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Abstract

We take a look at the second part of the robot-selflocalization-
problem. The hypotheses generated in a solution of the first part of
the problemwill be efficient reduced with the movement of the robot.
A practical approach is described, using realistic paths and imprecise
sensors. It operates on voronoi edges and voronoi vertices and can
handle polygons with indiscribed obstacles. A new decision strategy
will be discussed different from strategy MDL. Estimations will be
given for time and space complexities and for the competitve ratio.
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1 Introduction

In future, cleaning robots may be available to purge factories, supermarkets and
our livingroom. But this simple task requires teamwork of different sensors and
different software. The sensors must recognize static and dynamic obstacles not
recorded in the given map of the robot. If not, the robot will hurt human customers
or damages inventory like standing palettes of food. An important problem in
robotics is the self-localization problem. During each night the robot has to wake
up and begin to clean its environment. This is easy if the robot starts its task on the
same position every day. But if not, the task becomes very difficult. The robot has
to localize itself in a first step and has to eliminate similar positions called hypothe-
ses in the second step before it can move to its starting position.

The first part of the problem, called localization problem, was first introduced by
Guibas et al. [GMR97]. They solved the problem using a discretization of the map
in regions with similar visibility, so-called visibility-cell-decomposition. This prob-
lem got a few solutions, for example using a statistical approach [BCFT98] or a
practical visibility approach using polygon metrics [KW99]. In this paper we use
our feature-based localization to generate the hypotheses set but other approachs
can be used as well. [KS99]

All solutions generate a set of hypotheses, but they do not reduce this set to the true
position. In past, Dudek et al. [DRW95] gave a theoretical solution using overlay-
arrangements. But this solution was very expensive concerning time complexity ofO(k2n4). Therein k ist the number of hypotheses and n is the number of vertices of
the map polygon. The approach was improved 1996 by Schuierer who uses win-
dows on which the demanded sensor points lie. This approach has a complexity ofO(kn2). Today, neither a theoretical nor a practical implemented algorithm exists
solving this problem.
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In the next section we recall the basics used in this report. In section 3 we describe
the solution of Schuierer and give some adaptions. Section 4 models a practical
approach and shows the problems appearing with it. Section 5 describes more
realistic strategies eliminating hypothetical positions. In the last section we give a
summary of the paper.

2 Definitions and Basics

Before defining the problem, we have to describe the sensors and the robot itself
used in this scenario.

2.1 Maps and visibility

Most important for the problem and the robot is the environmental map. It gives
us the model features in the feature-based localization which are mapped onto scan
features. But for motion-planning it is important, too. It gives us the valid paths on
which the robot moves.

(2.1)Definition (polygonal map)
A polygonal map K is described as a simple polygon R and a set H = fH1; : : : ;Hkg
of obstacles in its interior. The border of Hi and the border of R are pairwise dis-
joint. The interior of the map is the interior of R without the completed obstacle
polygons Hi 2 H.
An important concept is denoted by the term window in a map. Windows are
later used to determine the sensing points of the robot at which hypotheses can be
eliminated. A robot behind the reflex vertex vi can see this to a window associated
vertex at the moment the robot moves over the window (see figure 1).

(2.2)Definition (window)
The segment between a reflex vertex ri;j and the next intersection point with the
border created from a line with origin vi over the mutually visible reflex vetrex ri;j
is called window to vertex vi.
2.2 The robot’s sensors and modules

The robot uses a lot of sensors for perception, object-recognition and movement.
In this chapter, we define the motion manager and the scan performed by the laser
range finder.
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Figure 1: window

A laser range finder performs a set of scans at a given position. It is onboard of the
robot and typically a SICK-scanner.

