
INTRODUCTION

ALZHEIMER’S DISEASE (AD), the leading cause of dementia,
involves regionalized neuronal death, synaptic loss and an

accumulation of intraneuronal, neurofibrillary tangles and extra-
cellular senile plaques (103). Currently, about 4 million Ameri-
cans have Alzheimer’s disease, and thousands of people die of
Alzheimer’s disease every year. The number of Americans with
Alzheimer’s disease is expected to increase to 14 million by 2050,
unless a cure or preventive measures can be found. To date, de-
spite intensive efforts, the mechanism(s) responsible for AD re-
main elusive, and this incomplete understanding of disease
pathogenesis has greatly affected the development of accurate an-
imal and cellular models, and thereby retarded the development
of therapeutic modalities.

Several independent hypotheses have been proposed to link
the pathologic lesions and neuronal cytopathology with,
among others, apolipoprotein E genotype (120, 195), hyper-
phosphorylation of cytoskeletal proteins, and amyloid-� me-
tabolism (81, 183). However, none of these hypothesis alone is

sufficient to explain the diversity of biochemical and patho-
logic abnormalities of AD, which involve a multitude of cellu-
lar and biochemical changes (87, 94, 134, 180, 215). A number
of previous studies reported the role of oxidative stress in AD
brain (33, 36, 134). Amyloid �-peptide (1–42), [A�(1–42)], a
main component of senile plaques, has been reported to play a
central role in oxidative stress in AD and also in the develop-
ment and progression of AD (26, 32, 33, 143, 148).

A�40 and A�42 are produced from amyloid precursor pro-
tein (APP), a transmembrane protein, by the action of �- and
�-secretases. A� is present in soluble form, aggregated form,
oligomeric form, protofibrils (PF), and fibrils. Oligomers,
PF, and amyloid-derived diffusible ligands (ADDLs) are be-
lieved to generate the potent toxicity of A� (2, 60, 108, 163,
230). Previous studies from our laboratory demonstrated the
important role of methionine at residue 35 in A�-induced ox-
idative stress and toxicity both in vitro and in vivo (29, 35,
201, 218, 219, 228).

Oxidative stress occurs because of an imbalance in the oxi-
dant and antioxidant levels. Oxidants can damage virtually all
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biologic molecules: DNA, RNA, cholesterol, lipids, carbohy-
drates, proteins, and antioxidants. In AD brain, the levels of
the antioxidants were found to be decreased, with an associ-
ated increase in protein oxidation (protein carbonyl and 3-
nitrotyrosine), lipid peroxidation, DNA oxidation, advanced
glycation end products, and reactive oxygen species (ROS)
formation, among other indices, strongly suggesting a role
for oxidative stress in the pathogenesis of AD (27, 36, 46,
125, 134, 197–199, 208, 209). Further, the use of vitamin E in
cell culture diminishes A� (1–42)–induced toxicity, further
consistent with a role of oxidative damage in AD pathology
(22, 31, 227). In addition, A�(1–42) can bind to receptors on
neuronal and glial cells [e.g., the �7-nicotinic acetylcholine
receptor, neurotrophin p75 receptor, the N-methyl-D-aspar-
tate receptor, the receptor for advanced glycation end prod-
ucts (RAGE) (220, 222), and others], forming calcium and
potassium channels in cell membranes (11, 61, 64), decreas-
ing glucose transport across brain endothelial cells (19), and
activating the release of chemokines (66) and cytokines (1).
In the present review, we discuss protein oxidation and lipid
peroxidation in AD brain.

PROTEIN OXIDATION

ROS and RNS attack proteins, leading to the formation of
protein carbonyls and 3-nitrotyrosine (3-NT). Hence, the lev-
els of protein carbonyls and 3-NT reflect the level of total
protein oxidation in a cell.

Protein carbonyls

Protein carbonyls may be generated by backbone frag-
mentation, hydrogen atom abstraction at alpha carbons, or at-
tack on several amino acid side-chains (Lys, Arg, Pro, Thr,
etc.), and by the formation of Michael adducts between Lys,
His, and Cys residues and reactive alkenals, which are prod-
ucts of lipid peroxidation (see later). Protein carbonyls are
also produced by glycation/glycoxidation of Lys amino
groups, forming advance glycation end products (AGEs) (18,
39, 51, 52, 201). A number of reactions of protein radicals
can give rise to other radicals, which can cause damage to
other biomolecules. Protein carbonylation leads to oxidation
of side-chains, backbone fragmentation, formation of new re-
active species (peroxides, DOPA), release of further radicals,
and occurrence of chain reactions. Most protein damage is ir-
reparable and could lead to a wide range of downstream func-
tional consequences, such as dimerization or aggregation;
unfolding or conformational changes to expose more hydro-
phobic residues to an aqueous environment; loss of structural
or functional activity; alterations in cellular handling/
turnover; effects on gene regulation and expression; and mod-
ulation of cell signaling, induction of apoptosis and necrosis,
etc., indicating that protein oxidation has physiologic and
pathologic significance (39). Thus, identification of carbony-
lated proteins should be followed by functional assessment of
the protein, whether it is enzyme or structural protein. These
functional studies may identify metabolic or structural de-
fects caused by oxidative modification. Certain oxidation
products of proteins, such as oxidation of Cys to cystine, and

Met residues to methionine sulfoxide, can be repaired by en-
zymes like glutathione reductase and methionine sulfoxide
(68, 155). The majority of the oxidized proteins are catabo-
lized by proteosomal and lysosomal pathways, but some ma-
terials appear to be poorly degraded and accumulate within
the cell (58, 76). The accumulation of such damaged material
may contribute to a range of human pathologies.

Protein carbonyls are chemically stable compared with the
other products of oxidative stress (e.g., F2 isoprostanes),
which are readily generated during sample storage, process-
ing, and analysis, and hence protein carbonyls are general and
widely used markers to determine the extent of oxidative
modification both in in vivo and in vitro conditions (18, 39,
51, 52, 201, 225). Several sensitive assays were developed for
the detection of oxidatively modified proteins (52, 119).

A number of oxidatively modified proteins have been de-
tected in AD brain and plasma (28, 43, 44, 46, 51, 54, 205,
206, 209). By using redox proteomics (53), our laboratory
first identified the specific targets of carbonylation and nitra-
tion in AD inferior parietal lobule (IPL). After this study, a
number of other targets of oxidation have been reported from
our laboratory in different brain regions, and this later study
also showed that oxidatively modified proteins are prone to
inactivation (205).

