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Abstract
As technology scales down, energy consumption is becoming a
big problem for traditional SRAM-based cache hierarchies. The
emerging Spin-Torque Transfer RAM (STT-RAM) is a promis-
ing replacement for large on-chip cache due to its ultra low leak-
age power and high storage density. However, write operations
on STT-RAM suffer from considerably higher energy consump-
tion and longer latency than SRAM. Hybrid cache consisting of
both SRAM and STT-RAM has been proposed recently for both
performance and energy efficiency. Most management strategies
for hybrid caches employ migration-based techniques to dynami-
cally move write-intensive data from STT-RAM to SRAM. These
techniques lead to extra overheads. In this paper, we propose a
compiler-assisted approach, preferred caching, to significantly re-
duce the migration overhead by giving migration-intensive memory
blocks the preference for the SRAM part of the hybrid cache. Fur-
thermore, a data assignment technique is proposed to improve the
efficiency of preferred caching. The reduction of migration over-
head can in turn improve the performance and energy efficiency of
STT-RAM based hybrid cache. The experimental results show that,
with the proposed techniques, on average, the number of migrations
is reduced by 21.3%, the total latency is reduced by 8.0% and the
total dynamic energy is reduced by 10.8%.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Compilers; B.3.2 [Design Styles]: Cache memories

General Terms Design, Performance

Keywords Hybrid Cache, Data Assignment, Compiler

1. Introduction
As technology scales down, traditional SRAM-based caches en-
counter many challenges such as energy consumption and scala-
bility. Recent advancements in memory technology present Spin-
Torque Transfer RAM (STT-RAM) as a new candidate for build-
ing caches [6]. Compared to SRAM, STT-RAM has higher storage
density, and much lower leakage power. However, write operations
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in STT-RAM have considerably longer latency and higher energy
consumption than in SRAM. To take advantages of both SRAM
and STT-RAM, hybrid cache architectures have been studied and
evaluated in recent work [20] [21] [9] [12]. These studies show
that caches built with multiple memory technologies have potential
to outperform its counterpart of single technology. To efficiently
utilize hybrid cache, migration-based techniques are commonly
used to dynamically move write-intensive data from STT-RAM to
SRAM. However, migrations require extra read and write opera-
tions for data movement and this extra overhead may degrade both
the performance and energy efficiency of the hybrid cache. Em-
bedded systems often have more stringent power and performance
constraints. In this paper, we propose compiler-assisted techniques
to improve the performance and energy efficiency for embedded
systems with STT-RAM based hybrid cache by significantly reduc-
ing the migration overhead.

The overhead of migrations has not been well evaluated previ-
ously. In this paper, we have conducted a set of experiments and
it is observed that the migration overhead is significant. We found
that migrations correlate closely with the R/W transition events in
access sequences (a R/Wtransition event represents a read fol-
lowed by a write, or a write followed by a read, in the same memory
block). The number of transition events can be used as an indicator
for the number of migrations. It is also observed that most transition
events in memory blocks come from access operations in the stack,
rather than from the heap and global data area. In addition, for the
stack, most transition events occur in a small group of memory
blocks. With these observations, a compiler-assisted approach, pre-
ferred caching, is proposed in this paper to reduce the overhead of
migrations by identifying these transition-intensive memory blocks
and giving them the preference to be loaded into the SRAM part of
the hybrid cache. The reduction of migration overhead will in turn
improve both the performance and energy efficiency of STT-RAM
based hybrid cache.

This paper makes the following contributions:

• Analyzes the migration overhead in STT-RAM based hybrid
cache, and present several important observations.

• Proposes a compiler-assisted approach, preferred caching, to
significantly reduce the migration overhead. The proposed ap-
proach identifies migration-intensive memory blocks and gives
them the preference for the SRAM part of STT-RAM based hy-
brid cache. As a result, migrations for these preferred memory
blocks are eliminated.

• Proposes a technique to improve the efficiency of the preferred
caching approach by data assignment. Data assignment can
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change the access sequences in each memory block. After the
new data assignment, migrations can concentrate in a smaller
number of memory blocks. Giving these cache lines the prefer-
ence in SRAM can further reduce migrations.

The rest of this paper is organized as follows. Section 2 presents
the analysis of the migration overhead in STT-RAM based hybrid
cache. Section 3 introduces the preferred caching approach. The
efficiency of preferred caching could be improved by data assign-
ment at compilation time. This technique is discussed in Section
4. The experimental results are presented in Section 5. The related
works are introduced in Section 6. Finally, Section 7 concludes this
paper.