(2.3)Definition (scan)
A scan S = (R; s) is described as a range R 2 R [ f+1g and a function s : [0; 2�[![0; R] [ f+1g with finite domain. If R = +1, the robot has unlimited range.
(2.4)Definition (motion trajectory)
A motion trajectoryW is a polygonal chain, described as alternating list of angles �i
and lines si. jW j denotes the number of lines inW , called steps of the robot.
Amotion managermoves the robot along a motion trajectoryW . If the robot reaches
the target, the motion manger delivers the endpoint of the trajectory. If not, the
motion manager delivers the point it supposes to stand on. During motion, the
motion manager tries to compensate the errors of imperfect movement.

2.3 The robot and his job

Giving the main attributes of the robot, we have to define the robot itself and the
problems it should solve.

(2.5)Definition (autonomous mobile robot)
A robot is defined as a circle with a diameter rr and a lot of sensors permitting in-
teraction with its environment. We assume that the robot has a laser-range-finder
and a compass. If the robot is able to decide its actions only with its sensors, it is
called autonomous. If the robot can move freely inside it’s environment, it is called
mobile.
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(2.6)Definition (self-localization problem)
An autonomous mobile robot stands at an unknown position in an indoor environ-
ment. The robot has a polygonal map of the scene, a compass with low angle ad-
justment and a laser range finder with unlimited range. Demanded is the position
of the robot in the environment, which can be found by scanning the environment
and moving the robot.

(2.7)Definition (localization problem)
The first subproblem is the localization problem. Using only its compass and its
laser range finder the robot has to generate a set of hypothetical positions of its lo-
cality at which it may be located.

This problemwas solved inmany variations (i. e. see [KNSW97][GMR97][BCFT98]).
We use our feature-based approach to solve this problem which generates the de-
sired set of hypothetical positions [KS99].

(2.8)Definition (navigation problem)
The navigation problem has the same prerequisites as the localization problem. In
addition it has a set of hypothetical positions Hf . The problem is to eliminate all
wrong positions and to find the true inital robot position at the end.

2.4 Geometric tree and the overlay tree

The above problem will be discussed in section three. Now we define geometric
graphs and trees used for modelling the robots paths.

(2.9)Definition (geometric graph)
A geometric graph is a graph G = (V; E) with a vertex set V and an edge set E .
Thereby every v 2 V is a point of the euclidean plane R 2 and every e 2 E a three
tuple e = (v1; v2; C) with v1; v2 2 V . C � R 2 is a curve with endpoints v1; v2 and
the length l(C).
A geometric tree is a geometric graph fulfilling the properties of a tree.

(2.10)Definition (subpath)
A subpathW � G of a geometric graph is a sequence of w edges (e1; : : : ew) and for
every ei = (vi;1; vi;2)we have vi;2 = vi+1;1.
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(2.11)Definition (length of a path)
For the length l(W ) of a subpathW = (e1; : : : ew ) the equation holdsl(W ) = wXi=1 ei
(2.12)Definition (overlay tree)
An overlay tree is a geometric tree, generated by uniting several trees. It is defined
as 5-tuple BO = (O;B;S; �; �)with� O = (VO; EO) is a geometric tree� B is a set of geometric trees.� S is a set of vertices with the property: there is a bijective mapping� : S ! B and �(s) = B ) s 2 B. S is called set of start vertices.� � is a function � : VO ! 2B, giving for every vertex v 2 O the origi-

nating tree.� � is a function � : EO ! 2B, giving for every edge e 2 O the originat-
ing tree.

All trees B 2 B will be placed successively onto the origin with respect to their
start vertex s. All overlapping edges are unified. If two branches disperse, the
adjacent treeswill be inserted into the overlaytree. Later brancheswith overlapping
property are not unified.

v2 vv1

T ov(T,V)

3

T3T21

r

Figure 2: Example of an overlay-tree

Some edges in the overlytree have extra properties:

(2.13)Definition (imperfect vertex)
A vertex v with �(v) 6= B is called an imperfect vertex. The set Vu = fv 2 VO : �(v) 6=Bg is the set of imperfect vertices.

