel sorting is completed, each processor cancompute the best local value for the split, and then a simple global communicationamong all processors can determine the globally best splitting value. However, thestep of parallel sorting would require substantial data exchange among processors.The exchange of this information is of similar nature as the exchange of class dis-tribution information, except that it is of much higher volume. Hence even in thiscase, it will be useful to use a scheme similar to the hybrid approach discussed inSection 3.3.A more e�cient way of handling continuous attributes without incurring thehigh cost of repeated sorting is to use the pre-sorting technique used in algorithmsSLIQ [18], SPRINT [21], and ScalParC [13]. These algorithms require only one pre-sorting step, but need to construct a hash table at each level of the classi�cationtree. In the parallel formulations of these algorithms, the content of this hashtable needs to be available globally, requiring communication among processors.



14
symbol definition

N Total number of training samples
P Total Number of processors
Pi Number of processors cooperatively working on tree expansion
Ad Number of categorical attributes
C Number of classes
M Average number of distinct values in the discrete attributes
L Present level of a decision tree
tc Unit computation time
ts Start up time of communication latency [KGGK94]
tw Per–word transfer time of communication latency [KGGK94]Table 4. Symbols used in the analysis.Existing parallel formulations of these schemes [21, 13] perform communicationthat is similar in nature to that of our synchronous tree construction approachdiscussed in Section 3.1. Once again, communication in these formulations [21, 13]can be reduced using the hybrid scheme of Section 3.3.Another completely di�erent way of handling continuous attributes is to discretizethem once as a preprocessing step [12]. In this case, the parallel formulations aspresented in the previous subsections are directly applicable without any modi�ca-tion.Another approach towards discretization is to discretize at every node in the tree.There are two examples of this approach. The �rst example can be found in [3]where quantiles [2] are used to discretize continuous attributes. The second ex-ample of this approach to discretize at each node is SPEC [23] where a clusteringtechnique is used. SPEC has been shown to be very e�cient in terms of runtimeand has also been shown to perform essentially identical to several other widelyused tree classi�ers in terms of classi�cation accuracy [23]. Parallelization of thediscretization at every node of the tree is similar in nature to the parallelizationof the computation of entropy gain for discrete attributes, because both of thesemethods of discretization require some global communication among all the pro-cessors that are responsible for a node. In particular, parallel formulations of theclustering step in SPEC is essentially identical to the parallel formulations for thediscrete case discussed in the previous subsections [23].4. Analysis of the Hybrid AlgorithmIn this section, we provide the analysis of the hybrid algorithm proposed in Sec-tion 3.3. Here we give a detailed analysis for the case when only discrete attributesare present. The analysis for the case with continuous attributes can be found in[23]. The detailed study of the communication patterns used in this analysis canbe found in [16]. Table 4 describes the symbols used in this section.



154.1. Assumptions� The processors are connected in a hypercube topology. Complexity measures forother topologies can be easily derived by using the communication complexityexpressions for other topologies given in [16].� The expression for communication and computation are written for a full binarytree with 2L leaves at depth L. The expressions can be suitably modi�ed whenthe tree is not a full binary tree without a�ecting the scalability of the algorithm.� The size of the classi�cation tree is asymptotically independent of N for a par-ticular data set. We assume that a tree represents all the knowledge that canbe extracted from a particular training data set and any increase in the trainingset size beyond a point does not lead to a larger decision tree.4.2. Computation and Communication CostFor each leaf of a level, there are Ad class histogram tables that need to be com-municated. The size of each of these tables is the product of number of classes andthe mean number of attribute values. Thus size of class histogram table at eachprocessor for each leaf is:Class histogram size for each leaf = C �Ad �MThe number of leaves at level L is 2L. Thus the total size of the tables is:Combined class histogram tables for a processor = C �Ad �M � 2LAt level L, the local computation cost involves I/O scan of the training set, initial-ization and update of all the class histogram tables for each attribute:Local Computation cost = �(Ad �NP + C �Ad �M � 2L) � tc = �(NP ) (1)where tc is the unit of computation cost.At the end of local computation at each processor, a synchronization involves aglobal reduction of class histogram values. The communication cost1 is :Per level Communication cost = (ts + tw � C �Ad �M � 2L) � logPi � �(logP )(2)When a processor partition is split into two, each leaf is assigned to one of thepartitions in such a way that number of training data items in the two partitionsis approximately the same. In order for the two partitions to work independentlyof each other, the training set has to be moved around so that all training casesfor a leaf are in the assigned processor partition. For a load balanced system, eachprocessor in a partition must have NP training data items.