2. Analysis of the migration overhead
This section introduces the analysis of the overhead of migrations
in STT-RAM based hybrid caches. This paper focuses on embed-
ded systems, in which the configuration of only one-level cache
is often applied, such as Freescale e300 family [2], Renesas VR-
series [4], and Cortex-R based MCUs [1]. For the evaluation in this
section, we consider a one-level on-chip data hybrid cache, where
the cache size is 32K bytes, the associativity is 4-way (one way for
SRAM, and three ways for STT-RAM), and the cache-line size is
32 bytes. We defer the discussion of cache parameters to Section
5. The cache management strategy in [12] is implemented for this
evaluation. We obtain four observations:

1. The overhead from migration based techniques in the STT-
RAM based hybrid cache is significant.

2. The overhead of migrations correlates closely with the number
of transition events in memory blocks.

3. Most transition events in memory blocks come from stack area,
rather than from static area and heap area.

4. The number of transition events from the stack has an unbal-
anced distribution over different memory blocks.

2.1 Overhead of migrations

Migration based techniques are commonly proposed for non-
volatile memory based hybrid caches [20] [21] [12]. For STT-RAM
based hybrid caches, the SRAM part is preferable for write oper-
ations and the STT-RAM part is preferable for read operations.
Considering the high probability that the program writes data to a
specific group of cache lines repeatedly, cache lines in STT-RAM
should be migrated to SRAM if they are frequently written to. This
migration technique is first presented in [20] and then improved in
[12]. The authors of [12] find that, when there is a need of migra-
tion, it is better to exchange data between two cache lines, rather
than only migrate the data in STT-RAM to SRAM. In this paper,
this kind of migration, triggered by write operations, is calledswap.
Furthermore, the same authors observe that there is also high prob-
ability that the program reads data from a specific group of cache
lines repeatedly, and propose to migrate cache lines from SRAM
into STT-RAM if they are read frequently. Then, the SRAM part
can be set aside for write-intensive data. In this paper, this kind
of migration, triggered by read operations, is calledmigrate. Both
swapandmigraterequire extra read and write operations for data
movement within the hybrid cache, and these extra overhead may
degrade performance and energy efficiency of STT-RAM based
hybrid caches.

Figure 1 shows the overhead of migrations for the selected
benchmarks. In this figure, the migration consists of two parts:
swapandmigrate. It is found that, on average, eight migration op-
erations are triggered per hundred memory accesses. It means that
the migration overhead is significant. This overhead is detrimental
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Figure 1. Normalized number of migrations (including bothswap
andmigrate). The baseline is the number of memory accesses.
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Figure 2. Correlation between transition events and migrations.

to the system performance and energy consumption, and should be
minimized.

2.2 Correlation between migrations and transition events

It is observed that the migration overhead correlates closely with
transition events in access sequences. A R/Wtransition event rep-
resents a read operation followed by a write, or a write operation
followed by a read, in the same memory block. Generally, more
transition events lead to more migrations. The reason is, a sequence
of read operations followed by several write operations in a SRAM
cache line triggers amigrate, and a sequence of write operations
followed by several read operations in a STT-RAM cache line trig-
gers aswap. Therefore, if too many transition events occur in mem-
ory blocks, the migration mechanism will be triggered frequently,
in which situation, the benefits from migration will be offset by the
migration overhead.

Figure 2 shows the correlation between the number of migra-
tions and the number of transition events in memory blocks. It is
found that transition-intensive memory blocks are often migration-
intensive memory blocks. The number of migrations changes along
with the number of transition events in memory blocks. For the se-
lected benchmarks, the correlation coefficient between the number
of migrations and the number of transition events is about 0.94.
Therefore, the number of transition events, which is visible at com-
pilation time, can be used as a good indicator to reduce the migra-
tion overhead.

2.3 Distribution of transition events over memory areas

Program data are stored in three kinds of memory areas: stack area,
static area, and heap area. Local data, including local variables and
compilation temporary variables are stored in stack area. Stack area
also includes the space for register protection, the space for param-
eters, and the space for return addresses. Stack storage can effi-
ciently deal with dynamic function invocation and provide space on
demand. Static data, including global variables and static variables,
are stored in global area. Heap area includes dynamically allocated
space (mallocfunction in C, ornewoperator in C++). Heap storage
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Figure 3. Distribution of transition events over memory area.
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Figure 4. Distribution of transition events over memory blocks in
the stack.

is commonly associated with the highest runtime cost among three
kinds of storages, and thus is rarely applied in embedded systems
because of the resource limitation.

Figure 3 shows the distribution of transition events over memory
areas. It is found that for the selected benchmarks, on average,
74.0% of transition events come from the stack. Considering the
correlation between migrations and transition events, it indicates
that most migrations are from the stack. Therefore, this paper
focuses on reducing the migration overhead originating from the
stack.