More recently, with a redox proteomics approach, we re-
ported specific carbonylation of the following proteins: alpha
enolase, ubiquitin carboxyl terminal hydrolase L-1 (UCHL-
1), dihydropyrimidinase-related protein 2, heat-shock cog-
nate 71, creatine kinase BB, peptidyl prolyl-cis,trans-
isomerase 1 (Pin1), glutamine synthase, triosephosphate
isomerase, ATP synthase alpha chain, and carbonic anhydrase
2 (43, 44, 46, 205, 206, 209). These data support the notion
that protein carbonylation perturbs energy metabolism, pH
regulation, and mitochondrial functions. These proteins are
discussed in detail later.

Protein nitration

Tyrosine nitration is another marker of protein oxidation,
and numerous studies support the notion that nitrative stress
also contributes to neurodegeneration in AD (46, 54, 197,
209, 213). Reactive nitrogen species (RNS) generated within
a physiologically relevant concentration by Ca2+-activated
constitutive nitric oxide synthase (NOS) are not toxic; rather,
RNS so generated are relatively specific in their cellular tar-
gets (112). In addition, NOS activities are modulated by
phosphorylation and protein–protein interactions. Recently,
several studies suggested that protein nitration could be a cel-
lular signaling mechanism and is often a reversible and selec-
tive process, similar to protein phosphorylation (13, 109). In
addition, proteins that are nitrated are more prone to proteo-
somal degradation than are their counterparts (75). In AD
brain, increased levels of nitrated proteins compared with
those of control were found, and ubiquitin carboxyl-terminal
hydrolase L-1 (UCH L-1), one of the components of the pro-
teasomal pathway, was identified as an oxidized protein in the
IPL and hippocampus of AD, further suggesting a role for ni-
tration in protein accumulation (46, 209).

RNS could be produced via the overexpression of inducible
and neuron-specific nitric oxide synthase (NOS: iNOS and

14333c08.pgs  10/10/06  4:45 PM  Page 2022



PROTEIN OXIDATION AND LIPID PEROXIDATION IN ALZHEIMER’S DISEASE 2023

nNOS, respectively) leading to increased levels of NO. AD
brain has been reported to show mitochondrial abnormalities
(15), which could lead to leakage of O2

�•. These two radicals
[NO and O2

�•] react at diffusion-controlled rates to produce
peroxynitrite, an extremely strong oxidant that can cause ox-
idative damage to proteins, lipids, and carbohydrates and
might be involved in the deterioration observed in AD. The
amino acids cysteine, methionine, phenylalanine, and tyro-
sine are particularly susceptible to nitration.

Tyrosine residues in a protein play an important role in
redox cell signaling and oxidative inflammatory injury, be-
cause nitration has been shown to alter protein function, in-
cluding modulation of catalytic activity, cell signaling, and
cytoskeletal organization (190). Tyr is a site of phosphoryla-
tion, a prominent regulation function. Addition of nitrite to
the protein at the 3 position of tyrosine residues sterically
hinders the phosphorylation of the tyrosine OH moiety and
also may change the structure of proteins, thereby rendering
a protein dysfunctional, and decreased tyrosine phosphoryla-
tion could lead to cell death (39, 112). Nitration of proteins
may lead to irreversible damage to the proteins and also af-
fect the energy status of neurons by inactivating key en-
zymes (13, 96, 109). This widespread occurrence of oxida-
tive alterations not only decreases or eliminates the normal
functions of these macromolecules but also may activate an
inflammatory response (the complement cascade, cytokines,
acute-phase reactants, and proteases) in the AD brain (66,
143).

As noted, in AD brain and CSF, increased levels of ni-
trated proteins have been found, implying a role for RNS in
AD pathology (46, 84, 197, 209). Increased levels of 3-NT
immunoreactivity in neurons from AD brain when com-
pared with aged matched controls were observed (197), and
dityrosine and 3-NT levels were reported to be elevated in
the hippocampus, IPL, and neocortical regions of the AD
brain and in ventricular cerebrospinal fluid (VF) (197,
213). The increased 3-NT residues and free adducts in CSF
of AD subjects probably reflect increased leakage of mito-
chondrial electron equivalents, protein nitrating agents,
with resultant and increased protein nitration in brain tis-
sue. More recent work demonstrates that ONOO� can in-
duce �-synuclein oligomerization through covalent 3,3�-
dityrosine cross-linking and may facilitate the misfolding
and deposition of selected proteins through nitrosative
and/or oxidative modification. Horiguchi et al. (91) dem-
onstrated the presence of nitrated tau in pretangles, tangles,
and tau inclusions in AD brain. The expression of nitration
was robust in pretangles of early AD cases compared with
those of more advanced cases, suggesting that tau nitration
may be an early event in AD.

Redox proteomics

Proteomics involves the systematic study of proteins to
provide a comprehensive view of the structure, function, and
regulation of a given cell, tissue, or organism. The term pro-
teomics was coined as an analogy to genomics, but pro-
teomics is very much different from genomics. One organism
will have radically different expression in different parts of
its body and in different stages of development. Because the

expression of proteins is often altered in disease conditions,
proteomics can serve as a sensitive technique to gain insight
into a host of biologic processes and phenotyes of both nor-
mal and diseased cells.

Previously an immunoprecipitation technique was used to
identify a selective target of protein oxidation, but this tech-
nique requires a thorough knowledge of the identified protein
and the availability of the antibody for the oxidatively modi-
fied protein (4, 207). Further, the oxidation of proteins could
also induce structural changes that can interfere with the pre-
cipitation process. Redox proteomics represents a much more
convenient way to identify a large number of proteins in a
sample at one time (53). However, a disadvantage of using
proteomic analysis for the identification of oxidatively modi-
fied proteins is that carbonylated or nitrated abundant pro-
teins with a low “specific carbonyl/nitration content” will ap-
pear prominent on immunoblots, whereas proteins present at
low levels but with a high specific carbonyl content may be
missed. Further, less abundant proteins require that they be
purified, most conveniently by immunoprecipitation. Sultana
et al. (207) showed oxidative inactivation of MRP-1 and GST
protein in AD brain by using the immunoprecipitation ap-
proach, and others also used this technique to demonstrate the
effect of oxidation on the protein function in other models of
AD (90, 192, 221). Several targets of protein nitration in AD
brain have been identified by using redox proteomics (46,
209).

With a redox proteomics approach, we reported specific ni-
tration of �-enolase, �-enolase, L-lactate dehydrogenase,
triosephosphate isomerase, glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH), ATP synthase � chain, voltage-
dependent anion channel protein 1, and carbonic anhydrase 2
in AD brain (46, 209). These data support the notion that ni-
tration of specific proteins perturbs energy metabolism, pH
regulation, and mitochondrial functions, which could be one
of the mechanisms for the onset and progression of AD.