16This movement is done in two steps. First, each processor in the �rst partitionsends the relevant training data items to the corresponding processor in the secondpartition. This is referred to as the \moving" phase. Each processor can send orreceive a maximum of NP data to the corresponding processor in the other partition.Cost for moving phase � 2 � NP � tw (3)After this, an internal load balancing phase inside a partition takes place so thatevery processor has an equal number of training data items. After the moving phaseand before the load balancing phase starts, each processor has training data itemcount varying from 0 to 2�NP . Each processor can send or receive a maximum of NPtraining data items. Assuming no congestion in the interconnection network, costfor load balancing is:Cost for load balancing phase � 2 � NP � tw (4)A detailed derivation of Equation 4 above is given in [23]. Also, the cost forload balancing assumes that there is no network congestion. This is a reasonableassumption for networks that are bandwidth-rich as is the case with most commer-cial systems. Without assuming anything about network congestion, load balancingphase can be done using transportation primitive [22] in time 2�NP �tw time providedNP � O(P 2)Splitting is done when the accumulated cost of communication becomes equal tothe cost of moving records around in the splitting phase [14]. So splitting is donewhen:X(Communication Cost) � Moving Cost + Load BalancingThis criterion for splitting ensures that the communication cost for this scheme willbe within twice the communication cost for an optimal scheme [14]. The splittingis recursive and is applied as many times as required. Once splitting is done, theabove computations are applied to each partition. When a partition of processorsstarts to idle, then it sends a request to a busy partition about its idle state. Thisrequest is sent to a partition of processors of roughly the same size as the idlepartition. During the next round of splitting the idle partition is included as a partof the busy partition and the computation proceeds as described above.4.3. Scalability AnalysisIsoe�ciency metric has been found to be a very useful metric of scalability for alarge number of problems on a large class of commercial parallel computers [16].It is de�ned as follows. Let P be the number of processors and W the problemsize (in total time taken for the best sequential algorithm). If W needs to grow asfE(P ) to maintain an e�ciency E, then fE(P ) is de�ned to be the isoe�ciency



17function for e�ciency E and the plot of fE(P ) with respect to P is de�ned to bethe isoe�ciency curve for e�ciency E.We assume that the data to be classi�ed has a tree of depth L1. This depthremains constant irrespective of the size of data since the data \�ts" this particularclassi�cation tree.Total cost for creating new processor sub-partitions is the product of total numberof partition splits and cost for each partition split (=�(NP )) using Equations 3 and4. The number of partition splits that a processor participates in is less than orequal to L1{ the depth of the tree.Cost for creating new processors partitions � L1 � �(NP ) (5)Communication cost at each level is given by Equation 2 (= �(logP )). Thecombined communication cost is the product of the number of levels and the com-munication cost at each level.Combined communication cost for processing attributes � L1 � �(logP ) = �(logP )(6)The total communication cost is the sum of cost for creating new processor par-titions and communication cost for processing class histogram tables, the sum ofEquations 5 and 6.Total Communication cost = �(logP ) + �(NP ) (7)Computation cost given by Equation 1 is:Total computation time = �(NP ) (8)Total parallel run time (Sum of Equations 7 and 8)= Communication time + Com-putation time.Parallel run time = �(logP ) + �(NP ) (9)In the serial case, the whole dataset is scanned once for each level. So the serialtime isSerial time = �(N) � L1 = �(N)To get the isoe�ciency function, we equate P times total parallel run time usingEquation 9 to serial computation time.�(N) = P � (�(logP ) + �(NP ))Therefore, the isoe�ciency function is N = �(P logP ). Isoe�ciency is �(P logP )assuming no network congestion during load balancing phase. When the trans-portation primitive is used for load balancing, the isoe�ciency is O(P 3).