2.4 Distribution of transition events over memory blocks

Figure 4 shows the distribution of transition events in the stack area
over memory blocks. On average, 79.1% of transition events in the
stack occur within the top 5% of memory blocks, and 93.3% of
transition events in the stack occur within the top 20% of mem-
ory blocks. If we can statically identify these transition-intensive
memory blocks at compilation time, and give them the preference
for SRAM, then, no migrations are needed for these transition-
intensive memory blocks. In other words, ideally we can eliminate
about 80% of migrations by giving 5% of memory blocks the pref-
erence for SRAM. Furthermore, it is observed that the transition-
intensive memory blocks are also write-intensive memory blocks.
Therefore, giving transition-intensive memory blocks the prefer-
ence for SRAM could also make more write accesses occur in
SRAM, which is preferable to write operations.

These observations motivate the work proposed in this paper. A
compilation method is proposed to identify the transition-intensive,
essentially migration-intensive, memory blocks from the stack. By
giving these memory blocks the preference for SRAM, it is possible
to reduce the migration overhead. The reduction of migration over-
head will in turn improve both performance and energy efficiency
of the hybrid cache system. In this paper, a compiler-assisted ap-
proach, preferred caching, is proposed to significantly reduce the

migration overhead. Furthermore, we present a technique to im-
prove the efficiency of preferred caching by data assignment of
stack objects at compilation time.

3. Preferred caching
As observed in Section 2.4, a small group of memory blocks of-
ten dominate the transition events in the stack. If we can correctly
identify these transition-intensive memory blocks, migrations orig-
inating from these transition-intensive memory blocks could be
eliminated by giving them the preference for SRAM. It is possi-
ble to identify transition-intensive memory blocks at compilation
time using static profiling techniques. Furthermore, as observed in
Section 2.2, the number of migrations correlates closely with the
number of transition events. Therefore, by giving this small number
of transition-intensive memory blocks the preference for SRAM, a
large number of migrations can be eliminated.

This section introduces the proposed preferred caching ap-
proach. This compilation based approach consists of four steps.
First, the information about which group of data objects will be
loaded in the same memory block, is obtained. Second, the number
of transition events within each memory block is computed. Third,
the transition-intensive memory blocks are identified. Fourth, the
transition-intensive memory blocks are given the preference for
SRAM.

3.1 Identifying data objects belonging to the same memory
block

At compilation time, we know each data object’s offset relative to
the stack base pointer, but cannot determine which group of data
objects will be loaded into the same memory block during runtime.
In other words, we need to know which group of data objects
belong to the same memory block. If the stack base pointer for
each function is aligned with the cache-line size, it will be easy to
correctly identify which group of data objects belong to the same
memory block according to the offset addresses relative to the stack
base pointer. In this work, two tasks are carried out to align the
stack base pointer with the cache-line size. First, extra instructions
are inserted at the entry of the main function to align the stack
base pointer of the main function with the cache-line size. Second,
the stack size of each user function is expanded to be a multiple
of the cache-line size. Assume that the cache-line size isC, and
the original stack size of a function isx. After expansion, the new
stack size for this function is:⌈ x

C
⌉ × C. After these two tasks,

it is guaranteed that the stack base pointer of each user function
invocation is aligned with the cache-line size.

After this alignment work, it is easy to identify data objects that
belong to the same memory block. We only need to test whether
the offsets of these two objects divided by the cache-line size
are the same value. An example is shown in Figure 5, assuming
that the cache-line size is 32-byte. After the alignment work, it
is guaranteed that the stack base address (the value of the stack
base pointer,EBP) is a multiple of 32. Therefore, in Figure 5, the
address range[EBP+ 0,EBP+ 31] constitutes the first block, and
the address range[EBP + 32, EBP + 63] constitutes the second
block. Objectc has an offset of 16, and belongs to the first memory
block (16/32=0). Objectf has an offset of 40, and objecth has an
offset of 56. As a result,f andh belong to the second memory
block (40/32=1, 56/32=1).

3.2 Computing the number of transition events in memory
blocks

The static profiling technique proposed in [22] can be used to es-
timate the transition events between data objects. This technique
can estimate the execution frequency of each statement, each ba-
sic block and each control flow edge by exploring heuristics. With
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Figure 5. Mapping from stack offsets to memory blocks. Assume
that the memory block size is of 32-byte.EBP is the stack base
pointer for holding the address of the current stack frame.

this technique, the following information can be obtained at com-
pilation time: the execution frequency of each blockb, denoted as
Bfreq(b), and the frequency from a blockb to its succeeding block
c, denoted asEfreq(b, c). By travelling the control flow graph
(CFG) of each function, the transition events in each memory block
could be estimated. The algorithm is illustrated in Algorithm 3.1.
Within the loop from line 2 to line 19, each pair of consecutive
data accesses is visited. In line 7 and line 16, each transition event
is identified and the estimated occurrences of this transition event
are collected. The method to collect transition events according to
each pair of consecutive data accesses is detailed in Algorithm 3.2.
For each pair of consecutive data accesses, if the corresponding
two objects belong to the same memory block, a value is added to
the number of transition events for this memory block. This added
value is the execution frequency of a basic blockb, if this pair of
data accesses is withinb; or the frequency of the edgee, if this pair
of data accesses is across two basic blocks connected bye.