Proteomics methods include separation of proteins by
two-dimensional polyacrylamide gel electrophoresis (2D-
PAGE) or HPLC (30), surface chromatography by adsorbing
proteins to activated surfaces (surface-enhanced or matrix-
assisted laser desorption–ionization, protein chip array tech-
nology) (216), peptide ionization procedures for analysis of
proteins from gels or protein chips by mass spectroscopy,
and finally, bioinformatics interrogation of databases for
protein identification.

2D gel electrophoresis separates a mixture of proteins into
single detectable protein spots based on two physicochemi-
cal properties [i.e., isoelectric point (IEF) and molecular mi-
gration (Mr)]. The 2D protein map permits comparison and
matching between different sets of samples to identify iso-
forms, splice variants, mutants, and posttranslationally mod-
ified species for statistical analysis (212). 2D gel elec-
trophoresis gives high reproducibility and resolution, and
each protein spot on the gel mostly represents a single pro-
tein in a sample (205). In addition to those noted earlier, the
main limitations of this technique include solubilization of
membrane proteins; the inability to detect low-abundance
proteins and proteins of high and low pI, proteins of high
molecular weight, or very low molecular weight; and the in-
sensitivity to proteins of high lysine and arginine content
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(28, 30, 85, 184). However, our laboratory and many others
are trying to overcome these issues by using chaotropic
agents, such as urea and thiourea, coupled with nonionic de-
tergents to solubilize and prevent the precipitation of pro-
teins during first and second dimension. The use of immobi-
lized pH IEF strips improves the reproducibility between the
samples and also eliminates the typical cathodic drift associ-
ated with previously used tube gels (69). Further, the use of
narrow-range IEF strips enables the investigator to separate
proteins over a wide range of pH, even with a unit pH differ-
ence of one. However, the IEF strip pH range normally used
(i.e., 3–10) limits the identification of highly basic proteins.
The identification of low-abundance proteins in a given sam-
ple is a limitation, as noted earlier, one that is important
when a protein of this group may be involved in the patho-
genesis of a disease. However, immunoprecipitation or other
concentration-enhancing methods can sometime overcome
these limitations.

The 2D gels are visualized by classic detection methods,
including Coomassie blue, silver staining, and fluorescent
dyes, such as SYPRO Ruby (150). These images were used
to identify main proteins with altered expression, oxidation,
and so on, by using specially programmed software depend-
ing on the kind of stain used. Once the proteins spots are
chosen, they are excised, digested in-gel with trypsin or
other appropriate protease, and subjected to mass spectrome-
try analysis (98, 204). The data obtained from mass spec-
trometry allow the identification of the protein. Databases
are available for theoretical digests of all known proteins;
thus matching the peptide mass data obtained from biologic
samples to this database of theoretically digested proteins
can successfully identify the proteins. This process, known
as peptide mass fingerprinting, must account for several fac-
tors, such as molecular weight, pI, and the probability that a
single peptide appears in the whole database, for the identifi-
cation of a protein. Many search engines are available to per-
form this matching process (Table 1). Further, the protein
identification can be confirmed by immunoprecipitation (28,
30). Initially proteomics was used only for protein-expres-
sion profiling; with advances in technology, proteomics has
been used to analyze posttranslational modifications and
protein–protein interactions as well (28, 30, 53). In our labo-
ratory, we derivatized brain samples with dinitrophenyl hy-
drazine (DNPH) to identify oxidatively modified proteins
(Fig. 1) (43, 44, 205).
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REDOX PROTEOMICS STUDIES IN
ALZHEIMER’S DISEASE

Redox proteomics in AD

AD has been investigated with proteomics (28, 56, 100, 122,
124, 208). Our laboratory used a redox proteomics approach for
the first time in AD brain to identify specifically oxidized pro-
teins; this has provided new insights into potential mechanisms
of AD and other diseases (28, 43, 44, 46, 205, 206, 209).

Protein expression analysis in AD

The expression analysis of proteins potentially can aid in
better understanding of the pathways involved in the pathogen-
esis of AD, and thereby help in delineating a mechanism of
progression of AD. A 2D-PAGE study detected 350 silver-
stained proteins in the plasma of six control cases, five AD
cases, and three non-AD dementias, of which 73 spots were
identified by sequencing or immunostaining, including the
AD-related proteins apoE, tau, and presenilin-2 (41, 231). Ad-
ditionally, Schonberger et al. (189) showed a significant re-
gional difference in the expression of proteins in the AD brain
compared with the age-matched control by using 2D PAGE and
N-terminal sequencing. Lubec et al. (128) and others (189)
have carried out an extensive protein-expression analysis in
AD brain. Several other studies used CSF to identify proteins
with altered expression, such as proapolipoprotein, apolipopro-
tein E, �2 microglobulin, retinol-binding protein, transthyretin,
�-1 antitrypsin, cell-cycle progression 8 protein, and ubiquitin,
which could reflect the biochemical changes occurring in the
brain (41, 231). However, CSF has a relatively high abundance
of certain proteins like IgG and albumin, which could interfere
with analysis, and hence their removal is a must to analyze
such samples. These studies showed that in AD, complex inter-
related mechanisms are at work and demonstrated the utility of
proteomics to gain insight into the disease mechanisms in AD.

OXIDATIVELY MODIFIED 
PROTEINS IN AD BRAIN

Redox proteomics was used for the detection and identifi-
cation of carbonylated and nitrated proteins in AD brain by
our laboratory and others (28, 43, 44, 46, 47, 110, 205, 206,

TABLE 1. MASS SPECTROMETRY SEARCH ENGINES FOR PEPTIDE MASS FINGERPRINTING

Search engine URL

Mascot http://www.matrixscience.com
MOWSE http://www.hgmp.mrc.ac.uk/Bioinformatics/Webapp/mowse
Profound http://prowl.rockefeller.edu/profound_bin/WebProFound.exe
MS-fit http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm
Peptident http://ca.expasy.org/tools/peptident.html
Mass Search http://cbrg.inf.ethz.ch
Peptide Search http://www.mann.emblheidelberg.de
ExPASy http://www.expasy.ch/tools
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208, 209). Redox proteomics has the potential of detecting
disease markers and identifying potential targets for drug
therapy in AD (28, 30, 208). With redox proteomics, several
specific targets of protein oxidation and nitration in AD brain
were identified: creatine kinase (CK), �-enolase, triosephos-
phate isomerase (TPI), phosphoglycerate mutase 1 (PGM1),
glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
voltage-dependent anion channel protein 1 (VDAC1), �-
soluble N-ethylmaleimide-sensitive factor attachment protein
(SNAP), glutamine synthase (GS), ubiquitin carboxy hydro-
lase L-1 (UCHL1), neuropolypeptide h3, dihydropyrimidi-
nase-related protein 2 (DRP2), �-actin, peptidyl prolyl-
cis,trans-isomerase (PIN1), and carbonic anhydrase II (CA2)
were identified as potentially involved in different cellular
functions. These proteins may play an important role in neu-
rodegeneration (Table 2) (43, 44, 46, 205, 206, 209). In this
review, we discuss their potential link to AD pathology.