185. Experimental ResultsWe have implemented the three parallel formulations using the MPI programminglibrary. We use binary splitting at each decision tree node and grow the tree inbreadth �rst manner. For generating large datasets, we have used the widely usedsynthetic dataset proposed in the SLIQ paper [18] for all our experiments. Ten clas-si�cation functions were also proposed in [18] for these datasets. We have used thefunction 2 dataset for our algorithms. In this dataset, there are two class labels andeach record consists of 9 attributes having 3 categoric and 6 continuous attributes.The same dataset was also used by the SPRINT algorithm [21] for evaluating itsperformance. Experiments were done on an IBM SP2. The results for comparingspeedup of the three parallel formulations are reported for parallel runs on 1, 2, 4,8, and 16 processors. More experiments for the hybrid approach are reported forup to 128 processors. Each processor has a clock speed of 66.7 MHz with 256 MBreal memory. The operating system is AIX version 4 and the processors commu-nicate through a high performance switch (hps). In our implementation, we keepthe \attribute lists" on disk and use the memory only for storing program speci�cdata structures, the class histograms and the clustering structures.First, we present results of our schemes in the context of discrete attributes only.We compare the performance of the three parallel formulations on up to 16 proces-sor IBM SP2. For these results, we discretized 6 continuous attributes uniformly.Speci�cally, we discretized the continuous attribute salary to have 13, commissionto have 14, age to have 6, hvalue to have 11, hyears to have 10, and loan to have20 equal intervals. For measuring the speedups, we worked with di�erent sizeddatasets of 0.8 million training cases and 1.6 million training cases. We increasedthe processors from 1 to 16. The results in Figure 6 show the speedup comparisonof the three parallel algorithms proposed in this paper. The graph on the left showsthe speedup with 0.8 million examples in the training set and the other graph showsthe speedup with 1.6 million examples.The results show that the synchronous tree construction approach has a goodspeedup for 2 processors, but it has a very poor speedup for 4 or more processors.There are two reasons for this. First, the synchronous tree construction approachincurs high communication cost, while processing lower levels of the tree. Second,a synchronization has to be done among di�erent processors as soon as their com-munication bu�er �lls up. The communication bu�er has the histograms of all thediscrete variables for each node. Thus, the contribution of each node is independentof its tuples count, the tuple count at a node being proportional to the computationto process that node. While processing lower levels of the tree, this synchronizationis done many times at each level (after every 100 nodes for our experiments). Thedistribution of tuples for each decision tree node becomes quite di�erent lower downin the tree. Therefore, the processors wait for each other during synchronization,and thus, contribute to poor speedups.The partitioned tree construction approach has a better speedup than the syn-chronous tree construction approach. However, its e�ciency decreases as the num-ber of processors increases to 8 and 16. The partitioned tree construction approach



19

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

No Of Processors

S
pe

ed
up

 Speedup for 0.8 million examples, partitioned − "−+−", hybrid − "−o−", synchronous − "−x−" 

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

No Of Processors

S
pe

ed
up

 Speedup for 1.6 million examples, partitioned − "−+−", hybrid − "−o−", synchronous − "−x−" 

Figure 6. Speedup comparison of the three parallel algorithms.su�ers from load imbalance. Even though nodes are partitioned so that each pro-cessor gets equal number of tuples, there is no simple way of predicting the size ofthe subtree for that particular node. This load imbalance leads to the runtime beingdetermined by the most heavily loaded processor. The partitioned tree constructionapproach also su�ers from the high data movement during each partitioning phase,the partitioning phase taking place at higher levels of the tree. As more processorsare involved, it takes longer to reach the point where all the processors work ontheir local data only. We have observed in our experiments that load imbalance andhigher communication, in that order, are the major cause for the poor performanceof the partitioned tree construction approach as the number of processors increase.The hybrid approach has a superior speedup compared to the partitioned treeapproach as its speedup keeps increasing with increasing number of processors.As discussed in Section 3.3 and analyzed in Section 4, the hybrid controls thecommunication cost and data movement cost by adopting the advantages of thetwo basic parallel formulations. The hybrid strategy also waits long enough forsplitting, until there are large number of decision tree nodes for splitting amongprocessors. Due to the allocation of decision tree nodes to each processor beingrandomized to a large extent, good load balancing is possible. The results con�rmedthat the proposed hybrid approach based on these two basic parallel formulationsis e�ective.We have also performed experiments to verify our splitting criterion of the hybridalgorithm is correct. Figure 7 shows the runtime of the hybrid algorithm withdi�erent ratio of communication cost and the sum of moving cost and load balancingcost, i.e.,ratio = P(Communication Cost)Moving Cost + Load Balancing :



20

−4 −2 0 2 4 6 8 10
100

200

300

400

500

600

700

log2(Splitting Criteria Ratio), x=0 −> ratio=1

 R
un

tim
es

 Runtimes for splitting at different values of ratio, 8 processors, 0.8 million examples

−4 −2 0 2 4 6 8 10
0

100

200

300

400

500

600

log2(Splitting Criteria Ratio), x=0 −> ratio=1

 R
un

tim
es

 Runtimes for splitting at different values of ratio, 16 processors, 1.6 million examples