Algorithm 3.1 Estimating the number of transition events in each
memory block.
Input:

CFG: the CFG of a function
Output:

transMap: a map storing the number of estimated transition events for
each memory block

1: initialize the weight of each element intransMapto be zero;
2: for each basic blockb in the CFG do
3: // DA(v, o) represents a data access:v represents a data object,o

represents the access type, read or write
4: // da0 is used to record the previous data access
5: DA da0(v0, o0);
6: for each statementss in basic blockb do
7: for each data accessda1(v1, o1) in statements do
8: // a pair of consecutive accesses across basic blocks
9: if da1 is the first data access withinb then

10: for the last data accessda2(v2, o2) of each preceding
block bpred do

11: UpdateTrans(transMap, da1, da2 , Efreq(bpred , b) );
12: end for
13: // a pair of consecutive accesses within a basic block
14: else
15: UpdateTrans(transMap, da1 , da2, Bfreq(b) );
16: end if
17: end for
18: end for
19: end for
20: return true ;

Algorithm 3.2 UpdateTrans: Updating transition events for each
memory block according to each pair of consecutive data accesses.
Input:

transMap: transition events for each memory block
da1(v1, o1): the first data access
da2(v2, o2): the second data access
freq: the frequency value passed as parameter

Output:
transMap: updated transition events for each memory block

1: // skip transition events between the same object
2: if v1 == v2 then
3: return 0;
4: end if
5: // skip non-transition events: read followed by a read, or write followed

by a write
6: if o1 == o1 then
7: return 0;
8: end if
9: int b1← v1.offset/CACHE LINE SIZE;

10: int b2← v2.offset/CACHE LINE SIZE;
11: // skip transition events across memory blocks
12: if b1 != b2 then
13: return 0;
14: end if
15: // update transition events for memory blocks
16: transMap[b1] += freq;
17: return true ;

3.3 Choosing the transition-intensive memory blocks

By now, the number of transition events in each memory blocks
is computed. We need to determine which memory blocks are
transition-intensive and should be given the preference for SRAM.
In the proposed approach, a threshold valueN is used for this
decision. If the number of transition events in a memory blockcl is
greater thanN , then,cl will be identified as a transition-intensive
memory block and will be given the preference for SRAM. The
choice ofN will affect the performance of the proposed preferred
caching approach. IfN is too small, too many memory blocks will
be given the preference, and only a small group of cache lines is
available for cache replacement. As a result, the hit ratio of the
hybrid cache will be hindered. IfN is too large, few memory blocks
will be given the preference, then the proposed technique will not
be effective. The choice ofN will be discussed in detail in the
experiment section.

3.4 Giving transition-intensive memory blocks the preference

There are many different ways that we can implement the preferred
caching. A potential implementation method is illustrated in this
section. Many Scum support functions of data pre-fetching and
cache locking [2] [4] [1]. In these MCUs, the preferred caching can
be implemented without any modification of the hardware. When
the control flow enters a function, the transition-intensive memory
blocks can be pre-fetched into the SRAM part of the STT-RAM
based hybrid cache (if the target SRAM location is already locked,
unlock it first), and then these cache lines can be locked using the
cache locking function to avoid being evicted by cache replacement
strategies and being migrated to STT-RAM. Note that in this paper
the proposed preferred caching is a pre-emptive approach. It means,
when the execution enters a function, its transition-intensive mem-
ory blocks can pre-empt the SRAM cache lines locked by previous
functions (via the unlocking function). The detail is shown in Al-
gorithm 3.3. These instructions for pre-fetching, cache locking and
cache unlocking should be inserted at the entry of each function,
and thus will be executed before any other instructions of this func-
tion.
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Algorithm 3.3 CacheLock: Cache locking transition-intensive
memory blocks into SRAM.
Input:

blocks: the list of transition-intensive memory block of a function
1: for each memory blockb in blocks do
2: // denote blockb’s target location in SRAM as cache linec
3: // Step 1: cache unlocking
4: if c is already lockedthen
5: insert instructions to unlock cache linec
6: end if
7: // Step 2: memory block pre-fetching
8: insert instructions to pre-fetch memory blockb into cache linec;
9: // Step 3: cache locking

10: insert instructions to lock cache linec;
11: end for
12: return true ;