5



(2.14)Definition (nearest imperfect vertex)
The nearest imperfect vertex with respect to the origin is the vertex vnu fulfilling the
inequation 8v 2 Vu : l(Wvnu) � l(Wv)

2.5 Valid robot paths

So far, geometric graphs and overlay trees are defined and are used as essential
data structures. They will be used as travel paths for the robot by using shortest-
path-trees. Another possibility is to use the voronoi diagram or a combination of
both approaches.

(2.15)Definition (shortest-path-tree)
A tree B(p) = (VB; EB) is a shortest-path-tree with respect to a geometric graph,G = (VG; EG), if� B(p) is a geometric tree with root p 2 VB .� VB = VG,� 8v 2 VB : the path W (p; v) 2 B from p to v exists and W (p; v) is a

shortest-path from p to v in G, so l(W (p; v)) is minimal with respect
to all paths in G.

(2.16)Definition (voronoi-skeleton)
A voronoi-skeleton of the map K is a voronoi-diagram of K restricted to edges and
nodes lying in the interior ofK and not adjacent to a reflex vertex.
(2.17)Definition (property of the voronoi diagram)
For every element of the voronoi diagram all of the appropriate region can be seen.

(2.18)Definition (voronoi path)
A voronoi path is a subpath of the voronoi-skeleton. Voronoi vertices of the voronoi
path represents sensor nodes for localizing the robot.

6



2.6 Competitive ratio

We need a measure for the quality of an approximation algorithm giving a solution
forNP-complete problems. Onemeasure for an online-algorithm is the competitve
ratio introduced by Sleator and Tarjan 1985 [ST85]. Before we introduce this mea-
sure for the problem, we have to define a decision strategy and a measure for the
path-length of the robot-path.

(2.19)Definition (decision strategy)
A decision strategy determines in which order the sensor nodes will be visited and
therby in which order hypothesis will be eliminated.

(2.20)Definition (verification path)
A robot stands at point p inside the map K. It uses a localization algorithm L to
generate a set of hypothetical positions Hf . To determine the position of the robot,
it needs to eliminate the hypotheses set. For this it uses a decision strategy N and
travels along a verification pathWL;N (p; P ) to the determined sensor nodes.
The optimal verification path is denoted byW �L;N (p; P ).
(2.21)Definition (competitive ratio)
The competitive ratioCL;N depending on localization algorithmL and decision strat-
egy N is the ratio

CL;N = maxP2P;p2P l(WL;N (p; P ))l(W �L;N (p; P ))
Thereby P is the set of all map polygons. An approximate solution of the problem
has a competitive ration of CL;N times the optimal solution.
Descriptive spoken the competitive ratio belongs to the length of the path caused
by the localization strategy L and the decision strategy N in a worst-case map on
worst-case positions and the optimum path for this worst-case scenario.

3 The approach of Schuierer and adaptations

The second part of the self-localization problemwas first introduced and solved by
Dudek et. al [DRW95]. They showed that the problem isNP-complete by reducing
it on the minimum-decision-tree problem. They gave an approximative solution
by using overlay-arrangements of visibility decompositions. Their algorithm has
a time-complexity of O(k2n4) whereas k denotes the number of hypotheses and n
denotes the number of vertices of the map.

In 1996 Schuierer gives a better solution with a time-complexity of O(kn2). He
uses windows instead of a visibility decomposition of the map. Then he computes
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shortest-path-trees for all hypothetical positions on every position to all vertices of
the map. The sensor points for eliminating wrong hypotheses and also the nodes of
the shortest-path-tree are defined as the intersection points of the shortest-path to
a desired vertex vi of the polygon with the dedicated window of vi. This shortest-
path-trees are stored in an overlay tree. In this tree the decision strategy searches for
imperfect vertices which symbolize the difference in all the trees and hence a use-
full sensing position. Like Dudek, Schuierer uses the decision strategy minimum-
distance-localization MDL to reduce hypothetical positions which select always the
nearest imperfect vertex as the next sensing node. This greedy-strategy has a com-
petitive ratio of 2(k � 1) by returning to the origin after each reduction step. De-
scriptive spoken, if in every step only one hypothesis would be eliminated, up to(k � 1) steps must be made. The factor 2 comes from returning to the origin each
time.