Figure 7. Splitting criterion veri�cation in the hybrid algorithm.The graph on the left shows the result with 0.8 million examples on 8 processors andthe other graph shows the result with 1.6 million examples on 16 processors. Weproposed that splitting when this ratio is 1.0 would be the optimal time. The resultsveri�ed our hypothesis as the runtime is the lowest when the ratio is around 1.0. Thegraph on the right with 1.6 million examples shows more clearly why the splittingchoice is critical for obtaining a good performance. As the splitting decision is madefarther away from the optimal point proposed, the runtime increases signi�cantly.The experiments on 16 processors clearly demonstrated that the hybrid approachgives a much better performance and the splitting criterion used in the hybrid ap-proach is close to optimal. We then performed experiments of running the hybridapproach on more number of processors with di�erent sized datasets to study thespeedup and scalability. For these experiments, we used the original data set withcontinuous attributes and used a clustering technique to discretize continuous at-tributes at each decision tree node [23]. Note that the parallel formulation givesalmost identical performance as the serial algorithm in terms of accuracy and clas-si�cation tree size [23]. The results in Figure 8 show the speedup of the hybridapproach. The results con�rm that the hybrid approach is indeed very e�ective.To study the scaleup behavior, we kept the dataset size at each processor con-stant at 50,000 examples and increased the number of processors. Figure 9 showsthe runtime on increasing number of processors. This curve is very close to theideal case of a horizontal line. The deviation from the ideal case is due to thefact that the isoe�ciency function is O(P logP ) not O(P ). Current experimentaldata is consistent with the derived isoe�ciency function but we intend to conductadditional validation experiments.



21

0

20

40

60

80

100

0 20 40 60 80 100 120 140

S
pe

ed
up

Number of processors

Speedup curves for different sized datasets

0.8 million examples
1.6 million examples
3.2 million examples
6.4 million examples

12.8 million examples
25.6 million examples

Figure 8. Speedup of the hybrid approach with di�erent size datasets.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Number of Processors

T
ot

al
 R

un
 T

im
e 

(s
ec

.)

Runtimes of our algorithm for 50K examples at each processor

Figure 9. Scaleup of our algorithm



226. Concluding RemarksIn this paper, we proposed three parallel formulations of inductive-classi�cationlearning algorithm. The Synchronous Tree Construction Approach performs well ifthe classi�cation tree remains skinny, having few nodes at any level, throughout.For such trees, there are relatively large number of training cases at the nodes atany level; and thus the communication overhead is relatively small. Load imbalanceis avoided by processing all nodes at a level, before synchronization among theprocessors. However, as the tree becomes bushy, having a large number of nodesat a level, the number of training data items at each node decrease. Frequentsynchronization is done due to limited communication bu�er size, which forcescommunication after processing a �xed number of nodes. These nodes at lowerdepths of the tree, which have few tuples assigned to them, may have highly variabledistribution of tuples over the processors, leading to load imbalance. Hence, thisapproach su�ers from high communication overhead and load imbalance for bushytrees. The Partitioned Tree Construction Approach works better than SynchronousTree Construction Approach if the tree is bushy. But this approach pays a bigcommunication overhead in the higher levels of the tree as it has to shu�e lotsof training data items to di�erent processors. Once every node is solely assignedto a single processor, each processor can construct the partial classi�cation treeindependently without any communication with other processors. However, theload imbalance problem is still present after the shu�ing of the training data items,since the partitioning of the data was done statically.The hybrid approach combines the good features of these two approaches toreduce communication overhead and load imbalance. This approach uses the Syn-chronous Tree Construction Approach for the upper parts of the classi�cation tree.Since there are few nodes and relatively large number of the training cases associ-ated with the nodes in the upper part of the tree, the communication overhead issmall. As soon as the accumulated communication overhead is greater than the costof partitioning of data and load balancing, this approach shifts to the PartitionedTree Construction Approach incrementally. The partitioning takes place when areasonable number of nodes are present at a level. This partitioning is gradual andperforms randomized allocation of classi�cation tree nodes, resulting in a betterload balance. Any load imbalance at the lower levels of the tree, when a processorgroup has �nished processing its assigned subtree, is handled by allowing an idleprocessor group to join busy processor groups.The size and shape of the classi�cation tree varies a lot depending on the applica-tion domain and training data set. Some classi�cation trees might be shallow andthe others might be deep. Some classi�cation trees could be skinny others could bebushy. Some classi�cation trees might be uniform in depth while other trees mightbe skewed in one part of the tree. The hybrid approach adapts well to all types ofclassi�cation trees. If the decision tree is skinny, the hybrid approach will just staywith the Synchronous Tree Construction Approach. On the other hand, it will shiftto the Partitioned Tree Construction Approach as soon as the tree becomes bushy.