PROTEIN OXIDATION AND LIPID PEROXIDATION IN ALZHEIMER’S DISEASE 2025

ENERGY DYSFUNCTION

Altered energy metabolism has been reported in AD brain
(70, 145, 217). Positron emission tomography (PET) studies
also show a pattern consistent with the reduced cerebral glu-
cose utilization in AD brain (93, 177). These biochemical al-
terations are consistent with the identification of CK, ENO1,
TPI, GAPDH, PGM1, and �-ATPase as oxidized proteins
with redox proteomics, because each of these proteins is in-
volved directly or indirectly in ATP production (5, 43, 44, 46,
205, 209). The oxidative modification of these enzymes
likely leads to their inactivation (83, 170). For example, CK,
enolase, PGM1, GAPDH, and ATPase activities are report-
edly diminished in AD brain (5, 83, 205). Because glucose is
the main source of energy for the normal functions of brain,
decreased ATP levels would lead to impaired ion-motive
ATPases to maintain potential gradients, operate pumps, and

TABLE 2. OXIDATIVELY MODIFIED PROTEINS IDENTIFIED IN AD BRAIN USING REDOX PROTEOMICS

Protein functions Oxidized proteins References

Energy-related enzymes CK, Enolase, TPI, PGM1, LDH, GAPDH 2, 43, 44, 45, 205, 208
Neurotransmitter-related proteins EAAT2, GS 26, 44, 116
Proteasome-related proteins UCHL1,HSC 71, 43, 44
Cholinergic system Neuropolypeptide h3 46
pH regulation-protein CA2 II 205
Structural proteins DRP2, �-actin 43, 205
Cell cycle, tau phosphorylation Pin 1 205, 206
Synaptic abnormalities and LTP Gamma-SNAP 205
Mitochondrial abnormalities ATP synthase alpha chain, VDAC-1 208

CK, creatine kinase BB, TPI, triose phosphate isomerase; PGM1, phosphoglycerate mutase 1; LDH, lactate dehydrogenase;
EATT2, excitatory amino acid transporter 2; GS, glutamine synthase; UCHL1, ubiquitin carboxy-terminal hydrolase L-1; HSC
71, heat-shock cognate 71; DRP2, dihydropyrimidinase-related protein 2; Pin1, peptidyl-prolyl-cis,trans-isomerase; gamma-
SNAP, gamma-soluble NSF-attachment protein; VDAC, voltage-dependent anion channel protein.

FIG. 1. Protocol for the identification of oxidized proteins by redox proteomics used in our laboratory.
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maintain membrane lipid asymmetry, and so on. Such
changes could also lead to exposure of phosphatidylserine to
the outer membrane leaflet, a signal for apoptosis (147).
Moreover, ATP shortage can also induce hypothermia, caus-
ing abnormal tau phosphorylation through differential inhibi-
tion of kinase and phosphatase (167).

EXCITOTOXICITY

Glutamine synthase plays an important role in regulation of
neuronal pH, and loss of its activity could lead to accumulation of
ammonia, providing a possible mechanism for neuronal degener-
ation (39). GS regulates the levels of glutamate in cells by the
glutamate–glutamine cycle, and the oxidation of this protein in
AD brain contributes to the glutamate dysregulation in AD brains
(118). Such deregulation leads to an influx of Ca2+ and activation
of NMDA and AMPA receptors that are ultimately responsible
and cause neuronal excitotoxic death (138, 139). Further, the
identification of GS as an oxidatively dysfunctional protein sup-
ports previous studies showing the diminished activity of GS in
AD (3, 34, 83). The excitatory amino acid transporter, EAAT2
and GS are two proteins involved in the regulation of the extra-
neuronal levels of glutamate and neurotransmission. Hence, the
oxidative dysfunction of GS, which leads to structural alterations
of this protein and a reduced activity (3, 34, 39, 43, 92), could be
detrimental to neurons.

A previous study identified the glutamate transporter
EAAT2 as oxidatively modified by the lipid peroxidation
product, HNE, in AD brain (116). A�(1–42) has been shown
to lead to oxidative modification of EAAT2 (116).

PROTEOSOMAL DYSFUNCTION

The ubiquitin–proteasome pathway was found to be dys-
functional in AD brain and could be involved in the pathogen-
esis of AD (46, 47, 205). Ubiquitin carboxyl terminal hydro-
lase L1 (UCH-L1) is a part of ubiquitin–proteasome systems
and is involved in the degradation of damaged, excess, or al-
tered proteins that could lead to synaptic degeneration in AD
brain (46, 47, 82). UCHL-1 activity was found to be de-
creased in AD brain (205), consistent with the observed in-
creased protein ubiquitinylation, decreased proteasome activ-
ity, and accumulation of damaged proteins in AD brains (28).
Similarly, the activities of the 26S proteasome, ubiquitin-
activating enzyme (E1), and ubiquitin-conjugating enzyme
are reversibly depressed under conditions of oxidative stress
(104, 193). By using redox proteomics, we identified UCH-
L1 protein as carbonylated in AD brain (43, 205), consistent
with protein-function impairment that could lead to protein
aggregates in AD brains. In addition, some recent in vitro
studies showed that HNE, a lipid peroxidation product, de-
creased the activity of recombinant UCH-L1 (95, 164, 194),
suggesting that oxidative modification of UCH-L1 inacti-
vates its hydrolase activity. Our proteomics result identifying
UCH-L1 as an oxidative modified protein in AD (43, 205)
was recently confirmed by others (47). Taken together, these
different lines of evidence support a role for dysfunction of
the ubiquitin–proteasome pathway in the pathogenesis of AD.

2026 SULTANA ET AL.

LIPID ABNORMALITIES AND
CHOLINERGIC ALTERATIONS

Previous studies reported decreased activity of choline
acetyl transferase (ChAT) in AD brain (57), and ChAT has also
been found to be HNE-modified in synaptosomes treated with
A�(1–42) (36). ChAT is regulated in part by neuropolypeptide
h3 (NPH3), a phosphatidyloethanolamine-binding protein
(PEBP) or cholinergic neurostimulating peptide. PEBP may
play an important role in maintaining phospholipid asymmetry,
a process that is important to normal mitochondrial and plasma
membranes function (45, 147). Therefore, oxidative modifica-
tion of NPH3 (or PEBP) possibly leads to functional abnormal-
ities, thereby causing impaired cholinergic properties, mito-
chondria function, and apoptosis in AD. Further, A�(1–42) or
HNE, which is formed by A�(1–42), leads to loss of synapto-
somal membrane lipid bilayer asymmetry (45, 147).