Algorithm 1 Schuierers algorithm

1 A localization algorithm gives a setHf of hypothetical robot positions.
2 Compute for each vertex v in P and every h 2 Hf the sensing point v�h.v�h is the nearest point to h lying on the nearest window from whom v
is visible.

3 Compute for every hypothesis h 2 Hf a shortest-path-tree Bh from the
root h to all sensing points v�h. So B = fBh j h 2 Hfg.

4 Create the overlay tree BO = (O;B;Hf ; �; �).
5 while j Hf j> 1 do
6 b� is the nearest imperfect vertex in BO
7 Calculate a shortest pathWb� from the origin to b�.
8 Follow the pathWb� , take a sensing step and return to the origin.
9 Reduce hypotheses �h not consistent with the sensor information and
update the overlay tree.

10 end while

3.1 Using polygonal obstacles

Schuierer mentioned polygonal obstacles in his approach but neither he gave de-
tails for implementation nor he provide complexitys and competitive ratio of this
advanced problem.

(3.22) Corollary (Approach with polygonal obstacles)
Using Schuierers algorithm and allowing simple polygonal obstacles inside the mapK, the
time-complexity increases to O(kn2 log(n)).
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Proof: For the algorithm only the number of windows are important. Including
obstacles, there are stillO(nr)windows. But now n denotes the number of vertices
of the map polygon and the obstacle polygons.

The linear triangulation algorithm described by Chazalle in [Chaz91] cannot be
used in this case, because it only operates on simple polygons without obstacles.
So the triangulation time increases up to O(n(r + 1)) by using data structures as
discribed in [Held99].

The computation of shortest-path-trees can be done by using Dijkstras algorithm
with respect to non-negative edge weighting and cycles. This algorithm has a com-
plexity of O(n2 log(n)).
Rayshooting can performed with the same complexity as before by using data
structures described in [CPT93] with complexity of O(n log3(n)).
Altogether the algorithm has a complexity of O(kn2 log(n). 2
(3.23) Corollary (Space complexity with obstacles)
Using Schuierers algorithm and allowing simple polygons as obstacles inside the map K,
the space complexity is O(n2 logn).
Proof: Storing all windows costs O(rn) storage. Thereby r denotes the num-
ber of reflex vertices. Storing the triangulation of the polygon costs O(n2) storage
[Held99]. After this, we need k shortest-path-trees each with a storage ofO(n logn)
so it sums up to O(kn logn). After all we need storage for the rayshooting with
complexity of O(n log n). Altogeter the memory usage doesn’t succed O(n2 logn).2
(3.24) Corollary (Competitive ratio with obstacles)
Using Schuierers algorithm and allowing simple polygons as obstacles inside the map K,
the competitive ratio is 2(k � 1), thereby k � pn.
Proof: Dijkstras algorithm computes a shortest path even in the case of obstacles.
If there is a shorter pathW �L;N (p�; P ) from the origin to a sensing point p�, then p�
is a imperfect vertex of the overlay tree. But this is a contradiction to strategy MDL
who select point p as the nearest point to the origin.
We only use shortest-path-trees inside the overlay tree. If we have k hypothetical
positions then we need at most (k � 1) eliminating steps to find the correct robot
position. If the robot moves back to the origin in each step, the competitive ratio
becomes 2(k � 1). 2
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4 Modelling a practical approach

Schuierers algorithm improves the time complextity by comparison with Dudeks
approach, but his approach is theoretical. In practice, we need a few adaptations
that are presented in this section. We need a realistic robot, realistic robot trajecto-
ries and practical decision strategies for a less idealistic approach.