4. Improvement of preferred caching by data
assignment of stack objects

As stated in Section 2.2, the overhead of migrations is sensitive to
the transition events in memory blocks. Changing the data assign-
ment could change the transition events in memory blocks. If we
could do the data assignment in a way that the distribution of write
accesses is more concentrated, the effect of the proposed preferred
caching would be enhanced. This is because, as the distribution of
write accesses becomes more concentrated, more write accesses oc-
cur in a small group of memory blocks. As a result, identifying and
giving this small group of memory blocks the preference for SRAM
can eliminate more migrations. Furthermore, by giving this small
group of memory blocks the preference for SRAM, more write ac-
cesses will occur in SRAM which is preferable to write accesses.
This section introduces a stack data assignment method to improve
the efficiency of the proposed preferred caching approach. The data
assignment method consists of three steps:

1. Obtain the frequency of write accesses for each data object of
stack.

2. Assign these data into a set of memory blocks according to their
frequency of write accesses. The size of a memory block equals
the cache-line size.

3. Finalize the data assignment.

In the first step, we can estimate the frequency of write accesses
for each data object by either dynamic profiling or static profiling.
The effectiveness of dynamic profiling is often sensitive to program
input. In this work, we employ a static profiling technique [22]
to estimate the frequency of write accesses for each data object.
In the second step, we present a heuristic algorithm for the data
assignment. The data objects are sorted in descending order by their
write access frequencies, and then they are allocated by the sorted
order. In the third step, the data assignment is finalized according to
the previous data assignment. It is noteworthy to point out that the
proposed algorithm does not handle objects of size greater than the
cache-line size. These objects are left to be placed using the default
method.

4.1 Obtaining write access frequency

A static profiling technique [22] is employed to obtain the execu-
tion frequency of each statement and each basic block. In Algo-
rithm 4.1, from line 2 to line 9, each stack data access is visited,
and the estimated frequency of each data accesses is collected ac-
cording to the block frequency.

Algorithm 4.1 Obtaining write access frequency.
Input:

CFG: the CFG of a function
Output:

freqMap[]: an array with the write access frequency of each stack
objects

1: initialize the write access frequency of each stack objects to be zero;
2: for each basic blockb in the CFG do
3: // DA(v, o) represents a data access:v represents a data object,o

represents the access type, read or write
4: for each statements in basic blockb do
5: for each stack data accessda1(v1, o1) in statements do
6: freqMap[v1] += Bfreq(b);
7: end for
8: end for
9: end for

10: return true ;

4.2 Data assignment

We present a heuristic algorithm for the data assignment process.
The detail of the proposed data assignment algorithm is shown in
Algorithm 4.2. First, the data objects to be allocated are sorted by
their write access frequency in descending order. Then, these data
objects are assigned into memory blocks one by one. The size of
each memory block is equal to the cache-line size. An example
is presented in Figure 6. Note that whether a blockb can hold an
objectd depends on the remaining space of memory blockb, the
size of data objectd, and the required alignment ofd.

Algorithm 4.2 Data assignment to memory blocks.
Input:

blocks: a empty list of memory blocks
freqMap: a map with the write access frequency of each stack objects

Output:
blocks: a list of assigned memory blocks

1: // Step 1: sort the data objects to be allocated
2: sort the data objects by write access frequency in descending order;
3: store the sorted objects intoobjects;
4: // Step 2: allocate data objects into memory blocks
5: while objectsis not emptydo
6: build a new memory blockb and add it intoblocks;
7: for each data objectd of objects do
8: // consider both alignment and size ofd

9: if b can holdd with regard to alignment requirementthen
10: removed from objects;
11: allocated into b;
12: update the remaining space ofb;
13: if b is full then
14: break;
15: end if
16: end if
17: end for
18: end while
19: // Step 3: allocate the unallocated data;
20: allocate the unallocated data using the default method
21: return blocks;

4.3 data assignment Finalization

After the data assignment process, a list of memory blocks is
obtained. The offset of each data object internal to the memory
block is also obtained. If the stack base pointer for each function
is aligned with the cache line size, we can conduct the finalization
of data assignment by mapping memory blocks into stack directly.
This alignment work can be accomplished in the same way as
mentioned in Section 3.1.
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(a) (b)

Figure 6. An example of data assignment. (a) The data objects
to be assigned. The number before each object is the write access
frequency for it. (b) The sorted data objects and the assignment
results.

Table 1. Evaluated methods.
Disable preferred caching Enable preferred caching

Default data assignment RG PCG
Proposed data assignment - IPCG

(a) (b) (c)

Figure 7. Experimental setup. (a) The RG group. (b) The PCG
group. (c) The IPCG group.

5. Experiments
In this section, we first introduce the experimental setup, and then
present the experimental results. Finally, a brief discussion about
the runtime overhead of the proposed compilation approach is
presented.