NEURITIC ABNORMALITIES

One of the characteristic features of AD is synaptic loss. A
number of studies reported �-actin (ACT)- and dihydropyrimid-
inase-related proteins 2 (DRP2) as downregulated and oxida-
tively modified in AD brain (43, 44, 46, 49, 128). Both of these
proteins are critical to neuroplasticity for memory consolidation
(114). �-Actin is involved in maintenance of cytoskeleton net-
work integrity and is concentrated in dendritic spines in adult
brain, where it can produce rapid change in their shape that
might be involved in memory function (99). DRP2 also plays an
important function in maintaining interneuronal communica-
tion, neuronal repair, and in axonal outgrowth (79, 102). In addi-
tion, DRP2 interacts with collapsin and regulates dendritic
length. Based on the functions of these proteins, it is evident that
oxidation of these proteins could lead to loss of membrane in-
tegrity, activation of cellular events that may lead to apoptosis,
loss of interneuronal connections, neuronal repair, and shortened
dendritic lengths as observed in AD (49), eventually leading to
memory impairment and synapse loss, clearly important for AD.

TAU HYPERPHOSPHORYLATION 
AND CELL CYCLE

One of the pathologic hallmarks of AD is the presence of
intraneuronal tangles. The main protein component of neu-
rofibrillary tangles (NFTs) is hyperphosphorylated tau (9, 24,
55, 67, 72, 74). The hyperphosphorylation of tau protein leads
to impaired ability to stabilize microtubules, eventually lead-
ing to disruption of the axonal cytoskeleton. The phosphoryla-
tion–dephosphorylation of tau protein is regulated in part by
peptidyl prolyl-cis,trans-isomerase (Pin). Pin1 is a chaperone
enzyme that recognizes phosphorylated Ser-Pro and phospho-
rylated Thr-Pro motifs in proteins, and alters the conformation
of proteins from cis to trans between a given amino acid and a
proline (191). Pin1 is crucial for cell growth and is required
for proper progression through the cell cycle in dividing cells
(127). Pin1 has been shown to colocalize with phosphorylated
tau and also shows an inverse relation to the expression of tau
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in AD brains (89, 111, 176, 205, 206). Further, Pin1 is found
to be oxidatively dysfunctional in AD brain (205, 206). The
oxidative modification of Pin1 could lead to structural modifi-
cations and thereby affect the properties of its targeted pro-
teins, such as tau. Pin1 is also involved in keeping neurons
from entering the cell cycle. In AD, postmitotic neurons be-
come trapped, resulting in apoptosis (199, 232). Oxidatively
modified Pin1 conceivably could be related to the observation
of elevated cell-cycle proteins in AD brain (157).

Consistent with this notion, a recent study showed that
Pin1 could restore the function of tau protein in an AD model
(121, 157), suggesting oxidative alteration of Pin1 could be
one of the initial events that trigger tangle formation and ox-
idative damage in AD brains. Further studies are required to
understand the role of Pin1 in the disease progression.

SYNAPTIC ABNORMALITIES AND LTP

Previous studies have shown that synaptic pathology is
central to the pathogenesis of AD (186), and relations among
synaptic alterations, amyloid deposits, cytoskeletal abnormal-
ities, and cognitive deficits in individuals with AD reportedly
exist (138). By using redox proteomics, we identified soluble
N-ethylmaleimide–sensitive factor (NSF) attachment protein
(�-SNAP) as an oxidized protein in AD brain (205). �-SNAP
is a member of SNAPs that plays an important role in vesicu-
lar transport for neurotransmitter release, hormone secretion,
and mitochondrial integrity. The function of SNAPs was re-
ported to be altered in AD brain (16, 202); hence, oxidation
may lead to an altered neurotransmission system and impaired
learning and memory in AD (140, 186, 206).

pH MAINTENANCE

The activity of carbonic anhydrase 2 (CA2) is decreased in
AD brain (144, 170, 206). CA2 regulates cellular pH, CO2, and
HCO3

� transport, and maintains H2O and electrolyte balance
(196) by reversible hydration of CO2 in normal cells. CA2 was
identified as one of the oxidized protein that likely explains the
diminished activity observed in AD brain (205), and the defi-
ciency of CA2 activity might lead to loss of a major buffering
system in brain and could also lead to cognitive defects varying
from disabilities to severe mental retardation (196, 198). The
change in buffering system in the brain could consequently
lead to protein aggregation, which is more pronounced in AD
brain, and, because the pH could be altered, to altered mito-
chondrial production of ATP.

MITOCHONDRIAL ABNORMALITIES

Many links have been found between mitochondrial abnor-
malities and AD over the years (10, 86, 130). Postmortem as-
sessment of human brain homogenates has consistently demon-
strated defects in mitochondrial enzyme activities, and several
other studies indicate that A� decreases the activity of mito-
chondrial respiratory chain complexes (20, 71, 86, 126, 149,
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210). A recent study from our laboratory identified the voltage-
dependent anion channel (VDAC) as a nitrated protein in AD
brain (209). VDAC is an outer-pore component of the mito-
chondrial permeability transition pore (MPTP) that plays an es-
sential role in movement of metabolites like ATP in and out of
mitochondria by passive diffusion, synaptic communication,
and in the early stages of apoptosis. Identification of VDAC1
protein as a nitrated protein in AD suggests an alteration in the
function of the MPTP, leading to mitochondrial depolarization
and altered signal-transduction pathways, which could be cru-
cial in synaptic transmission and plasticity. Moreover, alter-
ations in the MPTP could lead to apoptotic processes. Further,
VDAC1-deficient mice were reported to show deficits in learn-
ing behavior and synaptic plasticity (223). Moreover, dysfunc-
tion of mitochondria recently has been described to alter the
APP metabolism, enhancing the intraneuronal accumulation of
amyloid �-peptide and enhancing neuronal vulnerability (25).

LIPID PEROXIDATION IN AD

Lipid peroxidation

Accumulating evidence indicates that reactive oxygen
species–mediated reactions, particularly of neuronal lipids,
are extensive in AD brain areas directly involved in the dis-
ease processes (48). In recent years, numerous investigations
have pointed to the functional importance of oxidative imbal-
ance as a crucial event in mediating AD pathogenesis. The
availability of specific and sensitive markers to monitor in
vivo oxidative stress, in combination with studies performed
in living patients with clinical diagnosis of AD, are helping to
elucidate these issues (153).

Lipid peroxidation is one of the major sources of free radi-
cal–mediated injury that directly damages membranes and
generates a number of secondary products. In particular,
markers of lipid peroxidation have been found to be elevated
in brain tissues and body fluids in several neurodegenerative
diseases, and the role of lipid peroxidation has been exten-
sively discussed in the context of the pathogenesis of AD,
Parkinson disease (PD), amyotrophic lateral sclerosis (ALS),
and prion disease (6, 12, 97, 107).