4.1 Spacial spread of the robot

For a practical approach it is necessary to have a robot with a spacial spread and
can not assume a point-like robot. So the robot is circular with a diameter r and
uses a safety margin " to all obstacles and walls.
This leads to constraints for the given map. The robot must have the ability to see
every point of the map. Further the robot is not imprisoned in a part of the map.
We can formulate it in terms of visibility: the robot must have the ability to move
to all points so that every point of the map is mutually visible with it.

4.2 Using modified shortest-paths

Figure 3: Real shortest-path with safety margin and robot diameter

Fulfilling the practical approach and permit the robot to move only in secure re-
gions of the map, we can use Schuierers algorithm. In this case an adaptation of
the shortest-path computation is necessary. Edges of the shortest-paths may only
use secure regions so sensor points ly on windows a safety distance away from
any vertex of a map polygon. Also the verification-path-length of the modified
shortest-path-tree is longer than the original verification-path-length.
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Problems with this sort of path arise for the recognition and tracking of the verifi-
cation path by the robot. The laser range finder is only a low-cost sensor system,
exact navigation with this system is impossible. So we need another approach for
path planning.

4.3 Using voronoi-paths

Figure 4: Used voronoi path

Voronoi-paths are an alternative approach. Voronoi paths are the locally securest
paths for a robot. They have the poperty of maximum clearance to all obstacles
in the environment. Another positive attribute is their very fast computability. In
addition the sensor system may be able to navigate on voronoi-paths.

Moving to the nearest voronoi-node
After localization and hypotheses generation the robot must determine the nearest
voronoi-node and move onto it. This task is not involved in the overlay tree and
has to be done from a realistic motion manager. In this research report we assume
that the robot can reach the next voronoi vertex without any errors. In addition
we assume that the robot does not stand exactly between two voronoi-nodes and
cannot determine which node is the nearest.

Themaximumdistance the robot needs to reach the nearest voronoi vertex is 12p2m.
Therebym denotes the length of the largest voronoi edge in the map (see figure 5).
Moving along voronoi-paths
For the movement along voronoi paths there exists no estimation of the ratio of
covered path-length, because in the worst-case the ratio is unrestricted. We can
only give an estimation for parabolas with respect to the shortest-path. There the

11



Algorithm 2 Advanced voronoi algorithm

1 Create the voronoi diagram
2 For every hi 2 Hf compute the next visible voronoi vertex vi
3 For all vi compute the shortest-path-tree Bi with respect to the voronoi
diagram

4 Build the overlay tree BO by inserting all Bi with origin vi
5 Move the robot from its initial position h0 to the voronoi node v0.
6 while jHf > 1j do
7 Compute the nearest imperfect vertex vnui
8 Compute the shortest-pathWi to vnui in BO
9 whileWi contains unvisited segments do
10 Follow the next segment s and take a scan at the target node
11 if at least one hypothesis can be eliminated then
12 move back to the origin and finish while-loop
13 end if
14 end while
15 Discard all wrong hypotheses ofHf and update BO
16 end while

robot travels only
p2 times longer than the shortest path [Buck99] connecting the

adjacent voronoi vertex.

The unrestricted ratio cannot be estimated efficiently and therefore we can only
give an idea for a solution. Wemust extend the voronoi diagram by inserting short-
cuts, if a path between v1 and v3 is much shorter than a path beween v1 over v2 tov3. These shortcuts must have the property to be recognizable and trackable by the
robot using its laser range finder. Too many shortcuts inserted will raise the time
complexity of the algorithm and are therefore not useful. The problem is not solved
and has to be examined in future work.

4.4 Competitve ratio and complexity of the practical approach

Despite the problem in the previous section we will examine the competitve ratio
and the complexity of the advanced voronoi-algorithm. Shortcuts are not covered
by our complexity estimation.