5.1 Experimental setup

The experimental setup is illustrated in Figure 7. The proposed
compilation techniques are implemented based on LLVM [10],
which is an open source compiler infrastructure. Three groups of
executables shown in Table 1 are generated and the related statis-
tics are collected. The first group, called the Reference Group (RG),

Table 2. Benchmarks characteristics.
Benchmark Data Reads Data Writes
distray 1.5E+08 7.7E+07
drop3 6.4E+08 3.8E+08
flops 3.3E+09 8.2E+08
mandel 7.0E+08 5.3E+08
neural 2.7E+08 1.1E+07
perlin 2.5E+09 2.6E+08
md5 1.4E+09 9.6E+07
patricia 1.4E+08 4.9E+07
SMG2000 1.8E+08 1.7E+08
typeset 2.5E+08 3.2E+07
url 3.5E+09 3.2E+08

Table 3. Architecture parameters.
Parameter Value
processor single core

32KB, 4-way, 32B cache-line size
one way for SRAM (8KB),
three way for STT-RAM (24KB)

hybrid write allocation, write back
data
cache SRAM access latency: 6 cycles

SRAM access dynamic energy: 0.388 nJ
STT-RAM read/write latency: 6/28 cycles
STT-RAM read/write dynamic energy: 0.4/2.3 nJ

main latency: 300 cycles
memory

is compiled by LLVM compiler using the default data assignment
method (basically placing stack objects in the order of declaration).
The second group, called the Preferred Caching Group (PCG), is
compiled by LLVM compiler, giving transition-intensive memory
blocks the preference to be loaded into SRAM cache lines. The
third group, called the Improved Preferred Caching Group (IPCG),
is compiled by LLVM compiler, combining data assignment with
preferred caching transition-intensive memory blocks. For all of
three groups, “O3” optimization in LLVM is enabled. The bench-
marks as well as their input files are selected from the LLVM test
suits, originated mainly from MiBench [7]. The characteristics of
these benchmarks are shown in Table 2.

For the experimental evaluation, a Pin-based cache simulator is
developed. Pin is a tool for the dynamic instrumentation of pro-
grams [15]. A cache simulator with the cache management strat-
egy in [12] is implemented for the experimental evaluation. Note
that the management strategy in [12] targets chip multiproces-
sors (CMPs), but this work focuses on micro-controllers (MCUs).
Therefore, the simulator targets one-level data cache in single-core
processors, and thus the inter-core migration strategy in [12] is not
included. The target architecture is depicted in Table 3. The cache
parameters and memory parameters are obtained from a modified
group of CACTI [16].

5.2 Comparison with previous work

This section presents the comparison of the proposed techniques
with the work proposed in [12]. There are several transactions that
directly affect the total cost of memory access. Among these trans-
actions, the most important ones are summarized in Table 4. In this
table, the second column shows the atomic transactions related to
each transaction in the first column, where MR represents STT-
RAM read, MW represents STT-RAM write, SR represents SRAM
read, SW represents SRAM write, MMR represents main memory
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read, and MMW represents main memory write. Our experiments
evaluate the influences of the proposed algorithm on these transac-
tions. Here, we choose 25 as the thresholdN for identifying the
transition-intensive cache lines to give the preference for SRAM.
The experimental results are normalized to the baseline of RG.

The improvement of the proposed techniques on migrations are
shown in Figure 8(a). Compared with RG, on average, the migra-
tions are reduced by 18.9% in PCG and 20.6% in IPCG. The pro-
posed techniques can also significantly reduce the number of write
operations in STT-RAM, as shown in Figure 8(b). This reduction,
on average 20.2% in PCG and 21.3% in IPCG, can significantly
save cost since write operations in STT-RAM have longer latency
and higher energy consumption than those in SRAM.

As discussed above, the proposed technique could reduce mi-
grations, and reduce write accesses to STT-RAM. Therefore, it is
promising that the proposed technique could improve the efficiency
of the STT-RAM based hybrid cache. The total latency is evaluated
using the cache and memory parameters shown in Table 3. Equation
1 is used to estimate the total latency, whereMRnum represents the
number of STT-RAM read transactions,MRcost represents the cost
(latency) per STT-RAM read transaction,MWnum represents the
number of STT-RAM write transactions. The total dynamic energy
consumption is estimated in a similar fashion. We only consider dy-
namic energy consumed by the cache, but not dynamic energy con-
sumed by the main memory. As shown in Figure 8(c) and Figure
8(d), compared with RG, on average, the total latency is reduced
by 7.2% in PCG and 8.0% in IPCG, and the total dynamic energy
is reduced by 9.4% in PCG and 10.8% in IPCG.

total latency =MRnum · MRcost + MWnum · MWcost

+ SRnum · SRcost + SWnum · SWcost

+ MMRnum · MMRcost

+ MMWnum · MMWcost

(1)

5.3 The efficiency of preferred caching

Here we present discussions of the efficiency of the proposed tech-
niques based on the results shown in Figure 8.