It has been widely demonstrated that a direct link exists be-
tween the etiologic disease-causing agent, amyloid �-peptide,
and lipid peroxidation processes occurring in the brain and
the cerebrospinal fluid, which might lead to a deeper under-
standing of Alzheimer’s pathology (32, 33, 36, 174).

Brain is subject to lipid peroxidation because of its high
oxygen utilization, low level of antioxidants, and high level
of polyunsaturated fatty acids (PUFAs), the substrate for lipid
peroxidation. This complex process of lipid peroxidation in-
volves the interaction of oxygen-derived free radicals with
polyunsaturated fatty acids and finally results in a variety of
highly reactive electrophilic aldehydes that are capable of easily
attaching covalently to proteins by forming adducts with cys-
teine, lysine, or histidine residues. Among the aldehydes
formed, malondialdehyde (MDA), 4-hydroxynonenal (HNE),
and acrolein represent the major products of lipid peroxida-
tion (Fig. 2) (63, 123, 175). In addition, lipid hydroperoxyl
radicals undergo endocyclization to produce fatty acids es-
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ters; two classes of these cyclized fatty acids are is-
poprostanes and neuroprostanes (Fig. 3) (154, 156). F2-iso-
prostanes (F2-IsoPs) are the stable products of free radical
damage to arachidonic acid (AA), and F4-neuroprostanes (F4-
NPs) are the stable product of free radical damage to docosa-
hexanoic acid (DHA). Once formed, F2-NPs and F4-NPs can
undergo hydrolysis to liberate free iso- and neuroprostanes
that are detectable in body fluids (181).

Peroxidation of membrane lipids can have numerous ef-
fects, including increased membrane rigidity, decreased activ-
ity of membrane-bound enzymes (e.g., sodium pumps), al-
tered activity of membrane receptors, and altered permeability
(8, 229). In addition to effects on phospholipids, radicals can
also directly attack membrane proteins and induce lipid–lipid,
lipid–protein, and protein–protein cross-linking, all of which
obviously have effects on membrane function (65).

Biochemistry of lipid peroxidation

Lipid peroxidation refers to the oxidative degradation of
lipids. It is the process whereby free radicals abstract an H
atom from the lipids in cell membranes, resulting in cell dam-
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age. This process proceeds by a free radical chain-reaction
mechanism consisting of five steps (scheme 1) (161):

Step 1: initiation, in which the free radical attacks a methylene
group in the PUFAs, leading to a rearrangement of the
double bonds to the conjugated diene form, and simultane-
ously producing a carbon-centered alkyl radical.

Step 2: the alkyl radical reacts with molecular oxygen to give
rise to a peroxyl radical.

Step 3: propagation, in which the peroxyl radical, in its turn,
starts a self-perpetuating chain reaction in which most of
the membrane lipids are converted to a variety of hydroper-
oxides and cyclic peroxides. The hydroperoxides can be fur-
ther degraded to hydrocarbons, alcohols, ether, epoxides,
and aldehydes. Of these products, malondialdehyde and 4-
hydroxynonenal have the additional ability to inactivate
phospholipids, proteins, and DNA by bringing about bind-
ing to or cross-linking between these molecules (62).

Step 4: termination, in which the chain reaction is stopped by
interactions between the radicals themselves, or step 5 be-
tween the radicals and antioxidants, giving rise to nonradi-
cal products or unreactive radicals.

FIG. 2. Products of lipid peroxidation.

FIG. 3. Formation of F2 isoprostanes.
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Chain-breaking antioxidants such as vitamin E and vitamin
C prevent the propagation of lipid peroxidation at the early
stages of free radical attack (17, 59). For this reason, many
experimental studies have been undertaken to test the possi-
bility of a therapeutic use of free radical scavengers and an-
tioxidants against free radical–mediated toxicity.

ROLE OF APOE

Apolipoprotein E (ApoE), a major lipoprotein in brain, is
a lipid and cholesterol transport protein that is synthesized
within the CNS (113). ApoE polymorphism is one of the
major factors that influences progression and age at onset of
AD. Of the three human ApoE isoforms (E2, E3, and E4), the
dosage of ApoE4 increases the risk and reduces the age at
onset for familial and sporadic AD (50).

ApoE is a 34-kDa very low-density lipoprotein that func-
tions in the periphery as a mediator of lipoprotein metabolism
and lipid clearance through binding of ApoE-containing lipo-
protein particles to the low-density lipoprotein receptor–re-
lated protein (178, 224). In the CNS, ApoE is synthesized and
secreted primarily by astrocytes and microglia, and its impor-
tance is underscored by the low abundance of other
apolipoproteins (160). Additionally, it has been shown to play
a pivotal role in the redistribution of lipid and cholesterol
during membrane repair and in maintaining synaptic plastic-
ity, especially after neuronal injury (77).

How do the three ApoE (E2, E3, and E4) alleles and their
encoded protein isoforms alter the risk of developing AD? A
number of hypotheses have been proposed to explain the iso-
form-specific association of ApoE and AD (115), including
differential isoform-specific neurotrophic (88) and neuro-
toxic properties (214), antioxidative activity (146), and amy-
loidogenic effects (129). The latter hypothesis is supported by
postmortem neuropathologic findings from several laborato-
ries, which have consistently demonstrated increased amyloid
burden in ApoE4 carriers (179). A dominant hypothesis is
that ApoE binds to amyloid-�, the major component of the
senile plaques, and thereby acts as a “pathologic chaperone”
to reduce the solubility and stabilize the �-pleated structure
of amyloid fibrils (226).

Another hypothesis, based on the isoform-specific differ-
ences in the binding of ApoE to the microtubule-associated
protein tau, proposes a differential ApoE isoform contribu-
tion to AD cytoskeletal pathology by affecting phosphoryla-
tion of this protein and thereby NFT formation and micro-
tubule stabilization (203).

The immunohistochemical localization of ApoE to senile
plaques and tangles (158) in the AD brain provided one of
the first clues that ApoE may be involved. This association
has now been replicated in numerous subsequent studies,
leading to the general hypothesis that ApoE plays a signifi-
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cant role in the disease (42, 80, 179, 187, 203). Consistent
with the concept that in the absence of ApoE, A� would ac-
cumulate in the brain (182), results from our laboratory and
others have shown that increased markers of protein and
lipid peroxidation correlate with ApoE allele-specific inter-
action with A� (48, 117, 142, 188). These findings are par-
ticularly relevant to Alzheimer’s pathology where A� is over-
produced, oxidative damage is evident and for which ApoE is
a risk factor.