23If the tree has a big variance in depth, the hybrid approach will perform dynamicload balancing with processor groups to reduce processor idling.AcknowledgmentsA signi�cant part of this work was done while Anurag Srivastava and Vineet Singhwere at IBM TJ Watson Research Center. This work was supported by NSF grantASC-9634719, Army Research O�ce contract DA/DAAH04-95-1-0538, Cray Re-search Inc. Fellowship, and IBM partnership award, the content of which does notnecessarily re
ect the policy of the government, and no o�cial endorsement shouldbe inferred. Access to computing facilities was provided by AHPCRC, MinnesotaSupercomputer Institute, Cray Research Inc., and NSF grant CDA-9414015.Notes1. If the message size is large, by routing message in parts, this communication step can be donein time : (ts+ tw �MesgSize) �k0 for a small constant k0. Refer to [16] section 3.7 for details.References1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective.IEEE Transactions on Knowledge and Data Eng., 5(6):914{925, December 1993.2. K. Alsabti, S. Ranka, and V. Singh. A one-pass algorithm for accurately estimating quantilesfor disk-resident data. In Proc. of the 23rd VLDB Conference, 1997.3. K. Alsabti, S. Ranka, and V. Singh. CLOUDS: Classi�cation for large or out-of-core datasets.http://www.cise.u
.edu/�ranka/dm.html, 1998.4. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation and Regression Trees.Wadsworth, Monterrey, CA, 1984.5. J. Catlett. Megainduction: Machine Learning on Very Large Databases. PhD thesis. Uni-versity of Sydney, 1991.6. Philip K. Chan and Salvatore J. Stolfo. Experiments on multistrategy learning by met-alearning. In Proc. Second Intl. Conference on Info. and Knowledge Mgmt., pages 314{323,1993.7. Philip K. Chan and Salvatore J. Stolfo. Metalearning for multistrategy learning and parallellearning. In Proc. Second Intl. Conference on Multistrategy Learning, pages 150{165, 1993.8. J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H. Huning, M. Kohler, J. Sutiwara-phun, H.W. To, and D. Yang. Large scale data mining: Challenges and responses. In Proc.of the Third Int'l Conference on Knowledge Discovery and Data Mining, 1997.9. D.J. Spiegelhalter D. Michie and C.C. Taylor. Machine Learning, Neural and StatisticalClassi�cation. Ellis Horwood, 1994.10. S. Goil, S. Aluru, and S. Ranka. Concatenated parallelism: A technique for e�cient paralleldivide and conquer. In Proc. of the Symposium of Parallel and Distributed Computing(SPDP'96), 1996.11. D. E. Goldberg. Genetic Algorithms in Search, Optimizations and Machine Learning.Morgan-Kaufman, 1989.12. S.J. Hong. Use of contextual information for feature ranking and discretization. IEEETransactions on Knowledge and Data Eng., 9(5):718{730, September/October 1997.13. M.V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and e�cient parallelclassi�cation algorithm for mining large datasets. In Proc. of the International ParallelProcessing Symposium, 1998.



2414. George Karypis and Vipin Kumar. Unstructured tree search on simd parallel computers.Journal of Parallel and Distributed Computing, 22(3):379{391, September 1994.15. R. Kufrin. Decision trees on parallel processors. In J. Geller, H. Kitano, and C.B. Suttner,editors, Parallel Processing for Arti�cial Intelligence 3. Elsevier Science, 1997.16. Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to ParallelComputing: Algorithm Design and Analysis. Benjamin Cummings/ AddisonWesley, RedwodCity, 1994.17. R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, 4(22),April 1987.18. M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classi�er for data mining.In Proc. of the Fifth Int'l Conference on Extending Database Technology, Avignon, France,1996.19. R.A. Pearson. A coarse grained parallel induction heuristic. In H. Kitano, V. Kumar, andC.B. Suttner, editors, Parallel Processing for Arti�cial Intelligence 2, pages 207{226. ElsevierScience, 1994.20. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,CA, 1993.21. J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classi�er for data mining.In Proc. of the 22nd VLDB Conference, 1996.22. R. Shankar, K. Alsabti, and S. Ranka. Many-to-many communication with bounded tra�c.In Frontiers '95, the �fth symposium on advances in massively parallel computation, McLean,VA, February 1995.23. Anurag Srivastava, Vineet Singh, Eui-Hong Han, and Vipin Kumar. An ef-�cient, scalable, parallel classi�er for data mining. Technical Report TR-97-010,http://www.cs.umn.edu/�kumar, Department of Computer Science, University of Min-nesota, Minneapolis, 1997.24. J. Wirth and J. Catlett. Experiments on the costs and bene�ts of windowing in ID3. In 5thInt'l Conference on Machine learning, 1988.