Reduction of migrations. Several factors may affect the effi-
ciency of reducing migration overhead: the proportion of transition
events occurring in the stack (see Figure 3), the distribution of tran-
sition events over memory blocks (see Figure 4), and the precision
of the static profiling technique. Since the proposed approach fo-
cuses on the stack, the more transition events occur in the stack, the
more migrations could be reduced. In addition, since the preferred
caching approach relies on giving the transition-intensive memory
blocks the preference for SRAM, the more concentrated the distri-
bution of transition events is over memory blocks, the more migra-
tions could be reduced. The precision of the static profiling deter-
mines the precision of the recognition of transition-intensive mem-
ory blocks, and thus affects the efficiency of preferred caching.

Let’s review the reduction of migrations as shown in Figure
8(a).

For distray, mandel, url, andSMG2000, the results are reason-
able. PCG brings good improvement, and IPCG improves even fur-
ther.

For drop3 andperlin, the results by PCG are extremely good,
while IPCG performs poorly. Conversely, forflops, the results by
IPCG are extremely good, while PCG performs poorly. It is fur-
ther found that the distributions of stack transition events for these
three benchmarks are extremely concentrated. There are two rea-
sons. First, the static profiling technique is not accurate for these
benchmarks. Second, with an inaccurate static profiling, the work
of identifying transition-intensive memory blocks and giving them
the preference for SRAM is not done well, and the side effects are
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Figure 9. Choice ofN . “mram-write” means the write accesses in
STT-RAM. These data are average values over all selected bench-
marks.

amplified by a concentrated distribution of transition events over
memory blocks.

For md5, the reduction of migrations by PCG is not good.
The reason is that the distribution of transition events in stack
is not concentrated. As shown in Table 5, for this benchmark,
no transition-intensive memory blocks are identified. However, by
data assignment, the distribution is changed and the reduction is
improved.

For neural and typeset, the improvement is marginal. This is
because, the transition events occurring in the stack is less than
30% of the total transition events. Therefore, there are not so many
migrations in the stack to be reduced.

For patricia, the result is not good. This is because, the distri-
bution of stack transition events is not very concentrated, as the
top 5% memory blocks take up less than 40% transition events.
This makes the recognition of transition-intensive memory blocks
difficult. As shown in Table 5, no memory block is identified as
transition-intensive.

Reduction of total latency(or dynamic energy).Other than
the factors affecting the efficiency of reducing migration overhead,
there is one more factor affecting the efficiency of reducing the
total latency (or dynamic energy): the number of migrations in
the original group, RG (see Figure 1). Let’s review the results of
reducing the total latency (or dynamic energy) as shown in Figure
8(c) (or Figure 8(d)). ForSMG2000, the reduction of migrations
is significant, but the improvement on performance (or dynamic
energy efficiency) is not so significant. This is because, there are
not so many migrations forSMG2000in RG, which may degrade
the efficiency of the proposed preferred caching technique.

5.4 The Choice ofN

In this subsection, we discuss the choice of the thresholdN which
is used to identify the transition-intensive memory blocks. As il-
lustrated in Figure 9, asN becomes larger, on average, the cache
misses decrease, but migrations, and writes on STT-RAM increase.
This phenomenon of double-edged effects can be explained as fol-
lows. AsN becomes larger, fewer memory blocks will be identified
as transition-intensive and fewer memory blocks will be given the
preference for SRAM. The decrease of preferred memory blocks
means more free memory blocks for replacement, thus the cache
misses is consequently lower. In the meantime, the decrease of
preferred memory blocks may reduce the benefit of the preferred
caching approach, thus the migrations and writes on STT-RAM in-
crease. However, in our experiments, the cache miss rate for each
benchmark is always very small, so the final latency and final dy-
namic energy increase withN .

5.5 Overhead of proposed techniques

Overhead of preferred caching.The runtime overhead mainly
comes from the implementation of preferred caching. As stated in
Section 3.4, the preferred caching can be implemented by apply-
ing the pre-fetching and cache locking functions. Assume that the
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Table 4. Important transactions.
Transaction Atomic transactions Detail
Read Hit MR/SR read on STT-RAM/SRAM
Write Hit MW/SW write on STT-RAM/SRAM
Read Miss MMR + MW + MR fetch the targeted cache line from main memory into STT-RAM andread it
Write Miss MMR + SW + SW fetch the targeted cache line from main memory into SRAM and write it
Migrate SR + MW migrate a cache line from SRAM to STT-RAM
Swap SR + SW + MR + MW exchange two cache lines in SRAM and STT-RAM
Write Back MR + MMW write a cache line in STT-RAM back to main memory1
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Figure 8. Comparison with RG. The results for PCG (Preferred Caching Group) and IPCG (Improved Preferred Caching Group) are
normalized to results of RG (Reference Group).

number of transition-intensive memory blocks of a functionf is
flines, andf executesfexectimes. Then, for functionf , the overhead
of code size for preferred caching, is linear toflines; the runtime
overhead is linear toflines · fexec. These values for PCG are col-
lected in our experiments and shown in Table 5. From the second
column to the fifth column, the value before ‘/’ is the sum offlines

for each benchmark, and the value after ‘/’ is the sum offexec for
each benchmark. A smallerN results in more overhead. It can be
found that the runtime overhead is very small.