Lipid peroxidation in AD brain

Numerous studies have demonstrated increased lipid per-
oxidation in the brain of patients with AD compared with
age-matched controls (14, 32, 33, 36, 125, 136, 151, 152).
These data include quantification of fission and endocyclized
products such as HNE, acrolein, MDA, isoprostanes, and
neuroprostanes. Immunohistochemical and biochemical stud-
ies have localized the majority of lipid peroxidation products
to neurons. As lipid peroxidation can be detected not only in
brain tissue but also in body fluids, it might serve as a useful
marker of disease progression and as a monitor of therapeutic
efficacy.

TBARS

Thiobarbituric acid-reactive substances (TBARS) mea-
sure the concentration of malondialdehyde (MDA), an end
product of the oxidation and decomposition of polyunsatu-
rated fatty acids containing three or more double bonds. This
method has been criticized for its lack of specificity, sensitiv-
ity, and reproducibility, but it is one of the easiest and most
frequently used methods.

MDA reacts with TBA to form the MDA–TBA adduct.
This adduct is most commonly quantified by using a spec-
trophotometric assay (166). The reasons for concern include
possible interferences present in biologic samples (carbohy-
drates, pyrimidines, and hemoglobin), the heating condition
during the assay, the presence of iron in the reagents used for
analysis, rapid metabolism of MDA, and the fact that MDA
represents <1% of lipid peroxides (166). Thus, it is not rec-
ommended to be used as a sole index of lipid peroxidation
(23). Some investigators are now measuring MDA directly, by
using high-performance liquid chromatography (HPLC) to
separate MDA from other interfering chromogens, thus im-
proving specificity (78). However, this approach does not
overcome all the limitations of the MDA and may explain the
diversity in TBARS levels in different brain regions in AD.

HNE

Lipid peroxidation causes structural membrane damage
and produces diffusible secondary bioactive aldehydes, in-
cluding HNE, MDA and acrolein, all of which are increased
in several brain regions of late-stage AD patients (116, 125,
136). Numerous findings support an important role of HNE
in development of AD. Thus, a significant increase of free
HNE in CSF, amygdala, hippocampus, and parahippocampal
gyrus was detected in brain of AD patients when compared
with control subjects (136). Moreover, an elevated level of
protein-bound HNE in brain from subjects with mild cogni-
tive impairment (MCI) was observed (38). Arguably, MCI is
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the earliest form of AD (38), so lipid peroxidation likely is an
early event in AD progression.

Immunohistochemical studies have demonstrated the pres-
ence of HNE in amyloid deposits (185), in NFT, and
non–NFT-containing neurons in the hippocampus and in the
hippocampus and temporal cortex in association with the
APOE4 allele of apolipoprotein E in AD (7). HNE reacts with
proteins, forming stable covalent adducts to histidine, lysine,
and cysteine residues through Michael addition (38). HNE
can inhibit synthesis of DNA, RNA, and proteins and alter the
activity of glycolytic, degradative, and transport proteins
(Fig. 4) (38,62). HNE mediates amyloid �-peptide–induced
oxidative damage in cultured hippocampal neurons by im-
pairing ion-motive ATPase activity, causing an increase in in-
tracellular calcium and neuronal death (132). HNE impairs
glucose and glutamate transport in rat neocortical synapto-
somes (105), inhibits glucose transport in cultured hippocam-
pal neurons, and impairs glutamate transport in cortical astro-
cytes (116). HNE disrupts coupling of muscarinic cholinergic
receptors and metabotropic glutamate receptors to phospholi-
pase C–linked GTP-binding proteins in cultured rat cerebro-
cortical neurons (19). The administration of HNE into the
basal forebrain of rats damaged cholinergic neurons, de-
creased choline acetyltransferase activity, and impaired visu-
ospatial memory (165). This suggests that HNE may play a
role in the dysfunction and degeneration of cholinergic neu-
ronal circuits in AD (211).

As noted earlier, increasing evidence links mitochondrial
dysfunction to the pathology of AD (141). HNE induces
apoptosis in cultured PC12 cells and primary rat hippocampal
neurons (200). HNE increases neuronal death and exacer-
bates mitochondrial oxygen free radical formation induced by
A� or glutamate (133). HNE causes the microtubule-associ-
ated protein tau to become resistant to dephosphorylation,
which may contribute to neurofibrillary degeneration in AD.
HNE also inhibits neurite outgrowth, disrupts neuronal mi-
crotubules, and modifies cellular tubulin, which may con-
tribute to the cytoskeletal alterations that occur in AD (159).

Glutathione transferases are enzymes that inactivate the
toxic products of oxygen metabolism, including HNE (131).
A significant decrease of glutathione transferase activity and
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of other antioxidative enzymes was described in amygdala,
hippocampus, and inferior parietal lobule in patients with AD
(125). This could lead to more pronounced effects of HNE in
these brain regions. Moreover, GST and the multidrug-resis-
tant protein 1 (MRP-1), which effluxes the GSH-HNE conju-
gate from cells, were both highly modified by HNE in AD
brain compared with controls (207). This oxidative modifica-
tion may be related to the decreased activity of GST and may
account for the elevated levels of HNE in AD.

Acrolein, the most reactive �,�-unsaturated aldehyde prod-
uct of lipid peroxidation, could be rapidly incorporated into
proteins, generating a carbonyls or modifying DNA basis
with the formation of exocyclic adducts (137). Acrolein is
neurotoxic in a time- and concentration-dependent manner
and more toxic than HNE at 5 µM concentration for hip-
pocampal tissue cultures (125). Acrolein may inactivate the
reductase responsible for reducing vitamin E radicals, and to-
gether with depletion of glutathione, this could lead to further
lipid peroxidation. Acrolein preferentially reacts with lysine
residues that are prominent components of tau (73) and are
present in NFTs and dystrophic neurites surrounding SP (se-
nile plaque) in AD (40). Studies from our laboratory showed
that acrolein inhibits NADH-linked mitochondrial enzyme
activity (168). We have also reported that at very low concen-
tration, acrolein can structurally change transmembrane and
cytoskeletal proteins (169). Thus, not only HNE but also
acrolein is likely to be a factor in AD pathogenesis.

BRAIN PHOSPHOLIPIDS

Unlike other body membranes, neuronal membranes con-
tain a very high percentage of long-chain polyunsaturated
fatty acids because they are used to construct complex struc-
tures needed for high rates of signal transfer and data
processing.

Polyunsaturated fatty acids are sometimes called essential
fatty acids because they cannot be synthesized by the body
and therefore must be provided by the diet. Only two precur-
sors exist for dietary essential PUFAs: �-linolenic acid and
linoleic acid. In theory, these 18-carbon PUFAs can be con-

FIG. 4. Toxicity and metabolism of 4-
hydroxynonenal (HNE).
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verted to form predominantly 20- and 22-carbon long-chain
PUFAs with four or more double bonds.