(4.25) Theorem (Time complexity of the voronoi algorithm)
The voronoi algorithm has a time complexityO(kn log(n)) with polygonal obstacles inside
the mapK.
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Figure 5: Moving to the nearest voronoi-node

Proof: Calculation of the voronoi-diagram is performed inO(n log(n))with obstac-
les inside the map. Calculation of the nearest voronoi-node can be done for every
hypothesis in O(kn log(n))with eligible data structures (see ([CPT93]).
Building up the shortest-path-trees can be done in O(kn log(n)) for all hypothesis.
Constructing the overlaytree uses O(n log(�)), where � � kn is the maximum de-
gree of a node in BO [Schu96].
Computing the path to the nearest voronoi vertex can be done in O(1) under the
assumption of an ideal motion manager. In realistic scenes there will be a large
additional expense, depending on the distance, the robot has to travel.

The next imperfect vertex in the overlay tree can be computed in O(n), because
there exist O(n) voronoi vertices. The calculation of the shortest path to an imper-
fect vertex has a complexity of O(n), because of the number of O(n) voronoi edges
in the voronoi diagram.

The movement along voronoi paths may be ignored for now because of the assum-
tion of an ideal movement. Essential for the complexity is the sensing at voronoi
vertices and the search in the set of hypotheses until at least one hypothesis can be
eliminated. In the innermost loop an effort of O(k log(k)) has to be account and for
the total loop an effort of O(nk log(k)). Remark that sensing costs are neglected.
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Altogether summes up to a running time of O(kn log(n)). 2
(4.26) Theorem (Competitive ratio of the voronoi algorithm)
The voronoi-algorithm with obstacles has a competitve ratio of 2(k� 1) times the optimum
verification path restricted to voronoi paths.

Proof: If we assume that the map of the robot fulfills the described constraints,
every point of the polygon can be seen from a voronoi vertex.

In the algorithm there is no change exept the restriction only moving along voronoi
paths. These are generated from shortest-path trees, too.

In every step of the algorithm we eliminate at least one hypothesis ore move back
to the origin using voronoi paths. The path to the optimal sensing position is re-
stricted to voronoi paths, so there is no extra detour in the algorithm.

We use (k� 1) reduction steps in the worst-case and in the optimum case it is done
in one step so the competitve ratio is 2(k�1) under the assumption of moving back
to the origin in every step. 2
5 Practical decision strategies

So far, only the decision strategy MDL was presented and analyzed. This strategy
has the proofable best competitive ratio. But there are other possibilities of deci-
sision strategies that may have a better performance in practice with the same or
worser competitive ratio.

5.1 Decision strategy RPL

Here we will present a decision strategy called residual path length (RPL). This strat-
egy does not use the shortest path to the next imperfect node but considers the
expected size of the sets of hypotheses to be eliminated. It assumes that all hy-
potheses are equally distributed and uses a weighting function by multiplying the
length of a path to the next sensing point with the expected value of the size of the
hypotheses set. The weighting function is described as8i : l(W )i = l(Wi) � 1k � jHf ji (5.27)
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thereby jHf ji is the expected size of the hypotheses set. It can be estimated asjHf ji � ��Hf1;i��jHf j ��Hf1;i��+ jHf j � ��Hf1;i��jHf j (jHf j � ��Hf1;i��) (5.28)

It is a safe estimation because the hypotheses set moulders into a number of in-
definitly sets and in two sets in worst-case. The term 1k is necessary for standard-
ization.

In every step the strategy searches for theminimumvalue of theweighting function
(5.27) of all members in the set of imperfect nodes. Remark that the generation of
the sensing points is the same as in strategy MDL.

5.2 Decision strategy IEE

If the set of generated hypotheses is not equally distributed, than we need another
adapted strategy called inverse expected entropy (IEE). This strategy assumes that a
localization algorithm produces a set of ranked hypotheses like the feature-based
localization. So the hypotheses have different probabilities according to the rank-
ing position and a weighting function.