Other overheads.The proposed techniques may lead to the
increase of stack size. For the preferred caching technique, the
overhead lies in two aspects. First, there is space overhead for
adjusting the initial stack address to be aligned with the cache-
line size. This overhead is limited by the cache-line size. Second,
there is space overhead for adjusting the stack size of each function
to be a multiple of the cache-line size. This overhead is limited
by CACHELINE SIZE · length, where length is the number of

1 The management strategy for hybrid cache in [12] forces write back comes
from STT-RAM.

Table 5. Overhead from preferred caching in PCG. For each
benchmark, the value before ‘/’ is the sum offlines, and the value
after ‘/’ is the sum offexec.
Benchmark N=10 N=25 N=50 N=100
distray 4/1363924 1/1 1/1 1/1
drop3 2/40 2/40 2/40 1/20
flops 1/1 1/1 1/1 0/0
mandel 2/2 1/1 1/1 1/1
perlin 1/1 1/1 1/1 1/1
url 3/80900 2/80200 1/79800 1/79800
md5 0/0 0/0 0/0 0/0
neural 4/61 2/30 1/30 1/30
patricia 0/0 0/0 0/0 0/0
SMG2000 195/121385 153/106672 124/74761 98/71178
typeset 35/423179 26/315435 17/311450 10/77

functions in the longest function calling chain during runtime. The
effects of data assignment on stack size are complicated, since the
alignment requirements on data objects make the stack size varies
with different data assignment methods and different stack base
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Figure 10. Comparison of stack size.

addresses. The comparison of stack size is shown in Figure 10. It
shows, on average, the stack size is increased by less than 10%.

The proposed techniques may also lead to an increase of code
size, since extra instructions are needed to adjust the initial stack
address to be aligned with the cache-line size for the main function.
However, no more than four instructions are needed for this task.
Therefore, the space overhead as well as the runtime overhead from
these instructions is negligible.

6. Related Works
Recently researchers have been attracted by several new mem-
ory technologies, including Embedded DRAM (EDRAM),Phase-
change RAM (PRAM), and STT-RAM. These technologies are
considered as potential candidates for building main memory [11],
and cache [6]. Samsung has announced its PRAM based memory
products which are used in mobile phones [3]. However, these tech-
nologies often suffer higher cost from write operations. Therefore,
hybrid architectures are commonly employed. The hybrid main
memory based on PCM and DRAM is presented in [18] [23] [24]
[14]. The hybrid scratch pad memory is presented in [8]. The hy-
brid cache based on STT-RAM and SRAM is presented in [20].
Lots of work has been done to study management strategies for
these hybrid architectures.

There are several studies architecting energy efficient STT-
RAM based hybrid cache using hardware-based techniques. Sun
et al. [20] propose hybrid caches consisting of SRAM and STT-
RAM, and employed migration based policy to mitigate the draw-
backs of STT-RAM. Wu et al. [21] evaluate two types of hybrid
cache architectures (HCAs), including inter cache level HCA and
intra cache level HCA, both of which employ cache line migration
policy. Their experiments show that these HCAs can improve both
energy efficiency and performance. More migration based policies
are explored in [9] [12] to further improve the efficiency of STT-
RAM based hybrid cache.

The compilation techniques for cache-aware data placement
have been studied for a long time. A general framework for cache
conscious data placement, including stack, global variables, and
heap, is proposed in [5]. In this paper, the temporal relationship
graph is employed to record the affinity relation between data
objects and guide the placement of objects. A good survey on
the problem of cache-aware data placement is presented in [17].
Recently, compiler-assisted caching techniques are also proposed
in the context of multi-threaded architectures and multiprocessors
[19] [13].

7. Conclusion
It is observed that the overhead of migrations for STT-RAM based
hybrid caches is significant, and most migrations occur in a small
group of memory blocks. With this observation, a compiler-assisted

approach, preferred caching, is proposed in this paper to reduce
the migration overhead by identifying these migration-intensive
memory blocks and giving them the preference to be loaded into
the SRAM part of the hybrid cache. Furthermore, a technique is
presented to improve the efficiency of preferred caching by data
assignment of stack objects. The experimental results show that
the proposed techniques can improve both performance and energy
efficiency.
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