However, the CNS is unique compared with other tissues
because it cannot directly use �-linolenic or linoleic acids,
only their long-chain PUFA derivatives, which are mainly do-
cosahexaenoic acid (DHA) and arachidonic acid (AA). Long-
chain PUFAs are the building material of the CNS and also
are required for the normal behavior of cell-signaling sys-
tems, which determine how neurons function.

Phospholipid metabolism has been shown to be abnormal
in AD brain cortex, as indicated by a depletion of phos-
pholipids in AD brain: tissue levels of the two major phos-
pholipid classes, phosphatidylcholine and phosphaty-
dilethanolamine, were 10–12% lower in parietal and frontal
cortex of AD patients than in brains of control subjects (162,
171).

One consequence of abnormal phospholipid metabolism
could be enhanced amyloid deposition. Amyloid deposition
in AD brains requires abnormal processing of APP. Defective
membrane metabolism could expose the APP transmembrane
domain to proteolytic cleavage, thus leading to increased
amyloid �-peptide release.

ISOPROSTANES

As noted earlier, isoprostanes are prostaglandin-like com-
pounds formed in vivo from the free-radical–catalyzed perox-
idation of arachidonic acid, independent of the cyclooxyge-
nase enzyme. F2-Isoprostanes (F2-IsoPs), one group of
nonenzymatic lipid peroxidation products derived from
arachidonic acid, are especially useful as in vivo biomarkers
of lipid peroxidation. F2-IsoP concentration is selectively in-
creased in diseased regions of brain from patients who died of
advanced AD, in which pathologic changes include amyloid
�-peptide deposition, NFT formation, and extensive neuron
death (152). Broad agreement exists that increased CSF lev-
els of F2-IsoPs also are present in patients with early AD. It
has been recently shown that subjects with MCI (mild cogni-
tive impairment) have plasma, urine, and CSF levels of 
F2-IsoPs higher than those of healthy subjects (172). This evi-
dence clearly indicates that oxidative imbalance and subse-
quent oxidative stress are early events in AD evolution (37,
38, 106) and are probably secondary to other mechanisms
specific to AD, but not present in other neurodegenerative
diseases (135, 173). It has been suggested that measurement
of isoprostanes may identify a subgroup of patients with MCI
with increased lipid peroxidation who are at increased risk to
progress to symptomatic AD (135).

F2-isoPs are also of interest as they have been directly dem-
onstrated to accelerate A� generation and aggregation (21),
so these moieties could plausibly lie upstream of amyloidoge-
nesis. Studies of Tg2576 plaque-forming transgenic mice
showed that brain, plasma, and urine levels of the iso-
prostane, 8,12-iso-iP F2�, increase during aging, beginning at
a point when cerebral amyloidosis of transgenic human A� is
incipient (174). The attraction of urinary isoPs is that they
might serve as noninvasively acquired biomarkers, which
could guide the selection of patients and dosing for trials of
antioxidants as well as the timing of dosing. This may prove
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particularly useful in a disease, such as AD, in which the rate
of progression varies markedly between individuals.

Increased levels of TBARS and MDA in the brains of per-
sons with MCI were reported (106). In addition, data from
our laboratory have shown in brain obtained at short post-
mortem intervals that the levels of HNE are elevated in
amnestic MCI hippocampus and inferior parietal lobules
compared with those of control brain (38). Thus, increased
levels of HNE in MCI brain implicate lipid peroxidation as an
early event in AD pathophysiology and also suggest that the
pharmacologic intervention to prevent lipid peroxidation at
the MCI stage or earlier may be a promising therapeutic strat-
egy to delay or prevent progression to AD.

CONCLUSIONS

This review has summarized many of the studies of pro-
tein oxidation and lipid peroxidation in AD brain. Protein ox-
idation and lipid peroxidation have several important down-
stream consequences that are detrimental to neurons and
clearly are important in AD. Moreover, given the findings that
protein (37) and lipid (38, 106, 135) oxidative damage occur
in brain of subjects with amnestic MCI, we suggest that ox-
idative damage is an early event in the progression of AD and
not simply a consequence of this dementing disorder. Accord-
ingly, therapeutic strategies designed to modulate the protein
oxidation and lipid peroxidation early in the course of the dis-
ease, if not before the onset of MCI, may be promising to
slow or possibly prevent AD.
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ABBREVIATIONS

2D-PAGE, two-dimensional polyacrylamide gel elec-
trophoresis; 3-NT, 3-nitrotyrosine; A�(1–42), amyloid beta-
peptide (1–42); AA, arachidonic acid; AD, Alzheimer’s disease;
ADDLs, amyloid-derived diffusible ligands; AGEs, advance
glycation end products; ALS, amyotrophic lateral sclerosis;
APOE, apolipoprotein E; APP, amyloid precursor protein;
ChAT, choline acetyl transferase; CK, creatine kinase BB; CSF,
cerebrospinal fluid; DHA, docosahexanoic acid; DNPH, dini-
trophenyl hydrazine; DRP2, dihydropyrimidinase-related pro-
tein 2; F2 IsoP, F2 isoprostanes; F4-NP, F4-neuroprostanes; �-
SNAP, gamma-soluble NSF-attachment proteins; GS,
glutamine synthase; GST, glutathione S-transferase; HNE, 4-
hydroxynonenal; HPLC, high-performance liquid chromatogra-
phy; HSC 71, heat-shock cognate 71; IEF, isoelectric point;
iNOS, inducible nitric oxide synthase; IPL, inferior parietal lob-
ule; LDH, lactate dehydrogenase; LTP, long-term potentiation;
MCI, mild cognitive impairment; MDA, malondialdehyde;
MPTP, mitochondrial permeability transition pore; Mr, molecu-
lar migration; MRP-1, multidrug-resistance protein-1; NFT,
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neurofibrillary tangle; nNOS, neuronal nitric oxide synthase;
NO, nitric oxide; NOS, nitric oxide synthase; O2

�•, superoxide;
ONOO�, peroxynitrite; PD, Parkinson disease; PEBP, phos-
phatidylethanolamine binding protein; PET, positron emission
tomography; PF, protofibrils; PGM1, phosphoglycerate mutase
1; Pin1, peptidyl-prolyl-cis,trans-isomerase; PUFA, polyunsat-
urated fatty acids; RAGE, receptor for advanced glycation end
products; RNS, reactive nitrogen species; ROS, reactive oxygen
species; SP, senile plaque; TBARs, thiobarbituric acid–reactive
substances; TPI, triose phosphate isomerase; UCHL-1, ubiqui-
tin carboxy-terminal hydrolase L-1; VDAC, voltage-dependent
anion channel protein; VF, ventricular cerebrospinal fluid.
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