Therefore we have to replace the equation for the expected value of the hypotheses
size by the equation that describes the information content of the hypotheses.jHf ji � P p(hj)P p(hg) � ��Hf1;i��+ P p(hk)P p(hg) � (jHf j � ��Hf1;i��) (5.29)

Thereby hj 2 Hf1;i ; hk 2 (Hf �Hfi;1); hg 2 Hf .
Like RPL, this strategy searches for the minimum of the weighting function (5.27)
in the set of imperfect nodes, too. There are only small adaptations needed on the
presented voronoi-algorithm or Schuierers algorithm to realize the new strategies
so we disclame a new representation.

5.3 Proof of the competitive ratio

In this section we will proof the competitive ratio for a decision strategy who uses
the same set of sensor nodes as strategy MDL and also the minimum value of a
weighting function in every step.

(5.30) Theorem (Competitive ratio of a weighting function approach)
We assume that a decision strategy for hypotheses elimination uses in every step the mini-
mum value of a weighting function si = hi � li for an arbitrary i and eliminates at least one
hypothesis. Thereby hi denotes a strategy value and li the shortest-path length to a sensing
node. Then this strategy has a competitive ratio of 2(k � 1)hmaxhmin when returning back to
the origin in every step.
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Proof: The sensor points and so called imperfect nodes in the overlaytree are com-
puted using shortest-paths. So there is no detour in reaching these points.

Consider that this strategy reaches the right hypothesis at last. Then (k � 2) hy-
potheses will be reached before. Also we gets1 � s2 � � � � sk�2 � sk�1 (5.31)

We can write the inequation asl1 � h1 � � � � � lk�1 � hk�1 (5.32)

Since lk�1 is the optimum shortest path d and hopt the strategy value for this we get
the inequations

li � hi � d � hopt ) li � d � hopthi (5.33)

for 1 � i � k � 2.
For the sum of the verification path we get the estimationk�1Xi=1 li � (k � 1)d � hopthmin � (k � 1)d � hmaxhmin (5.34)

So, the competitve ratio gets

Cf;w = maxP2P;p2P l(Wf;w (p; P ))l(W �f;w (p; P )) = (k � 1)hmaxhmin (5.35)

So the competitive ratio can be arbitrary worse belonging to a given probability
distribution and a weighting function. The competitive ratio is 2(k � 1) in the case
of hi = 1 for all i. 2
For the strategies in the previous section we get worser competitive ratios, too.
Here we will give a result for strategy RPL.

(5.36) Theorem (Competitive ratio of strategy RPL)
Strategy RPL has a competitive ratio of 4(k � 1) times the optimum path-length when re-
turning back to the origin in every step.

Proof: Using the above theorem we have to search only for the minimum and the
maximum of the weighting function.
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From equation (5.27) and equation (5.28) we get a minumum value k2 and a max-
imum value (k � 1). Inserted in the equation we get the minumum value of the
weighting function hmin = k2 and the maximum value hmax = k.
So the competitive ratio gets 4(k � 1) when returning back to the origin in every
step. 2
For a practical approach we hope that the presented strategies doing better than
MDL because the competitive ratio measures only the worst-case. First studies
indicate an advantage of MDL only for a small hypotheses set and a disadvantage
for huge hypotheses sets (see [Buck99]).

6 Summary

In this report we gave a practical approach for the second part of the self-localizing
problem. We expanded Schuierers algorithm to polygons with obstacles. Next we
gave a more realistic approach in using voronoi paths. Finally we presented new
decision strategies for eliminating the hypotheses set.

Many problems are still unsolved. First we need an estimation or solution for the
unrestricted voronoi length ratio. Also we have to investigate the new decision
strategies using simulation studies and practical tests, too. The fundamental part
in creating a motion manager was only mentioned and must be solved in future.
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